

Modernization of Insulative Reusable Thermal Protection Systems (IRTPS)

Adam Caldwell¹

Peter Marshall¹, Jay Feldman¹, Jose Chavez-garcia², Kyle Hendrickson²

Audrey Turcotte², Tiffany Alcantara², Chris Swaiss², Adam Bebak²

¹NASA Ames

²Analytical Mechanics Associates

³Oak Ridge Associated Universities

Outline

- Reusable Thermal Protection Materials Background
- Motivation & Goals
- IRTPS Modernization
 - Initial Production
 - Process Investigation
 - Example Modifications
- Summary

Space Shuttle Discovery approaches for landing on a concrete runway at Edwards Air Force Base (1990)

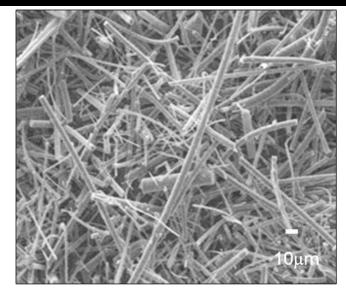
Background

- The Space Shuttle Orbiter's thermal protection systems (TPS's) are the <u>flight</u> proven starting point for reusable entry systems
 - Used by the Orion capsule for its backshell but for fundamentally different reasons
 - The last decade has seen renewed interest in reusable TPS from the dramatic growth in commercial space
- Reusable, insulating TPS were developed extensively for Shuttle and some for the X-37B, but little else until recently
- Gap between the Shuttle efforts and now:
 - Loss of personnel, know-how, supply chains, and equipment
 - Reusable insulating TPS were <u>produced using raw materials from lifetime purchases</u> by NASA for the Shuttle Program <u>in the 1990's</u> called "heritage"
 - This NASA stockpile will be depleted during planned Artemis Orion missions
- Modernization efforts are aligned with NASA's strategic objective to support the commercial space sector

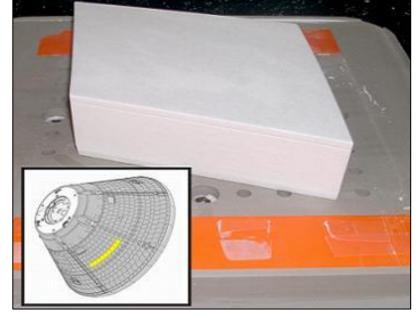
Motivation & Goals

Motivation:

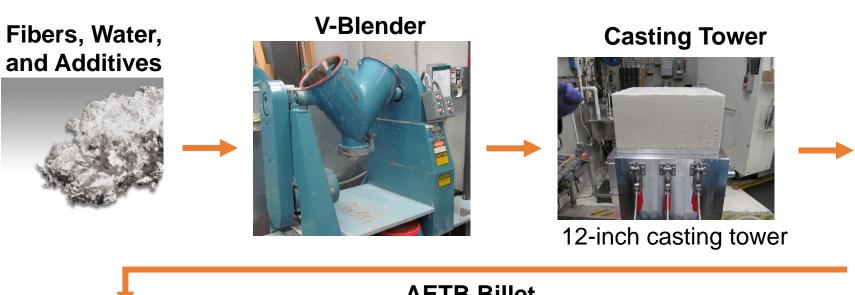
- Early work at TPSF (tile production facility at KSC) and ARC showed that AETB tile produced <u>using modern raw materials</u> vs heritage has <u>reduced</u> <u>material properties</u>, primarily mechanical
- Work is needed to transition to using "modern" raw materials produced today for continued use of AETB by NASA and commercial space

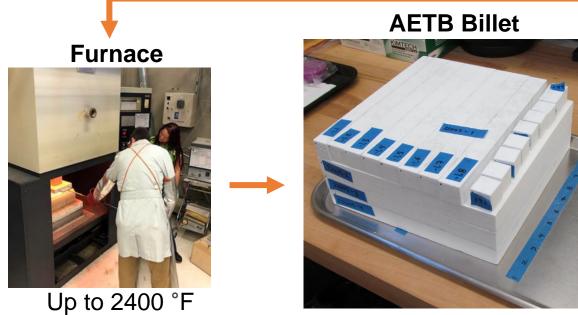

Goals:

