Supplementary Material

- 2 Supplementary Material for "<u>Global Warming has Accelerated</u>"¹ (*Acceleration*) is organized as:
- 3 (1) A perspective based on Acceleration, "Ice melt, sea level rise and superstorms"² (Ice Melt) and
- 4 "Global warming in the pipeline"³ (*Pipeline*). (2) Figures SM1-SM8, mentioned in the main text,
- 5 but placed here to limit the paper size. (3) Additional data sources for figures in the main text.

6 An Alternative Perspective on Global Warming

1

7 <u>Acceleration</u>,¹ <u>Ice Melt</u>,² and <u>Pipeline</u>³ each employ comparable emphasis on paleoclimate data,

8 global climate modeling, and modern observations of ongoing climate processes. We describe this

- 9 as an alternative perspective because it differs from that of IPCC, which places heavier emphasis
- 10 on global climate models (GCMs), especially simulations for the recent, human-affected era and
- 11 its projection into the future. Such global modeling is essential because no natural climate forcing
- 12 has increased as rapidly as the human-made forcing. However, there is also merit in a perspective
- 13 that adds comparable emphasis on the other major sources of information.
- 14 This alternative perspective leads to a conclusion that continued rapid growth of humanmade
- 15 climate forcings will cause shutdown of the Atlantic Meridional Overturning Circulation (AMOC)
- 16 likely within 20-30 years, and multimeter sea level rise in the lifetime of today's young people.
- 17 AMOC shutdown and large sea level rise stand out because they are irreversible on any time scale
- 18 that people care about; they differ from other "tipping points,"⁴ many of which may be reversible
- 19 via global cooling. AMOC shutdown and large sea level rise if they are allowed to occur are
- 20 not reversible on a time scale less than several centuries. The question is how close we are to the
- 21 "point of no return," when it becomes impossible to prevent these consequences. The urgency of
- 22 better understanding is highlighted by a recent study of the Ditlevsens,⁵ which finds empirical
- 23 information that the North Atlantic is headed toward AMOC shutdown this century.
- 24 AMOC shutdown and sea level rise are related. AMOC shutdown short-circuits the ocean
- 25 "conveyor,"^{6,7} the global ocean currents that transport heat, salt, and nutrients. In its normal mode
- 26 of operation,⁸ the ocean conveyor transports heat from the Southern Hemisphere into the Northern
- 27 Hemisphere, especially into the North Atlantic, where it helps⁹ keep Europe much warmer than
- 28 would be expected, given its high latitude. If the conveyor shuts down, that heat will stay in the
- 29 Southern Ocean, helping to melt the West Antarctic ice sheet, the biggest threat to sea level. So,
- 30 do the Ditlevsen study⁵ and *Ice Melt*² simulations imply that AMOC shutdown and large sea level
- 31 rise are now inevitable? Not so fast; the story is complicated. Shutdown of AMOC and its cousin 32 in the Southern Ocean (Anteretic Pottern Water Formation on SMOC) the Southern Maridianal
- in the Southern Ocean (Antarctic Bottom Water Formation, or SMOC, the Southern Meridional
 Overturning Circulation) are complicated. The drive for shutdown depends not only on the rate of
- 33 Overturning Circulation) are complicated. The drive for shutdown depends not only on the rate of 34 meltwater (freshwater) injection on the ocean surface, increased precipitation, and warming of the
- 35 ocean's upper layer, but also on increased storminess and, thus, increased ocean mixing.
- 36 Acceleration of global warming is a game changer, however, which will make it more difficult to
- 37 avoid both AMOC shutdown and large sea level rise. Suddenly, +1.5°C global temperature has
- 38 been reached and $+2^{\circ}$ C is on the horizon. This sudden warming is likely to have impacts in the
- 39 next 5-10 years that need to be reliably interpreted. If appropriate observations are made, climate
- 40 science will be in a better position to provide guidance about actions required to avoid harmful
- 41 climate impacts, especially shutdown of the AMOC and large sea level rise.

42 Ice Melt and AMOC

43 Data on ice melt deserve more attention. Forcings that drove AMOC and SMOC shutdowns in the

44 climate model² were (1) growth of greenhouse gases (GHGs), and (2) growth of freshwater

45 injection onto the North Atlantic and Southern Oceans. GHG forcing, in fact, has continued to

46 grow at a high rate, shockingly close to the extreme IPCC scenario RCP8.5 (Figure 15). Thus, the

47 issues requiring better data and understanding are the magnitude of freshwater injection and the

48 ability of global climate models (GCMs) to simulate AMOC and SMOC shutdown.

49 *Freshwater injection rates.* After *Ice Melt* appeared, a paper¹⁰ was published contradicting the

50 conclusion that AMOC (Atlantic Meridional Overturning Circulation) could shut down this

51 century. The 15 authors, from leading climate modeling groups, used 21 climate projections from

52 eight "...state-of-the-science, IPCC class..." GCMs to conclude that "...the probability of an

AMOC collapse is negligible. This is contrary to a recent modeling study [Hansen et al., 2016]

54 that used a much larger, and in our assessment unrealistic, Northern Hemisphere freshwater

55 forcing... According to our probabilistic assessment, the likelihood of an AMOC collapse remains

56 very small (<1% probability) if global warming is below \sim 5K... ".¹⁰ What was their

57 "probabilistic" assessment? They took their ensemble of model results as if it were the probability

58 distribution for the real world, an approach commonly employed by IPCC. IPCC then blackballed

59 the *Ice Melt* paper, not mentioning it in its AR6 report. The indictment of *Ice Melt* was accepted

by the wider research community; papers on AMOC or SMOC ignore *Ice Melt* or refer to it

61 parenthetically with a statement that freshwater injection rates used in the *Ice Melt* paper were

62 unrealistically large.

63 *Ice Melt* assumed freshwater injection in 2011 of 360 Gt/yr on the North Atlantic Ocean and 720

64 Gt/yr on the Southern Ocean. Injection was assumed to increase exponentially with a doubling

time of 10 or 20 years (and decrease toward earlier time with "halving time" 10 or 20 years).

66 Observed mass loss from Greenland and Antarctica grew in the decade prior to 2011 with about a

67 10-year doubling time (Fig. 30 in *Ice Melt*), which was one reason to assume continued growth.

Another reason is that sea level in the Eemian period (about 120,000 years ago) went up at least a

69 few meters in less than a century, as shown by the rate at which coral reef building "backstepped"

toward the shoreline as sea level increased.¹¹ Such rapid sea level rise requires a characteristic

change time much less than a century; this occurred in the Eemian, even though the forcing was

weak and changed slowly; the present human-made forcing is larger and increasing much faster.

73 Here we show that the initial (2011) forcings that drove AMOC and SMOC shutdowns in *Ice Melt*

74 were of a realistic magnitude; indeed, they were an underestimate. Melting did not continue to

75 grow as fast in the decade 2015-2024, but that slowdown is likely temporary and the freshwater

76 injection averaged over the past two decades was accurate. Future melt rates should grow, given

77 the recent 0.5°C leap of global temperature, the doubling of Earth's energy imbalance in the past

decade,¹² and ice sheet feedbacks; as the melt season lengthens and becomes warmer with more

rainfall, lower parts of the ice sheet will become wetter, darker, and lower in altitude. It is

80 important to track and understand changes of freshwater injection. Change does not occur along a

81 smooth curve; it's a bumpy ride, as we will show in cases with available data.

82

The largest term usually associated with increased freshwater injection onto the North Atlantic is 85 86 Greenland melt estimated from ice sheet mass loss measured by the GRACE gravity satellite. 87 GRACE yields a freshwater injection of about 250 Gt/year (Fig. SM9). Based on GRACE data through 2014, mass loss increased with a doubling time of 10 years for both Greenland and 88 89 Antarctica (Fig. 30 of *Ice Melt*).² However, ice sheet mass loss did not continue to grow at such a 90 high rate after 2014; instead, Antarctica even gained mass in some years (Fig. SM10). This is not 91 surprising – over most of the ice sheets, during most of the year, the temperature is below freezing 92 and increased precipitation on a warming planet accumulates on ice sheets. Thus, we must take 93 account of increased snowfall in interpretation of ice sheet mass changes measured by GRACE.¹⁵ Most increased snowfall originates with evaporation at lower latitudes, with little effect on the 94 95 ocean's salinity in the region of deepwater formation. Thus, snowfall increase above the 96 preindustrial snowfall rate should be deleted from GRACE-measured ice sheet mass in calculating the ice sheet contribution to freshwater injection.¹⁶ Figure SM11 provides a useful indication of 97 98 enhanced snowfall. The largest mass losses in Antarctica occur in January and February, which are 99 summer months equivalent to July and August in the Northern Hemisphere. In recent years, since 100 the decline of Southern Ocean ice cover, summer mass loss of the Antarctic ice sheet is followed 101 promptly by a large mass gain. Warmer air masses containing more water vapor than in the 102 preindustrial atmosphere cause increased snowfall. Such increased snowfall occurs even in

103 summer months when the ice sheet is losing mass; most of the ice sheet is below freezing in the

summer and substantial snowfall accumulates at altitude.

