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Preface
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A good understanding of the improved analysis processes and reporting procedures
for strain–gage balance data is important in order to gain confidence in specific analysis
results and to improve communication between balance designers, calibration laboratory
staff, test engineers, and wind tunnel customers. Detailed descriptions of these processes
and procedures were originally scattered across more than forty conference papers that
were published between 2005 and 2021. Therefore, it became necessary to summarize the
most important descriptions and conclusions in a single document so that the information
can more easily be reviewed, understood, and referenced.

The contractor report is intended to provide an overview of a variety of methods and
algorithms that the author successfully applied during both evaluation and analysis of
wind tunnel strain–gage balance data. Therefore, the report’s contents will always remain
incomplete as many analysts use analysis approaches that are either tailored to site–specific
needs or that are the result of their own experiences and research. Nevertheless, the
author hopes that the contractor report will help document some of his observations and
conclusions in a format that will make them accessible to a wider audience.
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December 2021
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Abstract

Experimental processes, analytical methods, and numerical algorithms are described
that may be used to predict the forces and moments of an internal strain–gage balance
during a wind tunnel test. First, the control volume model of a strain–gage balance and
the concepts of load state, load space, and output space are introduced. These important
abstractions provide a better understanding of fundamental characteristics of different bal-
ance load prediction approaches. Then, the description of strain–gage balance data and
the definition of the primary bridge sensitivity are discussed. Afterwards, basic elements
of the calibration of a typical six–component balance are reviewed. Two fundamentally
different balance load prediction methods, the processing of check loads, and related topics
are also discussed. Three real–world balance data examples are reviewed in great detail
to illustrate typical analysis results for a variety of strain–gage balance designs. Finally,
important observations are summarized and recommendations are provided. – Additional
information and detailed mathematical derivations can be found in the appendices of the
document. They include the following topics: balance terminology, definitions of impor-
tant statistical metrics, balance axis system conventions, balance load transformations, the
combined load diagram, electrical output format options, bi–directional output characteris-
tics, determination of the natural zeros, derivation of two balance load prediction methods,
description of two tare load iteration algorithms, modeling of balance temperature effects,
basics of three–component moment balances, definition of the percent contribution, detec-
tion of linear and near–linear dependencies in balance calibration data, a regression model
search algorithm, balance interactions, and other related information.
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TM torsion moment at the balance moment center

TOL tolerance used for the balance load iteration process

U auxiliary matrix

V auxiliary vector

V metric used for the tare load iteration convergence test

V IF Variance Inflation Factor

V IFmax maximum of Variance Inflation Factor set

W matrix with weighting factors of data points

W physical weight of the metric part of a balance

W matrix with square root of weighting factors of data points

wϕ weighting factor of a data point

X auxiliary vector

X1, X2, . . . generic variables; independent variables of a regression model

Xi vector component; independent variable of a regression model
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Xj generalized force or moment that defines the Lipschitz Constant

X?
i transformed independent variable value

x vector with regression coefficients

x coordinate of the balance axis system; coordinate of an applied force

x1, x2 coordinates used to defined the bi–directional part of an output

Y dependent variable of a regression model

y vector with regression coefficients

y coordinate of the balance axis system

YM yawing moment

YM1 yawing moment at the forward yawing moment bridge

YM2 yawing moment at the aft yawing moment bridge

z regression coefficient matrix

z coordinate of the balance axis system

Zi output of the zero load point of a load series

Zk vector of zero load outputs of a load series

Zi,k zero load output of a bridge for a specific load series

Greek Letters

αj,k regression coefficient

βj,k regression coefficient

Γ capacity of a load, output, or temperature difference

Γi, Γj capacity of a variable with index i or index j

Γϕ capacity of a variable with index ϕ

γj,k regression coefficient

δ total number of supported regression model terms; deflection angle

δjk Kronecker delta

∆AF axial force residual; tare correction of the axial force

δAF axial force error resulting from a misaligned normal or side force

∆BM error of the bending moment

∆BM1 error of the bending moment at the first bending moment bridge

∆BM2 error of the bending moment at the second bending moment bridge
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∆D1 error of the output difference of the first bending moment bridge

∆D2 error of the output difference of the second bending moment bridge

∆F vector or matrix with tare loads of all calibration points

∆F force error

∆Fi load correction derived from bridge sensitivity shift

∆Fj step size of load component Fj

∆Fk vector with the tare loads of a load series

∆Fk tare load

∆F ′ rectangular matrix with tare loads of all load series

∆M moment error

∆Ni temperature–dependent shift of the natural zero

∆N1 tare correction of the forward normal force

∆N2 tare correction of the aft normal force

∆NF normal force residual; error of the predicted normal force

∆rF output difference vector ≡ delta bridge output vector

∆rF1 auxiliary output difference vector

∆rF2 auxiliary output difference vector

∆RM rolling moment residual; tare correction of the rolling moment

∆s moment arm error ≡ error of a distance/length measurement

∆S1 forward side force residual; tare correction of the forward side force

∆S2 tare correction of the aft side force

∆T difference between balance temperature and reference temperature

∆Z0 vector with electrical description of zero absolute load

∆Zk difference between vector Zk and vector N

∆Zi,0 zero output ≡ electrical description of zero absolute load

∆Zi,k difference between zero load output of load series and natural zero

δF vector with the load change; vector with the tare load change

δF ′ matrix with tare load changes

δFk tare load change of a load series

ε relative machine precision

η data point index; number of terms (excluding intercept)
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η0, η1, . . . regression coefficients

Θ output threshold; load iteration tolerance

ϑ term index; x–coordinate of the balance moment center

Λ bi–directional part of output; machine–precision–dependent threshold

λ maximum number of regression model terms (including intercept)

λ0, λ1, . . . regression coefficients

λj characteristic length scale of load with index j

λϕ auxiliary variable

µ load index; output index; load series index; tare load iteration step

µ0, µ1, . . . regression coefficients

µϕ multivariate regression model of a balance load component

ν data point index

ν0, ν1, . . . regression coefficients

ξ index; multiplier; threshold; small angle describing a misalignment

ξ0, ξ1, . . . regression coefficients

ξψ multivariate regression model of a bridge output difference

σψ total number of terms of a regression model term group

σ(ν) transformation between load series index k and point index ν

Υi capacity–dependent threshold ≡ Math Model Selection Threshold

Φ test metric for linear or near–linear dependency test

ϕ load component index; data point index

ϕ(j, k) term of a double summation

Ψ correlation matrix of regression model terms

ψ output index; term group index; upper bound; exponent

Ω bi–directional part of a bridge output at load capacity

Ω′ bi–directional part of a bridge output

ω index of a regression model term; index of a regression coefficient
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I. Introduction

In principle, an internal strain–gage balance is designed to measure the loads, i.e., the

forces and moments that act on a test article during a wind tunnel test. The loads are

predicted by combining the electrical outputs of the balance bridges with a mathematical

relationship that defines the connection between the loads and outputs of the balance. This

mathematical relationship can be a multivariate regression model that is obtained after

applying global regression† to calibration data of the balance. Ultimately, the predicted

balance loads need to be described in the body axis system of the model so that they can

easily be interpreted by aerodynamicists and other wind tunnel users (see, e.g., Ref. [1],

pp. 12–15, or App. 3 for a discussion of the coordinate systems of a wind tunnel model).

Figure 1 below shows, for example, a six–component force balance that is used for wind

tunnel tests at the NASA Ames Unitary Plan Wind Tunnel.

Fig. 1 The NASA 2.5 inch diameter MK34A force balance.

A variety of publications exist that describe different aspects of design, calibration,

and use of internal strain–gage balances (see, e.g., Refs. [2] to [7]). The author developed

a novel description of a strain–gage balance during the past few years that can be used

to explain certain fundamental aspects of the balance load prediction process (for more

details see Refs. [8] & [9]). His description uses the concepts of load state, load space, and

output space in order to address questions related to (i) the selection of variables that best

describe the load state of a balance and (ii) the uniqueness of the balance load prediction

process. The description also applies some fundamental ideas from mechanics in order

to better define the balance load measurement problem. A primary wind tunnel balance

typically measures six load components as any solid object in three–dimensional space can

experience a maximum of three forces and three moments at its moment reference center.

Any combination of the six loads puts the balance into a unique load state that needs to

be predicted during a wind tunnel test by using the bridge output measurements.

Different descriptions of the load state of a balance can be envisioned. For example, it

is possible to describe the load state in an n–dimensional load space if the chosen balance

† The term global regression indicates that a single least squares fit is used to calculate the coefficients
of a multivariate regression model of balance calibration data.
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is an n–component balance. The variables defining the load space are, for example, the

normal force, side force, axial force, pitching moment, yawing moment, and rolling moment

if loads of a six–component single–piece balance are described in direct–read format (see

App. 4 for a description of different balance load format choices). Similarly, the variables

defining the load space are the forward & aft normal force, the forward & aft side force,

the axial force, and the rolling moment if the loads of a six–component force balance are

described in force balance format.

It is also possible to describe the load state of the balance in an n–dimensional output

space. In that case, the bridge output measurements of the balance replace the load

measurements. However, this electrical description of the load state is only unique if the

temperature of the balance remains constant. The temperature is a state variable as far

as the description of the physical behavior of the balance is concerned. Therefore, it

must be introduced as an additional variable in both the load space and the output space

descriptions if the temperature of the balance does not remain constant during use.

In theory, the description of the load state of a balance in the load space must be

equivalent to the description of the same load state in the output space. It is like describing

something in two different languages. Therefore, an analyst needs to find a mathematical

relationship between the two descriptions so that the balance loads on a wind tunnel

model can be predicted from the measured electrical outputs of the balance bridges. This

relationship is typically obtained after applying global regression analysis to a balance

calibration data set that describes different load states of the balance. Figure 2 below

A unique/reversible connection between the points of the two n-dimensional
spaces must exist in order to guarantee a reliable balance load prediction.

F rF

n-dimensional
“load space”

n-dimensional
“output space”

rF1 
rF2 

rFn 

F1 
F2 

Fn 

Fig. 2 Load & output space definitions for an n–component

balance assuming that the balance temperature is constant.

shows the connection between load space and output space for an n–component balance

assuming that the balance temperature is constant. The symbols F1, F2, . . . , Fn are
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the individual components of the load vector F of the balance. Similarly, the symbols

rF1, rF2, . . . , rFn represent the individual components of the bridge output vector rF of

the balance. It is important to point out that the balance must be designed such that a

unique, i.e., reversible connection between the points of the two spaces exists. A reliable

load prediction process can only be constructed from balance calibration data if the balance

satisfies this fundamental requirement.

An analyst can expect that the standard deviation of the differences between applied

and predicted calibration loads, i.e., the standard deviation of the load residuals of a six–

component balance should be on the order of 0.10 % of the capacity of a load component.

This empirical threshold for the evaluation of either the regression model of a load com-

ponent or the load prediction process is widely used in the aerospace testing community.

The threshold of 0.10 % for the standard deviation also means that approximately 98.8 %

of all load residuals should be within ±0.25 % of the capacity of the load component if the

residuals follow a normal distribution (percentages are taken from a table of two–tailed

Gaussian probabilities). Therefore, analysts often use the threshold of 0.25 % of capacity

for the assessment of the absolute value of the load residual of an individual calibration

data point. These two important thresholds are summarized for reference below.

Expected Load Prediction Accuracy

standard deviation of all
calibration load residuals

≤ 0.10 % of load capacity

absolute value of the load residual of
an individual calibration data point

≤ 0.25 % of load capacity

The accuracy expectations described in the previous paragraph can only be achieved if

the calibration experiment is properly designed and limitations of the chosen data analysis

method are understood. In addition, data formats of both the calibration loads and the

electrical outputs of the balance bridges are important choices that also influence the overall

accuracy of the regression model of the calibration data (load format choices are discussed

in App. 4; output format choices are discussed in App. 6 and Ref. [10]). Finally, it may be

necessary to apply tare corrections to the calibration loads so that all loads are described

relative to the common datum of zero absolute load (algorithms for the calculation of the

tare corrections can be found in App. 12, App. 13, Ref. [7], and Ref. [11]).

Characteristics of the load prediction equations also influence the accuracy of the

predicted loads. Two fundamentally different methods, i.e., the Non–Iterative Method and

the Iterative Method are used in the aerospace testing community for the development of

the load prediction equations. They are the result of a historical evolution that started

in the 1950s (see also App. 29). The Non–Iterative Method directly fits tare corrected
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calibration loads of the balance as a function of the bridge outputs and other variables

(see App. 9 and Ref. [12]). The Iterative Method, on the other hand, first fits the outputs

of each balance bridge as a function of the tare corrected calibration loads (see App. 10 and

Refs. [7], [12]). Afterwards, a load iteration equation is constructed from the regression

models of the bridge outputs so that loads can be predicted from outputs during a wind

tunnel test. Experience showed that both load prediction methods are equally accurate

as long as (i) the regression models of the data use similar combinations of regression

model terms and (ii) the chosen regression models do not have hidden linear or near–

linear dependencies. Typical regression model term choices for the description of balance

calibration data characteristics are given in Table 9–1 (App. 9) and Table 10–1 (App. 10).

In addition, the detection of unwanted linear or near–linear dependencies in regression

models of multivariate balance data is discussed in App. 17 and App. 18. Connections

between the load prediction equations of the Non–Iterative and Iterative Method exist.

They are illustrated in App. 27 with calibration data from a one–component load cell.

Some data analysis characteristics are specifically related to the Iterative Method.

They need to be considered when the regression analysis of balance calibration data is

performed. For example, the use of the temperature or the temperature difference in

connection with the Iterative Method may require the use of the temperature as both an

independent and dependent variable if the temperature is directly used in the regression

model of the balance calibration data (see Ref. [13]). Similarly, the existence of the primary

sensitivities of the balance bridges depends on the load format choice. Unfortunately,

undefined primary sensitivities can negatively influence the convergence behavior of one of

the two possible load iteration equations that the Iterative Method uses (see Ref. [14]).

It is recommended to assess the convergence of a load iteration equation within the

use envelope that a balance will experience during a wind tunnel test. An improved

convergence test was developed for this purpose. It is described in App. 11. The improved

test was derived in order to correct an analytical error that is contained in the original

version of the test (Ref. [63]). The error first surfaced during the application of the original

test to the iteration equation of a semi–span balance. This balance had load capacities

that differed by several orders of magnitude (for more details see Ref. [15], pp. 9–10).

Highly asymmetric calibration load schedule designs can also have a negative impact

on the numerical estimate of the primary sensitivity of a balance bridge if global regression is

used to analyze balance calibration data. Better estimates are often obtained if a weighted

least squares fit is applied to the calibration data (see Refs. [16], [17]).

Balance load prediction methods for five–component semi–span balances and three–

component auxiliary balances are very similar to methods used for six–component balances.

Nevertheless, some differences exist between these balance types that need to be understood

(see also App. 15 and Refs. [18] & [19]).

The author studied a wide variety of methods that apply global regression during the

analysis of strain–gage balance calibration data (see Refs. [20] to [32]). Some of these

4



investigations lead to the development of two regression model term search algorithms (see

Refs. [20] to [27]). These algorithms simplify the regression analysis task as individual

terms of a multivariate regression model of the balance data no longer have to be selected

by using an analyst’s subject matter knowledge. The regression model term selection

for balances with bi–directional bridge output characteristics was also investigated (see

Refs. [33] to [35]). Temperature effects during the balance load prediction and required

additional calibration experiments were also studied (see Refs. [36] to [39]). In addition,

problems resulting from the use of flow–through balances were also reviewed (see Ref. [40]).

Four important ideas were originally suggested and/or developed by R. Galway of

NRC Canada that greatly improved description and analysis of balance calibration data.

First, Galway recognized the many benefits of applying the matrix solution†of the least

squares problem to balance calibration data (Ref. [6], p. 13, Eq. (36)). He also understood

the advantage of the use of the absolute value function in regression models of data from

balances with bi–directional outputs and extended the idea to higher order terms (Ref. [6],

pp. 21–23; Ref. [79], p. 5). Furthermore, he recommended the use of the natural zero as the

global datum for the electrical output of a balance bridge (Ref. [6], p. 27; Galway uses the

synonym buoyant component offset in that context). Finally, Galway developed the tare

load iteration process. His algorithm was first published in 1999 (Ref. [80]). Afterwards,

AIAA’s Internal Balance Technology Working Group adopted the algorithm for use with

the Iterative Method (see 1st edition of Ref. [7]). Galway’s four ideas must be implemented

in a balance data analysis tool if an analyst wants to systematically apply global regression

to data from all known balance types and calibration load schedule designs.

The design of the calibration experiment has a significant influence on the load pre-

diction accuracy that can be achieved with a strain–gage balance. In theory, a calibration

data set should be collected that best describes the expected physical behavior of the bal-

ance. The calibration experiment is sometimes structured such that a specific regression

model of the data is supported. Important research was done in that area by Parker et

al. at NASA Langley Research Center (Refs. [41] to [46]). In addition, load schedules

for balance calibration machines and related topics were investigated at the NASA Ames

Balance Calibration Laboratory (Refs. [47] to [50]).

Either Guarino’s Method or sequential regression may be used instead of global regres-

sion for the determination of the coefficients of the regression models of the outputs that

the Iterative Method needs. Detailed discussions of these two alternate analysis techniques

can be found in the literature (see Refs. [51], [52]). Both techniques are variations of

Cook’s Method (see Ref. [5] or App. 28). Therefore, they can only be applied to balance

calibration data sets that satisfy very specific load schedule design requirements.

