

Assessing the Relationships Between Sensorimotor Biomarkers and Post-Landing Functional Task Performance

G.D. Tays ¹, V. Koppelmans ², Y. E. De Dios ³, R. D. Seidler ¹,

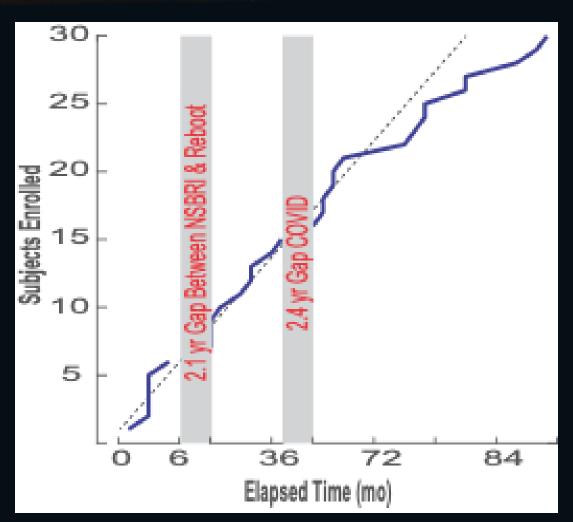
T. R. Macaulay ⁷, B. T. Peters ³, T. K. Clark ⁴, L. Oddsson ⁵,

C. A. Theriot ⁶, J. J. Bloomberg ⁷ and S. J. Wood ⁷

¹ University of Florida; Gainesville, FL; ² University of Utah, Salt Lake City, UT; ³ KBR, Houston, TX; ⁴ University of Colorado Boulder, Boulder, CO; ⁵ University of Minnesota, Minneapolis, MN; ⁶ University of Texas Medical Branch, Galveston TX and ⁷ NASA JSC, Houston, TX

*Purpose

- Purpose: Evaluate a set of behavioral, neuroimaging and genetic measures that can potentially be used to predict and better explain early performance following G-transitions such as return to Earth on a set of sensorimotor tasks
- To accomplish this we recruited ISS astronauts who previously participated in sensorimotor field tests and/or dynamic posturography (MedB) within R+1 day following long-duration spaceflight to participate in a battery of behavioral, neuroimaging and genetic tests



Study Timeline

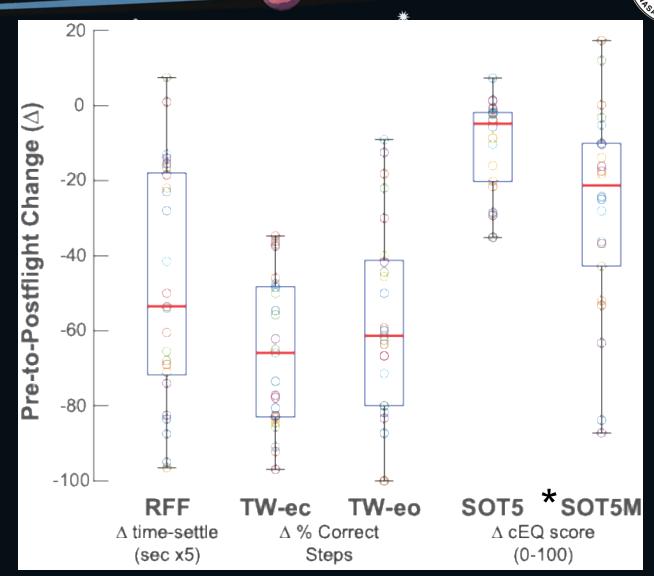
- Initial NSBRI study led by PI Ajit Mulavara, restarted by HHC Element in 2019 led by PI Jacob Bloomberg
- Subjects: Thirty ISS
 crewmembers were recruited,
 including 12 first-time fliers, 6F,
 with mission durations lasting
 185.5 ± 45.5 days, mean ± std.