Figure SM10. Greenland and Antarctica Ice Mass Change Rate (Gt/year)¹⁷

108

107

109 Surface mass balance calculations are needed, for both Greenland and Antarctica, to account for 110 changes of precipitation. For that purpose, Figure SM12, from Bamber et al.¹⁸ is a helpful picture 111 of freshwater fluxes into the Arctic and the North Atlantic from Greenland's drainage basins and Eurasian rivers. Triangle sizes are proportional to 1961-1990 reference period fluxes. Bamber et 112 113 al. calculate Greenland runoff with a regional climate model (forced at its boundaries by reanalyses of ECMWF, European Centre for Medium-Range Weather Forecasts) and solid ice 114 discharge (iceberg flux) from estimates of ice stream flux at 37 drainage basins, with the flux gate 115 being the ice sheet grounding line, i.e., the place where the ice enters the ocean. In Figure SM12 116 these 37 drainage basins are lumped into five drainage basins that empty into the Arctic Ocean 117 118 (AO), Nordic Seas (NS), Irminger Sea (IS), Labrador Sea (LS) and Baffin Bay (BB). The

119

Figure SM12. Freshwater fluxes from Greenland and Eurasian Rivers¹⁸

Freshwater fluxes from Greenland's 5 major drainage basins:

AO= Arctic Ocean, NS= Nordic Seas, IS= Irminger Sea, LS = Labrador Sea, BB= Baffin Bay and 8 largest rivers.

Triangle areas are proportional to flux. Numbers are for reference period 1961-90 and % refers to increase in 1992-2010.

From Fig. 4 of J. Bamber *et al.*, <u>Geophys</u>. Res. Lett. **39**, L19501, 2012

120

- 121 percentages in Figure SM12 are the increases of freshwater flux from 1961-1990 to 1992-2010.
- 122 The sum of the increases for the five basins is 330 Gt/yr.¹⁹ Thus, (1) the increased freshwater flux
- 123 from Greenland alone yields approximately the flux increase assumed in the *Ice Melt* paper (360
- 124 Gt/yr in 2011). However, there are three additional, significant, contributions to growing
- 125 freshwater injection: (2) in the Northern Hemisphere, melting of glaciers and ice caps outside of
- 126 Greenland, (3) in both polar regions, reduction of the volume of ice shelves, and (4) especially in
- 127 the Northern Hemisphere, reduction of the volume of sea ice not captured in today's GCMs.
- 128 A minimum estimate of freshwater source (2), glaciers and ice caps outside Greenland, is provided
- by GRACE data. Averaged over 2002-2019, the gravity data yield an annual mass loss from
- 130 Arctic glaciers and ice caps of 164 ± 24 Gt/yr, with larger values in recent years.²⁰ About half of
- 131 this is from Iceland, Svalbard, and the Canadian Archipelago, which would affect the salinity of
- 132 the upper layers of the North Atlantic in regions of deepwater formation within several years. This
- 133 freshwater source is larger, if the glaciers or ice caps include submarine ice (whose melt is not
- 134 captured by GRACE). A conservative estimate for the glacier and ice cap freshwater source in
- 135 2011 is 75 Gt/yr, with the source continuing to grow after 2011.
- 136 Freshwater source (3), the changing volume of ice shelves, provides almost the entire growth of
- 137 freshwater injection for Antarctica. The estimate in *Ice Melt* of 720 Gt/yr for Antarctica was based
- in part on the Antarctic ice shelf mass loss rate of 2765 Gt/yr (1500 Gt/yr from basal melt and
- 139 1265 Gt/yr from calving) during 2007-2008 estimated by Rignot *et al.*²¹ and similar estimates by
- 140 Depoorter et al.²² Combining these recent melt rates with an estimated preindustrial Antarctic
- 141 snowfall rate of 2000 Gt/yr and the assumption of preindustrial equilibrium of continental
- snowfall and coastal ice discharge¹⁶ led to the 720 Gt/yr estimate for mass loss of ice shelves in
- 143 2011. A remarkable independent check was provided by Rye *et al.*,²³ who found that coastal
- 144 freshwater injection had a detectable (2 mm) effect on the slope of sea level away from the
- 145 continent. They inferred an increase of 430 Gt/yr in ice shelf melt over a 20-year period, and they
- 146 noted that it was a lower bound on the increase of ice shelf melt rate, which must have begun to
- 147 increase prior to the satellite data, consistent with the fact that Antarctic bottom water formation
- 148 and the global volume of Antarctic bottom water was already declining at least since 1980.²⁴
- 149 Greenland also has declining ice shelf volume. Greene et al. $(2024)^{25}$ made a comprehensive study
- 150 of Greenland glacier terminus positions for the period 1985-2022, finding that the Greenland ice
- 151 sheet lost $5,091 \pm 72 \text{ km}^2$ of its area to secular glacier terminus retreat, which corresponds to 1,034
- ± 120 Gt of ice loss beyond the steady-state calving rate that would be necessary to maintain
- 153 constant areal extents of the ice sheet. The ice sheet area was relatively constant until the late
- 154 1990s, followed by a loss of 42 Gt/yr since January 2000. Specific events, such as huge calvings
- 155 from the Petermann Gletscher in 2010 and 2012 (which totaled 380 km² of ice shelf and reduced
- 156 the ice shelf length from 81 to 46 km), can affect even decadal mass balance trends, but Greene et
- al. conclude that overall the ice shelf mass loss has continued "without any marked slowdown."
- 158 This Greene et al. estimate is a lower limit on the ice shelf mass loss rate, for two reasons. First, it
- 159 does not include thinning of remaining ice shelves. Second, it does not include mass loss from
- 160 submerged ice adhered to Greenland below sea level, a loss that must be occurring, given the
- 161 warming oceans around Greenland. Nevertheless, the Greene et al. data indicate the freshwater
- 162 source from shrinking ice shelves did not continue to grow exponentially in the past decade.

Figure SM13. Sea Ice Extent at Months of Minimum & Maximum Ice Cover²⁶ 163

Instead, ice shelf mass loss continued at a high rate. Before we compare total real-world 165

freshwater injection with the amount assumed in the Ice Melt simulations, we must estimate 166

freshwater source (4), reduction of sea ice volume not captured in global climate models (GCMs). 167

168 Figure SM13 shows sea ice area. Freshwater injection from declining sea ice, in principle, is

computed by GCMs, but, in practice, most GCMs - including the GISS model used in Ice Melt -169

- 170 do not get a realistic, large, sea ice volume reduction. Arctic sea ice volume in the real world²⁷
- decreased more than 6000 km³ in the decade leading up to 2011,²⁸ yielding a freshwater injection 171
- of the order of 500 Gt/yr. Some of this sea ice loss occurred directly in the North Atlantic, and 172
- most Arctic sea ice reduction contributes to freshening of the North Atlantic, as the principal 173
- gateway for Arctic surface circulation into the North Atlantic is via the Fram Strait (between 174
- Greenland and Spitsbergen), which feeds into the East Greenland Current and East Icelandic 175
- Current (e.g., Fig. 1 of Clotten et al.²⁹). Sea ice loss in the Arctic Basin reduces the salinity of 176
- water transported into the North Atlantic, which is likely one reason that the salinity of the North 177
- 178 Atlantic is at its lowest level in modern records.
- 179 Our estimates for the four North Atlantic freshwater sources from ice melt are 330, 75, 50, and 50-
- 180 250 Gt/yr, a total 505-705 Gt/yr in 2011 (50 is a conservative estimate for ice shelves, given the
- two terms that are not included in Greene's evaluation. 50-250 is a conservative estimate for sea 181
- 182 ice loss, with the wide range due to uncertainty in how much sea ice loss in the Arctic basin
- 183 contributes to reduced salinity in the North Atlantic. In GCM studies, excess real-world sea ice

184 loss can be added in locations of observed sea ice diminution.). We conclude that freshwater

sources in the North Atlantic in 2011 were underestimated by 50-100 percent in Ice Melt. This 185

high freshwater injection rate is an appropriate estimate for the decade 2005-2014. In the next 186

decade, 2015-2024, real-world freshwater injection did not increase exponentially; at most, the 187

loss rate remained comparable to the prior decade, but, for the past two decades overall, the North 188

- 189 Atlantic freshwater source employed in Ice Melt was realistic.
- 190 The question is: will freshwater forcing now grow, as assumed in *Ice Melt*? We suggest below that
- 191 the climate system is now poised for accelerated freshwater injection. However, discussion of the
- prospects for AMOC and SMOC shutdowns and large sea level rise requires that we also consider 192
- 193 whether climate models are able to realistically simulate freshwater effects on AMOC and SMOC,
- 194 even when the freshwater injection rate is known accurately.

