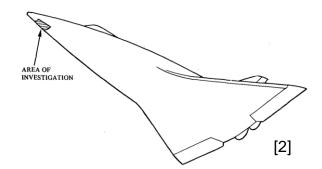


Elevated Temperature Mechanical Performance of Historical Niobium Alloys

Eric Brizes ^a
Justin Milner ^a

^a NASA Glenn Research Center, Cleveland, OH

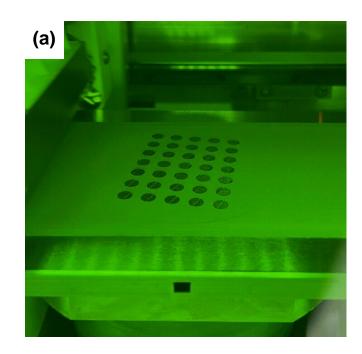
TMS 2025. Las Vegas, NV. March 24

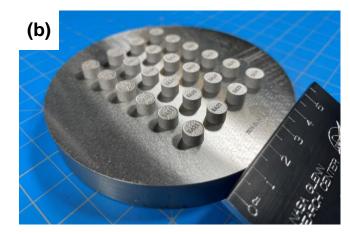

Introduction

Niobium's unique combination of high melting point, low density, and excellent strength make it a
prime candidate for re-entry vehicles and other high-temperature applications. The development of
niobium (Nb) alloys was closely tied to the aerospace and defense advancements of the mid-20th
century.

Historical Context

- In the 1960s, *Boeing* and *Wah Chang Corp*. initiated a cooperative effort to explore Nb-based alloys for re-entry shielding leading to the development of C103 (*Nb-10Hf-1Ti*, *wt%*). [1]
- The early 1970s saw intense Nb alloy research driven by the space race and missile defense needs. During this time, FS85 (Nb-28Ta-10W-1Zr) was developed by Fansteel. [1]
- Meanwhile, Cb752 (*Nb-10W-2.5Zr*) was explored for elevated temperature structural aerospace components, yet no significant applications materialized. [1]
- Later, in the mid-to-late 1970s, *Wah Chang* introduced **WC3009** (*Nb-30Hf-9W-1Zr*) as an oxidation-resistant alloy, though it ultimately failed to gain widespread adoption. [1]





Motivation

- Refractory alloys, particularly Nb-based alloys, are experiencing a resurgence due to advancements in powder-based additive manufacturing.
- Researchers at NASA Glenn Research Center and Marshall Space Flight Center are actively evaluating a wide range of historical Nb alloys to identify candidates for modern aerospace applications.
- This study focuses on the performance of C103, FS85, Cb752 and WC3009, assessing their mechanical properties at elevated temperatures when fabricated using Laser Powder Bed Fusion (L-PBF) additive manufacturing.
- The goal is to determine whether any of these legacy alloys retain potential for future aerospace use, especially in high-temperature environments requiring exceptional strength and creep resistance. Additionally, this property screening serves as a foundation for the development of next-generation Nb alloys.

Nb alloy (a) L-PBF processing and (b) completed parameter development build

Outline

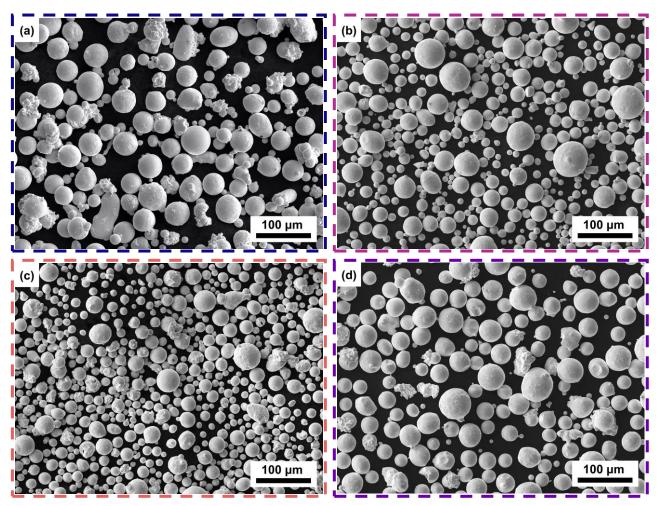
1. Materials and Processing

- L-PBF Consolidation
- Chemical Analysis

2. Mechanical Testing

- Testing Equipment
- Elevated Temperature Tension
- Elevated Temperature Constant Load (Pseudo-Creep)