- Implement modern fiber constituents without degraded material properties
- Gain better understanding of the tile casting process/property dependencies to aid the agency and partners

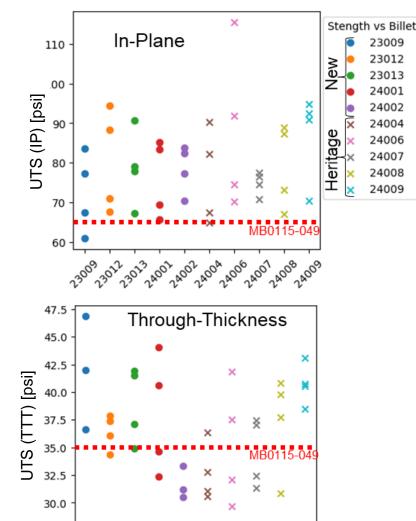

Alumina Enhanced Thermal Barrier (AETB)

- AETB-8, -12, -17, -20 (pcf)
 - Density ranges from 0.13 to 0.32 g/cc
- Consists of:
 - Aluminoborsilicate fibers (Nextel-312)
 - Alumina fibers (Saffil)
 - Silica fibers (Q-fiber)
 - Silicon carbide
- Thermally insulative with ~95% porosity
- Lower thermally induced shrinkage than earlier tile generations (LI- and FRCI)
- Used up to 1537°C (2800°F)


SEM image of AETB-8


AETB-8 fabricated for Orion backshell

Tile Manufacturing Overview



Initial Production Using Heritage vs Modern Fibers

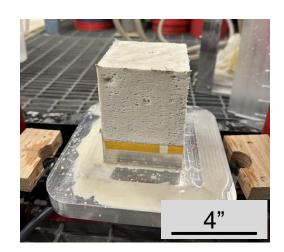
- Observed <u>significant difference in the processing</u> (mixing/casting) from one set/lot of modern to heritage fiber
 - Higher pH and lower cake height (equivalent chop time) for heritage fibers
 - Limited changes to the fibers, per manufactures and in-house characterization
 - No difference in XRD patterns of fired billets
 - Minor processing modifications to accommodate fiber differences (e.g. longer chop time)
- Tensile strengths were statistically equivalent with a 95% C.I.
- Further process investigation is needed to achieve strengths that meet material specs

Fiber Type	Density (pcf)	Direction	UTS (psi)	Sample Count	Shuttle Boeing Spec UTS (psi)
Modern Fibers 7.9	7.9 ± 0.1	IP	63.9 ± 5.8	46	AII ≥ 65
	7.9 ± 0.1	TTT	30.7 ± 2.7	75	All ≥ 35
Heritage Fibers	7.8 ± 0.1	IP	63.4 ± 17.0	9	AII ≥ 65
		TTT	34.9 ± 6.6	8	AII ≥ 35

300,301,301,301,400,400,400,400,400,400,400,400,400,

Initial work achieved similar tile properties between heritage and modern fibers, but improvements must be made

Tile Casting Process Investigation



- Explored broad set of process variables to determine impact on properties
- Process variables include:
 - Raw materials (fibers + additives)
 - Blending/chopping
 - Casting compression
 - Firing process (e.g. temperature and duration)
 - Chemistry (pH, surfactants...)
- Evaluated using tensile strength and texture for first order comparison

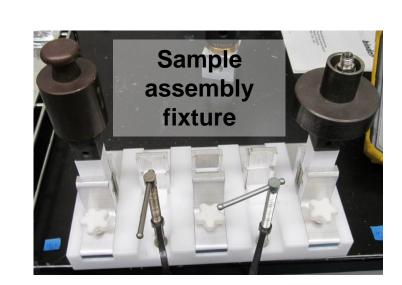
- 4-inch casting tower was developed and used to accelerate process investigation
 - Only used 14% of material used in 12-inch casting
 - Mini v-blender was also utilized to mix fibers and additional components

