
A Survey of 
Autonomous Navigation Techniques 

Applicable to Lunar Surface Exploration
Paul McKee

Aeroscience and Flight Mechanics Division
NASA Johnson Space Center

AAS 25-173 Feb 2, 2025



Which way back to the lander?
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Good luck following tire tracks…

AS17-140-21355
image credit: NASA



What problems can we solve?

Assuming loss-of-communication scenario (no GPS, DSN, LCRNS)

Where am I with respect  → local navigation
to some other asset?

Am I going to hit something  → hazard detection and
on the way to my destination?   avoidance (HDA)

What is my latitude/longitude? → global navigation

4McKee AAS 25-173



What sensors do we have?

• IMU
• accelerometers    → “felt” acceleration
• gyroscopes     → attitude rate

• Star tracker      → star field image
• Wheel encoders     → wheel revolutions
• Optical navigation cameras 

• mono camera     → mono image
• stereo camera pair    → point cloud
• point-able mast    → panorama

• LIght Detection And Ranging (LIDAR)  → point cloud
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What do we do now?

• Didn’t the Apollo people figure this out already?  Apollo LRV Case Study  slide 7,8

• What about the folks at JPL?    Mars Rover Case Study  slide 9,10

• What about the VIPER rover?    VIPER Case Study   slide 11

• Let’s do a literature review…  local nav  Inertial Navigation/Dead Reckoning slide 12

       Visual Odometry   slide 13

       SLAM    slide 14

     HDA  Image-Based Path Planning  slide 15

     global nav Celestial Navigation  slide 16

       Surface Crater Navigation  slide 17

       Skyline Navigation   slide 18

       DEM correlation   slide 19

       Orbital Image Correlation  slide 20
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Apollo LRV Case Study
• Lunar Roving Vehicle (a.k.a. “Moon Buggy”)

• “An intricate navigation system is not needed, nor is there time to develop one” – Bill Tindall

• Local navigation → inertial navigation and wheel odometry

• Hazard detection → crew eyeballs

• Global navigation → orienteering (crew eyeballs + map)
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Apollo LRV Case Study: Considerations

• Orienteering fell short on Apollo 14
• crew became disoriented and “admitted defeat” 30 meters from target

• Cannot rely on direct line-of-sight to a tall lander
• terrain obscures lander, must be able to navigate to within 1km

• Lunar surface plays tricks on the human eye
• terrain self-similarity
• extreme lighting conditions
• no sense of scale
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Mars Rover Case Study

• Mars Pathfinder – Sojourner (1997)
• local navigation → inertial navigation and wheel odometry
   → images taken by Pathfinder lander
• hazard detection → stereo camera pair, laser striper, contact sensors
• global navigation → N/A

• Mars Exploration Rover – Spirit & Opportunity (2004)
• local navigation → inertial navigation and wheel odometry
   → images of the Sun to update gyros
   → visual odometry (demonstration)
• hazard detection → stereo images processed into hazard map
• global navigation → human-in-the-loop orbital image comparison
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Mars Rover Case Study

• Mars Science Laboratory – Curiosity (2012)
• local navigation → inertial navigation and wheel odometry
   → images of the Sun to update gyros
   → visual odometry (now standard)
• hazard detection → stereo images processed into hazard map
• global navigation → human-in-the-loop orbital image comparison

• Mars 2020 – Perseverance (2021)
• local navigation → (see Curiosity)
• hazard detection → on-board hazard map generation at full drive speed
• global navigation → human-in-the-loop orbital image comparison

• Mars 2020 – Ingenuity (2021)
• local navigation → inertial navigation, laser altimeter, visual odometry
• hazard detection → human operators plan a safe flight path
• global navigation → N/A
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VIPER Case Study

• Volatiles Investigating Polar Exploration Rover

• “cancelled” in July 2024 (work continues at NASA Ames and Johnson Space Center)

• Local navigation → inertial navigation and wheel odometry

   → star tracker to update gyro

   → visual odometry

• Hazard detection → hazard cameras (HazCam) in wheel wells (4)

   → stereo pair of navigation cameras (NavCam) on mast

   → stereo pair of aft-facing cameras (AftCam) on body

• Global navigation → human-in-the-loop orbital image comparison

• VIPER does not need the autonomy of the Mars rovers due to its proximity to Earth
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Inertial Navigation and Wheel Odometry
• count wheel revolutions to determine distance traveled

• integrate rate gyros to determine direction traveled

• must account for gyro drift (external measurements)

• must account for wheel slip (various solutions)

• flown on every rover to date
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Navigation Type local

Hardware • wheel odometers (or equivalent)
• IMU
• suspension encoders (optional)

Considerations • wheel slip
• gyro drift



Visual Odometry
• take “before” image, drive a bit, take “after” image

• process both, looking at image features (SIFT, SURF, ORB, KAZE, etc.)