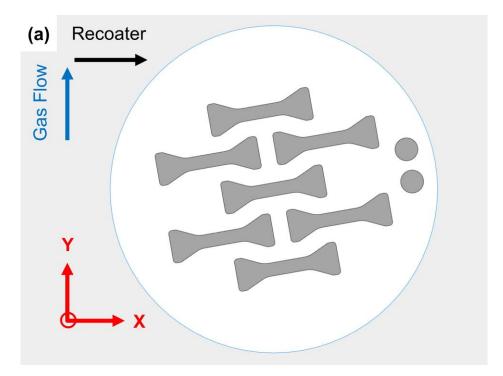
3. Comparative Evaluation


Microstructural Thermal Stability

4. Conclusions

Powder Materials

- C103 (Nb-10Hf-1Ti)
 - $D_{10} = 16.3 \mu m$
 - $D_{90} = 51.5 \mu m$
- Cb752 (Nb-10W-2.5Zr)
 - $D_{10} = 13.2 \, \mu m$
 - $D_{90} = 66.2 \, \mu \text{m}$
- FS85 (Nb-28Ta-10W-1Zr)
 - $D_{10} = 16.4 \mu m$
 - $D_{90} = 46.8 \mu m$
- WC3009 (Nb-30Hf-9W-1Zr)
 - $D_{10} = 30.7 \, \mu \text{m}$
 - $D_{90} = 70.7 \, \mu \text{m}$



Secondary electron SEM micrographs of the (a) C103, (b) Cb752, (c) FS85, and (d) WC3009 Nb alloy spherical powders

Laser Powder Bed Fusion

 EOS M100, Nb build plate, Argon atmosphere (<10 ppm O₂), 31.5 x 10 x 1.5 mm bowties

(a) Schematic L-PBF build layout and (b) image of the completed C103 build

L-PBF volumetric energy density (VED) and material density measurements

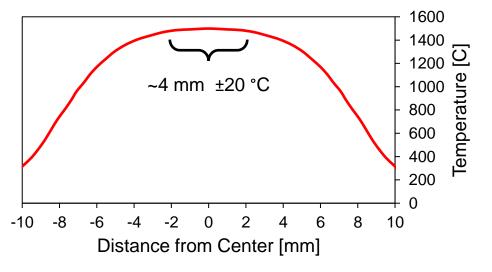
Material	C103	Cb752	FS85	WC- 3009
VED [J/mm³]	115	140	120	120
Arch. Density [g/cc]	8.80	9.00	10.60	10.30
Optical Density [%]	99.92	99.89	99.96	99.89

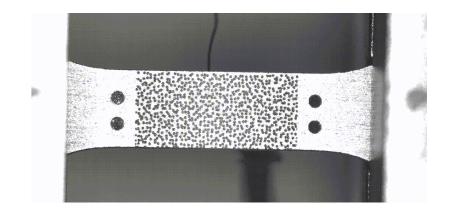
Chemical Composition

Determined via SEM-EDS and LECO Combustion analysis

Material	Nb [wt%]	W [wt%]	Hf [wt%]	Ta [wt%]	Ti [wt%]	Zr [wt%]	O [ppm]	N [ppm]	C [ppm]
L-PBF C103 (Nb-10Hf-1Ti)	Bal.	0.27	9.85	0.36	0.92	-	425 🕇	58	19
L-PBF Cb752 (<i>Nb-10W-2.5Zr</i>)	Bal.	9.93	-	-	-	2.82 🕇	376 🕇	102	15
L-PBF FS85 (Nb-28Ta-10W-1Zr)	Bal.	10.05	-	27.71	-	0.16 🖡	524 🛊	115	7
L-PBF WC3009 (Nb-30Hf-9W-1Zr)	Bal.	9.39	29.53	-	-	0.45 🌓	242	58	32