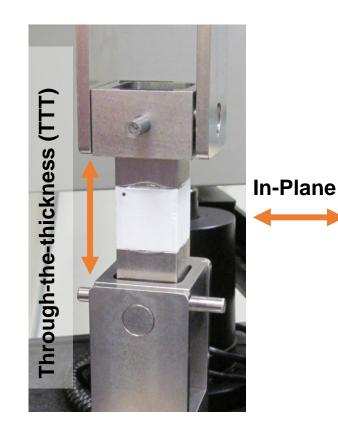
- Designed a 3D printed press-plate to compress the

billet to its desired density

4" x 4" x 4" As-Cast AETB Billet

4-inch casting tower

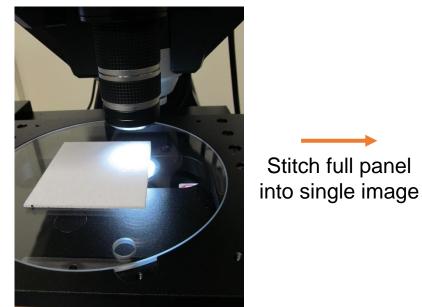

Mechanical Testing



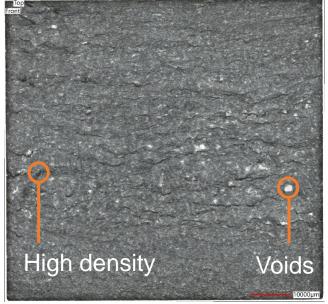
- Developed and refined tensile testing procedure following ASTM D 1623
 - New sample assembly fixture for repeatable high tolerance alignment of the test blocks
 - Utilizing a new thermoplastic bonding adhesive
 (Crystalbond) to greatly speed up testing process cycles
 - Tested sample geometries of (1" x 1" x 1") and (1" x 1" x 2") were evaluated

Summary of Tensile Testing

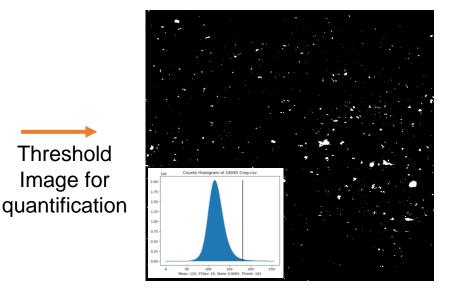
	Billet	Total Test Completed		
Size	No. Cast	TTT	IP	
12"	52	173	265	
4"	38	179	177	



Optical Characterization



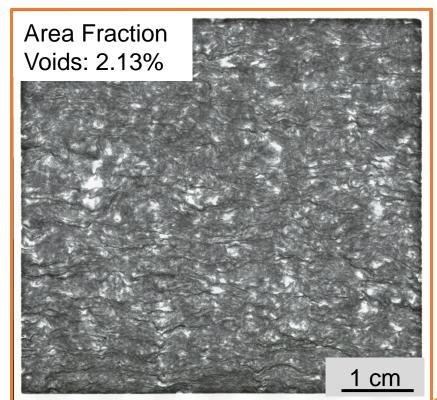
- Observable differences in "texture" of billet throughout process investigation
 - Thermomechanical and optical properties are structure dependent
- Transmitted light microscopy method used to better evaluate meso-structure
 - Imaged 2 mm thick panel in through-the-thickness direction
 - High density regions are shown dark, while void regions are bright
 - Enables quantification of defects and segregation


Stitch full panel

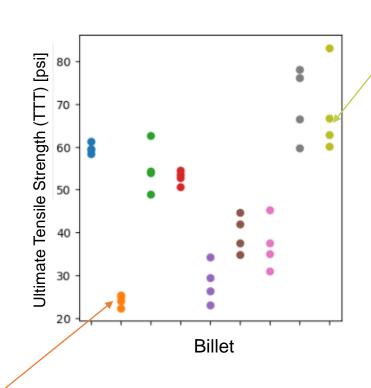
Full Area Transmission Optical Microscopy