195 Ability of GCMs to simulate AMOC and SMOC shutdown. There are at least two model issues 196 that are likely to cause most GCMs to be less sensitive than the real world to freshwater injection; 197 in other words, AMOC and SMOC may not shut down as easily in the models as in the real world. 198 The first issue has long been articulated by Stefan Rahmstorf, initially in a paper by Hofmann and 199 Rahmstorf (2009).³⁰ The basic concern is with the many model parameters that must be set in the 200 development of an ocean model, and specifically with modelers' preference for a stable model, 201 which may bias parameter selection. It is difficult, if not impossible, to quantify such an effect. 202 The best approach is probably continual improvement of the models, including comparisons with 203 as many relevant observations as possible.

The second model issue is concern about excessive, unrealistic, mixing in ocean models. This excessive ocean mixing issue – unrealistic diffusion of ocean properties – was raised as early as

206 2008,³¹ when the concern was the effect on inferred climate sensitivity and aerosol climate

207 forcing. Mixing is also a crucial issue for AMOC and SMOC shutdown because excessive mixing

208 makes it more difficult for freshwater injection to reduce the density of the ocean's upper layer to

209 the point required to halt the sinking of water from the upper layer ocean. Some excessive (i.e.,

210 unrealistic) mixing is almost inherent in ocean models because solution of the ocean dynamical

211 equations via numerical finite differencing causes spatial diffusion of properties. Diffusion of

212 "tracer" quantities, such as salinity, can be limited by use of high order differencing schemes, e.g.,

213 Prather's second order moments method,³² but small-scale mixing assumptions (eddy diffusivity

and mesoscale eddy parameterizations) are another source of uncertain mixing. Nevertheless, the

215 mixing problem is one that can be addressed with current knowledge and computing power.

216 The mixing issue was of special concern for *Ice Melt* simulations because of the model's coarse

resolution. The final simulation for the *Ice Melt* paper, with 2011 freshwater fluxes of 360 Gt/yr in the North Atlantic and 720 Gt/yr in the Southern Ocean, included improvements in the sub-grid-

scale calculations introduced by Max Kelley, which lead to realistic ocean stratification. It was

shown (Fig. 19 in *Ice Melt*) that the model formed Antarctic Bottom Water along the Antarctic

coastline in observed locations (especially in the Ross and Weddell Seas, but also off Adelie Land

and Cape Darnley), despite the model's coarse resolution and unlike most contemporary models,

which produced deep water in the open Southern Ocean (Heuze et al.).³³ The climate simulations

with this model – assuming a 10-year doubling time for freshwater injection – caused shutdown of

AMOC and SMOC by midcentury.² However, there were indications that the real world was

beginning to show effects of the freshwater injection – such as the absence of warming, or even

slight cooling, in the Southern Ocean and southeast of Greenland – earlier than in the model. We

suspected that the model was less sensitive than the real world because of the model's coarse

229 resolution $(4^{\circ} \times 5^{\circ}$ in both atmosphere and ocean, with a 13-layer ocean).

230 Thus, Craig Rye, as a post-doc at Columbia University and the Goddard Institute for Space

231 Studies (GISS), carried out simulations with the then newest version of the GISS model (with

232 ocean resolution $1^{\circ} \times 1.25^{\circ}$ and 40 layers). The experiments were limited to the simplest problem:

an instantaneous 200 Gt/year (step-function) increase of freshwater injection on the Southern

234 Ocean. This amount was smaller than the then current estimate of 300-800 Gt/yr for real-world

freshwater injection, but it was large enough to provide a clear signal by averaging over a 20-

236 member ensemble of runs. The result was qualitatively consistent with the simulations in *Ice Melt*,

but with a higher sensitivity. Injection of 200 Gt/year of freshwater was enough to constrain

- 238 warming of the Southern Ocean sea surface temperature and yield slight cooling just north of the
- 239 winter sea ice region, consistent with empirical data (Fig. 20 of our present main paper). Increased
- 240 sensitivity to freshwater injection with higher resolution is not surprising, as $4^{\circ} \times 5^{\circ}$ resolution is as
- 241 large or larger than many polynyas, the regions of convective deepwater formation. Although a
- 242 coarse resolution model adjusts to vertical instability with considerable realism, it is not surprising
- that the sensitivity is higher with a model resolving polynyas. Increased vertical resolution of the
- 244 modeled ocean also contributes to higher sensitivity.
- 245 The higher sensitivity to freshwater is relevant to deepwater formation in the North Atlantic, thus
- to AMOC. Based on only the above information, we might estimate that instead of the three
- 247 doubling (factor of 8) increase of freshwater source in Ice Melt, two or even one doubling is likely
- enough to shut down AMOC. With the slower growth of ice melt suggested by observations, the
- 249 net effect is that midcentury is still a good estimate for the time of AMOC shutdown, assuming
- that the only radiative climate forcing is continued high GHG emissions. However, there is no
- 251 good reason why estimated future climate should be based on only the above information it is
- 252 possible to do much more realistic climate simulations now.

253 An Alternative Modeling Approach

- 254 Yogi Berra, it is claimed, was once asked directions for how to get to a distant place, and, after
- 255 pondering for a while, he concluded: "you can't get there from here." The wisdom often hidden in
- 256 remarks of the Yankee legend may be apropos. If we restrict our modeling to a standard approach,
- 257 we may not reach needed answers in time to usefully advise humanity.
- A common modeling approach is to include as many relevant processes as practical in a
- comprehensive model, which has the merit of allowing various components of the climate system
- 260 to interact. However, our knowledge and modeling ability for some parts of the climate system are
- 261 limited, and a poorly simulated component can gum up the works, making model predictions
- 262 unrealistic. Ice sheets are a case in point. It is argued³⁴ that many sea level projections based on
- 263 global climate models are implausible; some models even had sea level falling with increased
- warming. GCMs can realistically model increasing snowfall as a result of a warming atmosphere
- and ocean (with the increased snow causing the interior, high altitude, portion of an ice sheet to grow), but it is hard to model processes, including the ocean-atmosphere interactions, that cause
- the lower reaches of ice sheets to begin to disintegrate and release freshwater in a warmer world.
- 268 Even sea ice modeling is difficult. There is a tremendous range in the projections of Arctic sea ice
- 269 in different climate models.³⁵ Sea ice modeling has been pursued since the 1960s, with realistic
- 270 modeling always "just around the corner."
- 271 Sea ice modeling is hard. We know from data for the early Pliocene when global temperature at
- most approached $+2^{\circ}C^{3}$ that seasonal sea ice still occurred in the Arctic, but some regions near Greenland were as much as 5°C warmer than today.²⁹ Unless the humanmade climate forcing is
- reduced, the Arctic is headed toward a much warmer state. Warm Pacific water is flooding over
- 275 the Aleutian sill into the Arctic surface mixed layer and warm Atlantic water is increasing the
- temperature of the Arctic ocean beneath the surface mixed layer (see Fig. 17 of Polyakov et al.).³⁶
- 277 Climate modeling needs to include the freshwater injection from ice shelves and ice sheets. The
- 278 CMIP6 models that inform IPCC AR6 cannot produce realistic temperatures in the Southern
- 279 Ocean or the Arctic because they lack this freshwater source (Fig. 1 of Shu et al.;³⁷ see also Fig. 5

282 of the Cheng et al.³⁸ 2025 paper). We suggest that the seeming stability since 2010 of Arctic sea ice area (Fig. SM13) and volume (Fig. SM14 of the Polar Science Center)²⁸ is in part a result of 283 284 ice melt freshwater sources, including Arctic glaciers, ice caps, and ice shelves. From Greenland, Petermann Glacier had large calving events in 2010 and 2012 (Munchow et al.;³⁹ Ciraci et al.⁴⁰) 285 and northern Greenland ice shelves are an increasing freshwater source (Khan et al.,⁴¹ Millan et 286 al.,⁴² Narkevic et al.,⁴³ and Zeising et al.⁴⁴). 287

Certainly, ice sheet and sea ice modeling coupled to GCMs should continue to be pursued with 288

289 high priority, but as a complement to this approach it would be informative to also pursue

290 modeling in which freshwater injection is based on observational data up to the present and

291 projected forward with a small number of alternative assumptions (scenarios). The rationale for 292 this approach is that the physics of deepwater formation is reasonably simple, but it depends on

293 having the correct forcing, specifically accurate freshwater perturbation. It is also important to

294 assure that the model does not have unrealistic mixing. There is no need to remove model

295 components (such as sea ice and/or ice sheet modeling), just correct their calculated freshwater

296 injection to match observations in the past and to yield desired future scenarios.

