

Paul McKee

Aeroscience and Flight Mechanics Division NASA Johnson Space Center

AAS 25-173

Feb 2, 2025

Which way back to the lander?

Good luck following tire tracks...

AS17-140-21355 image credit: NASA

What problems can we solve?

Assuming loss-of-communication scenario (no GPS, DSN, LCRNS)

Where am I with respect to some other asset?

→ local navigation

Am I going to hit something on the way to my destination?

hazard detection and avoidance (HDA)

What is my latitude/longitude?

global navigation

What sensors do we have?

- IMU
 - accelerometers
 - gyroscopes
- Star tracker
- Wheel encoders
- Optical navigation cameras
 - mono camera
 - stereo camera pair
 - point-able mast
- Light Detection And Ranging (LIDAR)

- "felt" acceleration
- → attitude rate
- → star field image
- → wheel revolutions
- → mono image
- → point cloud
- → panorama
- → point cloud

What do we do now?

 Didn't the Apollo people figure this out already? 	Apollo LRV Case Study	slide 7,8
---	-----------------------	-----------

What about the folks at JPL? Mars Rover Case Study slide 9,10

What about the VIPER rover? VIPER Case Study slide 11

 Let's do a literature review 	local nav	Inertial Navigation/Dead Reckoning slide 12
--	-----------	---

Visual Odometry slide 13

SLAM slide 14

Image-Based Path Planning HDA slide 15

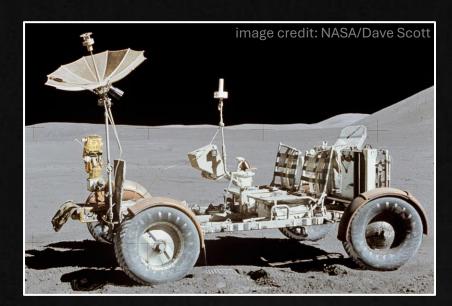
Celestial Navigation slide 16

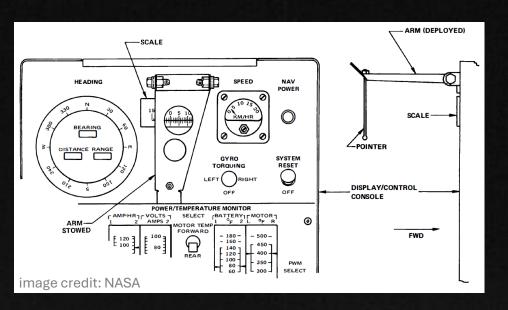
> Surface Crater Navigation slide 17

> Skyline Navigation slide 18

DEM correlation slide 19

Orbital Image Correlation slide 20


•	Let's do	a literati	ure review


loc	cal	na	V

Apollo LRV Case Study

NASA . JEC

- Lunar Roving Vehicle (a.k.a. "Moon Buggy")
- "An intricate navigation system is not needed, nor is there time to develop one" Bill Tindall
- Local navigation \rightarrow inertial navigation and wheel odometry
- Hazard detection \rightarrow crew eyeballs

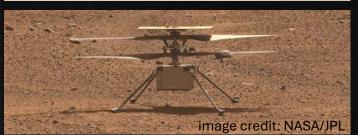
Apollo LRV Case Study: Considerations


- Orienteering fell short on Apollo 14
 - crew became disoriented and "admitted defeat" 30 meters from target
- Cannot rely on direct line-of-sight to a tall lander
 - terrain obscures lander, must be able to navigate to within 1km
- Lunar surface plays tricks on the human eye
 - terrain self-similarity
 - extreme lighting conditions
 - no sense of scale

Mars Rover Case Study

NASA . JSC

- Mars Pathfinder Sojourner (1997)
 - - → images taken by Pathfinder lander
 - hazard detection \rightarrow stereo camera pair, laser striper, contact sensors
 - global navigation → N/A
- Mars Exploration Rover Spirit & Opportunity (2004)
 - local navigation \rightarrow inertial navigation and wheel odometry
 - → images of the Sun to update gyros
 - → visual odometry (demonstration)
 - hazard detection


 stereo images processed into hazard map
 - global navigation \rightarrow human-in-the-loop orbital image comparison