Other topics related to both calibration and use of strain–gage balances were also stud-

ied at the NASA Ames Balance Calibration Laboratory (Refs. [53] to [62]). For example,

† The matrix solution is an application of the Moore -Penrose pseudo inverse that British physicist
and Nobel Prize laureate R. Penrose first proposed in 1956 (Refs. [77], [78]).
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new thresholds for the evaluation of load and output residuals of balance calibration data

were developed that take built–in design limitations of the balance into account (Refs. [53],

[54]). An algorithm was also defined that uses global regression analysis for the prediction

of wind tunnel model weight corrections (Ref. [55]). In addition, a conservative pre–test

estimate of the precision error of the drag coefficient of a wind tunnel model was developed

that uses balance characteristics as input (Refs. [56], [57]). Finally, tools were prepared to

more easily compare the use envelope of a balance during a wind tunnel test with the load

schedule that was applied during its calibration (Ref. [58]).

The current document provides an overview of the most important algorithms and

processes that were either developed or refined during the past sixteen years at the NASA

Ames Balance Calibration Laboratory. Most of these algorithms and processes were im-

plemented and verified using NASA’s BALFIT software tool that may be used for the

regression analysis of multivariate balance data (see Refs. [74] to [76]).

It is always a challenge to describe complex processes within the body of the text

of a document without overwhelming the reader with technical details. Therefore, the

author decided to separate the presentation of technical details from the body of the

text. Consequently, the document is structured such that ideas and concepts are primarily

presented in the body of the text. These chapters are followed by detailed discussions

of calibration data analysis results that were obtained for three different balance designs.

Finally, balance terminology, statistical metrics, and more advanced technical details are

described in the appendices of the document. Each appendix is more or less written as a

stand–alone section so that the reader can more easily follow the descriptions. The contents

of about half of the appendices is presented using basic concepts from mathematics. The

contents of App. 9 to 14 and App. 17 to 25 requires a more advanced background in linear

algebra and multivariate regression analysis in order to be understood.

The body of the text consists of eleven chapters. The second chapter discusses funda-

mental concepts and assumptions that are needed for a better understanding of the balance

load prediction process. Afterwards, the balance data description itself is reviewed. This

chapter includes discussions of the absolute load datum, the balance axis system, balance

load format options, and the primary sensitivities of the balance bridges. The next chap-

ter describes elements of the manual calibration of a six–component balance. Then, the

use of the Non–Iterative Method and the Iterative Method during balance calibration data

analysis and load prediction is discussed. The next chapter describes miscellaneous topics

related to the use of strain–gage balances. First, the processing of balance check load

data is reviewed. Afterwards, a weight assessment of individual balance parts is presented,

balance temperature effects and the application of air balances are reviewed, and the use

of three–component moment balances is discussed. The subsequent three chapters dis-

cuss calibration data analysis results for three typical balance designs. Finally, the most

important observations, conclusions, and recommendations are summarized.
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II. Fundamental Concepts

Balance Component Parts

A strain–gage balance is used during a wind tunnel test to measure loads, i.e., forces

and moments, that act in the body axis system of a test article. The design of a strain–

gage balance itself is a compromise. It is influenced by (i) the chosen number of load

components, (ii) the expected load magnitudes on the model, (iii) load prediction accuracy

requirements, and (iv) fabrication & model installation constraints. The total number of

independently measured load components can vary from one to six. A set of six load

components is the theoretical maximum as the resultant force and moment vectors at the

balance moment center of a test article can only have a maximum of three independent

components each in three–dimensional space.

A six–component balance is typically used in wind tunnel testing to measure the six

primary load components on a model. Three basic design variations of this balance type

exist: direct–read balance, force balance, and moment balance (see, e.g., Ref. [7] or App. 4

for a description of different balance types). In theory, each balance type is designed such

that the internal strain caused by six independently applied load components, i.e., either

three forces and three moments, or, five forces and one moment, or, five moments and one

force, can be related to six independently measured bridge outputs. It must be possible to

uniquely map balance loads that are described as a point in a six–dimensional load space

to a set of measured bridge outputs that are described as a point in a six–dimensional

output space.

Figure 3 below shows a simplified description of an unloaded six–component single–

piece balance. Three basic parts of the balance can be identified: (i) metric part, (ii) non–

BALANCE AXIS SYSTEM
(FIXED TO METRIC PART)

WIRE
HARNESS

METRIC PART 

REFERENCE AXIS
OF METRIC PART

REFERENCE AXIS OF
NON-METRIC PART

TRANSITIONAL ZONE 

BALANCE AXIS SYSTEM
(FIXED TO METRIC PART) 

C
C

“MODEL” LOADS ACT
ON METRIC PART

“REACTION” LOADS ACT
ON NON-METRIC PART

REFERENCE AXIS OF
NON-METRIC PART

REFERENCE AXIS
OF METRIC PART

“NON-METRIC”       

NON-METRIC
PART

BALANCE
MOMENT
CENTER

BALANCE
MOMENT
CENTER

WIRE
HARNESS

Fig. 3 Simplified description of an unloaded six–component single–piece balance.

metric part, and (iii) transitional zone. The metric and non–metric parts are assumed

to be rigid. The metric part establishes the connection between the balance and either

the wind tunnel model or the calibration body. It defines the balance axis system as it

is the rigid part of the balance that interfaces with the model. The metric part should
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also be used as a reference for the description of the balance moment center. This choice

guarantees that the moment center’s location relative to the body axis system of the model

is fixed as the metric part is assumed to be rigid. The non–metric part, on the other hand,

attaches the balance to the model support system. It is the location where bridge wire

sets are assembled in a wire harness so that the electrical outputs of the bridges can be

sent to a data acquisition system. It is also indicated in Fig. 3 above that the reference

axes of the metric and non–metric parts coincide if the balance is unloaded.

The transitional zone is the physical interface between metric and non–metric part

where flexures, gages, and Wheatstone bridges are located. The transitional zone elastically

deforms under load. Figure 4 below shows the description of a loaded six–component
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Fig. 4 Simplified description of a loaded six–component single–piece balance.

single–piece balance. Model loads act on the metric part of the balance. Reaction loads,

on the other hand, act on the non–metric part. The reaction loads are equal in magnitude

but opposite in sign to the model loads. It can also be seen in Fig. 4 that the reference

axes of the metric and non–metric parts of the balance no longer coincide if the balance is

in a loaded state.

The simplified descriptions of a strain–gage balance shown in Fig. 3 and Fig. 4 above

are very general in nature. They can be applied to all balance types that use strain

gages to measure the elastic deformation of component parts of a loaded balance. Figure 5

below shows, for example, how the descriptions of Fig. 3 can be applied to a six–component

multi–piece balance that has a metric outer sleeve instead of a metric end and a non–metric

inner rod instead of a non–metric end. Two widely used multi–piece balance designs have

a metric outer sleeve. One design is called a Task/Able balance. It is manufactured by

Aerophysics Research Instruments, Corona, California. This balance design has the unique

characteristic that four of its six bridge outputs are bi–directional when plotted versus the

related primary bridge loads (see the discussion of this characteristic in App. 7).
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Fig. 5 Simplified description of an unloaded six–component multi–piece balance.

A HiCap balance is another balance design with a metric outer sleeve. It is manufac-

tured by Calspan Force Measurement Systems, San Diego, California. Its bridge outputs

do not have bi–directional characteristics. Figure 6 below shows the description of a

loaded six–component multi–piece balance. Again, as it was the case for a single–piece

METRIC PART
(OUTER SLEEVE) 

NON-METRIC PART
(INNER ROD)

BALANCE
MOMENT
CENTER

BALANCE AXIS SYSTEM
(FIXED TO METRIC PART)

WIRE
HARNESS

REFERENCE AXIS
OF METRIC PART

REFERENCE AXIS OF
NON-METRIC PART

TRANSITIONAL ZONE 

BALANCE AXIS SYSTEM
(FIXED TO METRIC PART)

“MODEL” LOADS ACT
ON METRIC PART

C
C

“REACTION” LOADS ACT
ON NON-METRIC PART

REFERENCE AXIS
OF METRIC PART REFERENCE AXIS OF

NON-METRIC PART

“NON-METRIC” 

WIRE
HARNESS

Fig. 6 Simplified description of a loaded six–component multi–piece balance.

balance, model loads act on the metric part and reaction loads act on the non–metric part.

The reaction loads are equal in magnitude but opposite in sign to the model loads.

A universally applicable control volume analysis of the inputs and outputs of a strain–

gage balance is introduced in the next section to better support the hypothesis that the

maximum number of applied load components and the number of independently measured

bridge outputs of a strain–gage balance must always match if the balance temperature
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is assumed to be constant. This hypothesis is the fundamental assumption that makes

it possible to use a unique set of electrical output measurements for the prediction of a

unique set of balance loads (see also Refs. [8], [9] for additional explanations).

Control Volume Analysis of a Strain–Gage Balance

The uniqueness of balance load predictions can be linked to the hypothesis that the

maximum number of independently applied load components of a balance must always

match the number of bridge outputs that are independently being measured. It is not

immediately obvious that this statement is valid for all balance types because, for example,

temperature effects or bellows pressures of an air balance also influence the electrical

outputs of a balance. A control volume analysis may be applied to a balance to better

illustrate the connection between the number of load components and bridge outputs.

By definition, a control volume is a physical space that has precisely defined bound-

aries. A strain–gage balance may be placed inside of a control volume. Figure 7 below

shows results of an analysis of the control volume of a balance. The chosen generic descrip-

tion of the balance is applicable to most balance types that are used for the measurement

of loads during a wind tunnel test. The analysis of the inputs and outputs of the control

UNIFORM BALANCE TEMPERATURE = “STATE” VARIABLE 
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Fig. 7 Results of a control volume analysis of a strain–gage balance.

volume makes it possible to systematically identify and separate all variables that either

influence or characterize the load state of a strain–gage balance. These variables represent

information that flows across the boundaries or exists inside of the control volume. Three

types of variables can be identified: (i) input variables, (ii) output variables, and (iii) state

variables. Information crosses the control volume boundaries if it is described by either

input or output variables. On the other hand, information represented by state variables

describes conditions inside of the control volume.
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It is helpful to discuss some results of the control volume analysis in more detail. The

input variables of the control volume are the loads, i.e., the forces and moments that act

on the metric support. The metric support is either the calibration body or the part of the

wind tunnel model that is rigidly attached to the metric part of the balance. The output

variables of the control volume are the electrical signals of the Wheatstone bridges that

are bundled together in a wire harness. The uniform balance temperature is an example

of a state variable that influences the bridge output measurements.

Now, let us assume that a specific load combination is applied to the balance while

keeping all state variables constant. Then, it is reasonable to expect that the information

leaving the control volume cannot be greater than the information entering the control

volume. The total amount of information entering the control volume is connected to the

number of independently applied load components that act on the balance. Similarly, the

total amount of information leaving the control volume is connected to the number of

independently measured bridge outputs that exit through the wire harness. Furthermore,

it is logical to assume that a unique and reversible load prediction can only be guaranteed

if the dimensions of the input and output variable sets of the control volume match. It

is concluded from these assumptions and observations that nothing can be gained if the

number of bridge output measurements exceeds the maximum number of applied load

components. The maximum number of applied load components simply limits the number

of independent bridge output measurements that a balance can have. This statement can

be expressed as a universal balance design requirement if linear combinations of bridge

outputs, i.e., sums and differences of bridge outputs are included in the description:

Balance Design Requirement

The maximum number of applied load components of a balance
must equal the total number of bridge outputs (or linear
combinations of bridge outputs) that are independently measured.

Conclusions drawn in the previous paragraph can easily be put into a practical context.

For example, let us assume that a balance measures four bridge outputs (rF1, rF2, rF3,

rF4). Let us also assume that only the normal force (NF ), the axial force (AF ), and the

pitching moment (PM) were independently applied during its calibration. Consequently,

the four bridge outputs can only be a function of the three applied load components. In

addition, according to the General Theorem on the Inversion of Transformations (for more

detail see Ref. [73], pp. 261–277), the three load components may be inverted implicitly to

give NF = F(rF1, rF2, rF3), AF = G(rF1, rF2, rF3), and PM = H(rF1, rF2, rF3). There-

fore, the fourth bridge output rF4 must be a function of rF1, rF2, and rF3 because (i) the

output rF4 can only be a function of the three load components that were independently

applied during the balance calibration and (ii) the applied load components themselves

can be expressed as functions of rF1, rF2, and rF3.
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Load State, Load Space, Output Space

The correct selection of the physical location of flexures and bridges on the balance

relative to the expected test article loads is critical as far as the existence of a unique

mapping between loads and bridge outputs is concerned. In this context, the term unique

mapping means that one point located in the load space of the balance only maps to one

point in the output space of the balance (and vice versa). It also means that two equivalent

unique descriptions of any load state of the balance must exist. One description is located

in the load space. A second alternate description is located in the output space. Then,

assuming it is possible to define a unique, i.e., reversible mathematical relationship between

points located in the load space and points located in the output space, measurements

recorded in the output space may be used for the prediction of the corresponding load set in

the load space. Figure 8 below shows the connection between the load space and the output

space for a six–component balance assuming that all state variables are constant. The

mathematical relationship between the two spaces, i.e., between the load set F1, F2, . . . , F6

Unique, i.e., reversible relationship between
points located in the two spaces must exist.

F rF

6-dimensional
“load space”

6-dimensional
“output space”

rF1
rF2

rF6

F1
F2

F6

Fig. 8 Load & output space definitions for a six–component balance.

and the output set rF1, rF2, . . . , rF6, is traditionally obtained from a balance calibration

data set. This data set is processed by using multivariate regression analysis in combination

with either the Non–Iterative Method or the Iterative Method (see App. 9 and App. 10

for more details). The final balance load prediction accuracy highly depends on (i) the

calibration load schedule design characteristics and (ii) the requirement that the chosen

multivariate regression models of the balance calibration data must not have any unwanted

linear or near–linear dependencies (see App. 17 and App. 18 for a detailed discussion of

the detection of linear and near–linear dependencies).
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So far, it was assumed that all state variables influencing the balance bridge outputs

are constant. The impact of varying state variables on the balance load prediction is

investigated in more detail in the next section.

State Variables

Strain–gage balance applications exist when varying state variables have a significant

impact on the bridge output measurements. These variables need to be included in the

development of a balance load prediction process. One example for the influence of a

state variable on the load prediction is the use of a semi–span balance in a pressurized

wind tunnel. In that case, assuming that the semi–span balance is not placed inside a

temperature–controlled enclosure, any change of the uniform balance temperature influ-

ences both the bridge outputs and the balance load prediction. Consequently, the balance

temperature change must be described and introduced as a state variable.

Similarly, an air balance is often used with a propulsion simulator that is attached to

a wind tunnel model. Then, high pressure air flows across the control volume boundary.

By design, the air supply line of an air balance bridges the metric and non–metric parts.

The load path from metric to non–metric part may change whenever supply line pressure

changes occur. Consequently, the bellows pressure change of the air balance may be used as

a state variable because (i) it describes internal pressure effects on both balance geometry

and bridge outputs and (ii) it can easily be measured. On the other hand, the mass flow

rate through an air balance is directly linked to additional external loads that act on a

wind tunnel model. These additional external loads, similar to the loads associated with

the model’s weight, are always a part of the resultant loads that act on the model during

a wind tunnel test. Therefore, the mass flow rate can be ignored during the calibration of

an air balance as long as it doesn’t cause internal elastic deformations of the balance.

State variables have another important characteristic: they are neither inputs nor

outputs of the control volume. Instead, they describe the physical state of the balance

while (i) loads are being applied on the metric support and (ii) bridge outputs are being

measured at the flexures. This conclusion can be summarized as follows:

State Variable Characteristics

State variables of the balance, e.g., temperature or pressure differences,
need to accompany the description of both input and output variable sets
because inputs (loads) were applied and outputs (bridge outputs)
were measured while the given state variables had specific values.

It is mentioned above that a state variable must accompany the description of both

input and output variable sets if its value does not remain constant during the use of the
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balance. Consequently, the state variable has to be introduced as an additional dimension

in both the load space and the output space of the balance. Figure 9 below shows the

connection between the expanded load and output spaces for a six–component balance

if a single state variable, e.g., the temperature difference ∆T , is included as the seventh

Expanded load & output space definitions using
the temperature difference as a seventh variable.

F rF

7-dimensional
“load space”

7-dimensional
“output space”

rF1
rF2

rF6
T 

F1
F2

F6
T 

Fig. 9 Expanded load & output space definitions for a six–component balance.

independent variable in the definitions of the two spaces. Both the load space and the

output space are extended to seven–dimensional spaces so that a unique temperature–

dependent load prediction becomes possible.

Uniqueness Test

It is possible to objectively test if the load component set of the load space and the

bridge output set of the output space have the same number of independent variables (see

also Refs. [8], [9]). The test assesses the linear independence of the load space and the

output space separately by computing the maximum Variance Inflation Factor (VIF) of

simple linear math models of the balance calibration data (see App. 18 for a discussion of

the Variance Inflation Factor).

First, the load component set of the balance calibration data is tested for linear

independence by computing the maximum VIF of a math model of the calibration data

that is constructed from the linear terms defined by each load component. Afterwards,

the bridge output set of the balance calibration data is tested for linear independence

by computing the maximum VIF of a math model that is constructed from the linear

terms defined by each bridge output. Now, the maximum VIF of each set is compared

with recommended thresholds from the literature in order to decide if the set is linearly

independent or dependent. The test considers a load or bridge output set to be linearly

independent if its VIF maximum is less than the conservative threshold of 5 (threshold is
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taken from Ref. [69], p. 658). Similarly, the test considers a load or bridge output set to be

linearly dependent if its VIF maximum exceeds the threshold of 50. The uniqueness test

uses the threshold values of 5 and 50 instead of the often recommended single threshold

value of 10. This choice was made because the use of 5 instead of 10 makes the test for

linear independence more reliable. Likewise, the use of 50 instead of 10 makes the test for

linear dependence more reliable.