297 We plan to pursue this approach, but if we are the only ones, our results may be ignored again. It

298 would be more effective if a few modeling groups pursue such a modeling strategy. Also, it would

299 be better if freshwater inputs for the past are defined by people with expertise in observations. If

the past forcings are specified accurately and the future scenarios are well defined, comparisons of 300

301 simulated climate with future observations – especially climate changes that occur in the near

302 future - should yield helpful insights about the prospects for AMOC shutdown.

- 303 AMOC shutdown deserves special attention, because it likely constitutes the point of no return.
- 304 The expected cold, stormy weather in the North Atlantic and northern Europe would be largely
- 305 regional, but there also will be global effects. Large sea level rise is probably unavoidable, if
- 306 AMOC shuts down. The global ocean conveyor circulation presently carries across the equator an
- 307 amount of energy equal to 4 W/m² averaged over the Northern Hemisphere, depositing most of the
- 308 energy in the North Atlantic region. If that energy is instead left in the Southern Hemisphere as a
- 309 result of AMOC shutdown, it will speed melting of Antarctic ice. Principal issues are thus the time
- 310 scale over which effects will occur and what can be done to avoid AMOC shutdown.

311 Storms and Ocean Stratification

- 312 Storms and ocean stratification are affected by global warming, with practical implications. Higher
- 313 sea surface temperatures (SSTs) and increased atmospheric water vapor create potential for more
- powerful tropical storms,⁴⁵ tornadoes, and thunderstorms.¹ The power dissipation of a wind storm
- increases as the cube of wind speed⁴⁶ as does the monetary damage of storms.^{47,48} Precipitation
- and floods that accompany storms often have still greater practical impact. The relationship of
- 317 these effects to climate forcings and to global temperature is not defined as well as it must be.
- Effects of +1.6C global temperature in the past year, with record SSTs, arguably were noticeable
- 319 in 2024, but the period was too short for statistical confirmation. Given our interpretation of the
- 320 recent leap in SSTs and global surface temperature, we expect temperature to hover about +1.5°C
- 321 for several years pushed down by La Nina and declining solar radiation, but upward by rising
- 322 GHGs and the continuing effect of reduced aerosols and then continue on its course toward 2°C.
- 323 We are now living in the +1.5C world and we need to define the climate impacts better.
- 324 Increased ocean stratification is a matter of concern. Increased stratification is expected⁴⁹ with
- rising surface layer temperature, as the warmer surface water is less dense and thus less prone to
- 326 mix with colder, deeper water. That is not a good thing, as the deeper water contains nutrients that
- 327 must be mixed upward to support a healthy marine ecosystem. Upwelling of nutrient rich water
- does not occur uniformly over the ocean, but instead mainly at $fronts^{50}$ boundaries separating
- 329 water masses with different properties. Movement toward the surface of cooler, nutrient-rich,
- water is thus facilitated at many locations, but increased stratification makes such upwelling less
 likely. GCM climate simulations driven by increasing GHGs (but without freshwater injection
- from melting ice) yield a long-term decline in ocean productivity, including, e.g., a 60% decline in
- 333 North Atlantic fishery yields.⁵¹
 - 334 Sallee et al.⁵² find that the drive for ocean change must be more complex than simply increasing
 - 335 GHGs. They show that stratification is increasing over most low and middle latitude ocean areas,
 - but so too is the ocean's mixed-layer depth, the latter opposite of what is expected for GHG
 - forcing alone. A likely explanation is higher wind speeds and thus increased turbulence in the
 - 338 ocean's wind-stirred surface mixed-layer. Young and Ribal⁵³ use satellite observations from 1985
 - to 2018 to investigate trends in wind speed and wave height over the ocean; their Fig. 2 reveals a
 - 340 trend in wave height of about 1 cm/year over the entire Southern and North Atlantic Oceans, i.e., a
 - 341 33-year increase of 33 cm (13 inches) in wave height. These are just the regions where freshwater
 - 342 injection increased the eddy kinetic energy of the atmosphere in the *Ice Melt* GCM climate
 - 343 simulations. The model had been shown to do a good job of simulating atmospheric dynamics, so
 - 344 it may be worth repeating the brief relevant section of the *Ice Melt* paper:

345 **3.9.2 21**st Century storms

346 If GHGs continue to increase rapidly and ice melt grows, our simulations yield shutdown or major slowdown 347 of the AMOC in the 21st century, implying an increase of severe weather. This is shown by zonal mean 348 temperature and eddy kinetic energy changes in simulations of Sec. 3.3-3.6 with and without ice melt (Fig. 21). 349 Without ice melt, surface warming is largest in the Arctic (Fig. 21, left), resulting in a decrease of lower 350 tropospheric eddy energy. However, the surface cooling from ice melt increases surface and lower tropospheric 351 temperature gradients, and in stark contrast to the case without ice melt, there is a large increase of mid-latitude 352 eddy energy throughout the midlatitude troposphere. The increase of zonal-mean midlatitude baroclinicity (Fig. 353 21) is in agreement with the localized, North Atlantic-centered increases in baroclinicity found in the higher 354 resolution simulations of Jackson et al. (2015)⁵⁴ and Brayshaw et al. (2009).⁵⁵

355 Increased baroclinicity produced by a stronger temperature gradient provides energy for more severe weather 356 events. Many of the most memorable and devastating storms in eastern North America and western Europe, 357 popularly known as superstorms, have been winter cyclonic storms, though sometimes occurring in late fall or 358 early spring, that generate near-hurricane force winds and often large amounts of snowfall (Chapter 11, Hansen, 359 2009).⁵⁶ Continued warming of low latitude oceans in coming decades will provide a larger water vapor 360 repository that can strengthen such storms. If this tropical warming is combined with a cooler North Atlantic 361 Ocean from AMOC slowdown and an increase in midlatitude eddy energy (Fig. 21), we can anticipate more 362 severe baroclinic storms. Increased high pressure due to cooler high latitude ocean (Fig. 20) can make blocking 363 situations more extreme, with a steeper pressure gradient between the storm's low-pressure center and the 364 blocking high, thus driving stronger North Atlantic storms.

Freshwater injection on the North Atlantic and Southern Oceans increases sea level pressure at middle latitudes and decreases it at polar latitudes (Figs. 20, S22), but the impact is different in the North Atlantic than in the Southern Ocean. In the Southern Ocean the increased meridional temperature gradient increases the

368 strength of westerlies in all seasons at all longitudes. In the North Atlantic Ocean, sea level pressure increase in 369 winter slows the westerlies (Fig. 20). Thus, instead of a strong zonal wind that keeps cold polar air locked in the

370 Arctic, there is a tendency for a less zonal flow and thus more cold air outbreaks to middle latitudes.

- 371 These effects are already beginning today and will increase as long as the low latitudes continue to
- 372 warm, the Antarctic and Greenland ice sheets shed increasing amounts of cooling freshwater, and
- 373 the North Atlantic proceeds toward AMOC shutdown. Caesar⁵⁷ presents evidence that AMOC has
- been in decline and is at its weakest point in a millennium. Storms are getting stronger in the
- 375 North Atlantic and the Southern Ocean, if we take wave height as a measure.⁵³ Greater storminess
- at high latitudes increases ocean mixing and brings nutrients to the surface layer, overwhelming
- 377 the stratification tendency that was projected⁵¹ based on GHG warming as the only forcing. This
- 378 picture is consistent with the data of Yang et al.⁵⁰ in which most equatorial hotspots are
- 379 experiencing a decline in frontal upwelling and chlorophyll concentration, while most high-

380 latitude hotspots have increased frontal upwelling and chlorophyll concentration.