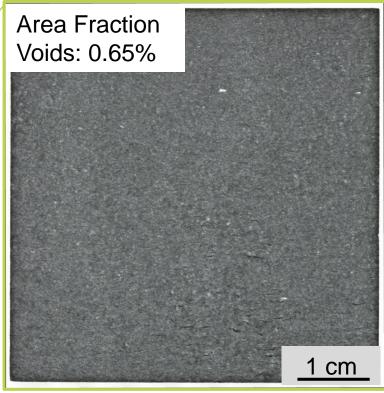
Transmission Optical Image of (4" x 4") AETB-8

Threshold


Image for

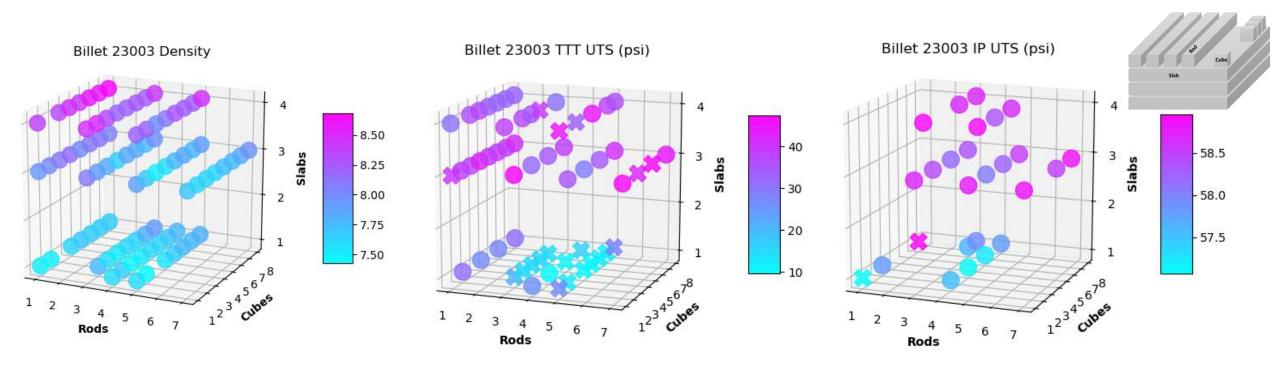
Thresholded Image of (4" x 4") AETB-8


Billet Texture - Role of Nextel-312



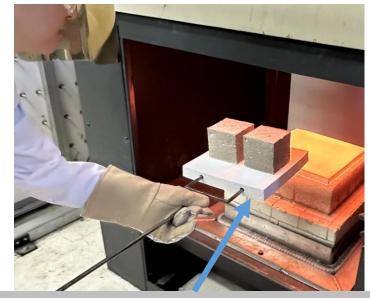
- Nextel-312 is thermally pre-treated prior to use in tile production
 - Remove sizing and promotes crystallization
 - Reported to effect distribution within slurry
 - A variety of pre-treating profiles have been used historically
- AETB cast using Nextel-312 with <u>different pre-treatments show dramatically different texture</u>
 - Correlates to tensile strength in the TTT orientation

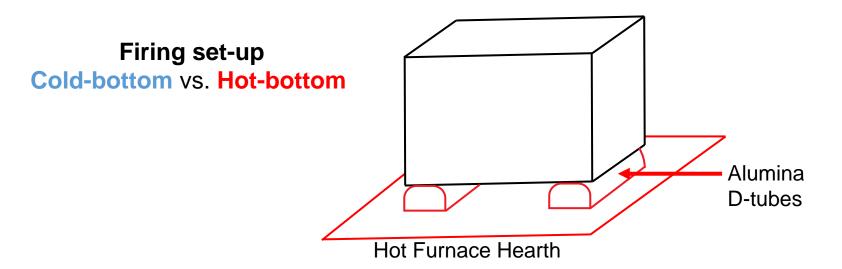
AETB-8 made with Nextel-312 pre-fired at 700C