Table 1 below lists four cases that are of special interest as far as the interpretation

of the uniqueness test results are concerned. Case 1 describes the situation when the

maximum VIF of both the load component and bridge output set is less than the literature

recommended threshold of 5. This result means that a highly unique mapping between

the load component set and the bridge output set can be constructed from the calibration

Table 1: List of four typical results of the uniqueness test.

Case Load Component Set Bridge Output Set Comments

1 V IFmax < 5 V IFmax < 5 linearly independent loads & outputs

2 V IFmax > 50 V IFmax > 50 experimental design issue

3 V IFmax > 50 V IFmax < 5 theoretically impossible result

4 V IFmax < 5 V IFmax > 50 linearly dependent bridge outputs

data. On the other hand, it is observed for Case 2 that the maximum VIF of both sets is

greater than 50. This observation may indicate a potential experimental design issue that

should be addressed because linear dependencies of the load component set are directly

reflected in linear dependencies of the bridge output set. Case 3 describes a situation

when the maximum VIF of the load component set exceeds 50 while, at the same time, the

maximum VIF of the bridge output set is smaller than 5. This situation is theoretically

impossible because, based on the control volume analysis of the inputs and outputs of a

strain–gage balance, the measurements recorded by the bridge output set cannot have more

independent information than the applied load component set. Finally, Case 4 describes a

situation when the maximum VIF of the load component set is smaller than 5 while, at the

same time, the maximum VIF of the bridge output set is greater than 50. This observation

is an indication that the bridge output set may be linearly dependent. Therefore, the

balance load predictions may not be very reliable because a reversible mapping between

load space and output space may not exist.

It is important to point out that the suggested uniqueness test does not require a

least squares fit of the balance calibration data. Only VIFs are computed by using either

loads or bridge outputs for the definition of the regressors of a simple linear math model

of the data. This simple model does not have any absolute value, quadratic, cubic, or

cross–product terms. The VIF was selected as a metric for the uniqueness test because it

has the ability to identify both linear and near–linear dependencies between regressors.
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Tare Loads

It was mentioned earlier that each point of a multi–dimensional load space represents a

specific load state of a balance. Points in the load space are described by using a Cartesian

coordinate system. The origin of this coordinate system is the load datum of zero absolute

load. Consequently, it is important to describe all load states of a balance relative to this

common load datum whenever (i) a calibration data set is used to populate the load space

and (ii) global regression is applied during the analysis.

The description of the load states is often complicated by the fact that the calibration

experiment needs to be broken up into individual load series. Then, characteristic load

states can be established that describe the expected physical behavior of the balance.

The load states result from either the application of a single load component or from the

application of load combinations. Different sets of hardware are used for the application of

the loads during a calibration. They may consist of a calibration body, rods, weight pans,

moment arms, knife edges, and flexures if gravity weights are used for the load application.

The combined weight of the calibration hardware and the metric part of the balance is

responsible for hidden loads that may change from load series to load series. They need to

be included in any precise description of the load state of the balance. Only in this case,

all loads are described relative to the common load datum of zero absolute load.

The determination of tare loads, i.e., of loads resulting from the combined weight of

the calibration hardware and the metric part of the balance can become very complex.

In theory, it requires (i) the weighing of each calibration hardware part and (ii) the de-

termination of the distance between a part’s center of gravity and the balance moment

center. In addition, loads resulting from the weight of the metric part must be included.

They have to be estimated using the metric part’s volume and material density. All these

difficulties can be avoided if a tare load iteration algorithm is applied during the balance

calibration data analysis. Galway of NRC Canada developed key elements of this iterative

process in the 1970s. His algorithm first appeared in the open literature in 1999 (Ref. [80]).

It is also described in AIAA’s Recommended Practice document on strain–gage balances

(Ref. [7]). The algorithm uses the electrical outputs resulting from the combined weight

of the calibration hardware and the metric part of the balance and preliminary estimates

of the load prediction equations for the determination of the tare loads (see App. 12 and

App. 13 for more details). Afterwards, tare load estimates are added to the applied loads

before the final analysis of the calibration data is performed and the load prediction equa-

tions are generated. This final step guarantees that the loads of all individual load states

of the balance are systematically described relative to the common load datum of zero

absolute load.

Load Prediction Process

So far, fundamental concepts were described and reviewed that benefit a better un-

derstanding of the inputs and outputs of a strain–gage balance. It remains to list the most

important steps that need to be taken in order to successfully develop the balance load
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prediction equations. The steps can be described as follows:

Step 1 – Balance Selection

Step 2 – Calibration Load Schedule Definition

Step 3 – Calibration Experiment Execution

Step 4 – Calibration Data Analysis

Step 5 – Load Prediction Equation Implementation

Choices made during the execution of each step may have an influence on the final load

prediction accuracy that can be achieved. Therefore, the five steps need to be discussed

in more detail.

Step 1 – Balance Selection: First, a balance needs to be selected for the chosen wind

tunnel model. The selection influences the overall accuracy of the load prediction during

a wind tunnel test as the capacities of the balance load components need to be closely

matched to load magnitudes that the wind tunnel model will experience. Load prediction

accuracy and load resolution are directly related to the primary sensitivities of the balance

bridges as long as temperature and hysteresis effects are kept under control. In fact, the

primary sensitivities are built–in physical constants of the balance.

In theory, the primary sensitivity is defined as the first derivative of a primary bridge

output with respect to the related primary load. Numerical estimates of the primary bridge

sensitivities are typically obtained from the regression coefficients of balance calibration

data. The following rule of thumb can often be applied:

Primary Bridge Sensitivity (Rule of Thumb)

The higher the primary bridge sensitivity of a balance bridge is
the better the resolution of the predicted primary load will be
as long as temperature and hysteresis effects are controlled.

It was mentioned above that the primary bridge sensitivity is directly connected to

the load resolution that a balance can achieve. Therefore, load prediction accuracy during

a wind tunnel test can be maximized if a balance experiences loads across the entire load

range and not just, say, within the first 20 % to 30 % of its range.

Step 2 – Calibration Load Schedule Definition: In the next step, the calibration load

schedule needs to be defined. In principle, loads should to be applied during the calibration

that best capture the physical behavior of the balance. Some analysts prefer to choose a

load schedule that supports a specific regression model of the data. These load schedule

design goals cannot always be achieved as the ability to apply certain loads or load combi-

nations is often dictated by (i) the calibration hardware that a calibration laboratory owns
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and (ii) the load application method that is used. Consequently, the final calibration load

schedule is a compromise between desired and achievable loads or load combinations.

It must not be forgotten that tare loads, i.e., load caused by the weight of the calibra-

tion equipment and the metric part of the balance, may have an influence on the calibration

load schedule definition if heavy calibration hardware is needed to apply certain load com-

binations. Any omission of important loads or load combinations will negatively influence

the accuracy of the load prediction equations as they can only predict the physical behavior

of the balance that the chosen calibration load schedule describes.

Balance calibration machines are also in use in the aerospace testing community.

A calibration machine has two important advantages when compared with a traditional

manual calibration: (i) complex load combinations can more easily be applied; (ii) an entire

calibration load schedule can be completed within a few hours. Calibration machines,

however, are complex. Therefore, additional check loads may have to be recorded in a

manual calibration rig to independently verify the machine calibration data.

Step 3 – Calibration Experiment Execution: The calibration experiment itself needs

to be conducted after the calibration load schedule is defined. First, the natural zeros

of the balance bridges need to be determined. They are the electrical representation of

zero absolute load (see also App. 8). Afterwards, the load schedule has to be applied by

using gravity weights, hydraulic actuators, or other techniques in combination with the

available calibration hardware. The resulting loads and outputs of each calibration data

point need to be recorded and stored during the load application process on a point–by–

point basis. It is critical to measure the raw outputs during the calibration with the same

instrumentation that was used to determine the natural zeros of the balance bridges so

that instrumentation dependent bias errors can be removed during the data analysis. In

addition, zero load points should be taken for each load series so that tare corrections can

be computed by using a tare load iteration process. These tare loads need to be added

to the applied loads so that all loads are referenced to the datum of zero absolute load.

An analyst needs to pay close attention to the alignment of the applied loads during the

calibration. Any hidden misalignment or other calibration data quality issue will have an

immediate negative influence on the accuracy of the load prediction process.

Step 4 – Calibration Data Analysis: The balance calibration data set needs to be

analyzed after completion of the calibration experiment. The goal of this analysis is the

generation of load prediction equations that will be used during the wind tunnel test to

predict balance loads from bridge outputs. It is important that both loads and outputs are

described relative to the absolute load datum of the balance before the final analysis of the

calibration data is performed and load prediction equations are generated. Therefore, a tare

load iteration needs to be performed so that loads caused by the weight of the metric part of

the balance and the calibration hardware are included. In addition, the author recommends

to use the difference between the raw bridge outputs and the corresponding natural zeros

for the final description of the electrical outputs. This choice has two advantages. First,
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instrumentation dependent output shifts are removed from the data. In addition, the

electrical representation of zero absolute load is zero output for all bridges.

In principle, the balance experiences a finite number of load states during its cali-

bration that the chosen load schedule defines. Each load state can be described by using

either the tare corrected loads or the electrical output differences relative to the natural

zeros. Both descriptions are equivalent. It is like describing something in two different

languages. Consequently, an analyst has the freedom to use the tare corrected loads as

either the independent or dependent variable set during the calibration data analysis.

The load prediction equations themselves are obtained by using either the Non–

Iterative Method or the Iterative Method for the analysis of the calibration data. The

Non–Iterative Method directly fits the tare corrected calibration loads as a function of the

output differences of the bridges (see App. 9 for more details). The Iterative Method, on

the other hand, is more complicated. It first fits the output differences of the bridges as

a function of the tare corrected calibration loads. Afterwards, a load iteration equation is

constructed from the regression models of the outputs so that loads can be predicted from

outputs during a wind tunnel test (see App. 10 for more details).

An analyst must ensure that only regression model terms supported by the balance

calibration data are used in the regression model. In addition, the chosen regression

models must not have any linear or near–linear dependencies (see App. 17 and App. 18

for more details). Sometimes it may be an advantage to remove insignificant terms from

the regression models to suppress over–fitting of the data. These terms can be identified

by either using the percent contribution of a regression model term or suitable statistical

metrics (see, e.g., App. 16 for a discussion of the percent contribution). The term removal

itself could be done by visual inspection or by using a regression model search algorithm

(see, e.g., App. 19 or Ref. [69], pp. 640–655, for additional details).

Step 5 – Load Prediction Equation Implementation: The development of the load pre-

diction process for a strain–gage balance is completed after the load prediction equations

are implemented in the wind tunnel’s data system. It is an advantage if a tunnel’s data

system uses a fixed format for the transfer of the load prediction equations. Then, load pre-

diction equations from different balance types can easily be applied. It is also recommended

to measure the natural zeros of the balance bridges using the tunnel’s instrumentation so

that (i) instrumentation dependent bias errors are removed from the output measurements

and (ii) the raw outputs can be referenced to the outputs at zero absolute load. Finally,

check loads may have to be applied to verify both the installation of the balance and the

implementation of the load prediction equations in the tunnel’s data system. At this point,

the load prediction equations are ready to be used during the wind tunnel test.
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III. Balance Data Description

Introduction

Loads and electrical outputs of a strain–gage balance can be described in different

ways. The chosen description has an influence on both the calibration data analysis results

and the load prediction characteristics during a wind tunnel test. Therefore, they need to

be understood so that the best possible accuracy of the balance load prediction during a

wind tunnel test can be achieved.

The description of the balance axis system, the definition of the absolute load datum

of the balance, the load format, the output format, and electrical units are discussed in

the following sections. Afterwards, the relationship between balance design, load format

choice, and the primary sensitivities of the balance bridges is reviewed.

Axis System Definition

In general, a Cartesian coordinate system in 3–dimensional space is needed to describe

the loads that act at the balance moment center. Then, balance loads can easily be

transformed to loads that act at the moment center of the wind tunnel model. Loads of

a six–component primary balance are typically expressed as the resolved loads, i.e., as the

three forces and three moments that act at its moment center. Possible balance axis system

choices and related load sign conventions are discussed in detail in App. 3. Therefore, only

a few general comments are made in this section.

In theory, the balance axis system should be defined such that balance loads can

easily be transformed to loads that act in the body axis system of the wind tunnel model.

Consequently, it is an advantage to attach the balance axis system to the rigid part of

the balance that is connected to the model. Then, simple transformations can be used to

connect loads at the balance moment center to loads at the model’s moment center.

Two cases must be distinguished as far as the attachment of the balance to a wind

tunnel model is concerned. First, a primary six–component balance is considered. In that

case, the metric part is assumed to be the rigid interface between balance and wind tunnel

model. Therefore, it is reasonable to attach the balance axis system to the metric part

of the balance. Sometimes, a small three–component auxiliary balance is attached to a

wind tunnel model that measures loads on a subassembly (e.g., a lifting surface, a control

surface, a canard, etc.). In that case, the rigid section of the non–metric part of the balance

is attached to the wind tunnel model. Therefore, the balance axis system of an auxiliary

balance should be attached to the rigid section of the non–metric part of the balance in

order to simplify the description of balance loads in the body axis system of the wind

tunnel model (see also related discussions in App. 15).

Absolute Load Datum

The purpose of a strain–gage balance is to measure loads, i.e., forces and moments,

that act on a wind tunnel model. These load sets represent one possible description of the
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load state of the balance in the load space (see also the discussion of the terms load state,

load space, and output space in Chapter II). Each load state is represented by a point in

the load space. This interpretation is possible if a Cartesian coordinate system is defined in

the load space that describes each load component value on a separate coordinate system

axis. Consequently, the required coordinate system has six dimensions if, for example, all

loads of a six–component balance are described while keeping state variable values fixed.

The description of any coordinate system in the load space requires a coordinate

system origin. By definition, all load components are zero at the origin. In other words,

the origin defines the absolute load datum of the balance in the load space assuming

that all state variables are constant. The absolute load datum can also be described as

a hypothetical situation when the balance is in a weightless condition. This alternate

description of the absolute load datum of the balance is shown in Fig. 10 below.

BALANCE IN “WEIGHTLESS” STATE

METRIC PART

NON-METRIC PART

Fig. 10 Absolute load datum of a strain–gage balance.

So far, only the interpretation of the origin of the coordinate system of the load space

was discussed. A similar interpretation exists for the origin of the coordinate system of

the output space. In principle, the raw electrical outputs of the balance bridges at zero

absolute load may be used to define the origin of the coordinate system of the output space.

These raw outputs are also called the natural zeros of the balance bridges (see App. 8 for

a detailed description of the natural zeros for different balance types). Two options exist

that an analyst may use for the definition of the origin of the output space. They depend

on the chosen format that describes the measured outputs (see App. 6 for a discussion of

different bridge output format choices).

First, let us assume that the bridge output format Raw Output is directly used to

describe the electrical outputs of a six–component balance. Then, the origin of the load

space is not mapped to the origin of the output space. Instead, the point described by the

vector with the natural zeros of the bridges as its components is the electrical description

of zero absolute load in the output space. In other words, the origin of the output space

does not describe the absolute load datum of the balance if outputs are described by using

the format Raw Output. Figure 11 below shows the mapping of the absolute load datum

of the load space to the output space if output format Raw Output is used. The symbols
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F1, . . . , F6 represent the six load components. The symbols rF1, . . . , rF6 represent the

raw outputs of the six balance bridges.

6-dimensional
“load space”

6-dimensional
“output space”

absolute
load datum

natural
zeros

F2F1

…
F6

F3

rF1

rF3

rF2

…
rF6

Fig. 11 Mapping of the absolute load datum if output format Raw Output is used.

Alternatively, let us assume that the bridge output format Difference Type 1 is used to

describe the outputs of a six–component balance. This format is defined as the difference

between a raw output of a bridge and its natural zero. Consequently, the origin of the load

space is mapped to the origin of the output space as the output differences of the natural

zeros relative to themselves are zeros. In other words, the origin of the output space also

describes the absolute load datum of the balance if bridge output format Difference Type 1

is used. Figure 12 shows the mapping of the absolute load datum of the load space to

the output space if output format Difference Type 1 is used. The symbols N1, . . . , N6

represent the natural zeros of the six balance bridges.

6-dimensional
“load space”

6-dimensional
“output space”

absolute
load datum

origin

F2
F1

…
F6

F3

rF1 - N1 rF2 – N2

…
rF6 – N6

rF3 – N3

Fig. 12 Mapping of the absolute load datum if output format Difference Type 1 is used.

Table 2 below summarizes the relationship between the origins of the load and output

spaces for two bridge output format choices that an analyst can make.
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Table 2: Interpretation of the origins of the load & output spaces.

Output Format (see App. 6) Interpretation of Coordinate System Origins

The origin of the load space is mapped to a point in the

output space that is defined by the natural zeros of the bridges.

Raw Output

[ 0, 0, . . . , 0 ]︸ ︷︷ ︸
load space

⇐⇒ [ N1, N2, . . . , N6 ]︸ ︷︷ ︸
output space

The origin of the load space is mapped to the origin of the output space.