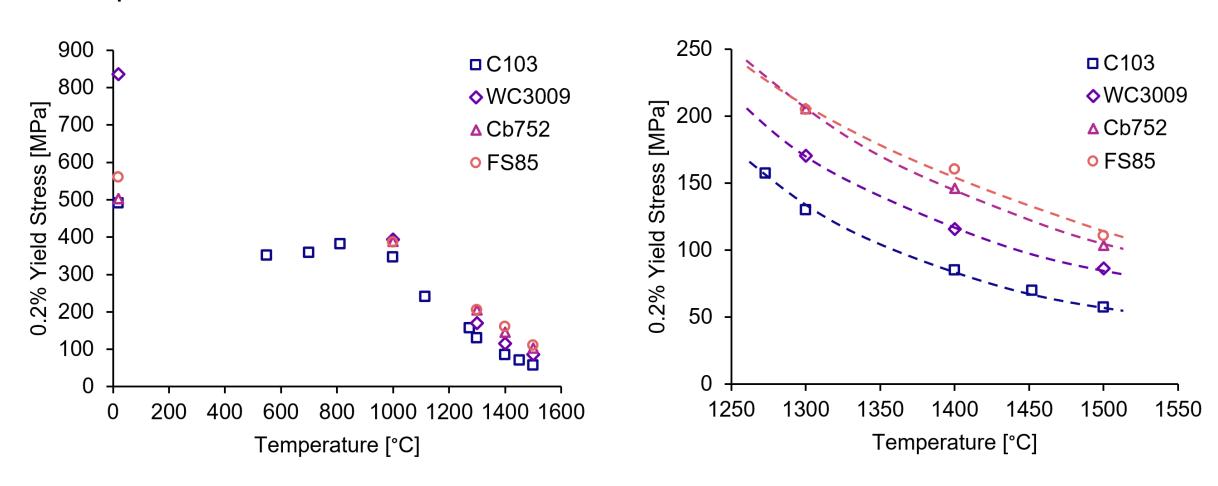
A dash symbolizes a result of "not measured/detected"


Elevated Temperature Mechanical Testing Equipment



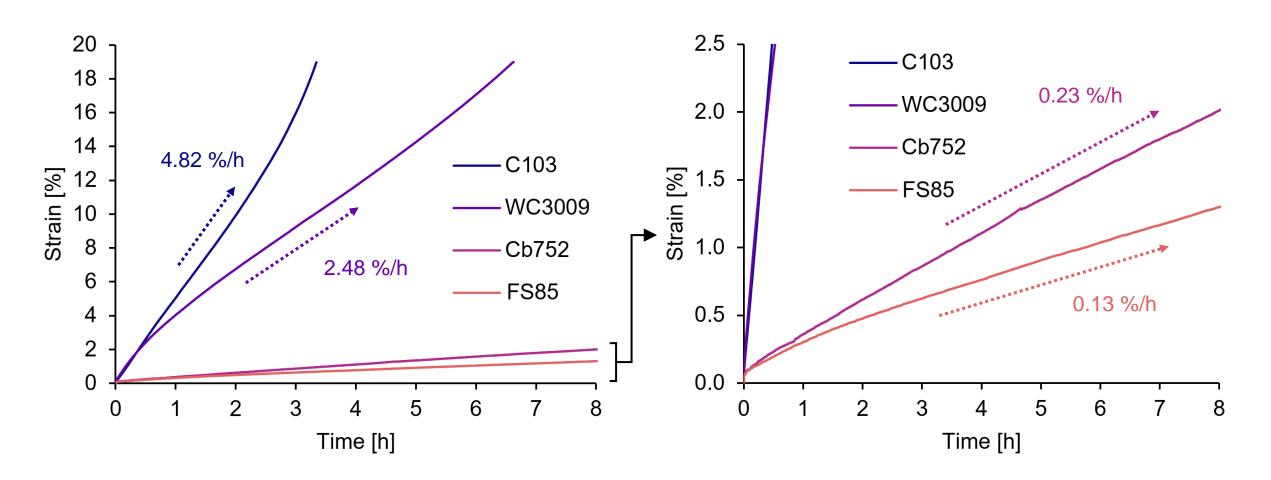
- Instron Electro-Thermal Mechanical Testing (ETMT)
- Direct resistance heating (non-uniform thermal gradient)
- High-vacuum: < 10⁻⁵ Pa (< 10⁻⁷ Torr)
- Supports uniaxial tension & constant load (pseudo-creep)