AETB-8 made with Nextel-312 pre-fired at <u>1204C</u>

Property Variation Within Billet




- Measured density and ultimate tensile strength (UTS) in the in-plane (IP) and through-the-thickness (TTT) orientations
 - Early billet produced using modern fibers with minor process updates
 - Specimens are 1" cubes. "X" are tests which failed near the bond.
- Largest variation observed near bottom (as-fired)

- Assuming the property gradient near the bottom of the as-fired billet results from thermal gradient due to hot loading billet firing process
- Modified billet sintering process:
 - Standard ARC firing protocol hot loads the billet into the furnace on a cold insulating setter plate (LI-2220)
 - Updated to load billet direction onto D-tubes
- The test billet was raised, exposing bottom surface to furnace environment

Room temperature LI-2200 setter plate

Top of billet as-fired was similar between both firing methods

	Cold Setter Plate		Hot Setter Plate	
Billet Location As-Fired	Bottom	Тор	Bottom	Тор
Density (pcf)	7.6±0.06	8.4±0.1	8.8±0.07	8.31±0.17
TTT UTS (psi)	20±4.7	37±2	33±7.2	34±3.9
IP UTS (psi)	56±5.1	86.4±7.8	56±14.4	88±7.7

^{*}comparisons made using T-test with 95% confidence interval

- Top of billet as-fired was similar between both firing methods
- Cold setter plate Decreased density and TTT UTS of bottom vs top of billet
- Hot setter plate Increased density of bottom vs top of billet

	Cold Setter Plate		Hot Setter Plate	
Billet Location As-Fired	Bottom	Тор	Bottom	Тор
Density (pcf)	7.6±0.06	8.4±0.1	8.8±0.07	8.31±0.17
TTT UTS (psi)	20±4.7	37±2	33±7.2	34±3.9
IP UTS (psi)	56±5.1	86.4±7.8	56±14.4	88±7.7

^{*}comparisons made using T-test with 95% confidence interval

- Top of billet as-fired was similar between both firing methods
- Cold setter plate Decreased density and TTT UTS of bottom vs top of billet
- Hot setter plate Increased density of bottom vs top of billet
- Similar IP UTS both
 - TTT UTS is more sensitive to firing process than IP UTS

	Cold Setter Plate		Hot Setter Plate	
Billet Location As-Fired	Bottom	Тор	Bottom	Тор
Density (pcf)	7.6±0.06	8.4±0.1	8.8±0.07	8.31±0.17
TTT UTS (psi)	20±4.7	37±2	33±7.2	34±3.9
IP UTS (psi)	56±5.1	86.4±7.8	56±14.4	88±7.7

^{*}comparisons made using T-test with 95% confidence interval

Summary

- Added processing and material characterization capabilities
 - Created small scale (4") tile caster and updated tensile testing method for rapid and efficient exploration of process dependencies
 - Optical transmission technique for texture/defect evaluation
- Investigated process/property relationships
 - Demonstrated role of Nextel-312 pre-firing on billet texture and mechanical properties
 - Identified and mitigated firing induced property gradient
- Evaluated heritage and modern fibers for AETB-8 production
 - Initial production achieved similar tile properties between heritage and modern fibers with low TTT tensile strength
 - Preliminary implementation of <u>process improvements</u> have resulted in significantly improved TTT tensile strength <u>achieving heritage specifications</u>

Next Steps

- Finalize modernization efforts:
 - Apply trends and observations from process investigation to large scale billet production
 - Characterize verification billets
 - Update process specifications incorporating modern raw materials
- Results are being leveraged to support:
 - Reusable Space Act Agreements (RSAAs) and Announcement of Collaboration Opportunities (ACOs) with Stratolaunch and Canopy Aerospace
 - HLS Project with Space X
 - Development of next generation reusable thermal protection systems that offer advantages in performance that include:
 - Increased use-temperature, duration, and cycles
 - Decreased cost, integration complexity, and maintenance

Thank you for your time!

Questions?

National Aeronautics and Space Administration

Ames Research Center Entry Systems and Technology Division