Difference Type 1

[ 0, 0, . . . , 0 ]︸ ︷︷ ︸
load space

⇐⇒ [ 0, 0, . . . , 0 ]︸ ︷︷ ︸
output space

Now, let us assume that the state variables are no longer constant during both cali-

bration and use of the balance. In addition, it is assumed that the state variable values

are expressed as differences relative to suitable reference values (see also related comments

in Chapter II). Then, the coordinate system definition of the expanded load space and the

related description of the absolute load datum can easily be modified as the state variable

value differences relative to a reference value are zero at the origin.

Load Format Options

Three different load formats exist that may be used to describe the load state of a

six–component primary balance in the load space. They are called direct–read format,

force balance format, and moment balance format (see also App. 4 for additional details).

The direct–read format describes the load state of the balance in the universal vector

format that Classical Mechanics uses for the description of forces and moments in three–

dimensional space. In that case, three forces and three moments are used. They are the

components of the resultant force and moment vectors at the balance moment center. The

forces are called (i) normal force, (ii) side force, and (iii) axial force. The moments are

called (i) pitching moment, (ii) yawing moment, and (iii) rolling moment. Single–piece

balances are typically wired such that their loads and outputs have direct–read format

characteristics. It must be mentioned that the direct–read format is not balance design

specific. In other words, it can be defined for any six–component balance.

Two alternate load format choices are balance design specific. They make it possible

to separate load components and bridge outputs such that a single bridge output primarily

responds to a single load component. This load component often explains 80 % to 90 %

of the electrical output of the related bridge. Therefore, design specific load formats have
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the advantage that (i) all bridge sensitivities can easily be quantified by applying single–

component loadings and (ii) troubleshooting during use of the balance is simplified.

The first balance design specific load format is called force balance format. It is used

for force balances. The corresponding six load components are called (i) forward normal

force, (ii) aft normal force, (iii) forward side force, (iv) aft side force, (v) axial force,

and (vi) rolling moment. This load set can be converted to the universally applicable

direct–read format by using transformation equations that are derived in App. 4.

The second balance design specific load format is called moment balance format. It

is used for moment balances. The corresponding six load components are called (i) for-

ward pitching moment, (ii) aft pitching moment, (iii) forward yawing moment, (iv) aft

yawing moment, (v) rolling moment, and (vi) axial force. Again, this balance design spe-

cific load set can be converted to the universally applicable direct–read format by using

transformation equations that are derived in App. 4.

Output Format Options

Advantages and disadvantages of different output format choices are discussed in

App. 6. Therefore, only a few comments related to output format Raw Output and output

format Difference Type 1 are made in this section. It is concluded from the discussion

of the absolute load datum above that the use of output format Difference Type 1 has

an important advantage over the use of the output format Raw Output : the origin of

the output space is the electrical description of zero absolute load if Difference Type 1 is

chosen. This characteristic simplifies the development of a mathematical relationship that

may be used for the balance load prediction during a wind tunnel test. In addition, output

format Difference Type 1 is defined as the difference between a raw output and the natural

zero of a balance bridge (see App. 6). Therefore, the use of Difference Type 1 makes

the output description independent of the instrumentation hardware as long as the same

instrumentation set is used for the measurement of the raw outputs and natural zeros.

The author recommends output format Difference Type 1 for the description of the

electrical outputs of balance bridges. This output format can be applied to data from all

known balance designs. In addition, it supports the tare load iteration process and makes

outputs independent of instrumentation hardware characteristics. Finally, it allows for the

use of either the Non–Iterative Method or the Iterative Method for the load prediction.

Electrical Units

Different unit choices exist to describe the electrical outputs, i.e., the voltages of a

strain–gage balance. In theory, voltages could be expressed as milliV or microV . They

could also be made dimensionless after dividing the outputs by the excitation voltage of

the bridge. Then, voltages may be expressed in units of milliV/V or microV/V .

Experience showed that it is an advantage to divide the measured outputs of a strain–

gage balance by the excitation voltage. Then, reporting and use of the outputs are sim-
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plified as the excitation voltage is no longer needed for the description of the outputs. In

addition, the author observed that the unit choice is directly related to an analyst’s ability

to visually inspect the magnitude of the electrical outputs in a data file. Therefore, he

recommends the use of the electrical unit microV/V for most balance applications. In that

case, the magnitude of the output values of a typical balance will be a number between 0.1

and 1.0 microV/V at the lower end and a number between 1000 and 3000 microV/V at

the upper end. These number ranges are easily understood and inspected because people

often deal with them in their daily lives.

The benefit of using microV/V instead of milliV/V becomes immediately obvious if

the above output ranges are expressed in units of milliV/V . Then, the following number

ranges are obtained: between 0.0001 and 0.001 milliV/V at the lower end and between

1 and 3 milliV/V at the upper end. These number ranges are more difficult to inspect

because the majority of output values will be between 0.001 and 1 milliV/V .

Primary Bridge Sensitivity

The primary sensitivity of a balance bridge is an important metric of a balance. It

is defined as the first derivative of a primary bridge output with respect to the related

primary bridge load. It allows an analyst to estimate the magnitude of an output change

as a function of an applied load change by computing the product of the sensitivity and

the load change.

The balance data description has an influence on the ability to compute a primary

bridge sensitivity. Table 3 below lists different cases that illustrate the connection between

balance design, load format, and the sensitivities for a six–component balance.

Table 3: Existence of the primary bridge sensitivities of a six–component balance.

Design Load Format Primary Bridge Sensitivities

direct–read direct–read format all six primary sensitivities exist

balance (NF,SF,AF, PM, YM,RM ) (∂ rNF/∂NF, . . . , ∂ rRM/∂RM )

force force balance format all six primary sensitivities exist

balance (N1, N2, S1, S2, AF,RM ) (∂ rN1/∂N1, . . . , ∂ rRM/∂RM )

force direct–read format only two of six primary sensitivities exist

balance (NF,SF,AF, PM, YM,RM ) (∂ rAF/∂AF and ∂ rRM/∂RM )

moment moment balance format all six primary sensitivities exist

balance (PM1, PM2, Y M1, Y M2, AF,RM ) (∂ rPM1/∂PM1, . . . , ∂ rRM/∂RM )

moment direct–read format only two of six primary sensitivities exist

balance (NF,SF,AF, PM, YM,RM ) (∂ rAF/∂AF and ∂ rRM/∂RM )

In general, it is recommended to both describe and analyze balance loads in the design

format of a balance. In other words, loads of a direct–read balance should be formatted
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in direct–read format, or, loads of a force balance should be formatted in force balance

format, or, loads of a moment balance should be formatted in moment balance format.

Then, all primary sensitivities of the balance can be computed as each bridge primarily

responds to a single load component.

An example may be used to illustrate that not all primary bridge sensitivities exist

if a balance data set is not described in the design format. Let us assume that an ana-

lyst chooses to describe loads of a force balance in direct–read format before the balance

calibration data analysis is performed and load prediction equations are generated. Then,

according to the third row in Table 3 above, four of the six primary bridge sensitivities

do not exist. They are the sensitivities of the forward & aft normal force bridges and the

sensitivities of the forward & aft side force bridges. In that case, for example, the forward

normal force bridge (rN1) has two load components, i.e., NF and PM , that significantly

influence its output. Therefore, the primary sensitivity cannot uniquely be defined dur-

ing the regression analysis of the calibration data because more than one load component

significantly influences the output of the bridge.
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IV. Calibration of a Six–Component Balance

Introduction

The load schedule for the manual calibration of a six–component balance is primarily

influenced by (i) the capacities of its loads and (ii) capabilities of the calibration hardware

that a calibration laboratory owns. In addition, experience has shown that both single–

component and two–component loads must be applied at a minimum during the calibration

to define regression models that correctly capture the physical behavior of the balance. A

calibration laboratory typically owns hardware that supports the application of single–

component loads to a six–component balance. The application of two–component loads is

often more challenging. It may be limited by the laboratory’s capabilities. Consequently,

it is frequently observed that only a subset of the fifteen possible combinations of two load

components is applied during the manual calibration of a six–component balance.

Three load components, i.e., the normal force, the axial force, and the pitching mo-

ment, are often simultaneously applied during a calibration if a balance is used for the

performance test of an aircraft. However, traditionally used regression models of balance

calibration data do not support cross–product terms that are the product of three indepen-

dent variables. Therefore, information contained in those load combinations is distributed

across related two–component cross–product terms of the independent variables. In other

words, the information is captured by {rNF · rAF}, {rNF · rPM}, and {rAF · rPM} if

the Non–Iterative Method is used for the analysis. Similarly, the information is captured

by {NF ·AF}, {NF ·PM}, and {AF ·PM} if the Iterative Method is used for the analysis.

It is possible to define a reference load schedule for a six–component balance that takes

basic capabilities of a calibration laboratory into account. This load schedule is, to some

degree, applicable to all six–component balance designs, i.e., to a direct–read balance, to

a force balance, or to a moment balance, as long as (i) the individual load states of the

balance during its calibration are described relative to the balance moment center, and

(ii) gravity weights are used to apply loads to the balance. The reference load schedule

can be constructed by varying one variable at a time for each load series. For convenience,

it was decided to describe the reference load schedule in direct–read format. Corresponding

load components in force balance or moment balance format can be obtained by simply

applying load transformations that are listed in App. 4. Balance load sign conventions

of North American wind tunnels are used for the definition of the reference load schedule

(App. 3, Fig. 3–2). Details of the suggested reference load schedule for a six–component

balance are described in the next section.

Reference Load Schedule

The suggested reference load schedule consists of (i) single component loads for each

load component and (ii) a reasonable subset of the fifteen possible two–component loads

that can be defined for a six–component balance. This subset of two–component load

combinations is assumed to cover all important two–component load combinations that
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the wind tunnel model is expected to experience during the wind tunnel test.

The reference load schedule is defined assuming that gravity weights are used for the

load application. The applied loads themselves are described by specifying (i) the orienta-

tion of the calibration body (or metric part) relative to the direction of the gravitational

acceleration and (ii) the location of a load point on the calibration body relative to the

balance moment center. Table 4 below relates the generic term load point to a specific

balance design. Forward and aft load points are distinguished. Loads may directly be

applied over primary balance bridges as long as the design of the balance and the attached

calibration hardware support this choice.

Table 4: Definition of forward and aft load points for different balance designs.

Balance Design Forward Load Point Aft Load Point

direct–read load point located between the balance load point located between the balance

balance face and the balance moment center moment center and the balance support

force forward normal or side aft normal or side

balance force bridge location force bridge location

moment forward pitching or yawing aft pitching or yawing

balance moment bridge location moment bridge location

The description of the reference load schedule is split into several parts. First, the

application of the normal force and the pitching moment is discussed. Figure 13 below

shows different parts of the calibration hardware that could be used to apply them to a
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Fig. 13 Application of the normal force and the pitching moment.

strain–gage balance. For simplicity, it was decided to depict the balance as a single–piece

balance. The load schedule, however, is also applicable to a force or moment balance as

long as the load transformations described in App. 4 are applied. Table 5 below summarizes
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the description of a set of normal force and pitching moment loads that may be applied to

a six–component balance.

Table 5: Normal force and pitching moment loads for a six–component balance.

Series Description of Load Application Applied Load†

1 • positive normal force marker on the balance face points down {+NF,+PM}
• the gravity weight is applied at the forward load point

2 • positive normal force marker on the balance face points down {+NF}
• the gravity weight is applied at the balance moment center

3 • positive normal force marker on the balance face points down {+NF,−PM}
• the gravity weight is applied at the aft load point

4 • positive normal force marker on the balance face points up {−NF,−PM}
• the gravity weight is applied at the forward load point

5 • positive normal force marker on the balance face points up {−NF}
• the gravity weight is applied at the balance moment center

6 • positive normal force marker on the balance face points up {−NF,+PM}
• the gravity weight is applied at the aft load point

†
Applied load(s) are listed in direct–read format using nomenclature that is defined in App. 4.

The six load series above are obtained by using (i) three load points on the calibration

body (forward load point, balance moment center, aft load point) and (ii) two orientations

of the normal force relative to the direction of the gravitational acceleration. The location

of a load point relative to the balance moment center influences the pitching moment sign.

In addition, the two orientations down and up result in sign changes of the normal force

and the pitching moment.

It is an advantage if the distance between the forward load point and the balance

moment center equals the distance between the aft load point and the balance moment

center. Then, equations needed for the description of the applied loads at the bridge

locations are less complex. In addition, the forward or aft load point should directly be

located over the forward or aft bridge if the chosen balance is either a force balance or a

moment balance. These two assumptions make it easier to describe the normal force and

pitching moment in the corresponding design format of the balance.

The third column of Table 5 lists the applied load of each load series in direct–read

format. Load descriptions in other formats can be obtained by applying load transforma-

tions that are discussed in App. 4. The load application process for each load series is

identical for all load formats.

The application of the side force and yawing moment is analogous to the application

of the normal force and the pitching moment that is described in Table 5 above. It is

only required to align the side force instead of the normal force with the direction of the

gravitational acceleration. Table 6 below summarizes characteristics of the six load series
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that describe the application of the side force and the yawing moment. Again, as it was

the case for the normal force and the pitching moment, the six load series are obtained by

Table 6: Side force and yawing moment loads for a six–component balance.

Series Description of Load Application Applied Load†

7 • positive side force marker on the balance face points down {+SF,+YM}
• the gravity weight is applied at the forward load point

8 • positive side force marker on the balance face points down {+SF}
• the gravity weight is applied at the balance moment center

9 • positive side force marker on the balance face points down {+SF,−YM}
• the gravity weight is applied at the aft load point

10 • positive side force marker on the balance face points up {−SF,−YM}
• the gravity weight is applied at the forward load point

11 • positive side force marker on the balance face points up {−SF}
• the gravity weight is applied at the balance moment center

12 • positive side force marker on the balance face points up {−SF,+YM}
• the gravity weight is applied at the aft load point

†
Applied load(s) are listed in direct–read format using nomenclature that is defined in App. 4.

using (i) three different load points on the calibration body (forward load point, balance

moment center, aft load point) and (ii) two orientations of the side force relative to the

direction of the gravitational acceleration. Descriptions of the load state of the balance

in the load space are simplified if (i) the distance between the forward load point and the

balance moment center equals the distance between the aft load point and the balance

moment center and (ii) the forward or aft load point is directly located over the forward

or aft bridge if the chosen balance is either a force balance or a moment balance.

The application of the rolling moment with gravity weights requires the attachment

of a rolling moment arm pair to the calibration body. First, the calibration body should

be oriented such that the direction of the normal force is parallel to the direction of the

gravitational acceleration. The normal force instead of the side force is typically chosen

to be in the direction of the gravitational acceleration because the sensitivity of a normal

force bridge is typically lower than the sensitivity of a side force bridge. The moment arm

pair should be attached to the calibration body such that its longitudinal axis intersects

the roll axis of the balance at the balance moment center. This selection helps minimize

interactions that act in the normal force direction. Finally, weight pans are attached to

the two ends of the rolling moment arms.

The application of the rolling moment starts by first placing an equal number of

weights on each weight pan. Afterwards, weights are shifted from one pan to another

to generate a rolling moment. This strategy has the advantage that the simultane-

ously acting normal force remains constant during the entire application of the rolling

moment. Figure 14 below shows a front view of parts of the calibration hardware that
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Fig. 14 Application of the rolling moment.

could be used to apply a rolling moment to a balance. The unwanted normal force in-

teraction can be minimized by maximizing the length of the moment arm pair. Then,

the maximum rolling moment can be achieved by using a smaller normal force. In other

words, the longer the moment arm pair is the more the applied rolling moment approxi-

mates the behavior of a true single–component load. Table 7 below lists characteristics of

load series 13 and 14 that describe the application of the rolling moment.

Table 7: Rolling moment loads for a six–component balance.

Series Description of Load Application Applied Load†

13 • positive normal force marker on the balance face points down {±RM,+NF}
• rolling moment arm pair is attached at balance moment center

• equal number of weights is placed on each weight pan

• weights are shifted between weight pans (non-zero moment)

14 • positive normal force marker on the balance face points up {±RM,−NF}
• rolling moment arm pair is attached at balance moment center

• equal number of weights is placed on each weight pan

• weights are shifted between weight pans (non-zero moment)

†
Applied load(s) are listed in direct–read format using nomenclature that is defined in App. 4.

A detailed comparison of series 13 with series 14 reveals that series 14 is a close

repeat of series 13. Only the orientation of the normal force relative to the direction of the

gravitational acceleration is the opposite. This strategy has the advantage that unwanted

load schedule asymmetries are suppressed during the application of the rolling moment

that could negatively influence regression analysis results of the calibration data.

It remains to describe the behavior of the balance when either an axial force or a

combination of the axial force, normal force, and pitching moment is applied. The accurate
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application of an axial force is often challenging as (i) the alignment of the calibration body

relative to the applied axial force can be complex and (ii) the sensitivity of an axial force

bridge is typically one order of magnitude greater than the sensitivity of a normal force

bridge. Therefore, different methods were developed in the aerospace testing community

to address challenges resulting from the required precise application of the axial force. One

approach, for example, orients the balance such that its roll axis is parallel to the direction

of the gravitational acceleration. Figure 15 below shows parts of the calibration hardware
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Fig. 15 Application of a pure positive axial force.

that uses this approach. Gravity weights are attached to the calibration body by using a

yoke with knife edges and a weight pan. The metric part of the balance is pointing up.

Therefore, the applied axial force has a positive sign.

Similarly, after rotating the balance assembly by 180 degrees such that the metric part

of the balance is pointing down, a flexure/rod fixture with a weight pan can be attached to

the face of the calibration body in order to apply a negative axial force. Figure 16 below

shows a detailed description of this approach.
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The two methods shown in Fig. 15 and Fig. 16 are often used at the Ames Balance

Calibration Laboratory to apply pure positive & negative axial forces. Characteristics

of the methods are summarized in Table 8. The two methods have the advantage that

Table 8: Application of a pure axial force to a six–component balance.