381 Crucial Observations

382 Earth is presently far out of energy balance – more energy coming in than going out – so global

383 warming will continue and its effects will become more obvious. When the world is finally ready

- to take effective action to address climate change, it is important that we understand climate
- 385 change to help define actions with the best chance of achieving effective results. That means that

386 we must obtain observations essential for understanding of ongoing change. We limit discussion

- 387 here to observations closely related to the main topics in our present paper, but, in fact, these are
- 388 essential data for defining the big picture. Given what is at stake, it would be shocking if we do
- 389 not continue crucial observations needed to understand ongoing climate change, the prospects for
- 390 further change, and progress in restoring Earth's energy balance.

- 391 Earth's energy imbalance is a measure of how much we must do to halt global warming. As long
- as more energy is coming in than going out, the ocean will keep warming and ice will keep
- 393 melting. Presently, we are acquiring accurate measurements of Earth's energy balance, thanks to
- 394 the combination of multiple CERES (Clouds and Earth's Radiant Energy System) instruments in
- 395 space and several thousand deep-diving Argo floats dispersed around the global ocean, with Argo
- 396 heat content measurement providing absolute calibration for the CERES data. CERES data are
- being used for more than measuring Earth's energy balance. In the absence of long-term
- 398 monitoring of aerosol climate forcing a very difficult task, requiring precise long-term
- 399 monitoring of aerosol and cloud microphysics CERES data have provided the best proxy for
- 400 aerosol climate forcing, despite ambiguities in their use for that purpose.
- 401 NASA's CERES instruments have been remarkably long-lived, the initial launch being in 1999,
- 402 but the satellites and instruments are well past their prime mission lifetime. A follow-on to
- 403 CERES, Libera, is planned for launch in 2027, but there are no plans after that. There is danger of
- 404 a discontinuity in the data. If there is no overlap of successive instruments, the calibration is lost,
- 405 and stitching together a long-term becomes problematic. There is no persuasive evidence that
- 406 adequate replacement instruments will be in space in time for data continuity. Given the
- 407 importance of the data, it would make sense for others e.g., the U.S., European Union, Japan and
- 408 China to work collaboratively to ensure continuity of data. Indeed, it would be useful in any case
- 409 for more than one of these countries to obtain data, as a cross-check.
- 410 The Argo deep-diving floats provide much more than an absolute measure of change in Earth's
- 411 energy balance (thus calibration of satellite data), their precise measurements of temperature and
- 412 salinity are the backbone of global ocean observations. However, few measurements are being
- 413 obtained in the regions essential to understand the ocean's effect on the ice sheets: data on the
- 414 continental shelves, in Greenland fjords, and inside ice shelf cavities. The technical capability to
- 415 extend Argo measurements under ice and inside ice cavities now exists and needs to be deployed
- at scale in order to develop understanding and predictive capability for ice shelf melt rates and
- 417 their impact on glacier evolution and sea level rise. The existing Argo program monitors most of
- 418 the global ocean in an international cooperation involving many nations. The need is to expand the
- 419 program to include data from the deeper ocean, and especially greater focus on the polar oceans,
- 420 which will determine the future of both the ocean's overturning circulations and sea level.
- 421 In the past 10 years there were specific, limited, programs for Greenland (NASA's Ocean Melting
- 422 Greenland, OMG program) observations and an international cooperation to investigate the most
- 423 vulnerable Antarctic ice the Thwaites glacier but these were limited programs that have ended.
- 424 As global climate change is accelerating, it is important to follow up those studies, which can be
- 425 done most comprehensively as an international cooperation. That cooperation should pay off as it
- 426 helps us develop mutual understanding of where climate is headed and what needs to be done to
- 427 achieve a bright future for today's population and generations to come.
- 428

430

431 Summary

Danger of being too late. The great thermal inertia of the climate system – due to the massive 432 433 global ocean - creates the danger of being too late because the public sees only limited climate 434 change, so far, and thus does not prioritize the climate issue. The Pipeline paper (Global Warming 435 *in the Pipeline*)³ revealed – with the help of paleoclimate data – that the eventual (equilibrium) 436 climate response to today's atmospheric greenhouse gases (GHGs) would be a nearly ice-free 437 planet with coastlines very different than today. Achieving that equilibrium would require 438 millennia, enough time for humanity and natural processes to draw down excessive greenhouse 439 gases (GHGs) in the air, avoiding such an extreme fate. However, in fact, GHGs are continuing to 440 increase at a rate about 10 times faster than any known case in Earth's history. Humanity is 441 hammering our planet with a force for change that Earth has never felt before. The great inertia of 442 the climate system has limited the climate response so far, but as change accelerates, some critical 443 responses of the planet may begin to run so fast that they become difficult, if not impossible, to 444 control. That is the danger of "being too late."

- 445 *Global warming acceleration*. The *Pipeline* paper, based on paleoclimate data, concluded that
- 446 equilibrium climate sensitivity is $4.8^{\circ}C \pm 1.2^{\circ}C$ for doubled CO₂, higher than the best estimate
- 447 (3°C for doubled CO₂) of IPCC (Intergovernmental Panel on Climate Change). Paleoclimate,
- 448 because it actually achieves equilibrium climate changes, provides a reliable measure of climate
- sensitivity. *Pipeline* also concluded that restrictions imposed in 2015 and 2020 on aerosol
- 450 precursor emissions from ships was likely a main cause of global warming acceleration.
- 451 Our present *Acceleration* paper¹ investigates these issues with more data. We confirm acceleration
- 452 of global warming and conclude that the +1.5°C global temperature threshold (averaged over El
- 453 Nino and coming La Ninas) has been breached. The GISS (Goddard Institute for Space Studies)
- analysis of 12-month running-mean global temperature reached +1.6°C relative to the 1880-1920
- 455 mean in August 2024, and then began a slow decline to +1.56 at the end of 2024. If our estimated
- $456 \qquad \text{ship aerosol forcing of } 0.5 \text{ W/m}^2 \text{ (several times larger than estimated by IPCC and aerosol}$
- 457 modelers) is accurate, global temperature in the next few years will decline at most to $\sim 1.4^{\circ}$ C, but
- 458 it may not even reach that. Earth's large energy imbalance assures that warming will continue on a
- 459 path to +2°C and beyond, unless extraordinary actions are taken to affect that imbalance. There is
- 460 no need to wait a decade to confirm that the +1.5 °C threshold has been reached.