Mars Rover Case Study

- Mars Science Laboratory Curiosity (2012)
 - → inertial navigation and wheel odometry local navigation
 - → images of the Sun to update gyros
 - → visual odometry (now standard)
 - → stereo images processed into hazard map hazard detection
 - → human-in-the-loop orbital image comparison global navigation
- Mars 2020 Perseverance (2021)
 - local navigation → (see Curiosity)
 - hazard detection \rightarrow on-board hazard map generation at full drive speed
 - global navigation → human-in-the-loop orbital image comparison
- Mars 2020 Ingenuity (2021)
 - local navigation \rightarrow inertial navigation, laser altimeter, visual odometry
 - → human operators plan a safe flight path hazard detection
 - global navigation \rightarrow N/A

VIPER Case Study

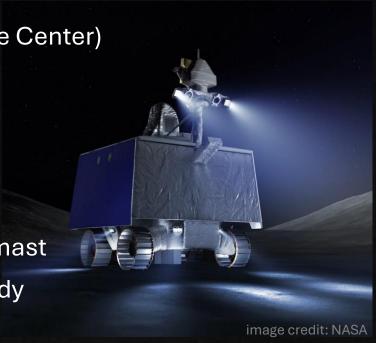
Volatiles Investigating Polar Exploration Rover

• "cancelled" in July 2024 (work continues at NASA Ames and Johnson Space Center)

Local navigation → inertial navigation and wheel odometry

→ star tracker to update gyro

→ visual odometry

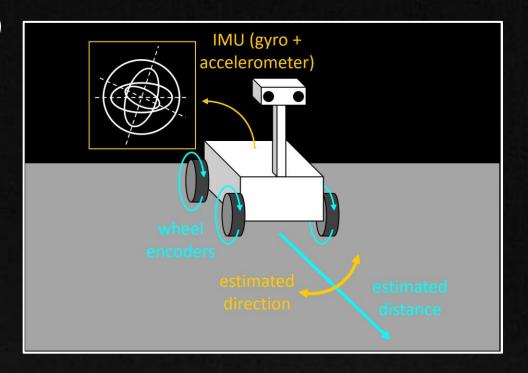

 \rightarrow hazard cameras (HazCam) in wheel wells (4) Hazard detection

→ stereo pair of navigation cameras (NavCam) on mast

> stereo pair of aft-facing cameras (AftCam) on body

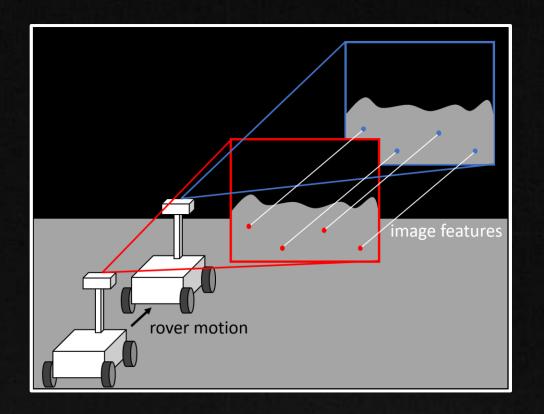
Global navigation → human-in-the-loop orbital image comparison

VIPER does not need the autonomy of the Mars rovers due to its proximity to Earth



Inertial Navigation and Wheel Odometry

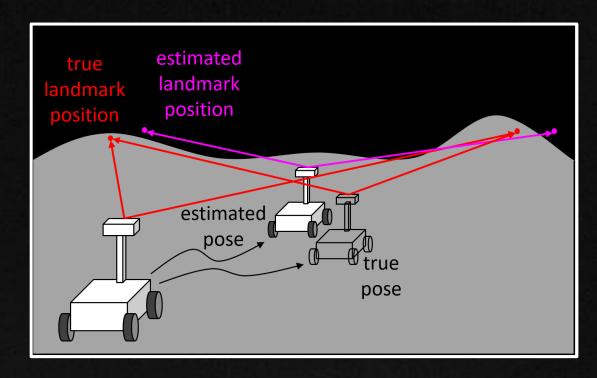
- count wheel revolutions to determine distance traveled
- integrate rate gyros to determine direction traveled
- must account for gyro drift (external measurements)
- must account for wheel slip (various solutions)
- flown on every rover to date