Series Description of Load Application Applied Load

15 • roll axis is parallel to direction of gravitational acceleration {+AF}
• balance face and calibration body are pointing upward

• weights are placed on weight pan supported by a yoke

16 • roll axis is parallel to direction of gravitational acceleration {−AF}
• balance face and calibration body are pointing downward

• weights are placed on weight pan supported by a flexure

only the axial force bridge is loaded. Consequently, the outputs of the remaining five

bridges will be close to the natural zeros of the balance. This conclusion also means that a

tare correction only needs to be applied to the axial force as the weight of the calibration

hardware can only act on that load component during load series 15 and 16. This statement
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is valid as long as (i) the calibration body is precisely aligned with the direction of the

gravitational acceleration and (ii) the common center of gravity of calibration body and

calibration hardware is located on the roll axis of the balance.

An axial force may also be applied after aligning the balance such that the normal

force is parallel to the direction of the gravitational acceleration. This situation is shown

in Fig. 17 below. In this case, a positive or negative axial force is applied by using a leveled
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Fig. 17 Alternate method for the application of the axial force.

push/pull rod that is attached to the calibration body at the intersection of the roll axis

and the face of the calibration body. The axial force could be generated by using either a

leveled hydraulic cylinder or calibration hardware that allows for the frictionless redirection

of a gravity force. Figure 18 below shows a schematic of the type of load hardware that is
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Fig. 18 Application of the axial force using a push/pull rod and gravity weights.

used in the model preparation room of the Ames 11ft Transonic Wind Tunnel for the

application of both positive and negative axial forces. In that case, a triangular load

fixture is attached to a support column. The top corner of the triangular fixture connects
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to the push/pull rod. The other two corners allow for the attachment of weight pans. A

negative axial force is obtained if weights are placed on the left weight pan. Similarly, a

positive axial force is obtained if weights are placed on the right weight pan. The support

column of the fixture must be movable in both the horizontal and vertical direction so that

the push/pull rod can be leveled. In addition, the connection between triangular fixture

and support column must be made frictionless by using, for example, roller bearings (a

yellow circle in Fig. 18 marks the frictionless connection).

It must not be overlooked that the alignment of the push/pull rod can be time con-

suming. The rod must be located (i) in the plane that the axial & normal force define and

(ii) in the plane that the axial & side force define. A precision spirit level may be used,

for example, to place the rod into the plane that is defined by the axial & side force. In

addition, an observation of output changes of the side force bridge may be needed to also

place the rod into the plane that is defined by the axial & normal force. The application

of the alternate method results in tare loads on the balance that act in the normal force

direction. They are caused by the combined weight of (i) the metric part of the balance,

(ii) the calibration body, and (iii) the push/pull rod.

A simultaneous application of the axial force, normal force, and pitching moment

adds additional complexity to the manual calibration of a six–component balance. These

load combinations are often needed to improve the accuracy of the balance load prediction

during performance tests of a wind tunnel model. Figure 19 below shows a calibration
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Fig. 19 Application of the axial force, the normal force, and the pitching moment.

hardware setup that could be used for the simultaneous application of the three load

components. It is best to only vary the axial force during a load series while keeping

(i) the normal force and (ii) the pitching moment arm constant. Table 9 below summarizes

characteristics of corresponding load series assuming that (i) the normal force and the
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pitching moment arm are kept constant during each load series and that (ii) gravity weights

are attached to the calibration body somewhere between the balance moment center and

Table 9: Combined application of axial force, normal force, and pitching moment.

Series Description of Load Application Applied Load†

17 • balance roll axis is perpendicular to gravitational acceleration {+AF} and . . .
• positive normal force marker on the balance face points down {+NF,+PM}
• aligned load rod pushes at the center of the balance face

• the gravity weight is applied at the balance moment center

18 • balance roll axis is perpendicular to gravitational acceleration {−AF} and . . .
• positive normal force marker on the balance face points down {+NF,+PM}
• aligned load rod pulls at the center of the balance face

• the gravity weight is applied at the balance moment center

19 • balance roll axis is perpendicular to gravitational acceleration {+AF} and . . .
• positive normal force marker on the balance face points up {−NF,−PM}
• aligned load rod pushes at the center of the balance face

• the gravity weight is applied at the balance moment center

20 • balance roll axis is perpendicular to gravitational acceleration {−AF} and . . .
• positive normal force marker on the balance face points up {−NF,−PM}
• aligned load rod pulls at the center of the balance face

• the gravity weight is applied at the balance moment center

†
Applied load(s) are listed in direct–read format using nomenclature that is defined in App. 4.

the front face of the calibration body. Series 17 to 20 summarize different steps that are

needed for a simultaneous application of axial force, normal force, and pitching moment.

The sign of the normal force and pitching moment is changed by rotating the balance

180 degrees about its roll axis (normal force marker is pointing up or down). It must be

emphasized that the normal force and the pitching moment arm should be kept constant

within each load series. Only the axial force should be varied. This strategy is the preferred

approach as the applied normal force is often one order of magnitude larger than the applied

axial force. Consequently, unwanted balance dynamics are avoided that could result from

a normal force change during the application of a load series.

Load Spacing

The selection of the spacing of the individual calibration loads also has an influence on

the overall load prediction accuracy that can be achieved. It influences the results of the

regression analysis of the calibration data. The spacing primarily depends on characteris-

tics of the gravity weight set that a calibration laboratory owns. The author recommends

to apply a sufficient number of both positive and negative loads to the balance. The cho-

sen load magnitudes should be between zero and the capacity of a load component. Then,
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good estimates of the regression coefficients of the primary linear term, absolute value

terms (if needed), and quadratic terms of each dependent variable can be obtained during

the regression analysis. This requirement can often already be met if at least three load

steps are applied between zero and the capacity of the load component.

Load Series Repeats

A balance calibration data set describes experimental data that is typically processed

by applying regression analysis. Therefore, a reasonable number of repeats should be

included in the calibration load schedule. These repeats will capture small bridge output

variations that are caused by the calibration process and hardware imperfections. In

particular, it is an advantage to repeat load series with single–component loads at regular

intervals during the calibration (e.g., at the beginning, in the middle, and at the end of

the calibration). Then, time–dependent variations of the bridge outputs are captured that

will lead to better estimates of the primary bridge sensitivities. In addition, the implicit

weighting of the single–component loads increases during the regression analysis of the

data if the load schedule has a greater number of single–component loads (see Ref. [16] for

a discussion of the influence of implicit weighting on calibration data analysis results).

Accuracy of Applied Forces and Moments

Either a force or a moment is applied during the balance calibration. The magnitude

of an applied force, for example, is specified during a calibration by using either a known

gravity weight or a load cell measurement. The magnitude of the force needs to have a

relative error of 0.01 % or less in order to fulfill the basic requirement that the accuracy

of an applied load during a calibration should be at least one order of magnitude below

the empirical threshold of 0.10 % of load capacity. This threshold is often used in the

aerospace testing community to assess the standard deviation of load residuals that are

predicted from regression models of balance calibration data. The accuracy requirement

is summarized in Eq. (1) below where ∆F/F describes the relative error of the applied

Accuracy Requirement for the Applied Force

∆F

F
× 100 % ≤ 0.01 % (1)

force. A similar requirement must be fulfilled for a moment that is applied to the balance

during the calibration. This second requirement is given in Eq. (2) below where ∆M/M

is the relative error of the applied moment. Unfortunately, the specification of the relative

error of the applied moment is complicated by the fact that two independent physical
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Accuracy Requirement for the Applied Moment (Version 1)

∆M

M
× 100 % ≤ 0.01 % (2)

quantities are needed for its description. The first quantity is the force that is applied

at a certain distance from the balance moment center. It is specified by using either a

known gravity weight or a load cell measurement. The second quantity is the moment

arm, i.e., the physical distance of the applied force from the balance moment center. It is

specified by using geometric information from drawings of the calibration hardware. Both

the applied force and the moment arm have relative errors associated with them. They

need to be connected to the relative error of the applied moment so that the accuracy

requirement for the moment can precisely be defined.

The analytic connection between the relative errors of moment, force, and moment

arm can be understood if the moment is constructed from the true values and the absolute

errors of the force and moment arm. The resulting relationship is given in Eq. (3) below

M ′ = (F + ∆F ) · (s + ∆s) = { F · s }︸ ︷︷ ︸
true value

+ { F ·∆s + ∆F · s + ∆F ·∆s }︸ ︷︷ ︸
error of applied moment

(3)

where symbol F represents the true value of the applied force, symbol s represents the

true value of the moment arm, and symbols ∆F and ∆s are the assumed absolute errors

of the two quantities. It can be seen that the contents of the first bracket on the right–

hand side of Eq. (3) above represents the true value of the applied moment. The contents

of the second bracket, on the other hand, describes the error of the applied moment.

These conclusions can be summarized by the two relationships below where the symbol M

true value of applied moment =⇒ M = F · s (4a)

error of applied moment =⇒ ∆M = F ·∆s + ∆F · s + ∆F ·∆s (4b)

represents the true value of the applied moment and the symbol ∆M represents the error

of the applied moment. Now, the relative error of the applied moment can be obtained if

the left– and right–hand sides of Eq. (4b) are divided by the left– and right–hand sides of

Eq. (4a). Then, after simplifying the result, we get the following relationship:

relative error of moment =⇒ ∆M

M
=

{
∆s

s

}
+

{
∆F

F

}
+

{
∆F

F
· ∆s

s

}
(5)

Two first order error terms and one second order error term can be identified on the

right–hand side of Eq. (5) above. In general, it is known that the magnitude of a first
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order error term is significantly larger than the magnitude of a second order error term.

This conclusion is summarized in Eq. (6) below. Therefore, it is possible to simplify the

∣∣∣∣∆s

s

∣∣∣∣︸ ︷︷ ︸
1st order

�
∣∣∣∣∆F

F
· ∆s

s

∣∣∣∣︸ ︷︷ ︸
2nd order

and

∣∣∣∣∆F

F

∣∣∣∣︸ ︷︷ ︸
1st order

�
∣∣∣∣∆F

F
· ∆s

s

∣∣∣∣︸ ︷︷ ︸
2nd order

(6)

right–hand side of Eq. (5) above by dropping the second order error term. Then, we get

the following relationship between the relative errors of force, moment, and moment arm:

Relative Error of Applied Moment

∆M

M
≈ ∆s

s
+

∆F

F
(7)

Finally, after replacing the relative error of the applied moment in Eq. (2) above by

the right–hand side of Eq. (7), we get the following requirement for the applied moment:

Accuracy Requirement for the Applied Moment (Version 2){
∆s

s
+

∆F

F

}
× 100 % ≤ 0.01 % (8)

It is concluded from Eq. (8) above that the influence of the relative error of the moment

arm on the accuracy of the applied moment must not be underestimated. In fact, the use of

a large moment arm is an advantage because the relative error of the moment arm decreases

with increasing moment arm length. In addition, the absolute error of the moment arm

is more or less constant for all practical purposes. This assumption is reasonable as the

absolute error of a moment arm is a combination of (1) machining errors of the calibration

hardware and (2) load placement errors of the applied gravity weights.

The benefit of using a large instead of a small moment arm for the application of a

moment to a balance can be illustrated with a numerical example. The example assumes

that a gravity weight is used to apply a pitching moment to a balance. The weight is

attached to the end of a beam that is attached to the calibration body. Furthermore, it

is assumed that the relative error of the force associated with a gravity weight is 0.01 %.

This estimate is a typical value that is used to describe the accuracy of a gravity weight
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during a strain–gage balance calibration. The relative error of the gravity weight can be

summarized by the following relationship:

gravity weights =⇒ ∆F /F × 100 % ≈ 0.0100 % (9)

It is also known from hardware drawings that the nominal moment arm, i.e., the

distance between balance moment center and attachment point of the gravity weight, is

large, i.e., 40.0 in. In addition, the absolute error of the moment arm is estimated to be

0.005 in. Then, the relative error of the given large moment arm is obtained:

large moment arm =⇒ ∆s/s × 100 % ≈ 0.005 in

40.0 in
× 100 % ≈ 0.0125 % (10)

It is concluded after comparing the right–hand sides of Eqs. (9) and (10) that the

relative errors of the applied force and the large moment arm are similar in magnitude.

This result can be summarized by the following relationship:

large moment arm =⇒ ∆s/s ≈ ∆F /F (11)

Alternatively, a load point on the calibration body itself in combination with a large

gravity weight may be used for the application of the pitching moment. The resulting

moment arm is small. It is assumed to be 4.0 in, i.e., one tenth of the magnitude of the

large moment arm. Furthermore, it is assumed that the absolute error of the moment arm

has not changed. Then, the relative error of the small moment arm is obtained:

small moment arm =⇒ ∆s/s × 100 % ≈ 0.005 in

4.0 in
× 100 % ≈ 0.125 % (12)

It is concluded after comparing the right–hand sides of Eqs. (9) and (12) that the

relative error of the small moment arm is one order of magnitude greater than the relative

error of the applied force. This result can be summarized by the following relationship:

small moment arm =⇒ ∆s/s � ∆F /F (13)

The two numerical examples clearly illustrate that it is better to use a large moment

arm in combination with a small gravity weight instead of a small moment arm in combina-

tion with a large gravity weight for the application of a moment to a balance. Then, errors

associated with the specification of the moment arm, i.e., the distance between applied

force and balance moment center, can better be controlled.
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V. Non–Iterative Method

Introduction

Two fundamentally different methods are used in the aerospace testing community

for the prediction of strain–gage balance loads from a set of measured electrical outputs.

In both cases, load prediction equations may be obtained after applying a multivariate

regression analysis to balance calibration data.

One of the two methods is called the Non–Iterative Method. This approach directly

fits tare corrected balance loads as a function of the difference between (i) the raw outputs

and (ii) the natural zeros of the balance bridges. A detailed derivation of the method, a

discussion of bridge output formats, and the description of the related tare load iteration

process can be found in App. 6, App. 9, and App. 12. Therefore, only basic characteristics

of the method are summarized in this chapter.

First, the development of the regression model of a load component from the output

differences of a balance calibration data set is reviewed. Afterwards, the load prediction

and the use of the regression models of the loads during a wind tunnel test are discussed.

Finally, comments related to the reporting of calibration analysis results are made.

Regression Model Selection and Evaluation

The Non–Iterative Method directly fits calibration loads as a function of the differences

between the raw outputs and the natural zeros of the balance bridges. In other words, each

load component is connected to output differences that were recorded during the balance

calibration. It is assumed that the given balance has a total number of n independent

load components and n independent bridge output measurements. Then, the regression

model of a single load component can be expressed by the following generic relationship

Generic Regression Model of a Balance Load Component

Fϕ = µϕ(D1, . . . , Dψ, . . . , Dn) (14)

where

1 ≤ ϕ ≤ n ⇐⇒ load component index range

1 ≤ ψ ≤ n ⇐⇒ bridge output index range

where Fϕ is the chosen load component, D1, . . . , Dn are differences between the raw

outputs and natural zeros of the balance bridges, index ϕ represents a load component,

index ψ represents a bridge output, and µϕ describes the chosen regression model. Now, a

regression model µϕ of the load component needs to be defined that satisfies the following
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requirements: (i) the chosen regression model contains only terms that represent the true

physical behavior of the balance; (ii) all terms in the chosen regression model are supported

by the balance calibration data; (iii) the chosen regression model is free of linear or massive

near-linear dependencies. These requirements need to be discussed in more detail.

First, it is important that an analyst chooses a set of regression model terms that

can represent the physical behavior of the balance. Different term choices exist that are

discussed in App. 9. The term selection highly depends on specific design characteristics

of the balance. Consequently, the selection is often made based on an analyst’s subject–

matter knowledge. For example, the regression model for a single–piece balance may have

to be constructed by using linear terms Di, quadratic terms D2
i , and cross–product terms

Di ·Dj where i and j are bridge output indices. On the other hand, balances of Task/Able

design may need additional terms to correctly model the bi–directional characteristics of

some of its bridges. In that case, absolute value terms |Di| and the terms Di · |Di| may

have to be added to the set of terms that is traditionally used for a single–piece balance.

In the next step, after all suitable terms have been selected, individual terms of the

regression model need to be identified that the given balance calibration data set supports.

This task is accomplished in two steps. First, terms resulting in linear dependencies

between regression model terms are detected and removed. An algorithm is applied for that

purpose that is described in App. 17. This algorithm applies Singular Value Decomposition

(SVD) to a modified set of variables that are used to construct the regression model term

values. It is still possible that unwanted, i.e., large near–linear dependencies exist in

the remaining regression model term combination even after SVD was applied. These

dependencies could also result in unreliable load predictions if the regression model is not

reduced in size. Therefore, it is important to screen the remaining regression model term

combination for near–linear dependencies by using the Variance Inflation Factor (VIF) as

a test metric (see App. 18 for more details).

At this point, the regression model term selection itself is finished. Tare corrections

still need to be applied to the calibration loads themselves before the final regression

analysis of the balance calibration data can be performed. These tare corrections describe

balance loads that are associated with the weight of the metric part of the balance and

all attached calibration hardware pieces. The determination of the tare loads is done

iteratively by using an algorithm that was improved over the years (see App. 12 for more

details). The final regression model of a load component is obtained after the tare corrected

calibration loads are fitted using the output differences of the bridges and the chosen

regression model term combination as input. The entire balance data analysis process

has to be repeated for each load component of the balance as each component is fitted

independent of all other components.

Now, the load prediction equation for the given balance load component is ready to

be used during the wind tunnel test. This process is discussed in detail in the next section.