Post-flight outcome measures

Recovery from fall (RFF)
Prone to upright stand test

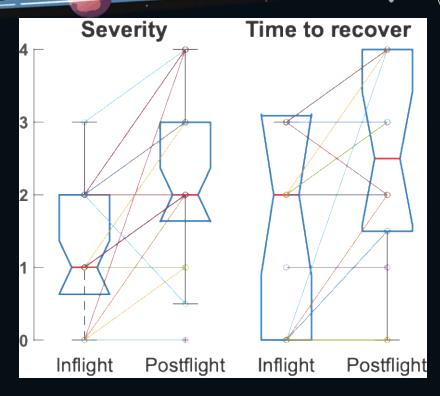
Tandem Walk (TW)
Eyes Open & Closed

Computerized Dynamic Posturography (CDP)


 Motion sickness symptom severity was also captured using 0-20 scale during the field testing at the landing sites

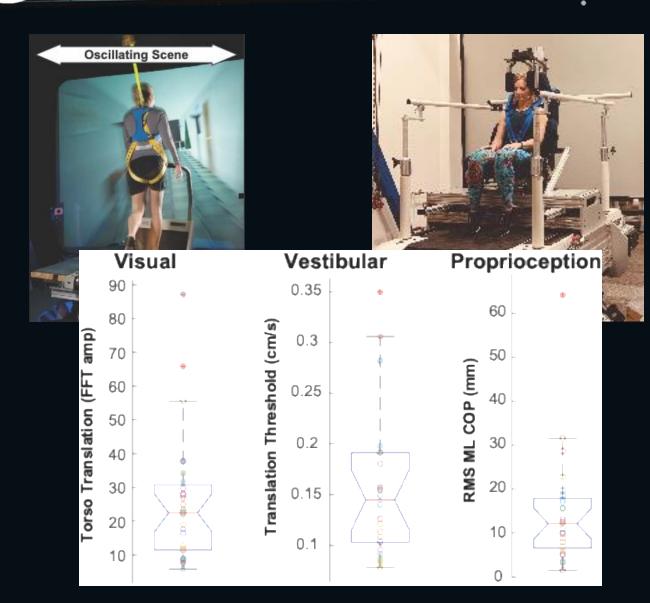
*Post-flight outcome measures

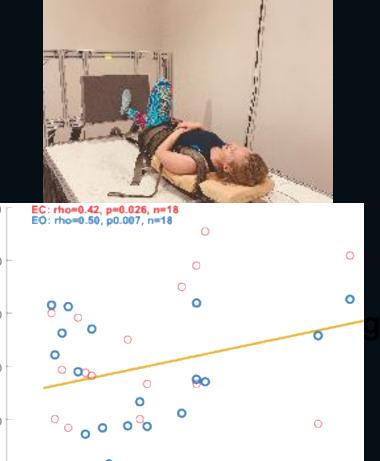
RFF and TW were captured near the landing zone (R+ 3.0 ± 1.1 hr, n=26) and following return to JSC, while CDP was captured following return to JSC (R+ 31.0 ± 7.2 h, n=23). There was considerable variability among all postflight performance outcomes.


*SOT = Sensory Organization Test from CDP

*Qualtrics retrospective survey

For these long-duration crewmembers, 72% subjectively reported a greater severity of impacts during the early post-flight period versus early inflight period (n=20). Time-to-recover inflight tended to be the same or greater than postflight.




Severity Time to recover		Time to recover
Severe, tasks not attempted	4	More than 3 days
Moderate, extended time req'd	3	Between 1 – 3 days
Mild, transient, worse with motion	2	Between 6 hrs and 1 day
Functioning nominally, increased effort	1	Less than 6 hrs
No impact or restriction of movement	0	No impact or restriction of movements

Sensory* Dependency

0.2

Vestibular Threshold (cm/s)

