

Camera Calibration and Alignment Metrology at Johnson Space Center's Electro-Optics Laboratory

Paul McKee, Ronney Lovelace, Steve Lockhart, Jorge Chong

Aeroscience and Flight Mechanics Division

NASA Johnson Space Center

AAS 25-141 Feb 4, 2025

What is the bearing from you to your target?

image credit: NASA

image credit: NASA

- pixels \rightarrow 3D directions
- camera frame \rightarrow spacecraft frame

Contents

- Camera Model
 - 3D directions to pixels
 - pixels to 3D directions
 - camera calibration
- EOL Calibration Hardware
- EOL Calibration Procedure
- COTS Camera Calibration Results
- EOL Alignment Hardware
- EOL Alignment Procedure
- COTS Camera Alignment Results

Camera Model: Intrinsic Parameters

Pinhole Camera Model

$$\begin{array}{c} x_i = \frac{X_i}{Z_i} \\ y_i = \frac{Y_i}{Z_i} \end{array} \qquad \begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} = \begin{bmatrix} d_x & \alpha & u_p \\ 0 & d_y & v_p \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix}$$

Parameter	Description		
d_x	focal length ÷ pixel width		
d_y	focal length ÷ pixel height		
α	detector skew		
u_p	principal point u-coordinate		
v_p	principal point v-coordinate		

Camera Model: Distortion Parameters

- Brown-Conrady Distortion Model
- We can either un-distort individual points or build an un-distortion map for an entire image

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} \left(1 + k_1 r_i^2 + k_2 r_i^4 + k_3 r_i^6 \right) + \begin{bmatrix} 2p_1 x_i y_i + p_2 (r_i^2 + 2x_i^2) \\ 2p_2 x_i y_i + p_1 (r_i^2 + 2y_i^2) \end{bmatrix}$$

Parameter	Description
<i>k</i> ₁	radial distortion 2 nd order coefficient
k ₂	radial distortion 4 th order coefficient
k ₃	radial distortion 6 th order coefficient
p_1	horizontal tangential distortion term
<i>p</i> ₂	vertical tangential distortion term

Camera Model: Forward/Reverse Mapping

Camera Model: Calibration

- Starting with some **initial guess** of intrinsic and distortion parameters...
- Project 3D directions into image, compute pixel coordinates
- Compare expected to measured pixel values
- Iterate on parameters to minimize sum of squared reprojection error
- Nonlinear least squares problem
- Solve with Levenberg-Marquardt Algorithm

Camera Model: Calibration – Initial Guess

Initial Guess	Justification	
$d_{\chi} = \frac{n_{cols}}{2\tan(HFOV/2)}$	(see figure)	
$d_y = d_x$	pixels are roughly square	
lpha = 0	detector skew is small	
$u_p = \frac{n_{cols} + 1}{2}$	principal point is near image center	
$v_p = \frac{n_{rows} + 1}{2}$	principal point is near image center	
$k_{1} = 0$	radial distortion is small	
$k_{2} = 0$	radial distortion is small	
$k_{3} = 0$	radial distortion is small	
$p_1 = 0$	tangential distortion is small	
$p_2 = 0$	tangential distortion is small	

- Alternatively, seed with previous calibration results
- Use lab calibration results to seed on-orbit calibration

Contents

- Camera Model
 - 3D directions to pixels
 - pixels to 3D directions
 - camera calibration
- EOL Calibration Hardware
- EOL Calibration Procedure
- COTS Camera Calibration Results
- EOL Alignment Hardware
- EOL Alignment Procedure
- COTS Camera Alignment Results

EOL Calibration Hardware

Aerotech AOM360D-400 two-axis gimbal

EOL Calibration Procedure

COTS Camera Calibration Results

COTS Camera Calibration Results

(principal point 13.95 pixels from image center)

$$\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} \left(1 + k_1 r_i^2 + k_2 r_i^4 + k_3 r_i^6 \right) + \begin{bmatrix} 2p_1 x_i y_i + p_2 (r_i^2 + 2x_i^2) \\ 2p_2 x_i y_i + p_1 (r_i^2 + 2y_i^2) \end{bmatrix}$$

COTS Camera Calibration Results

2/4/2025

Contents

- Camera Model
 - 3D directions to pixels
 - pixels to 3D directions
 - camera calibration
- EOL Calibration Hardware
- EOL Calibration Procedure
- COTS Camera Calibration Results
- EOL Alignment Hardware
- EOL Alignment Procedure
- COTS Camera Alignment Results

EOL Alignment Hardware

Leica TM6100A theodolite

EOL Alignment Procedure

▲X

2/4/2025

EOL Alignment Procedure

COTS Camera Alignment Results

$$C_{LVLH\leftarrow CUBE} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- computed from theodolite angles
- simple change of bases
- negligible misalignment

	-0.000224	-0.999872	0.015969	• cross-centroiding + Wahba's probler
$C_{CAM \leftarrow LVLH} =$	-0.000966	0.015970	0.999872	much higher uncertainty
	-0.999999	0.000208	-0.000970	change of bases and misalignment

- theodolite measurement error: 5 arcsec
- cross centroiding error: 0.2 pix (6.4 arcsec)
- compute attitude covariance using the Markley approach, collapse to a scalar...

$$P_{C} = \begin{bmatrix} 24.032351 & 0 & 0\\ 0 & 0.658363 & 0\\ 0 & 0 & 0.640808 \end{bmatrix}$$
$$\theta_{uncertainty} = \sqrt{tr(P_{C})} = 5.033 \operatorname{arcsec}$$

COTS Camera Alignment Results

COTS Camera Alignment Results

$$C_{CAM\leftarrow CUBE} = \begin{bmatrix} 0.999872 & 0.015969 & 0.000224 \\ -0.015970 & 0.999872 & 0.000966 \\ -0.000208 & -0.000970 & 0.999999 \end{bmatrix}$$

$$\theta_{misalignment} = \arccos\left(\frac{tr(C_{CAM \leftarrow CUBE}) - 1}{2}\right) = 0.9168 \deg$$

- Monte Carlo analysis:
- ran whole cube-to-cam analysis 10,000 times
- applied noise to measurements
 - 5 arcsec (3σ) to angles, 0.2 pix (3σ) to centroids

 $\theta_{misalignment}$ mean = 0.9168 deg standard deviation = 5.071 arcsec

What is the bearing from you to your target?

 $\hat{e}_i^{CAM} \leftarrow (x_i, y_i) \leftarrow (x'_i, y'_i) \leftarrow (u_i, v_i)$

 $\hat{e}_{i}^{BODY} = C_{BODY \leftarrow CUBE} C_{CUBE \leftarrow CAM} \hat{e}_{i}^{CAM}$

image credit: NASA

image credit: NASA

- image processing to find points of interest (u_i, v_i)
- solve reverse mapping problem using camera parameters
- convert to spacecraft body frame
- The EOL regularly does this for OpNav cameras at NASA JSC and for our partners in private industry.

Bonus Slides

Detector Skew

$$u_i = d_x x_i + \frac{\alpha}{y_i} + u_p$$
$$v_i = d_y y_i + v_p$$

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} = \begin{bmatrix} d_x & \alpha & u_p \\ 0 & d_y & v_p \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

 $\alpha = d_x \tan(\phi)$

Camera Aberrations (the usual suspects)

Lens Distortion

Questions people might ask

- Why not just checkerboard cal?
- Be ready to contrast against cahvor
- What about fish eye?
- Where does theodolite error and centroiding error come from? How are you so sure?