44



Load Prediction Process

The application of the regression model of the load component, i.e., Eq. (14) during a

wind tunnel test is simple. First, it is required to measure the natural zeros of the balance

bridges using the tunnel’s instrumentation. These values are needed so that the differences

between the raw outputs and the natural zeros of the balance bridges can be computed

from the tunnel’s instrumentation. Afterwards, the output differences of a wind tunnel

data point are used to compute the terms of the regression model of the load component.

Then, the terms are multiplied with corresponding regression coefficients. Finally, the total

sum of the products of all terms with the related coefficients is computed. This value is

the predicted absolute load value of the load component.

By design, the predicted load value is computed relative to the datum of zero absolute

load as the raw outputs of the data point were referenced to the natural zeros of the bridges

when the output differences were defined. This absolute load is caused by aerodynamic

effects and the physical weight of the wind tunnel model whenever outputs of a data

point are recorded in wind–on condition during a wind tunnel test. Therefore, a wind–off

estimate of the balance load also has to be computed for the given orientation of the model

in the wind tunnel by using corresponding output differences as input for the regression

model. Then, the load caused by the physical weight of the wind tunnel model can be

predicted and subtracted from the total load that is measured for a wind–on data point

so that the aerodynamic load on the model is obtained. Finally, the process is repeated

for the regression models of all remaining load components so that the complete set of

aerodynamic loads for the wind tunnel test point is obtained.

A detailed description of the use of the Non–Iterative Method for the calculation of

balance loads is given in App. 9. In general, it is observed that the load predictions of the

Non–Iterative Method are as accurate and reliable as the load predictions of the Iterative

Method as long as four conditions are met: (i) the regression models are obtained from

a good calibration load schedule design, (ii) the calibration data quality meets accepted

standards, (iii) the regression models are constructed from similar function classes, and

(iv) the regression models do not have linear or massive near–linear dependencies. It also

needs to be mentioned that the load prediction equations of the Non–Iterative Method

are more easily understood and implemented. No load iteration needs to be performed in

order to obtain load estimates from the measured electrical outputs of the bridges during

a wind tunnel test. In addition, the application of the Non–Iterative Method is not limited

by the requirement that higher–order terms can only make small contributions during the

load prediction. The method will work with more influential higher–order terms as long

as a reversible mapping between loads and bridge outputs exists.

Reporting of Analysis Results

All important results need to be reported after a regression analysis of a balance

calibration data set was successfully completed. The author recommends to provide the
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following results:

• Natural zeros of the balance bridges;

• Measured bridge output differences;

• Applied calibration loads;

• Tare loads for each load series (if applicable);

• Tare corrected calibration loads;

• Regression models of the load components;

• Variance Inflation Factors of all chosen regression model terms;

• Percent Contributions of all chosen regression model terms;

• Load residuals ≡ difference between fitted and tare corrected loads;

• Standard deviation of load residuals (engineering units & percent of capacity).

These results will provide an analyst with a better understanding of the expected

accuracy and reliability of the load predictions. It needs to be mentioned for completeness

that the tare load iteration process is described in App. 12, the calculation of the Percent

Contribution is explained in App. 16, and the calculation of the Variance Inflation Factor is

summarized in App. 18. It may also be helpful to provide Analysis of Variance (ANOVA)

results to an analyst who has a strong background in statistics. Metrics reported in an

ANOVA table including the calculation of the p–value of the t–statistics of the coefficient

of a regression model term are explained in the literature (see, e.g., Refs. [68] to [70]).
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VI. Iterative Method

Introduction

The Iterative Method is another approach that is used in the aerospace testing com-

munity for the prediction of strain–gage balance loads. This method is described in great

detail in Refs. [6] & [7] and App. 10. The Iterative Method, similar to the alternate Non–

Iterative Method, uses a mathematical algorithm for the prediction of balance loads from

a set of electrical outputs of the balance bridges. The loads are obtained by applying a

load iteration equation that is typically derived from the result of a multivariate regression

analysis of balance calibration data.

The Iterative Method is substantially more complex than the alternate Non–Iterative

Method that was discussed in the previous chapter. It first fits electrical outputs of the

balance bridges as a function of the tare corrected calibration loads that are obtained after

applying a tare load iteration algorithm to the original balance calibration data set (for

more details see App. 13). Afterwards, a load iteration equation is constructed from the

regression models of the outputs so that balance loads can be predicted from electrical

outputs that are measured during a wind tunnel test.

In theory, an analyst can construct the least squares fit of the electrical outputs from

either the raw outputs or the differences between the raw outputs and the natural zeros of

the bridges as long as an intercept term, i.e., a constant term is included in the regression

model of each output (see App. 10 for more details). Consequently, the intercept becomes

a least squares approximation of the natural zero of the bridge if raw outputs are fitted.

Alternatively, the intercept becomes a least squares approximation of zero output if output

differences of the bridge are fitted. Corresponding fitted regression coefficient sets for the

two output format options will be identical with the exception of the intercept term as

long as the same regression model term combination is used for the analysis (see App. 6

for a detailed discussion of different bridge output formats).

Finally, a load iteration equation is derived from the regression models of the fitted

outputs. This iteration equation may use, for example, the difference between a raw output

and the natural zero of the balance bridge as input for the balance load prediction.

The development of the regression model of an electrical output of a balance bridge is

presented in the next section. Afterwards, the load prediction process and the use of the

iteration equation during a wind tunnel test are discussed. Finally, recommendations re-

lated to the reporting of balance calibration analysis results and the load iteration equation

are summarized.

Regression Model Selection and Evaluation

The definition of the regression model of the balance calibration data starts with the

selection of the bridge output format that is used for the analysis. It is assumed that the

electrical outputs of the balance calibration data are formatted as the difference between
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the raw outputs and the natural zeros of the balance bridges (see also the description of

Difference Type 1 in App. 6). Then, the use of the intercept term in the regression model

of the outputs becomes optional. In addition, the generic description of the regression

model of an output may use the same nomenclature that the description of the regression

model of a balance load component used in the previous chapter.

In theory, each output difference is a function of the tare corrected loads that the

balance experienced during its calibration. Consequently, regression model terms of an

output difference have to be constructed from the load components of the balance. Let

us assume, for example, that the balance has a total of n load components and n bridge

outputs. Then, the regression model of the output difference of a single bridge can be

expressed by the relationship given in Eq. (15) below where Dψ is the output difference,

F1, . . . , Fn are the balance load components, index ψ represents a bridge output, index ϕ

represents a load component, and ξψ is the chosen regression model of the output difference.

Generic Regression Model of a Bridge Output Difference

Dψ = ξψ(F1, . . . , Fϕ, . . . , Fn) (15)

where

1 ≤ ϕ ≤ n ⇐⇒ load component index range

1 ≤ ψ ≤ n ⇐⇒ bridge output index range

Now, the regression model ξψ needs to be defined such that the following three re-

quirements are satisfied: (i) a set of regression model terms is selected that can represent

the physical behavior of the balance; (ii) all chosen regression model terms are supported

by the balance calibration data; (iii) the regression model must be free of unwanted linear

or massive near–linear dependencies. These requirements need to be discussed in detail.

First, an analyst must select a set of regression model terms that can model the

anticipated physical behavior of the balance. Different choices for the regression model of

an output difference exist that are discussed in App. 10. The term selection highly depends

on specific design characteristics of the balance. Consequently, the selection is often made

based on an analyst’s subject–matter knowledge. For example, the regression model of the

output difference of the bridge of a single–piece balance may have to be constructed by

using linear terms Fi, quadratic terms F 2
i , and cross–product terms Fi · Fj where i and j

are load component indices. On the other hand, balances of Task/Able design may need
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additional terms to correctly model bi–directional characteristics of some of its bridges. In

that case, absolute value terms |Fi| of a primary load and terms Fi · |Fi| may have to be

added to the terms that are traditionally used for a single–piece balance.

In the next step, after suitable terms have been selected, individual terms of the

regression model need to be identified that the given balance calibration data set supports.

This goal is usually achieved in two stages. First, terms resulting in linear dependencies

between regression model terms are identified and removed. This task can be accomplished

by using an algorithm that is described in App. 17. This algorithm applies Singular Value

Decomposition (SVD) to a modified set of the independent variables that are used to

construct the regression model term values. It is still possible that unwanted near–linear

dependencies are contained in the remaining regression model term combination that may

result in inaccurate or unreliable load predictions. Therefore, it is important to screen the

remaining term combination for near–linear dependencies by using the Variance Inflation

Factor (VIF) as a test metric (see App. 18 for more details).

At this point, the regression model term selection itself is completed. Tare corrections

still need to be applied to the calibration loads themselves before the final regression

analysis of the balance calibration data can be performed. The tare corrections describe

balance loads that are associated with the physical weight of the metric part of the balance

and all attached calibration hardware pieces. The determination of the tare loads is done

iteratively by using a tare load iteration algorithm (see App. 13). The final regression model

of an output difference is obtained after the output difference is fitted as a function of (i) the

tare corrected calibration loads and (ii) the chosen regression model term combination. The

entire balance data analysis process has to be repeated for the output difference of each

balance bridge as the output of each bridge is fitted independent of the outputs of all

other bridges. Finally, after completion of the least squares fits of all bridge outputs, the

load iteration equation is constructed from the regression coefficients so that loads can be

predicted during a wind tunnel test by using output differences as input.

Two load iteration equation options exist that may be used with the Iterative Method

for the load prediction. The first option is recommended in Ref. [7]. It is identified

as Primary Load Iteration Equation in App. 10 (see Eq. 10.27a). The second option is

identified as Alternate Load Iteration Equation in App. 10 (see Eq. 10.31a). Both iteration

equations are derived from the same set of regression coefficients of the outputs. Therefore,

they will lead to identical balance load estimates as long as the load iterations themselves

converge. The second iteration equation option is more limited. It can only be applied if

the primary sensitivities of all bridges exist. Therefore, it will only work if a balance data

set is described in the design format of the balance. The first iteration equation, on the

other hand, is more universally applicable. It will work even if not all primary sensitivities

of the balance bridges are defined.

Convergence characteristics of the load iteration equation should also be investigated.

The author developed an improved iteration convergence test for that purpose that is
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described in great detail in App. 11. The test is very conservative in nature. It evaluates

the convergence characteristics of the iteration equation in a very large hypothetical region

that includes the actual use envelope of the balance as a small subset. Load iterations are

guaranteed to converge within the region if the upper bound of the Lipschitz Constant is

less than one.

At this point, the load iteration equation for the chosen balance is ready to be used

during the wind tunnel test. This process is discussed in detail in the next section.

Load Prediction Process

The application of load iteration equation during a wind tunnel test is straight forward.

First, the iteration equation is implemented in the wind tunnel’s data system. The iteration

equation coefficients themselves are stored in a so–called data reduction matrix that the

data system reads. Then, natural zeros of the balance bridges must be measured using

the wind tunnel’s instrumentation. They are needed as an output datum so that the

difference between raw outputs and natural zeros of the balance bridges can be computed.

Afterwards, output differences of a wind tunnel data point may be used as input for the load

iteration equation. The convergence of the load iterations is rapid in most applications.

A total of 5 to 10 iteration steps is typically needed to meet the convergence criterion.

The criterion assumes convergence of the load iterations if the largest difference of all load

components for two consecutive load estimates is less than a threshold. The empirical

threshold value of 0.0001 % of load capacity is typically used in the aerospace testing

community for the load iteration convergence test.

By design, the predicted loads of a data point are quantified relative to the datum

of zero absolute load. They equal the sum of loads caused by aerodynamic effects and

the physical weight of the wind tunnel model whenever loads are computed in wind–

on condition during a wind tunnel test. Therefore, a wind–off estimate of the balance

load set for the same model orientation in the tunnel also has to be computed by using

corresponding output differences as input for the load iteration. Then, the aerodynamic

load set of the data point can be obtained after subtracting the predicted load set in

wind–off condition from the total load set that is computed in wind–on condition.

It is the author’s experience that the load predictions of the Iterative Method are as

accurate and reliable as the load predictions of the Non–Iterative Method as long as the

regression models of the output differences were obtained from a good calibration load

schedule design, the calibration data quality meets accepted standards in the aerospace

testing community, and the applied regression models do not have any linear or massive

near–linear dependencies.

Reporting of Analysis Results

All important results need to be reported after a successful analysis of balance cali-

bration data in order to justify the load iteration equation that the Iterative Method uses
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for the balance load prediction. The author recommends to list the following results:

• Natural zeros of the balance bridges;

• Measured bridge output differences;

• Applied calibration loads;

• Tare loads for each load series (if applicable);

• Tare corrected calibration loads;

• Regression models of the output differences;

• Variance Inflation Factors of all chosen regression model terms;

• Percent Contributions of all chosen regression model terms;

• Load iteration equation ≡ data reduction matrix;

• Convergence test results (Lipschitz Condition & Constant, App. 11);

• Load residuals ≡ difference between fitted and tare corrected loads;

• Standard deviation of load residuals (engineering units & percent of capacity).

These results will provide an analyst with a better understanding of the expected

accuracy and reliability of the load predictions. It needs to be mentioned for completeness

that the tare load iteration process is described in App. 13, the calculation of the Percent

Contribution is explained in App. 16, and the calculation of the Variance Inflation Factor is

summarized in App. 18. It may also be helpful to provide Analysis of Variance (ANOVA)

results to an analyst who has a strong background in statistics. Metrics reported in an

ANOVA table including the calculation of the p–value of the t–statistics of the coefficient

of a regression model term are explained in the literature (see, e.g., Refs. [68] to [70]).

Reliability of Balance Load Predictions

The following statement is found in the literature regarding the reliability of strain–

gage balance load predictions (taken from Ref. [7], p. 16):

... An added reason for the recommendation that the iterative model be used lies in the fact

that the presence of invalid coefficients ... will likely cause the iterative solution to fail,

thus drawing attention to the problem. However, with the non–iterative math model such invalid

coefficients often will pass undetected in a back–calculation of the parent data set, but can lead to

incorrect results in later use of the balance with different data which may be difficult to detect. ...

It is also known that the iterative solution may converge under certain circumstances

despite the fact that the related regression models of the bridge outputs contain an invalid

or unsupported term. Therefore, it is concluded that the use of both the Iterative and

the Non–Iterative Method for the balance load prediction is only reliable if invalid terms

in the regression models of the balance data are identified and removed before the final

load prediction equations are generated. Further investigations showed that a failure of

the load iterations of the Iterative Method is often associated with the presence of massive

near–linear dependencies in the regression models of the bridge outputs. This connection

is described in the literature as follows (taken from Ref. [27], p. 4):
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... In addition, Ulbrich observed a direct connection between the divergence of an iter–

ation equation used for the regression analysis of wind tunnel strain–gage balance calibra–

tion data and the presence of massive near–linear dependencies in a regression model. ...

Consequently, terms of a multivariate regression model of balance calibration data

need to be identified that could cause massive near–linear dependencies. The following

metric is recommended for this purpose in the literature (taken from Ref. [27], p. 4):

... Different techniques are recommended in the literature that help to diagnose and

avoid near–linear dependencies in a regression model ... . Many researchers regard the variance

inflation factor (VIF) as one of the most reliable metrics that may be used for this purpose. ...

The above statement means that the complete set of Variance Inflation Factors of

the selected regression model terms of the balance calibration data needs to be determined

in order to systematically investigate the reliability of the load predictions. The chosen

regression model term combination should only be used for the final data analysis if the

maximum of the set of Variance Inflation Factors is below a recommended threshold

(for more details see App. 18). The regression models used during the application of the

Iterative Method must fulfill this requirement. Similarly, the regression models used during

the application of the Non–Iterative Method must fulfill this requirement. Then, an analyst

can be sure that the load prediction equations of the Non–Iterative Method are as reliable

as the load prediction equations of the Iterative Method. This statement is valid as long

as (i) the regression models of the balance calibration data do not have linear or massive

near–linear dependencies, (ii) the calibration loads are tare corrected, and (iii) similar

function classes are used for the definition of the regression models of the data.
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VII. Miscellaneous Topics

Processing of Check Loads

The physical and electrical condition of the balance, the wire harness connections to

the wind tunnel’s data system, and the accuracy of the regression models of the balance

load components need to be examined and verified before a balance can successfully be

used during a wind tunnel test. Therefore, a limited number of check loads must be

applied to the balance in the model preparation room of the wind tunnel facility in order

to guarantee that the balance will perform as expected. It is assumed that the balance

has no physical or electrical defects. Then, the check load process consists of three major

parts: (i) the determination of the natural zeros of the balance bridges; (ii) the application

of single–component loads; (iii) the application of combined loads. The three parts are

discussed in more detail below.

Natural Zeros =⇒ The natural zeros, i.e., the electrical outputs of the balance bridges

at zero absolute load, need to be determined by using one of the approaches that are

discussed in App. 8. Ideally, the differences between the natural zeros measured during

the original calibration of the balance and corresponding values determined during the

check loading process should not exceed the empirical threshold of ≈ 5.0 microV/V .

Single–component Loads =⇒ Single–component loads of all load components in both

positive and negative direction should be applied over the entire load range. They are

needed to independently verify the primary bridge sensitivities that were determined during

the regression analysis of the original calibration data. Single–component loads are often

applied by using gravity weights. Tare loads also need to be accounted for so that loads

caused by the applied gravity weights can be isolated from the total loads that the balance

experiences. It is best to first determine the tare loads associated with the weight of

the calibration equipment by using outputs of the balance bridges as input for a load

calculation before any weight is placed on a weight pan. Then, a second load calculation

is performed after weights are placed on the weight pan. Finally, the difference between

the second load and the predicted tare load is compared with the theoretical load estimate

that is obtained from the known gravity weights and the moment arm (if applicable). In

general, the absolute value of the difference between predicted and applied load should

be less than the empirical threshold of 0.25 % of the load capacity. This accuracy goal

can sometimes not be achieved if significant interactions between balance bridges exist. In

that case, larger load residuals near zero applied load may be observed that are primarily

caused by built–in balance design characteristics.

