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Background

* The Space Shuttle Orbiter’s thermal protection systems (TPS’s) are the flight
proven starting point for reusable entry systems
- Used by the Orion capsule for its backshell but for fundamentally different reasons

- The last decade has seen renewed interest in reusable TPS from the dramatic growth in
commercial space

* Reusable, insulating TPS were developed extensively for Shuttle and some for
the X-37B, but little else until recently

* Gap between the Shuttle efforts and now:
- Loss of personnel, know-how, supply chains, and equipment

- Reusable insulating TPS were produced using raw materials from lifetime purchases by NASA
for the Shuttle Program in the 1990’s - called “heritage”

- This NASA stockpile will be depleted during planned Artemis Orion missions

* Modernization efforts are aligned with NASA's strategic objective to support the
commercial space sector



Motivation & Goals

Motivation:

* Early work at TPSF (tile production facility at KSC) and ARC showed that
AETB tile produced using modern raw materials vs heritage has reduced
material properties, primarily mechanical

* Work is needed to transition to using “modern” raw materials produced today
for continued use of AETB by NASA and commercial space

Goals:

* Implement modern fiber constituents without degraded material properties
* Gain better understanding of the tile casting process/property dependencies

to aid the agency and partners



AETB-8, -12, -17, -20 (pcf)
* Density ranges from 0.13 to 0.32 g/cc
Consists of:

« Aluminoborsilicate fibers (Nextel-312)

« Alumina fibers (Saffil)

 Silica fibers (Q-fiber)

« Silicon carbide

Thermally insulative with ~95% porosity

Lower thermally induced shrinkage
than earlier tile generations (LI- and FRCI)

Used up to 1537°C (2800°F)

SEM image of AETB-8

AETB-8 fabricated for Orion backshell



Tile Manufacturing Overview
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Initial Production Using Heritage vs Modern Fibers
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Initial work achieved similar tile properties between heritage and modern fibers, but improvements must be made




Tile Casting Process Investigation

 Explored broad set of process variables * 4-inch casting tower was developed and

to determine impact on properties used to accelerate process investigation
_ _ - Only used 14% of material used in 12-inch casting
* Process variables include: - Mini v-blender was also utilized to mix fibers and
- Raw materials (fibers + additives) additional components
: : - Designed a 3D printed press-plate to compress the
- Blending/chopping billet to its desired density

- Casting compression

- Firing process (e.g. temperature
and duration)

- Chemistry (pH, surfactants...)

* Evaluated using tensile strength and
texture for first order comparison

47 x 4" x 4" As-
Cast AETB Billet

4-inch casti
tower 9



Mechanical Testing

* Developed and refined tensile testing procedure
following ASTM D 1623

- New sample assembly fixture for repeatable high tolerance
alignment of the test blocks

- Utilizing a new thermoplastic bonding adhesive
(Crystalbond) to greatly speed up testing process cycles

- Tested sample geometries of (1" x 1" x 1”) and (1" x 17 x 2”)
were evaluated

~ In-Plane

Summary of Tensile Testing

TTT IP

52 173 265
38 179 177




Optical Characterization

* Observable differences in “texture” of billet throughout process investigation
- Thermomechanical and optical properties are structure dependent

* Transmitted light microscopy method used to better evaluate meso-structure
- Imaged 2 mm thick panel in through-the-thickness direction
- High density regions are shown dark, while void regions are bright
- Enables quantification of defects and segregation

Stitch full panel Threshold
into single image Image for
guantification

Full Area Transmission Transmission Optical Image Thre,s’hol(fed Image
Optical Microscopy of (4” x 4”) AETB-8 of (4" x 4") AETB-8
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Billet Texture - Role of Nextel-312

* Nextel-312 is thermally pre-treated prior to use in tile production
- Remove sizing and promotes crystallization
- Reported to effect distribution within slurry
- Avariety of pre-treating profiles have been used historically

* AETB cast using Nextel-312 with different pre-treatments show dramatically different texture
- Correlates to tensile strength in the TTT orientation
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Property Variation Within Billet
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* Measured density and ultimate tensile strength (UTS) in the in-plane (IP) and
through-the-thickness (TTT) orientations
- Early billet produced using modern fibers with minor process updates
- Specimens are 1” cubes. “X” are tests which failed near the bond.