- A stunning observation that we focus on is decrease of Earth's albedo (reflectivity) by about 0.5% 461
- 462 in the 21st century, with most of the change occurring since 2010 (Fig. 6 in the main text). Sunlight
- incident on Earth averages 340 W/m², so 0.5% is an increase of 1.7 W/m² in the downward 463
- 464 radiative flux at the top of the atmosphere. This increased downward flux is some combination of
- 465 climate forcings and climate feedbacks. We use the geographical and temporal distribution of the
- change in Earth's reflected sunlight to estimate a ship aerosol forcing of 0.5 W/m² and an upper 466
- 467 limit on ice/snow albedo feedback of 0.15 W/m². That leaves (Fig. SM15) about 1 W/m² for cloud
- 468 feedback (which would be even larger if our estimate of ship aerosol forcing is too large). This
- large cloud feedback is consistent with the high climate sensitivity, 4-5°C for doubled CO₂, that 469
- 470 we find is necessary to match observed global warming of the past century. The high climate
- 471 sensitivity inferred from global temperature change in the past century is consistent with climate
- 472 sensitivity inferred from paleoclimate data in *Pipeline*.
- 473 Leap of global temperature in 2023-2024. The unprecedented leap of global temperature in the
- 474 past two years is fully accounted for, about equally, by the modest El Nino and the ship aerosol
- 475 forcing, with a smaller contribution from the present solar maximum, as shown in Fig. 19. The
- 476 suddenness of the warming spike is explained by the zonal-mean sea surface temperature in Fig.
- 477 10: the North Atlantic and North Pacific Oceans warmed steadily beginning in 2020 while the 3-
- 478 year La Nina cooled the tropical Pacific. When the tropics turned from a strong La Nina to a
- 479 modest El Nino in 2023, the full effect of both aerosol forcing and the tropical change appeared.
- 480 Our estimated aerosol forcing is larger than calculated by aerosol-cloud models, but the modeling
- 481 is primitive. Our estimate of the aerosol forcing is based on interpretation of changes in satellite-
- measured radiation in the regions where ship aerosols dominate. A check on our interpretation will 482
- be provided by temperature change in the next few years as the tropics descend into their La Nina 483
- phase and solar irradiance declines. If our estimated aerosol forcing is accurate, we expect global 484
- temperature to hover about 1.5°C for a few years before resuming ascent to +2.0C within 20 years. 485
- 486 The leap of global temperature to $\pm 1.5^{\circ}$ C affects people and nature. Perhaps the most noticeable
- 487 and consequential effects are on the frequency and severity of extreme events. The qualitative
- 488 effect of global warming has been recognized at least since 1989: generally, wet gets wetter and
- 489 dry gets drier, which is true both for the geographical distribution of changes and the temporal
- changes at a given location.⁵⁸ Implications include: more extreme floods, stronger storms driven 490
- 491 by greater absolute humidity and warmer sea surface temperatures, and more extreme heat waves
- 492 and droughts - even regions with plentiful annual rainfall may experience "flash droughts" due to
- 493 extreme temperatures. The effect for the ocean is salty gets saltier and fresher gets still fresher.
- 494 Oceans are affected now by increased heating from both greenhouse gases and reduced aerosol
- 495 and cloud shielding, so high average SSTs and ocean hotspots will continue.
- 496 All this is not to blame the recent Los Angeles fires on global warming, although warming is one contributing factor. The amplitude of wet-dry climate oscillations is a relevant factor and shifting 497
- of climate zones⁵⁹ is another. The tragedy can be blamed more on unwise development and poor
- 498 governance, but even those, it is suggested,⁶⁰ are not the principal, root cause of the problem,
- 499 500 which is the role of special (financial) interests in creating poor governance. Nevertheless, the
- 501 problem would be substantially mitigated if the world went back to a lower temperature, which, in
- fact, is essential if we wish to maintain shorelines close to their present locations, the existence of 502
- 503 today's coastal cities, and polar climates essential for many species.

- *Reactions to these papers.* Given that our papers disagree with IPCC conclusions, it is not 504
- 505 surprising that they generate reactions on social media. We generally have not responded, as it is
- very time consuming to respond and debate when we are outnumbered it seems a better use of 506
- 507 time to work on the next paper and include responses in it, if warranted, as we do here.

508 The first reaction was that there was no significant acceleration of global warming. This is an issue 509 where it seems best to let others and the real world provide the response.

- 510 A second reaction was that, if there is acceleration, it is captured in the GCM simulations that
- IPCC employed, therefore accelerated global warming does not support of our assertion that IPCC 511
- 512 underestimated ship aerosol forcing. That reaction exposes the problem with lumping CMIP/IPCC
- 513 model results into a model fog, and then treating that fog as if it is a probability distribution for the
- 514 real world or even a sharp tool useful for climate analysis. The problem in this case is that many of 515 the models in the fog did not use the IPCC aerosol forcing. For example, the fog includes GISS
- model runs that used Susanne Bauer's aerosol modeling, with both her Matrix and OMA aerosol
- 516 517 models;⁶¹ the latter model has an even greater aerosol forcing change than the aerosol scenario that
- 518 we employed. A subset of the model runs consisting of only those that use the IPCC aerosol
- 519 forcing (not precursor emissions) would likely produce only a slight acceleration (due to growth of
- 520 the annual GHG forcing in the past several years, which exceeds that in the prior two decades; see
- 521 Fig. 15), much smaller than the observed acceleration of global warming.
- 522 A third reaction was that our estimate of high climate sensitivity is an outlier. However, many
- 523 recent climate sensitivity studies include a key role for an "emergent constraint." What is an
- 524 emergent constraint, you may ask? The emergent constraint on climate sensitivity emerges from a
- 525 desire to keep global warming similar to observations. Our present paper shows that there is a one-
- to-one relation between the trend of late 20th century aerosol forcing and the climate sensitivity 526
- required to match observed warming. Specifically, for the IPCC aerosol scenario, the climate 527
- 528 sensitivity required to match observed warming is near 3°C for doubled CO₂. If one accepts the
- IPCC aerosol scenario, the emergent constraint is that climate sensitivity cannot be far from 3°C 529 530 for doubled CO₂. Thus, given the one-to-one relation, the emergent constraint amounts to "if we
- 531 assume that climate sensitivity is near 3°C for doubled CO₂, we find that climate sensitivity is near
- 532 3°C for doubled CO₂." Not many people question the IPCC aerosol scenario, leading to a seeming
- 533 consensus that sensitivity is near 3°C for doubled CO₂. However, as we show in the paper, there
- 534 are reasons to believe that the real-world aerosol forcing change exceeds IPCC's estimate.

535 A fourth reaction, made in the New York Times and elsewhere, is that the current rapid warming

- 536 falls within the range of all CMIP/IPCC climate simulations, so there is no good reason to believe
- 537 that something is occurring outside of IPCC assumptions. This claim draws more attention to the
- 538 big model range produced by CMIP/IPCC simulations and the assumption that it is a probability
- 539 function for the real world. The problem is that the range is a combination of apples and oranges,
- as shown by the example above, but also of bananas and figs, because of a range of assumptions 540
- 541 or treatments of different physical processes in the models – and, to be brutally honest, some
- pretty awful models. A scientist who wishes to help science writers understand the situation 542
- 543 should do more than note that some model produces a response even more extreme than the real
- 544 world; it would be more useful if the scientist looked at that model to see what caused the extreme
- 545 response and assessed its plausibility.

- 546 *Responsibility and opportunity*. As scientists with at least qualitative understanding of the delayed 547 response of climate to humanity's heavy footprint, we recognize the danger of "being too late" and 548 potentially leaving young people with "no way to get there from here." And we feel the need to 549 communicate this situation to the public more clearly. But we also know that more data are needed 550 for better understanding of climate change and definition of actions that will be most effective in
- helping to find a path to a healthy planet and attractive world for future generations.

552 We are where we are. The near future has become the critical time to develop and communicate

- 553 understanding of ongoing climate change. We should take the inadvertent ship aerosol experiment
- as an opportunity to test our understanding. If our interpretation is correct, global temperature, and
- 555 global sea surface temperatures in particular, will remain exceptionally high even as the world
- 556 moves into the cool La Nina climate phase. Emerging climate impacts will be a chance to help the
- 557 public understand what is happening. Despite growing disinformation wars, most of the public
- appreciates and places trust in objective science that provides our opportunity to help young
- 559 people.

560 Supplementary Figures SM1-SM8

The gold curves in Figure SM2 are the response of the GISS (2020) model to doubled CO₂ forcing (see the paper "Global warming in the pipeline").³ The blue curve for temperature is $T_C(t)$ used for Green's function calculations. The first 60 years of the blue curve is the mean of five runs of the GISS(2020) GCM; the rest of the blue curve is a smoothing of the single 5000 year 2×CO₂ run described in reference 1.

575

576 The GISS (2020) model was used, for our present paper, for 5-member ensembles of runs for 577 increased solar irradiance and 2×CO₂ forcings. Solar irradiance was increased only over the ocean

578 by the equivalent of a 2% global increase of solar irradiance, i.e., the solar irradiance over the

579 ocean was increased by the factor 0.02/0.7. In addition, because 2% solar and $2 \times CO_2$ forcings are

580 not identical, we normalize the response to the solar forcing by the factor 4.11/4.52, which is the

ratio of 2×CO₂ and 2% solar forcings as evaluated from climate simulations with fixed SST 581

582 [Tables 1 and 3 of J. Hansen et al., "Efficacy of climate forcings," J. Geophys. Res. 110 (2005):

583 D18104]. The global warming for the ocean-only forcing is only 76% of the warming for $2 \times CO_2$

in year 1 of the simulations (Figure SM3), but by year 3 the response with ocean-only forcing 584 585 catches up to the response for CO₂ forcing.

Figure SM4. Global Temperature Change for Base Periods 1880-1920 (top row) 586 587 and 1951-1980 (lower row)

590 Figure SM4 provides the data for the full period of Green's function calculations (1850-2025) for 591 which shorter periods at higher temporal resolution are shown in Figures 17 and 18.