Combined Loads =⇒ Two or three load components should be applied simultaneously

that are within the physical limitations of the given calibration hardware. Again, as it

was the case with single–component loads, it is necessary to first determine the tare loads

of the calibration equipment by using corresponding outputs of the balance bridges as

input for a separate load calculation before any weight is placed on a weight pan. Then,
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a second load calculation is performed after weights are placed on the weight pan and the

loads of the chosen load combination are applied. Finally, differences between the second

load set and the predicted tare loads are compared with the theoretical load estimates that

are obtained from the known gravity weights and the moment arm. Again, the absolute

value of differences between predicted and applied balance loads should be less than the

empirical threshold of 0.25 % of the load capacity assuming that only small or moderate

bridge interactions exist.

The check loads themselves can be either forces or moments. A force is obtained from

a known set of gravity weights or from a load cell measurement. A moment, on the other

hand, is quantified by multiplying a known force with a known moment arm. The moment

arm is the distance between the load application point and the balance moment center.

More accurate descriptions of an applied moment can be achieved if a large moment arm

is used in combination with a small force instead of a small moment arm in combination

with a large force (see Chapter 4 for a detailed discussion of this topic).

It is recommended to use differences between raw outputs and natural zeros of the

balance bridges as input for both calibration data analysis and load prediction. The natural

zeros should be obtained by using the model preparation room’s instrumentation so that

instrumentation dependent bias errors are not introduced during the check load prediction.

The check load process is typically organized as a set of load series. Only one load

component is varied during each load series while keeping all other load components con-

stant. This approach also works with combined loads as one load component, i.e., the

auxiliary load, is fixed at a certain percentage of its capacity while the other load com-

ponent is varied. Each check load series should have a zero load point at the beginning

and end of the series. Its outputs should only be caused by the weight of the calibration

equipment. This approach has two benefits. First, a comparison of the outputs of the first

and last points of the series allows an analyst to understand how well the data set repeats

and if hysteresis effects are an issue. In addition, the difference of the outputs of either the

first or the last point of the series relative to the natural zeros may be used as input for the

prediction of the tare loads of the load series. These tare loads have to be subtracted from

the predicted loads of all remaining data points of the load series assuming that also the

differences between the raw outputs of those check load points and the natural zeros are

used for the load prediction. Ultimately, the difference between the predicted loads of a

check load point and the predicted tare loads of the related load series have to be compared

with the applied check loads in order to assess the accuracy of the load prediction.

Interactions between load components and bridge outputs also need to be assessed

during the check load process. They are observed as predicted loads that are physically

not applied. Often, small interactions cannot be avoided because they may be the result

of built–in balance design characteristics. However, interactions may also exist that could

be caused by hidden load alignment problems. They could negatively influence the overall

quality of the check load data unless they are detected and avoided.
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Natural zeros, applied check loads, check load residuals, and interactions between

load components should be plotted and listed in a check load analysis report so that both

strengths and weaknesses of a specific balance design are understood and documented.

Balance Component Weight Assessment

It is possible to estimate the individual weight of the metric part of the balance, the

non–metric part of the balance, or any other calibration hardware piece by using related

electrical outputs as input for the load prediction process. In particular, the weight of the

metric part is of interest. It is the only part of the tare loads that cannot physically be

measured. Consequently, balance component weight estimates may provide information

that could lead to a better understanding of the accuracy of the tare load estimates after

a calibration data analysis was done (see App. 12 and App. 13). In addition, it may give

an analyst an idea of the absolute accuracy of the load prediction for a single load state

of the balance as it is often possible to directly weigh component parts of the calibration

equipment using a precision scale or load cell.

In principle, the weight of a part of either the balance or the calibration equipment

is predicted by using electrical output changes relative to the natural zeros of the bridges

as input for a load calculation. These output differences are an input for the load pre-

diction processes that both the Non–Iterative Method and the Iterative Method use. The

component weight is predicted as the normal force, side force, or axial force of the balance

depending on its orientation relative to the direction of the gravitational acceleration. The

weight prediction approach can be applied to balances of all types as long as the computed

balance loads are transformed from the design load format of the balance to direct–read

format (see App. 4 for a description of different balance load formats).

The natural zeros of the balance bridges play an important role during the assessment

of balance component weights. They are the electrical outputs of the bridges when the

balance is in an assumed weightless state (see also Fig. 20 below). In other words, they

NATURAL ZEROS = RAW OUTPUTS OF
BALANCE IN “WEIGHTLESS” STATE

Fig. 20 Electrical output datum ≡ natural zeros of the balance bridges.

are the electrical representation of zero absolute load.

Three examples may be used to illustrate (i) the calculation of the weight of the metric

and non–metric parts of a six–component balance and (ii) the calculation of the weight of
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the calibration hardware. All examples assume that the given balance has a metric outer

sleeve and a non–metric inner rod. The first example satisfies the following conditions:

(i) nothing is attached to the metric part of the balance, (ii) the non–metric part is attached

to a balance support stand, (iii) the positive normal force marker on the face of the balance

points down (i.e., in the direction of the gravitational acceleration), and (vi) the metric

part is leveled. Figure 21 below shows a balance that meets these conditions. In that case,

NON-METRIC
PART

(GRAY)

BALANCE
SUPPORT
SYSTEM

METRIC
PART
(RED)

GRAVITATIONAL
ACCELERATION

NORMAL
FORCE

Fig. 21 Prediction of the weight of the metric part of a balance.

the observed electrical output changes of the bridges relative to the natural zeros are

exclusively caused by the weight of the metric part of the balance. Consequently, the

predicted normal force must be an estimate of the weight of the metric part.

The second example assumes that (i) nothing is attached to the non–metric part of

the balance with the exception of the wire harness, (ii) the wire harness is unsupported and

hung from the non–metric part, (iii) the metric part is attached to the calibration body

that is placed on a leveling table, and (iv) the positive normal force marker on the face of

the balance points down (i.e., in the direction of the gravitational acceleration). Figure 22

below shows a balance that meets these requirements. Now, the observed output changes

NON-METRIC
PART
(RED)

LEVELING
TABLE

METRIC PART
(GRAY)

CALIBRATION BODY
(GRAY)

GRAVITATIONAL
ACCELERATION

NORMAL FORCE
(REACTION FORCE)

Fig. 22 Prediction of the weight of the non–metric part of a balance.
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of the balance bridges relative to the natural zeros are caused by the combined weight of

(i) the non–metric part of the balance and (ii) the wire harness. This time, the negative of

the predicted normal force is the estimate of the combined weight of the non–metric part

and the wire harness. The result is expected because the weight of the non–metric part

is causing a reaction load that acts on the non–metric side of the balance. Therefore, the

predicted normal force has a negative sign even though the positive normal force marker

on the metric part of the balance points down. The estimated combined weight of the

non–metric part and the wire harness of the balance can be added to the estimated weight

of the metric part from the first example. The result is the estimated total weight of the

balance. This value could be compared with an alternate weight estimate that is obtained

after placing balance and wire harness on a precision scale.

The final example assumes that (i) the calibration body is attached to the metric part

of the balance, (ii) the non–metric part is attached to a balance support stand, (iii) the

positive normal force marker on the face of the balance points down (i.e., in the direction

of the gravitational acceleration), and (vi) the calibration body is leveled. Figure 23 below

shows a balance that meets these conditions. In this situation, the observed electrical

METRIC PART PLUS
CALIBRATION BODY

(RED)
GRAVITATIONAL
ACCELERATION

NORMAL
FORCE

BALANCE
SUPPORT
SYSTEM

NON-METRIC
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(GRAY)

Fig. 23 Prediction of the combined weight of metric part and calibration body.

output changes of the bridges relative to the natural zeros must be caused by the combined

weight of (i) the metric part of the balance and (ii) the calibration body. Consequently,

the predicted normal force must be an estimate of the combined weight of the metric part

of the balance and the calibration body. The weight of the metric part of the balance can

be separated from the predicted combined weight if the estimated weight of the metric

part from the first example is subtracted from the predicted combined weight. The result

of the subtraction is the estimated weight of the calibration body. It may be compared

with an alternate weight estimate that is obtained after placing the calibration body itself

on a precision scale.

It must be mentioned for completeness that the approaches used in the three examples

can also be applied to other balance designs as long as (i) a metric and non–metric part
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of the balance can be identified, (ii) the natural zeros of the balance bridges are known,

and (iii) the forces on the balance can be obtained in direct–read format by applying

corresponding load transformations (see App. 4). The component weight prediction for a

semi–span balance, for example, is described in great detail in Ref. [31].

Temperature Effects

The most accurate load predictions within the limitations of a given calibration load

schedule design can be achieved if (i) the balance is calibrated at a constant uniform

temperature and (ii) the temperature of the balance during its calibration matches the

temperature of the balance during its use in the wind tunnel. These two conditions cannot

always be fulfilled. They are influenced by the combined thermal characteristics of the wind

tunnel, the model, and the model support system. These effects need to be quantified by

collecting calibration data at different temperatures if an analyst wants to include the

temperature as an independent variable in the load prediction process.

Differences between the balance temperatures during calibration and use in the tunnel

may result in changes of two measurements that are related to the prediction of the loads.

First, the outputs of the bridges may shift even if no loads are acting on the balance.

This bias shift has to be represented by an additional term in the regression model of

the calibration data that is defined as the temperature difference of the balance relative

to a chosen reference temperature (see App. 14). The contribution of the term may be

negligible if the temperature compensation of the balance bridges is very good.

Balance bridges may also experience a temperature–dependent sensitivity shift (see

discussions in Ref. [38] and App. 14). In principle, two options exist to address the influ-

ence of a sensitivity shift on the predicted loads. The first option simply applies an explicit

correction to each load that is a function of (i) the sensitivity change with respect to temper-

ature, (ii) the observed temperature change, and (iii) the bridge output difference relative

to the natural zero (see App. 14, Eq. (14.12c)). The second option includes an additional

cross–product term in the regression model of the calibration data in order to capture the

sensitivity shift. This cross–product term equals the product of the temperature difference

and the primary output if the Non–Iterative Method is used for the balance load prediction

(see App. 14, Eq. (14.14)). Similarly, the cross–product term equals the product of the

temperature difference and the primary load if the Iterative Method is used for the balance

load prediction (see App. 14, Eq. (14.22)). Table 10 below summarizes the two options

Table 10: Correction options for temperature–dependent bridge sensitivity shift.

Option Correction Approach

Option 1 ... App. 14, Eq. (14.12c) ∆Fi = { d ai,i / d T } · ∆T · Di

Option 2† ... App. 14, Eq. (14.14) Fi = . . . + aξ · {Di ·∆T} + . . .

Option 2‡ ... App. 14, Eq. (14.22) Di = . . . + bξ · {Fi ·∆T} + . . .

†extends regression model of Non–Iterative Method ; ‡extends regression model of Iterative Method

58



that may be used to address a temperature–dependent bridge sensitivity shift. The symbol

∆Fi describes an explicit load correction, ai,i is the bridge sensitivity, T is the temperature,

∆T is the temperature change, Di is the output difference, Fi is the tare corrected load,

and aξ and bξ are regression coefficients of temperature–dependent cross–product terms.

Option 1 works with both the Non–Iterative Method and the Iterative Method. On the

other hand, the description of Option 2 depends on the chosen load prediction method. The

sensitivity shift itself can be quantified if single–component loads of each load component

are applied at different temperatures during the calibration.

Temperature gradients inside the balance itself can also negatively influence the bal-

ance load prediction accuracy. They must be avoided at all cost as the experimental char-

acterization of a temperature gradient and its subsequent use during the load prediction

may be too complex for practical applications.

Flow–Through Balances

Flow–through balances are sometimes needed during wind tunnel tests when a propul-

sion simulator is attached to a wind tunnel model in order to simulate the interaction be-

tween a propeller slip stream or an exhaust jet and the model geometry (see, e.g., Ref. [40]).

This balance type has the characteristic that the non–metric and metric parts of the bal-

ance are bridged by a high–pressure air supply that serves as the power source for the

operation of the propulsion simulator. The routing of the high–pressure air through the

balance introduces internal loads that act on the balance. These internal loads are respon-

sible for changes of the bridge outputs that cannot be ignored. Therefore, the air pressure

is introduced as an additional independent variable for the balance load prediction in order

to better characterize the physical behavior of the flow–through balance.

The calibration of a flow–through balance can become very complex. No air has to

flow through the balance during its calibration as the effect of internal static pressures

on the bridge outputs needs to be quantified. Consequently, only the openings of the air

supply lines on the balance need to be sealed such that a family of constant static pressures

can be applied while the calibration loads themselves are acting on the balance. It is best

to describe each applied pressure as a difference relative to a reference pressure. This

pressure difference may be used as a new independent variable in a regression model of

the balance calibration data if an analyst wants to directly include pressure effects in the

load prediction process.

It is recommended to apply the same set of loadings for each pressure difference. In

that case, it is possible, for example, to use the calibration data such that (i) the two

nearest pressure differences to the wind tunnel test condition are found, (ii) loads are

separately computed for each pressure difference, and (iii) linear interpolation is used to

get the loads at the nominal test condition.

In general, the use of the pressure difference as an additional calibration variable and

the pressurization of the balance during load application greatly increase complexity and
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duration of the balance calibration. Therefore, it may be an advantage to use a balance

calibration machine for the calibration of a flow–through balance. This approach was used

during the calibration of the MC–130 balance that is described in Ref. [40].

Three–Component Moment Balances

A large model for production wind tunnel tests often has (i) a primary six–component

balance to measure loads that act at the model’s moment center and (ii) multiple auxiliary

balances to measure loads on other model parts. An example of an auxiliary balance is a

three–component moment balance. It is frequently used to measure aerodynamic loads on

a control surface, a fin, or a canard that is attached to the fuselage or wing of a model.

The user of a three–component moment balance is primarily interested in knowing

(i) the normal force, (ii) the bending moment, and (iii) the torsion moment so that the

material stress acting on the model part can be monitored. These three load components

are predicted by using the electrical outputs of two bending moment bridges and a torsion

moment bridge that are attached to the balance surface.

Fundamental differences between a three–component moment balance and a six–

component primary balance exist. They must be understood and taken into considera-

tion during design, calibration, and use of the balance. The differences are discussed in

great detail in App. 15. Therefore, only the most important observations and results are

reviewed in this section.

By design, the metric part of a three–component moment balance is flexible. It goes

from the outer edge of the balance to the closest bridge, i.e., the first bending moment

bridge. This definition of the metric part of the balance results from the fact that the

output of the first bending moment bridge remains constant and becomes unusable if a

hypothetical load is applied between its location and the balance moment center. This

conclusion assumes that no temporary load fixture is attached to the balance that allows

for the application of loads over the bending moment bridges or between the first bending

moment bridge and the balance moment center.

The non–metric part of a three–component moment balance, on the other hand, con-

sists of two sections. A flexible section where the bridges are located and a rigid section

that attaches the balance to the wind tunnel model. It is best to use the rigid section of

the non–metric part for the definition of the balance axis system of the three–component

moment balance. Then, its loads can easily be described in the body axis system of the

wind tunnel model.

Several recommendations can be made that are related to design and calibration of

three–component moment balances (see App. 15 for rigorous derivations of the recommen-

dations). First, the product between (i) bending moment bridge distance and (ii) bending

moment bridge sensitivity should be maximized in order to minimize the load prediction

error for the normal force. It is also suggested to apply a significant number of calibration

loads in the vicinity of the first bending moment bridge in order to avoid a situation when
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the two bending moment bridge outputs of the balance appear to be linearly related. A

correction formula for the bending moment arm is also developed in App. 15 that takes

the elastic deformation of the metric part of the balance under load into account.
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VIII. Single–piece Balance Example

Introduction

A manual calibration data set of a NASA single–piece balance was processed to il-

lustrate typical analysis results for a six–component balance. First, basic characteristics

of the balance are reviewed. Then, the natural zeros and bi–directional bridge output

characteristics are discussed. Afterwards, regression models of the calibration data are

presented that the Non–Iterative Method and the Iterative Method often use for calibration

data analysis and load prediction of single–piece balances. Tare load corrections were also

applied to the balance calibration data before the data analysis was performed. Finally,

selected results for each analysis method are discussed and compared. Table 11 below

summarizes characteristics of the given calibration data of the NASA single–piece balance.

Table 11: Characteristics of the NASA single–piece balance data example.

Balance Name Balance Design Calibration Comments

(load format) Method

NASA single– single–piece design manual bridge outputs are

piece balance (NF,SF,AF ;PM,YM,RM) calibration not bi–directional

The chosen single–piece balance belongs to a family of balances that has successfully

been used for many years at NASA wind tunnels. The balance was calibrated using LaRC’s

5–Point Design (Ref. [41], Table 2, Fig. 15). This load schedule was specifically developed

for the application of NASA’s improved version of Guarino’s Method. This balance data

analysis approach is a variation of the Iterative Method that is based on ideas first published

in Ref. [51] (additional details related to Guarino’s Method and Sequential Regression can

be found in Ref. [52]). Guarino’s Method replaces global regression analysis with twenty–

one sequential analysis tasks in order to determine the regression model coefficients of

the output differences that are needed for the definition of the load iteration equation.