1500 °C Test Thermal Profile



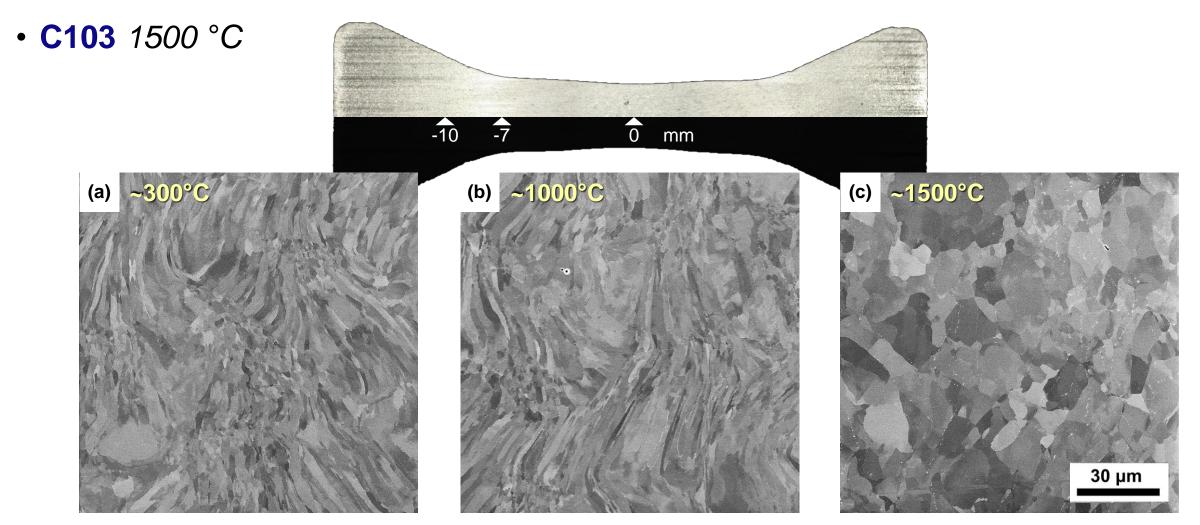
Elevated Temperature Uniaxial Tensile Testing