• correlate features between images (often requires RANSAC or similar)

• points (should be) truly static

• compute change in observer pose (pos+att)

• can be on-board or post-processing
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Navigation Type local

Hardware • stereo camera pair OR
• mono camera with range sensor
• FPGA or GPU (optional)

Considerations • choice of feature points
• point correspondence problem



Simultaneous Localization and Mapping

• extension of visual odometry

• can be done with or without IMU (image only is “VSLAM”)

• estimate observer pose and location of (many) landmarks

• map generated upon loop closure

• related to Structure From Motion (SFM)

• can be on-board or post-processing
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Navigation Type local

Hardware • mono/stereo cameras or LIDAR
• IMU (opt.), FPGA or GPU (opt.)

Considerations • (those of visual odometry)
• requires loop closure
• computer storage limitations
• no space flight heritage



Image-Based Path Planning
• measure or generate 3D model (point cloud) of local terrain

• fit rover shape model to point cloud

• determine safe and unsafe regions ahead of rover

• rinse and repeat

• more complex rover shape model → “braver” path

• standard on Mars rovers

15McKee AAS 25-173

Navigation Type hazard detection and avoidance

Hardware • stereo camera pair or LIDAR
• IMU
• FPGA or GPU (opt.)

Considerations • computationally expensive
• necessary throughout traverse



Celestial Navigation
• measure local gravity vector in vehicle frame (IMU)

• take star field image, determine vehicle’s inertial attitude

• crunch numbers, find local “down” direction in Moon frame

• local down points (roughly) opposite position

• compute latitude and longitude

• must account for non-spherical gravity field

• must calibrate IMU-star tracker interlock angle
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Navigation Type global

Hardware • star tracker, IMU, clock

Considerations • must know (and re-calibrate) 
IMU-star tracker alignment

• no space flight heritage



Surface Crater Navigation
• take image(s) or generate 3D model of local terrain

• detect craters (no small feat)

• generate crater map from orbital images

• compare detected craters to map (ad hoc)

• much more well-studied for orbital applications

• can be on-board or post-processing
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Navigation Type global

Hardware • mono/stereo cameras or LIDAR
• FPGA or GPU (optional)

Considerations • surface crater detection → CDA
• surface crater ID problem
• needs dense crater distribution
• no space flight heritage



Skyline Navigation
• take image(s) of horizon, ideally construct panorama

• process to find horizon points, convert pixels → az,el angles

• coarse comparison
• pre-render skylines at several points before launch
• compare observed skyline to catalog, return best position

• fine comparison
• iteratively re-render skyline and update pose estimate

• can be on-board or post-processing

18McKee AAS 25-173

Navigation Type global

Hardware • mono camera or stereo cameras
• FPGA or GPU (optional)

Considerations • must render skylines (on board 
or before mission)

• point correspondence problem
• no space flight heritage



DEM Correlation
• measure or generate 3D model (point cloud) of local terrain

• generate point cloud of terrain from (orbital) DEM data

• compare local to global shape model using 3D features
• see SHERIF project, stitching LIDAR scans
• 3D equivalent of 2D image features (e.g., SIFT, SURF, ORB, KAZE)

• estimate observer pose

• can be on-board or post-processing
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Navigation Type global

Hardware • stereo camera pair or LIDAR
• FPGA or GPU (optional)

Considerations • 3D feature correspondence
• no space flight heritage



Orbital Image Correlation
• take several stereo image pairs (enough to make panorama)

• construct orthomosaic image
• need depth and brightness info for each pixel

• compare to orbital image of mission region
• bound search area with initial position estimate

• the “Censible” algorithm does this
• modified census transform for image comparison
• demonstrated on Perseverance rover

• can be on-board or post-processing
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Navigation Type global

Hardware • stereo camera pair + mast
• FPGA or GPU (optional)

Considerations • computationally expensive
• minimal space flight heritage



We have options!
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