597 The grey areas in Figure SM5 are the regions with stratospheric aerosols in four climate

simulations. The global average aerosol amount is the same in all four cases as for the real-world 598

Pinatubo volcanic eruption in 1991, which requires multiplying the aerosol opacity by 2, 6 and 14 599

for experiments E2, E3, and E4. Note the surface warming around Antarctica, as the resurgence of 600 601

the SMOC (Southern Meridional Overturning Circulation) melts sea ice around Antarctica. 19

602 Figure SM7. Clear-Sky Absorbed Solar Radiation, 2020-2023 vs 2000-2010

603

605 Figure SM8. Clear-Sky Absorbed Solar Radiation, 2020-2023 vs 2000-2010

606

607 Change of clear-sky Absorbed Solar Radiation in 2020-2023 relative to the first 10 years of

608 CERES data (March 2000 – February 2010) for the entire globe (Figure SM7) and limited to the

609 ocean and latitudes that largely exclude contributions from sea ice change (Figure SM8), but some

610 change due to loss of sea ice exists near northeast Canada and Kamchatka. The effect of reduced

611 aerosols east of China and increased aerosols near India is apparent. The global-mean contribution 612 of these clear-sky changes, which is a measure of the direct aerosol forcing change, is $+0.1 \text{ W/m}^2$.

613 Additional Data Sources for Figures in Main Text

- 614 Figure 3. Adapted from Figure 17(a) in the <u>reference in main text Note 1</u> (*Pipeline* paper).
- 615 Figure 5. Copy of Figure 11b in main text Note 14 reference.
- 616 Figures 6, 8, 9, 12, and 26. Authors' calculations based on CERES_EBAF-TOA_Edition4.2
- 617 database: <u>https://ceres-tool.larc.nasa.gov/ord-tool/jsp/EBAFTOA42Selection.jsp</u>
- 618 Figure 7. Authors' calculations based on CERES_EBAF-TOA_Edition4.2 database above (for
- 619 ASR) + <u>https://www.ncei.noaa.gov/access/monitoring/pdo/</u>
- 620 Figures 10 and 11. Authors' calculations based on NASA GISS sea surface temperature analysis
- 621 (using NOAA ERSSTv5 data): <u>https://data.giss.nasa.gov/gistemp/zonal_means/</u>
- 622 Figures 14, 16-18. Authors' calculations for this paper using the methods described in the
- 623 associated main text.
- 624 Figure 20. Authors' download from University of Maine Climate Reanalyzer:
- 625 <u>https://climatereanalyzer.org/clim/sst_daily/</u>
- 626 Figures 21-23. Authors' calculations based on main text Notes 114, 115 references.
- 627 Figure 24. Authors' calculations using the GISS climate model.
- Figures 25 and S2. Authors' calculations based on *Pipeline* paper +
 https://gml.noaa.gov/ccgg/trends/data.html and https://gml.noaa.gov/aftp/data/hats/Total Cl Br/
- 630 Figure S3. Authors' calculations + main text notes 16 and 17 references.
- 631 Figure S4a. Copy of Figure 2a in main text Note 50 reference.
- 632 Figure S4b. Copy of Figure 3 in main text Note 26 reference.
- 633 Figure S5. Authors' calculations based on main text Note 43 reference.
- 634 Figure S8. Authors' calculations based on CEDS v_2024_07_08 Release Emission Data:
- 635 <u>https://zenodo.org/records/12803197</u>

² J. Hansen, M. Sato, P. Hearty et al., "<u>Ice melt, sea level rise and superstorms: evidence from paleoclimate data,</u> <u>climate modeling, and modern observations that 2C global warming is highly dangerous</u>," *Atmos Chem Phys* 16 (2016): 3761-812; see discussion of the paper's title change below, under "Scientific Reticence."

³ J.E. Hansen et al., "<u>Global warming in the pipeline</u>," Oxford Open Clim. Chan. 3 (1) (2023): doi.org/10.1093/oxfclm/kgad008

¹ J.E. Hansen, P. Kharecha, M. Sato et al., "Global warming has accelerated: are the United Nations and the public well-informed?" *Environment* 66:1 (2025) <u>This should include a link to the PDF; also in first sentence on page 1</u>

⁴ T.M. Lenton, H. Held, E. Kriegler et al., "<u>Tipping elements in the Earth's climate system</u>," *Proc. Natl. Acad. Sci. USA* 105 (2008): 1786-93

⁵ P. Ditlevsen, S. Ditlevsen, "<u>Warning of a forthcoming collapse of the Atlantic meridional overturning circulation</u>," *Nature Comm.* 14 (2023) https://doi.org/10.1038/s41467-023-39810-w

⁶ A.L. Gordon, "Interocean exchange of thermocline water," J. Geophys. Res. 91(C4) (1986): 5037-46

⁷ W.S. Broecker, "The biggest chill," *Natural History* (October 1987): 74-82; W.S. Broecker, "<u>The great ocean</u> conveyor," *Oceanography* 4, 79-89, 1991

⁸ S. Rahmstorf, "<u>Is the Atlantic overturning circulation approaching a tipping point?</u>" *Oceanography* 37 (2024) https://doi.org/10.5670/oceanog.2024.501

⁹ The atmospheric circulation is also a major cause of European warmth: R. Seager, "The source of Europe's mild climate," Amer.Sci. 94 (2006): 334-41

¹⁰ P. Bakker, A. Schmittner, J.T.M. Lenaerts et al., "Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting," Geophys Res Lett 43 (2016):12252-60

¹¹ P. Blanchon, A. Eisenhauer, J. Fietzke et al., "Rapid sea-level rise and reef back-stepping at the close of the last interglacial highstand," Nature 458 (2009): 881-4

¹² J.E. Hansen, M. Sato, L. Simons et al., "Global warming in the pipeline," Oxford Open Clim. Chan. 3 (1) (2023): doi.org/10.1093/oxfclm/kgad008

¹³ D.N. Wiese, D.-N. Yuan, C. Boening et al., "JPL GRACE and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height RL06M CRI Filtered Version 2.0," (2019): PO.DAAC, CA, USA. Dataset accessed [2021-03-17] at http://dx.doi.org/10.5067/TEMSC-3MJ62

¹⁴ I. Velicogna, Y. Mohajerani, A. Geruo et al., "Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions," Geophys. Res. Lett. 47 (2014): e2020GL087291

¹⁵ I. Velicogna, T. Sutterley, A. Liang, "Recent slowdown in ice mass loss of the Greenland and Antarctic Ice Sheets" Submitted to Geophys. Res. Lett., 2024

¹⁶ In the preindustrial state, the sizes of the ice sheets are assumed to be stable, with snowfall on the ice sheets balanced by discharge to the ocean, mainly in the form of icebergs. Thus, in the GISS climate model, snowfall on the ice sheet in the preindustrial control run is used to define the rate of discharge of freshwater to the ocean. The freshwater is distributed in the region of iceberg transport in the climate simulations for the modern era, and additional freshwater is added based on measured or estimated reduction of ice mass in the real world.

¹⁷ The blue data are from the mass balance calculations of E.Rignot, I. Velicogna, M.R. van den Broeke et al., "Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise," Geophys. Res. Lett. 38 (2011): L05503, while the black and red data are based on analyses of GRACE gravity data (reference 5). The green line in part (a) is for the best fit doubling time, which is 20 years.

¹⁸ J. Bamber, M. van den Broeke, J. Ettema et al., "Recent large increases in freshwater fluxes from Greenland into the North Atlantic," Geophys. Res. Lett. 39 (2012): L19501, doi:10.1029/2012GL052552

¹⁹ Note that the first nine years of GRACE data (ending with 2020) yield a decrease of the Greenland ice sheet mass of ~250 Gt/yr. There are uncertainties in the GRACE data and in the surface mass balance calculations of Bamber et al., but we assume that the 80 Gt/yr smaller value of the GRACE mass change is due, at least in part, to the increased snowfall in a warmer world. Given that the accumulation of net surface mass balance on Greenland in an average year today is about 600 Gt during the 9-month (Sept-May) period of increasing mass, an 80 Gt change of annual snowfall mass from preindustrial to today is plausible, if not an underestimate.