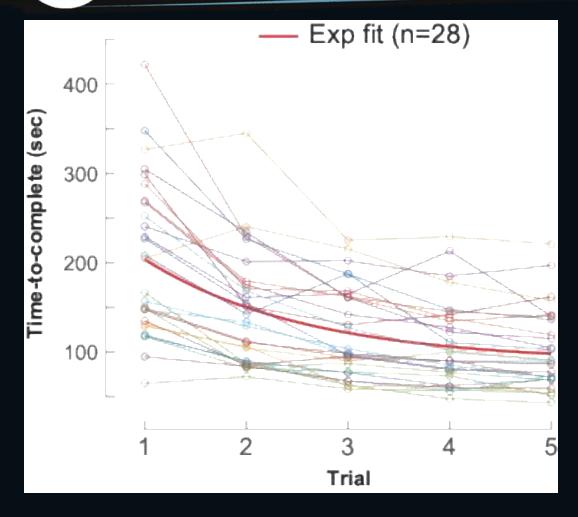
0.25

Steps)

Сопес

Walk (A %

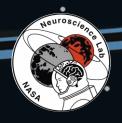
Tandem

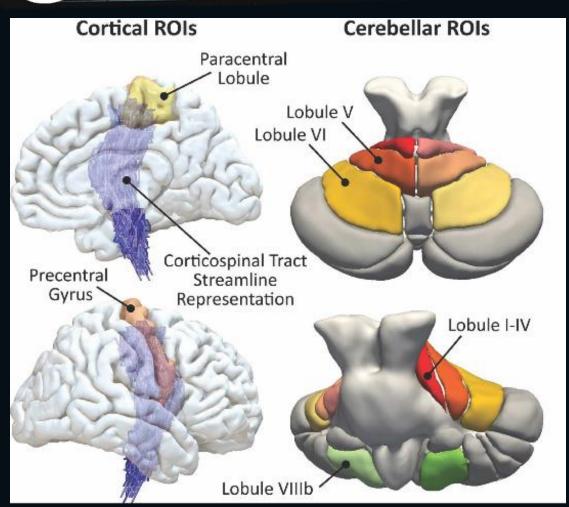

-100

0.1

0.3

Adaptive Functional Mobility Test





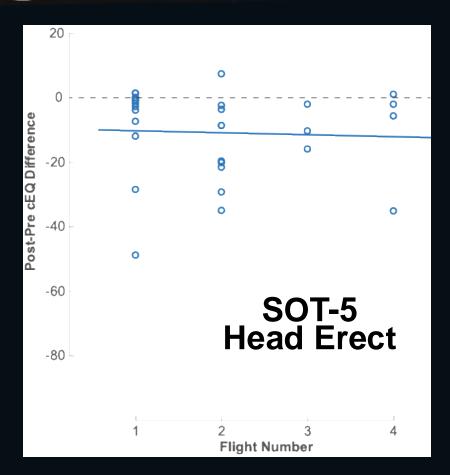
- Ground assessment of adaptability was performed during multiple trials of navigating an obstacle course while wearing reversing prisms
- The time-to-complete the first trial was significantly correlated with the visual dependency measures during treadmill walking

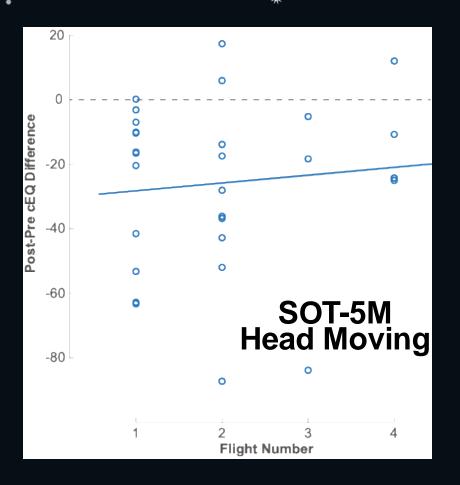
Neuroim*aging

- Whole-brain analyses showed that paracentral and precentral gyri thickness significantly predicted recovery from fall post-spaceflight
- Thickness of vestibular and sensorimotor regions, including the posterior insula and the superior temporal gyrus, predicted balance performance post-flight and pre-topost-flight decrements

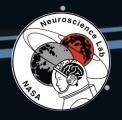
Koppelmans et al., Brain Struct Funct, 2022.