* Largest variation observed near bottom (as-fired)



Firing Process

« Assuming the property gradient near the bottom of the as-fired billet results from thermal gradient

due to hot loading billet firing process
* Modified billet sintering process:

« Standard ARC firing protocol hot loads the billet into the furnace on a cold insulating setter

plate (LI-2220)
« Updated to load billet direction onto D-tubes
« The test billet was raised, exposing bottom surface to furnace environment

Firing set-up

vs. Hot-bottom

/@/

\ Hot Furnace Hearth
Room temperature LI-2200 setter plate

Alumina
D-tubes



Firing Process

* Top of billet as-fired was similar between both firing methods

Cold Setter Plate Hot Setter Plate

Bi":i_";;::;ion Bottom Top Bottom Top
Density (pcf) 7.620.06 8.410.1 8.810.07 8.31+0.17
TTT UTS (psi) 20+4.7 3712 33+7.2 34+3.9
IP UTS (psi) 5615.1 86.4+7.8 56+14.4 88+7.7

*comparisons made using T-test with 95% confidence interval



Firing Process

 Top of billet as-fired was similar between both firing methods
« Cold setter plate - Decreased density and TTT UTS of bottom vs top of billet

« Hot setter plate - density of bottom vs top of billet
Cold Setter Plate Hot Setter Plate
Billet Location
As-Fired Bottom Top Bottom Top
Density (pcf) 7.620.06 8.410.1 8.810.07 8.31+0.17
TTT UTS (psi) 20t4.7 3712 3317.2 34+3.9
IP UTS (psi) 5615.1 86.4+7.8 56x14.4 8817.7

*comparisons made using T-test with 95% confidence interval



Firing Process

Top of billet as-fired was similar between both firing methods

Cold setter plate - Decreased density and TTT UTS of bottom vs top of billet
Hot setter plate - Increased density of bottom vs top of billet

Similar IP UTS both

« TTT UTS Is more sensitive to firing process than IP UTS

Cold Setter Plate

Hot Setter Plate

Bi":i_";;::;ion Bottom Top Bottom Top
Density (pcf) 7.620.06 8.410.1 8.810.07 8.31+0.17
TTT UTS (psi) 20+4.7 3712 33+7.2 34+3.9
IP UTS (psi) 5615.1 86.4+7.8 56+14.4 88+7.7

*comparisons made using T-test with 95% confidence interval




Summary

* Added processing and material characterization capabilities

- Created small scale (4”) tile caster and updated tensile testing method for rapid and efficient
exploration of process dependencies

- Optical transmission technique for texture/defect evaluation

* Investigated process/property relationships
- Demonstrated role of Nextel-312 pre-firing on billet texture and mechanical properties
- ldentified and mitigated firing induced property gradient

* Evaluated heritage and modern fibers for AETB-8 production
- Initial production achieved similar tile properties between heritage and modern fibers with low
TTT tensile strength

- Preliminary implementation of process improvements have resulted in significantly improved
TTT tensile strength achieving heritage specifications
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Next Steps

* Finalize modernization efforts:
- Apply trends and observations from process investigation to large scale billet production
- Characterize verification billets
- Update process specifications incorporating modern raw materials

* Results are being leveraged to support:

- Reusable Space Act Agreements (RSAAs) and Announcement of Collaboration Opportunities
(ACOs) with Stratolaunch and Canopy Aerospace

- HLS Project with Space X

- Development of next generation reusable thermal protection systems that offer advantages in
performance that include:

» Increased use-temperature, duration, and cycles
» Decreased cost, integration complexity, and maintenance

19
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Thank you for your time!

Questions?

20



National Aeronautics and Space
Administration

NA S/

+

Ames Research Center
Entry Systems and Technology Division



	Slide 1: Modernization of Insulative Reusable Thermal Protection Systems (IRTPS) 
	Slide 2: Outline
	Slide 3: Background
	Slide 5: Motivation & Goals
	Slide 6: Alumina Enhanced Thermal Barrier (AETB)
	Slide 7
	Slide 8: Initial Production Using Heritage vs Modern Fibers
	Slide 9: Tile Casting Process Investigation
	Slide 10: Mechanical Testing
	Slide 11: Optical Characterization
	Slide 12: Billet Texture - Role of Nextel-312
	Slide 13: Property Variation Within Billet 
	Slide 14: Firing Process
	Slide 15: Firing Process
	Slide 16: Firing Process
	Slide 17: Firing Process
	Slide 18: Summary
	Slide 19: Next Steps
	Slide 20: Thank you for your time!  Questions?
	Slide 21