• At temperatures > 1300 ° C: FS85 ≈ Cb752 > WC3009 > C103



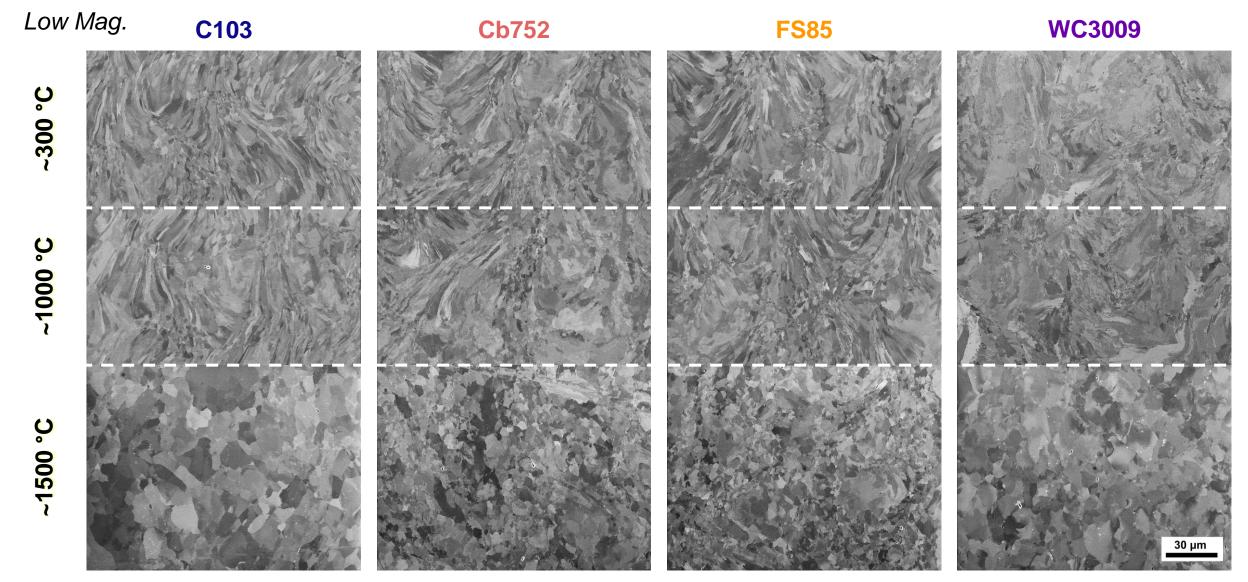
Note: 25 °C data for WC3009, Cb752, and FS85 were stress relieved at 1200 °C for 1 hour. All other data generated from samples stress relieved at 900 °C for 1 hour.

Elevated Temperature Constant Load (Pseudo-creep)