²⁰ G.J. Wolken, B. Wouters, M. Sharp et al., "Glaciers and Ice Caps Outside Greenland," NOAA in the Arctic, Arctic Report Card, doi:10.25923/hwqq-8736

²¹ E. Rignot, E., S. Jacobs, J. Mouginot et al., "Ice-shelf melting around Antarctica," Science 341 (2013): 266-270, doi:10.1126/science.1235798

²² M.A. Depoorter, J.L. Bamber, J.A. Griggs et al., "Calving fluxes and basal melt rates of Antarctic ice shelves," Nature 502 (2013): 89-92

²³ C.D. Rye, A.C. Naveira Garabato, P.R. Holland et al., "Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge," Nature Geosci. 7 (2014): 732-5

²⁴ S.G. Purkey, G.C. Johnson, "Global contraction of Antarctic Bottom Water between the 1980s and 2000s," J. Clim. 25 (2012): 5830-44

²⁵ C.A. Greene, A.S. Gardner, M. Wood, J.K. Cuzzone, "Ubiquitous acceleration in Greenland ice sheet calving from 1985 to 2022," Nature 625 (2024): 523-8

²⁶ Sources for sea ice data (Fig. SM13)

²⁷ H. Sumata, L. de Steur, D.V. Divine et al., "Regime shift in Arctic Ocean sea ice thickness," *Nature* 615 (2023): 443-9

²⁸ Polar Science Center https://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/

²⁹ C. Clotten, R. Stein, K. Fahl et al., "On the causes of Arctic sea ice in the warm Early Pliocene," Nature Sci. Rept. 9 (2019): https://doi.org/10.1038/s41598-018-37047-y

³⁰ M. Hofmann, S. Rahmstorf, "On the stability of the Atlantic meridional overturning circulation," Proc. Natl. Acad. Sci. USA 106 (2009): 20584-9

³¹ J. Hansen, "Climate Threat to the Planet," American Geophysical Union, San Francisco, California, 17 December 2008, http://www.columbia.edu/~jeh1/2008/AGUBjerknes20081217.pdf. (3 December 2022, date last accessed)

³² M.J. Prather, "Numerical advection by conservation of second order moments," J. Geophys. Res. 91(1986): 6671-81 ³³ C. Heuze, K.J. Heywood, D.P. Stevens et al., "Southern Ocean bottom water characteristics in CMIP5 models,"

Geophys. Res. Lett. 40 (2013): 1409-14, doi:10.1002/grl.50287; "Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios," J. Clim. 28 (2015): 2917-44 22

³⁴ J.E. Hansen, "<u>A slippery slope: how much global warming constitutes</u> 'dangerous anthropogenic interference?"" *Clim Change* 68 (2005): 269-79

³⁵ A. Jahn, M. Holland, J. Kay, "<u>Projections of an ice-free Arctic Ocean</u>," *Nat. Rev. Earth Environ.* 5 (2024): 164–76 ^{36 36} I.V. Polyakov, M.B. Alkire, B.A. Bluhm et al., "<u>Borealization of the Arctic Ocean in response to anomalous</u>

advection from sub-Arctic seas," Frontiers Mar. Sci. 7 (2020): article 491; I.V. Polyakov, A.V. Pnyushkov, M.B. Alkire et al., "<u>Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean</u>," Science 356 (2017): 285–91

³⁷ Q. Shu, Q. Wang, M. Arthum et al., "<u>Arctic Ocean amplification in a warming climate in CMIP6 models</u>," *Sci. Adv.* 8 (2022): eabn9755

³⁸ L.Cheng, Y. Pan, Z. Tan et al., "<u>IAPv4 ocean temperature and ocean heat content gridded dataset</u>," Earth Syst. Sci. Data 16 (2024): 3517–3546; L.Cheng, Y. Pan, J. Abraham et al., "Record high temperatures in the ocean in 2024," draft paper (2025) available from L. Cheng, cf. Fig. 5

³⁹ A. Munchow, L. Padman, P. Washam, K.W. Nicholls, "<u>The ice shelf of Petermann Gletscher, North Greenland, and</u> <u>its connection to the Arctic and Atlantic Oceans</u>," *Oceanography* 29(4) (2016): 84-95

⁴⁰ E. Ciraci, E. Rignot, B. Scheuchi et al., "<u>Melt rates in the kilometer-size grounding zone of Petermann Glacier</u>, <u>Greenland, before and during retreat</u>," *Proc. Natl. Acad. Sci.* 120 (2023): e2220924120

⁴¹ S.A. Khan, Y. Choi, M. Morlighem et al., "<u>Extensive inland thinning and speed-up of Northeast Greenland ice</u> stream," *Nature* (2022) doi:10.1038/s41586-022-05301

⁴² R. Millan, E. Jager, J. Mouginot et al., "<u>Rapid disintegration and weakening of ice shelves in North Greenland</u>," Nature Comm. 14 (2023): doi.org/10.1038/s41467-023-42198-2

⁴³ A. Narkevic, B. Csatho, A. Schenk, "<u>Rapid basal channel growth beneath Greenland's longest floating ice shelf</u>," Geophys. Res. Lett. 50 (2023): e2023GL103226. https://doi.org/10.1029/2023GL103226

⁴⁴ O. Zeising, N. Neckel, N. Dorr et al., "<u>Extreme melting at Greenland's largest floating ice tongue</u>," *The Cryosphere* 18 (2024): 1333-57

⁴⁵ K. Emanuel, "The hurricane-climate connection," Bull. Amer. Meteorol. Soc. May (2008): ES10-20

⁴⁶ K.A. Emanuel, "The power of a hurricane: an example of reckless driving on the information superhighway," *Weather* 54 (1998): 107-8

⁴⁷ R.L. Southern, "The global socio-economic impact of tropical cyclones," *Aust. Meteorol. Mag.* 27 (1979): 175-95

⁴⁸ Assuming unchanged infrastructure. If building codes are strengthened, wind damage can be reduced.
 ⁴⁹ G. Li, L. Cheng, J. Zhu et al., "<u>Increasing ocean stratification over the past half-century</u>," *Nature Clim. Chan.* 10 (2020): 1116-23

⁵⁰ K. Yang, A. Mayer, P.G. Strutton, A.M. Fischer, "<u>Global trends of fronts and chlorophyll in a warming ocean</u>," *Comm. Earth Environ.* 4 (2023): https://doi.org/10.1038/s43247-023-01160-2

⁵¹ J.K. Moore, W. Fu. F. Primeau et al., "<u>Sustained climate warming drives declining marine biological productivity</u>," *Science* 359 (2018): 1139-43

⁵² J.B. Sallee, V. Pellichero, C. Akhoudas et al., "<u>Summertime increases in upper-ocean stratification and mixed-layer</u> <u>depth</u>," *Nature* 591 (2021): 592-8

⁵³ I.R. Young and A. Ribal, "<u>Multiplatform evaluation of global trends in wind speed and wave height</u>," *Science* 364 (2019): 548-52

⁵⁴ L.C. Jackson, R. Kahana, T. Graham et al., "<u>Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM</u>," *Clim. Dyn.* 45 (2015): 3299-316

⁵⁵ D.J. Brayshaw, T. Woollings, M. Vellinga, "<u>Tropical and extratropical responses of the North Atlantic atmospheric circulation to a sustained weakening of the MOC</u>," *J. Clim.* 22 (2009): 3146-55

⁵⁶ J. Hansen, <u>Storms of My Grandchildren</u>. ISBN 978-1-60819-502-2. (New York: Bloomsbury, 2009)
 ⁵⁶ <u>http://www.columbia.edu/~jeh1/Data/GHGs/</u>

⁵⁷ L. Caesar, G.D. McCarthy, D.J.R. Thornalley et al., "<u>Current Atlantic meridional overturning circulation weakest in</u> <u>last millennium</u>," *Nature Geosci* 14 (2021): 118-20

⁵⁸ J. Hansen, D. Rind, A. Del Genio et al."<u>Regional greenhouse climate effects</u>," in *Preparing for Climate Change*, Climate Institute, Washington, D.C., 1989

⁵⁹ G. Tselioudis et al., "<u>Oceanic cloud trends during the satellite era and their radiative signatures</u>," *Clim. Dyn.* 62 (2024): 9319-32

⁶⁰ J. Hansen, "<u>Silent Forests</u>," Columbia University, 11 June 2021 communication (last accessed 12 January 2025)
 ⁶¹ S.E. Bauer, K. Tsigaridis, G. Faluvegi et al., "<u>Historical (1850-2014) aerosol evolution and role on climate forcing</u> using the GISS ModelE2.1 contribution to CMIP6." J. Adv. Model Earth Syst. 12(8) (2020): e2019MS001978