Navigation Type	local
Hardware	 wheel odometers (or equivalent) IMU suspension encoders (optional)
Considerations	wheel slipgyro drift

Visual Odometry

- take "before" image, drive a bit, take "after" image
- process both, looking at image features (SIFT, SURF, ORB, KAZE, etc.)
- correlate features between images (often requires RANSAC or similar)
- points (should be) truly static
- compute change in observer pose (pos+att)
- can be on-board or post-processing

Navigation Type	local
Hardware	stereo camera pair ORmono camera with range sensorFPGA or GPU (optional)
Considerations	choice of feature pointspoint correspondence problem



Simultaneous Localization and Mapping

- extension of visual odometry
- can be done with or without IMU (image only is "VSLAM")
- estimate observer pose and location of (many) landmarks
- map generated upon loop closure
- related to Structure From Motion (SFM)
- can be on-board or post-processing

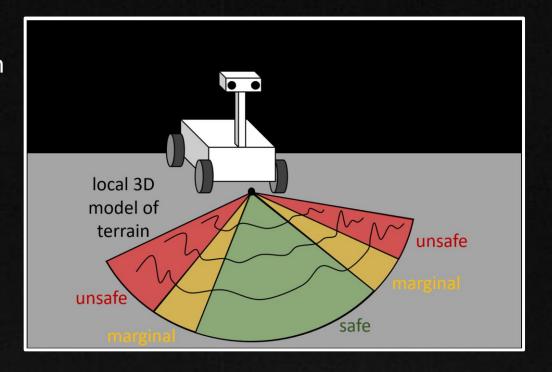
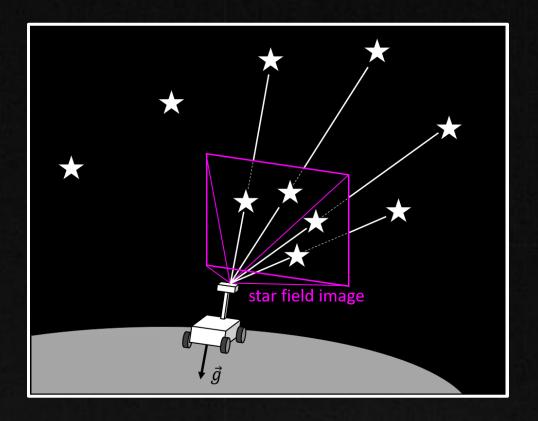

Navigation Type	local
Hardware	mono/stereo cameras or LIDARIMU (opt.), FPGA or GPU (opt.)
Considerations	 (those of visual odometry) requires loop closure computer storage limitations no space flight heritage

Image-Based Path Planning

- measure or generate 3D model (point cloud) of local terrain
- fit rover shape model to point cloud
- determine safe and unsafe regions ahead of rover
- rinse and repeat
- more complex rover shape model \rightarrow "braver" path
- standard on Mars rovers

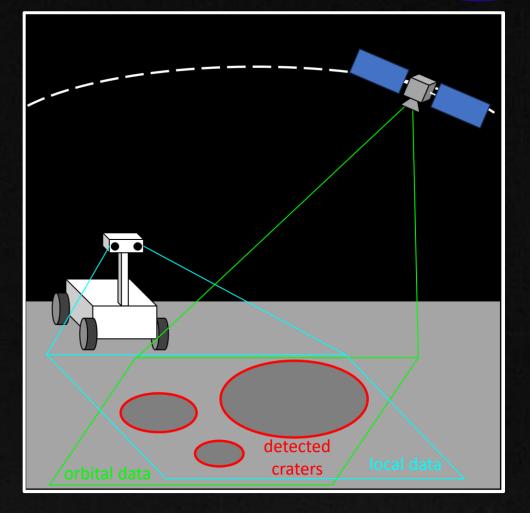
Navigation Type	hazard detection and avoidance
Hardware	stereo camera pair or LIDARIMUFPGA or GPU (opt.)
Considerations	computationally expensivenecessary throughout traverse