Genetic Polymorphisms*

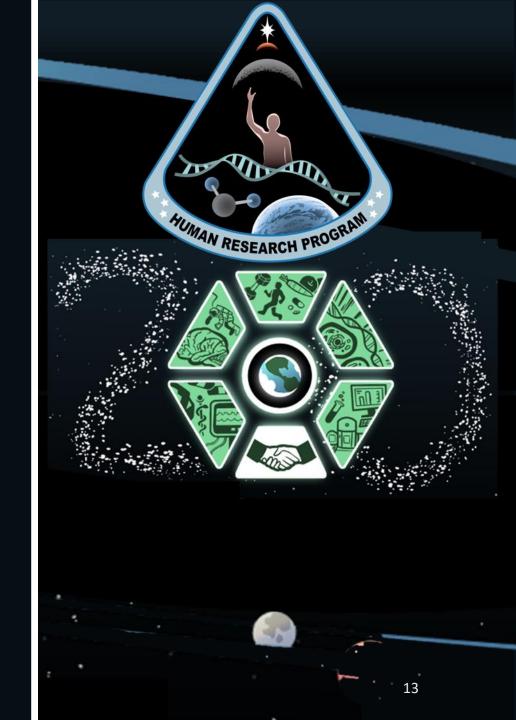

DRD	СОМТ	BDNF	Dral	Δ TW-EC
GG	VM	VM	TGA/TAA	-97.0
			TGA/TGA	
IT	VM	VM		-90.9
GG	MM	VV	TAA/TAA	-87.9
GG	MM	VM	TGA/TGA	-77.8
GG	MM	VV	TGA/TGA	-76.8
GG	VM	VV	TGA/TGA	-66.7
GG	MM	VM	TGA/TGA	-65.9
GT	VV	VV	TGA/TAA	-61.1
GT	VV	VM	TGA/TAA	-50.4
GG	MM	VV	TGA/TAA	-50.0
GG	VV	VM	TGA/TGA	-48.5
GT	VV	VV	TGA/TGA	-46.9
GG	MM	MM	TGA/TGA	-46.0
GG	VM	VV	TAA/TAA	-42.7
GG	MM	VV	TGA/TGA	-40.0
TT	VM	VV	TGA/TAA	-36.0
GG	MM	VV	TGA/TGA	-34.8
GG	VV	VM	TGA/TAA	-33.0
GG	MM	VV	TGA/TGA	-31.3
GT	VV	VV	TGA/TAA	-30.7
GG	VV	VM	TGA/TAA	-29.2
GG	VM	VV	TGA/TGA	-28.0
GT	VM	VV	TGA/TAA	-24.0
GG	VM	VM	TGA/TGA	-21.7
GG	VM	VM	TGA/TGA	-21.2
GG	MM	VM	TGA/TGA	-18.9


- Examined Dopamine Receptor D2 (DRD2), Catechol-Omethyltransferase (COMT), Brain-derived neurotrophic factor (BDNF) and the α2adrenergic receptor
- While these differentiate sensorimotor adaptation ability in a normative population, no patterns with postflight measures were observed

Effect of prior flight experience



Post-flight outcome measures did not vary by prior flight experience, but when available, were consistent across flights within individuals


Summ*ary

- Some biomarkers predict specific outcomes, e.g. vestibular thresholds are significantly related to postflight tasks requiring greater vestibular challenges such as tandem walk.
- Subject demographics (e.g. flight experience, sex, landing vehicle) are not significantly related to postflight outcomes
- While there is large intersubject variability across outcome measures, by R+24 hr performance on one post-flight test does not necessarily correlate with performance on other tests.
- Outcome measures from prior flights appear to be the best predictors of similar outcomes on future flight opportunities.

Acknowledgements

- Funding from Human Research Program's (HRP) Human Health Countermeasures Element
- Monica Sheth from HRP Research Operations
 & Integration for recruitment of astronauts
- The astronaut participants who volunteered their time to participate on a non-mission assigned research project
- Neuroscience Lab personnel who supported testing throughout the duration of this project
- Drs. Mulavara and Bloomberg who led this project as Pls during the initial phases