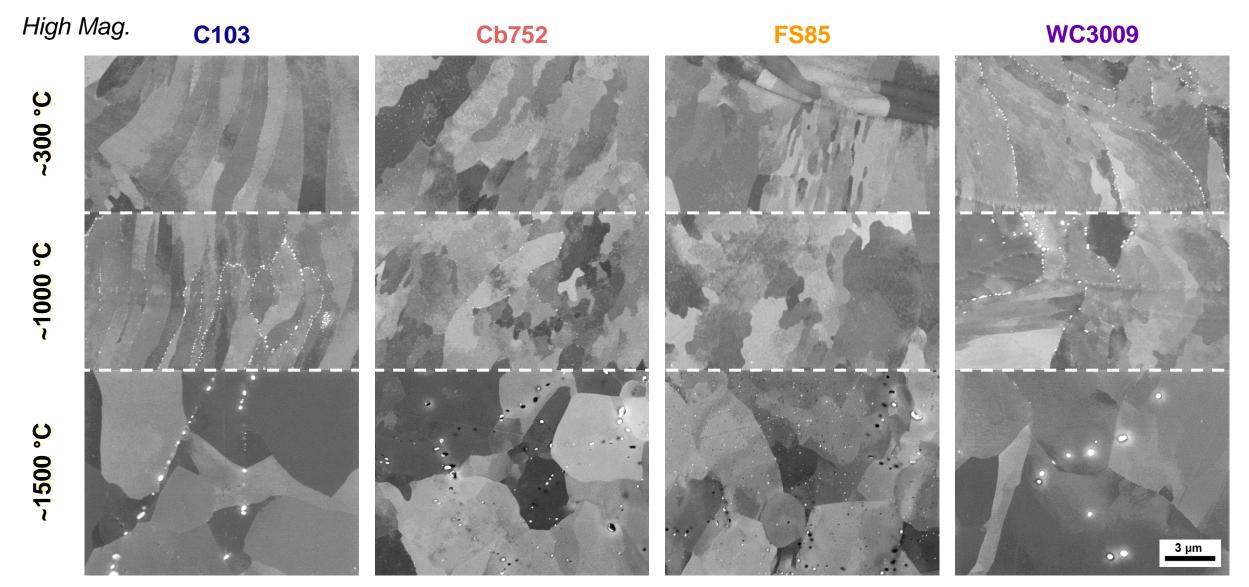


At 1300 °C and a constant load of 50 MPa: FS85 > Cb752 > WC3009 > C103

Microstructural Characterization: *L-PBF* > *SR* > *Tension*



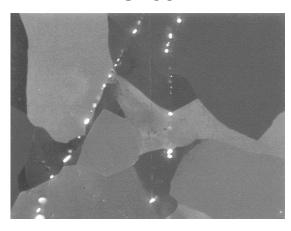
Low magnification secondary electron micrographs of the 1500 °C elevated temperature L-PBF C103 at (a) -10, (b) -7, and (c) 0 mm from central axis

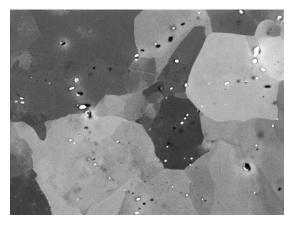

Microstructural Characterization: L-PBF > SR > Tested

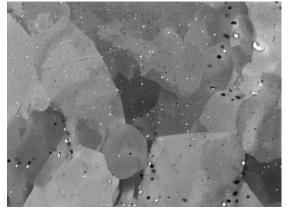
Microstructural Characterization: *L-PBF* > *SR* > *Tested*

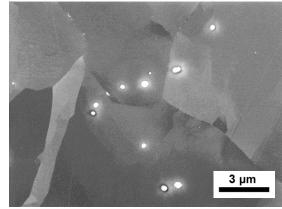
Microstructural Characterization: L-PBF > SR > Tested

High Mag.


C103


Cb752


FS85


WC3009

~1500 °C

- Larger Grains
- Coarse HfO₂ not along GBs
- 5.34 at% Hf 0.24 at% O ~0.12 mol% HfO₂ 5.22 at% excess Hf

- Smaller Grains
- Coarse ZrO₂
 occasionally along
 GBs
- 3.01 at% **Zr** 0.24 at% O ~0.12 mol% ZrO₂ 2.89 at% excess Zr

- Smaller Grains
- Coarse ZrO₂ along GBs, fine ZrO₂ intragranular
- 0.20 at% **Zr**0.35 at% O
 ~0.17 mol% ZrO₂
 0.03 at% excess Zr

*Near 1:2 Zr:O ratio (ideal stoichiometry)

- Larger Grains
- Coarse HfO₂ not along GBs

18.91 at% Hf
0.14 at% O
~0.07 mol% HfO₂
18.84 at% excess Hf

Conclusions

- The L-PBF process successfully consolidated all examined historical niobium alloys with all relative densities ≥ 99.89% (determined by optical microscopy and image analysis).
- 2. Elevated temperature uniaxial tensile testing determined the ranking of each L-PBF consolidated historical niobium alloy in terms of yield and ultimate tensile strength at temperatures greater than 1300 °C: FS85 ≈ Cb752 > WC3009 > C103.
- 3. 1300 °C pseudo-creep testing performed at a constant load of 50 MPa determined the ranking of each L-PBF consolidated historical niobium alloy in terms of steady-state creep rate: FS85 > Cb752 > WC3009 > C103.
- 4. Examination of the 1500 °C tensile specimen microstructure of each historical niobium alloy showed:
 - The high Hf-containing alloys (C103 and WC3009) exhibited significant HfO₂ precipitate coarsening, and the precipitates were ineffective at pinning grain boundaries.
 - The Zr-containing alloys (Cb752 and FS85) exhibited ZrO₂ precipitate coarsening; however, the precipitates formed a finer dispersion (particularly when the Zr:O atomic ratio was near stoichiometric (1:2).

References

- 1. J. Hebda, "Niobium Alloys and High Temperature Applications," Wah Chang An Allegheny Technologies Company, Albany, 2001.
- 2. W.E. Black et al., "Evaluation of Coated Columbium Alloy Heat Shields for Space Shuttle Thermal Protection System Application," *NASA CR-112119*, 1972.