15

Celestial Navigation

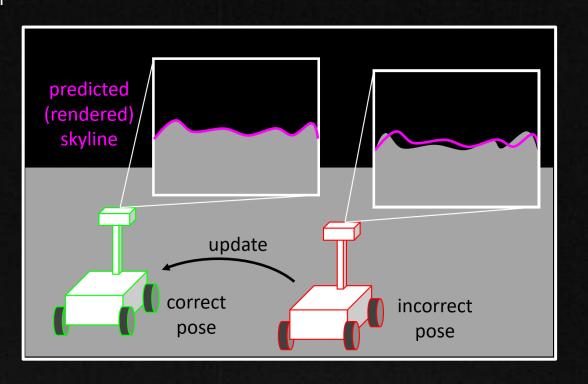
- measure local gravity vector in vehicle frame (IMU)
- take star field image, determine vehicle's inertial attitude
- crunch numbers, find local "down" direction in Moon frame
- local down points (roughly) opposite position
- compute latitude and longitude
- must account for non-spherical gravity field
- must calibrate IMU-star tracker interlock angle


Navigation Type	global
Hardware	star tracker, IMU, clock
Considerations	 must know (and re-calibrate) IMU-star tracker alignment no space flight heritage

Surface Crater Navigation

- take image(s) or generate 3D model of local terrain
- detect craters (no small feat)
- generate crater map from orbital images
- compare detected craters to map (ad hoc)
- much more well-studied for orbital applications
- can be on-board or post-processing

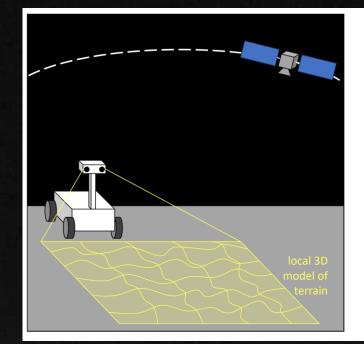
Navigation Type	global
Hardware	mono/stereo cameras or LIDARFPGA or GPU (optional)
Considerations	 surface crater detection → CDA surface crater ID problem needs dense crater distribution no space flight heritage

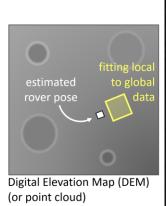

Skyline Navigation

- take image(s) of horizon, ideally construct panorama
- process to find horizon points, convert pixels

 az,el angles
- coarse comparison
 - pre-render skylines at several points before launch
 - compare observed skyline to catalog, return best position
- fine comparison
 - iteratively re-render skyline and update pose estimate
- can be on-board or post-processing

Navigation Type	global
Hardware	mono camera or stereo camerasFPGA or GPU (optional)
Considerations	 must render skylines (on board or before mission) point correspondence problem no space flight heritage

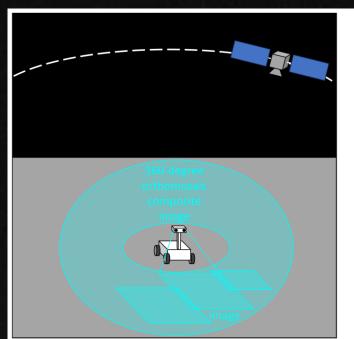


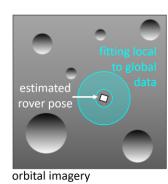


DEM Correlation

- measure or generate 3D model (point cloud) of local terrain
- generate point cloud of terrain from (orbital) DEM data
- compare local to global shape model using 3D features
 - see SHERIF project, stitching LIDAR scans
 - 3D equivalent of 2D image features (e.g., SIFT, SURF, ORB, KAZE)
- estimate observer pose
- can be on-board or post-processing

Navigation Type	global
Hardware	stereo camera pair or LIDARFPGA or GPU (optional)
Considerations	 3D feature correspondence no space flight heritage




Orbital Image Correlation


NASA - JSC

- take several stereo image pairs (enough to make panorama)
- construct orthomosaic image
 - need depth and brightness info for each pixel
- compare to orbital image of mission region
 - bound search area with initial position estimate
- the "Censible" algorithm does this
 - modified census transform for image comparison
 - demonstrated on Perseverance rover
- can be on-board or post-processing

Navigation Type	global
Hardware	stereo camera pair + mastFPGA or GPU (optional)
Considerations	computationally expensiveminimal space flight heritage