Consequently, the structure of LaRC’s 5–Point Design is not necessarily the best choice

if global regression analysis is applied to balance calibration data. Nevertheless, it is the

author’s experience that data from LaRC’s 5–Point Design can successfully be processed

using global regression analysis as long as (i) a tare load iteration is performed and (ii) the

explicit data point weighting scheme described in App. 22 is applied. This weighting

scheme assigns greater weight to single–component loads so that global regression analysis

results are less sensitive to the large number of auxiliary loads that LaRC’s 5–Point Design

uses. Basic characteristics of LaRC’s 5–Point Design are reviewed in the next section.

Calibration Description

The calibration of the NASA balance was done using LaRC’s 5–Point Design. Char-

acteristics of this load schedule design are described in the literature in great detail (see,

e.g., Ref. [41]). Therefore, only basic features of the load schedule are reviewed.
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The calibration load schedule consisted of 410 data points that were distributed across

82 load series. Only one load component was varied during the application of each load

series while keeping all other load components either near zero or at a constant value. Each

load series had a zero load point at the beginning and end of the series. Therefore, it was

possible to do a tare load iteration and also assess potential hysteresis effects using the

electrical output measurements. Positive and negative loads of each load component were

applied over the entire load range. A single load component was applied during 22 load

series, two load components were applied during 54 load series, and three load components

were applied during 6 load series. Four repeat data points of the original calibration

data set were omitted during the data analysis because of suspected data quality issues.

Therefore, loads and outputs of 406 data points were used for the development of the

balance load prediction equations.

Figure 24 below lists basic characteristics of the first ten load series of LaRC’s 5–Point

Design. Load values are reported as a percentage of the load capacities after tare load cor–

Fig. 24 Characteristics of the first ten load series of the calibration data of the NASA

balance (load series ≡ 82; used data points ≡ 406; omitted data points ≡ 4).

rections were applied. Each load series consisted of five data points, i.e., three unique

loadings and two repeats. Pure axial force loads were applied during series 1 and 2 as the

magnitude of all remaining load components was below 2 % of load capacity. Similarly, pure

normal force loadings were applied during series 3 and 4. Pitching moments were applied

in series 5, 6, 7, and 8. In those cases, the weight of the calibration equipment caused

a constant normal force tare load of approximately ±8.5 % of capacity. Rolling moments

were applied in series 9 and 10. This time, the weight of the calibration equipment caused
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a constant normal force tare load of approximately ±5.5 % of capacity. The natural zeros

are important balance specific constants. Therefore, the determination of the natural zeros

of the NASA balance is briefly discussed in the next section.

Natural Zero Determination

The natural zeros are the raw electrical outputs that the balance bridges would have

in an assumed weightless condition. They make it possible to describe the raw outputs

as instrumentation independent output differences. In addition, they are needed as the

global output datum during both calibration data analysis and tare load iteration.

Different methods may be used to determine the natural zeros of a strain–gage balance.

The most common approach first orients the balance such that either the normal force or

the side force direction is parallel to the direction of the gravitational acceleration. Then,

raw outputs of the bridges are recorded. Afterwards, the balance is rolled by 90 deg,

180 deg, and 270 deg. Again, raw outputs are recorded for each roll angle. Finally,

arithmetic mean values of the raw outputs of the four orientations are computed. They

are the natural zeros of the balance bridges. Table 12 below lists the computed natural

zeros of the NASA balance.

Table 12: Natural zeros of the six bridges of the NASA single–piece balance.

rNF◦ rSF◦ rAF◦ rPM◦ rYM◦ rRM◦
microV/V microV/V microV/V microV/V microV/V microV/V

+10.5 −647.7 +315.0 −106.3 +4.7 +158.4

Bi–directional characteristics of the six bridge outputs of the NASA balance are dis-

cussed in the next section. Afterwards, selected data analysis results are presented.

Bi–directional Output Characteristics

A semi–empirical test was developed that determines if an output of a balance bridge

is bi–directional (for more details see App. 7). Results of this test may be used to justify the

use of absolute value terms in the regression models of balance data as this type of regres-

sion model term should only be used with bi–directional outputs. The test works with both

the Non–Iterative Method and the Iterative Method. Two conditions need to be fulfilled for

an output to be considered bi–directional. First, the bi–directional part of the output at

load capacity needs to exceed 0.5 % of the to–capacity–scaled maximum of the difference

between the raw bridge output and its natural zero. Table 13 below lists estimates of

the bi–directional part at load capacity and the corresponding threshold for the NASA

balance. The estimates were computed during the application Non–Iterative Method and

the Iterative Method using the approach that is described in App. 7. It is observed that
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Table 13: Bi–directional part at load capacity of the bridges of the NASA balance.†

Λ(D1,NF ) Λ(D2,SF ) Λ(D3,AF ) Λ(D4,PM) Λ(D5,Y M) Λ(D6,RM)

microV/V microV/V microV/V microV/V microV/V microV/V

Non–Iterative +0.33 +0.34 +0.24 +0.32 +0.09 +0.04

Iterative +0.31 +0.17 +0.31 +0.40 +0.06 +0.06

Threshold ±9.72 ±9.30 ±6.59 ±6.78 ±5.46 ±4.28

†
D1=rNF−rNF◦,D2=rSF−rSF◦,D3=rAF−rAF◦,D4=rPM−rPM◦,D5=rYM−rYM◦,D6=rRM−rRM◦.

the agreement between the estimates from the two analysis methods is excellent as the

estimate differences are well below the threshold of 1 microV/V . In addition, the bi–

directional part of none of the six bridges exceeds the threshold that is listed in the last

row of Table 13. Therefore, it is concluded that the bridge outputs of the NASA balance

are not bi–directional. This result is expected as the NASA balance is a single–piece

design. The test result can also be confirmed after examining the second condition of the

test. Therefore, p–values of the principal absolute value terms of the regression model

of either the fitted balance load (Non–Iterative Method) or the fitted output difference

(Iterative Method) were computed. This metric must be less than the threshold of 0.0010

if a bridge output has bi–directional characteristics. Table 14 below lists computed p–

values of each principal absolute value term of the bridge output differences that were

obtained during the application of the Non–Iterative Method. It is observed that the

Table 14: Non–Iterative Method =⇒ p–value of the absolute value term

of the primary bridge output difference of each fitted load component.†

p{|D1|} p{|D2|} p{|D3|} p{|D4|} p{|D5|} p{|D6|}

0.4759 0.6383 0.7630 0.3794 0.8509 0.8717
not significant not significant not significant not significant not significant not significant

†
D1=rNF−rNF◦,D2=rSF−rSF◦,D3=rAF−rAF◦,D4=rPM−rPM◦,D5=rYM−rYM◦,D6=rRM−rRM◦.

p–values of all terms are well above 0.0010. Therefore, the terms are not statistically

significant. In other words, no justification for the use of absolute value terms exists.

Similarly, Table 15 below lists the computed p–values of each principal absolute value

term of the primary load components that were obtained during the application of the

Iterative Method to the calibration data. Again, the p–values of all six terms are well

Table 15: Iterative Method =⇒ p–value of the absolute value term

of the primary load component of each fitted bridge output difference.

p{|NF |} p{|SF |} p{|AF |} p{|PM |} p{|YM |} p{|RM |}

0.5074 0.8188 0.7666 0.2650 0.9065 0.8166
not significant not significant not significant not significant not significant not significant

above the threshold of 0.0010. Therefore, the bridge outputs are not bi–directional. In
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other words, no justification for the use of absolute value terms exists. Table 16 below

summarizes the final test results.

Table 16: Assessment of the bridge output characteristics of the NASA balance.†

rNF rSF rAF rPM rYM rRM

Is bridge output bi–directional ? no no no no no no

†
A bridge output is bi–directional if two conditions are met: (i) the bi–directional part at capacity exceeds the

threshold (Tbl. 13) and (ii) the p–value of the principal absolute value term is less than 0.001 (Tbls. 14/15).

Bi–directional parts of two of the six bridge outputs are shown in the two figures

below. Outputs of the normal force and rolling moment bridges were chosen as an example.

Figure 25a below shows the bi–directional part of the normal force bridge output. It can

Fig. 25a Bi–directional part of the electrical output of the

normal force bridge plotted versus the tare corrected normal force.

clearly be seen in Fig. 25a above that the bi–directional part is well below the empirical

threshold at load capacity. This observation confirms that the normal force bridge output of

the NASA balance is not bi–directional. Figure 25b below shows the bi–directional part of

the output of the rolling moment bridge. Again, the bi–directional part at capacity is well

Fig. 25b Bi–directional part of the electrical output of the rolling

moment bridge plotted versus the tare corrected rolling moment.

below the threshold that is listed in Table 13 for the rolling moment bridge output. This

observation confirms the test result that the rolling moment bridge output of the NASA

balance is also not bi–directional. – Selected calibration data analysis results for both the

Non–Iterative Method and the Iterative Method are discussed in the following two sections.

Analysis Results for the Non–Iterative Method

First, the Non–Iterative Method was used for the development of the load prediction

equation set for the NASA balance from the given balance calibration data (see App. 9 for

a detailed description of the method). This approach directly fits the balance load com-
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ponents NF , SF , AF , PM , YM , and RM as a function of the bridge output differences

D1, D2, D3, D4, D5, and D6 assuming that all balance loads are described relative to the

absolute load datum of zero load. Table 17 below shows the selected regression model term

combination for each one of the six load components of the balance. Absolute value terms

were omitted in the regression models of the load components because the bridge outputs

Table 17: Regression model terms of the six load components of the NASA balance.

Intercept Term

Principal Linear Terms
{D1, D2, D3, D4, D5, D6}†

Quadratic Terms
D2

1, D2
2, D2

3, D2
4, D2

5, D2
6

Cross–product Terms
(D1 ·D2), (D1 ·D3), (D1 ·D4), (D1 ·D5), (D1 ·D6), (D2 ·D3), (D2 ·D4), (D2 ·D5)

(D2 ·D6), (D3 ·D4), (D3 ·D5), (D3 ·D6), (D4 ·D5), (D4 ·D6), (D5 ·D6)

†
D1=rNF−rNF◦,D2=rSF−rSF◦,D3=rAF−rAF◦,D4=rPM−rPM◦,D5=rYM−rYM◦,D6=rRM−rRM◦.

are not bi–directional. A total of 28 terms, i.e., the intercept, six linear terms, six quadratic

terms, and fifteen cross–product terms were chosen for each load component as (i) LaRC’s

5–Point Design supports all these terms and (ii) no near–linear dependencies were detected

between the column vectors that the chosen regression model terms and the output differ-

ences of the bridges define. In addition, Weighting Method A of App. 22 was applied so

that single component loads have more influence on the final regression analysis results.

Percent contributions of the regression model terms are also frequently used in the

aerospace testing community to assess the importance of regression model terms (see

App. 16 for more details). Figure 26 below shows the percent contributions of the thirty–

NF           SF           AF           PM           YM          RM

Interpretation of the Percent Contribution (taken from App. 16)

Percent_Contribution = 100 % ................... primary/reference term (red)
ABS(Percent_Contribution) > 0.5 % ................. very important term (red)
0.1 % < ABS(Percent_Contribution) < 0.5 % ... term of minor importance (blue)
ABS(Percent_Contribution) < 0.1 % ............. term of no importance (black)

Fig. 26 Percent contributions of the thirty–six principal linear

regression model terms of the six fitted balance load components.

six principal linear terms of the regression models of the load components (for simplicity,
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percent contributions of higher order terms are not discussed). Red color marks percent

contributions of very important terms. Blue color is used to identify terms that are of

minor importance. Finally, black color is used to mark terms of no importance. It is

concluded after an assessment of the percent contributions that eleven of the thirty off–

diagonal terms, i.e., interaction terms can be characterized as very important. They must

be included in the regression models so that interactions between the bridges are taken into

account during the analysis of the balance data. For example, the bridge output differences

D2 and D5 make an important contribution in the regression model of the rolling moment

RM as their percent contributions are +24.53 % and −22.78 %.

The influence of interactions between loads and bridge outputs can directly be visu-

alized if the primary output of a bridge is plotted versus the corresponding primary load.

For example, Fig. 27a below shows the output difference of the normal force bridge plotted

versus the tare corrected normal force. It is known from Fig. 26 and other information

+104 %-104 %
NF, % capacity

0 %
-2019

+2019

0

D1
, m

icr
oV

/V

Fig. 27a Non–Iterative Method =⇒ Output difference of the normal force bridge

(D1) of the NASA balance plotted versus the tare corrected normal force (NF ).

that the normal force bridge output has very small interactions. Consequently, the data

points shown in Fig. 27a closely follow a straight line. The situation is completely different

for the rolling moment bridge. Figure 27b shows the output difference of the rolling moment

+100 %-100 %
RM, % capacity

0 %
-800

+800

0
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Fig. 27b Non–Iterative Method =⇒ Output difference of the rolling moment bridge

(D6) of the NASA balance plotted versus the tare corrected rolling moment (RM).
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bridge plotted versus the tare corrected rolling moment. It is known from Fig. 26 that

the rolling moment (RM) has very large interactions with the side force bridge output

(D2) and the yawing moment bridge output (D5). Consequently, data points no longer

only appear on a straight line when the rolling moment bridge output difference, i.e., D6,

is plotted versus the tare corrected rolling moment. The observed vertical scatter of the

rolling moment bridge output difference is simply caused by the fact that any non–zero

side force or yawing moment applied during the balance calibration causes an unwanted

but unavoidable change of the electrical output of the rolling moment bridge.

A tare load iteration was performed during the data analysis. Consequently, loads

resulting from the weight of the calibration equipment and the metric part of the balance

were included in the load set that was used for the regression analysis of the data. Table 18

below lists the computed tare loads for the first ten load series.

Table 18: Non–Iterative Method =⇒ Predicted tare loads of the first ten load series of the

calibration data of the NASA balance; loads are listed as a percentage of the load capacity.

Series NF, % SF, % AF, % PM, % YM, % RM, %

1 –0.03 +0.01 +12.03 –0.05 ≈ 0 +0.11

2 +0.04 +0.03 –11.56 –0.01 +0.03 ≈ 0

3 +2.00 +0.06 +0.17 +1.60 +0.03 –0.18

4 –1.91 +0.05 +0.17 –1.57 +0.02 –0.16

5 +8.43 +0.03 +0.03 +1.48 +0.03 –0.15

6 –8.48 –0.02 +0.01 –1.57 ≈ 0 +0.06

7 +8.42 +0.02 +0.02 +1.50 +0.02 –0.15

8 –8.49 –0.01 +0.01 –1.55 ≈ 0 +0.06

9 +5.54 +0.02 +0.04 +1.51 +0.03 –0.09

10 –5.61 –0.01 –0.03 –1.59 ≈ 0 +0.06

The regression analysis of the data was successfully completed using (i) the tare cor-

rected loads and (ii) output differences relative to the natural zeros as input. Table 19

below lists the standard deviation of the load residuals of the calibration data for each

load component of the NASA balance. The standard deviations are very small. They are

well below the threshold of 0.10 % of capacity that is traditionally used for the assessment

of the standard deviation of balance calibration load residuals.

Table 19: Non–Iterative Method =⇒ Standard deviation of the load residuals.†

NF SF AF PM YM RM

0.023 % 0.056 % 0.039 % 0.040 % 0.056 % 0.049 %

†Standard deviations are expressed as a percentage of the load capacity.

Normal force residuals of the balance are plotted versus the tare corrected normal

force in Fig. 28 below to illustrate typical results. The residuals are within the threshold
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of ±0.25 % of capacity that is often used to evaluate residuals of individual data points.

Fig. 28 Non–Iterative Method =⇒ Normal force residuals (∆NF ) of

the NASA balance plotted versus the tare corrected normal force (NF ).

Similarly, rolling moment residuals of the balance are plotted versus the tare corrected

rolling moment in Fig. 29 below. Again, individual residuals are within the threshold of

±0.25 % of load capacity. However, larger residuals can be spotted near zero and near the

absolute minimum & maximum of the rolling moment. This behavior can be explained

by the fact that the rolling moment bridge output has significant interactions that cannot

completely be described by the regression models of the calibration data. Nevertheless,

the influence of interactions on rolling moment residuals is still acceptable because they

do not cause individual values that exceed the ±0.25 % threshold.

Fig. 29 Non–Iterative Method =⇒ Rolling moment residuals (∆RM) of

the NASA balance plotted versus the tare corrected rolling moment (RM).

Primary sensitivities of the six balance bridges were also computed so that the maxi-

mum output at capacity could be estimated. The primary sensitivity of a balance bridge is

defined as the first derivative of a bridge output with respect to the corresponding primary

load. It equals the inverse of the coefficient of the primary output difference that is used
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in the regression model of a load component if the Non–Iterative Method is used for the

load prediction. This statement can be illustrated by using the regression model of the

normal force as an example. This model can be defined by the following relationship:

NF = a0 + a1 ·D1 + a2 ·D2 + a3 ·D3 + a4 ·D4 + . . . (16)

Then, the inverse of the primary sensitivity of the normal force bridge output is obtained:

a1 =
∂ NF

∂ D1
≈
{

∂ D1

∂ NF

}−1

=

{
∂ [ rNF −

const.︷ ︸︸ ︷
rNF◦ ]

∂ NF

}−1

=

{
∂ rNF

∂ NF

}−1

(17)

Finally, the primary sensitivity of the normal force bridge is obtained:

primary sensitivity (normal force bridge) =⇒ ∂ rNF / ∂ NF ≈ 1 / a1 (18)

Now, the maximum output at capacity of the six bridges can be determined. This

metric is often used to scale instrumentation inputs so that the best accuracy of the

electrical output measurement can be achieved. The metric is defined as the product of

(i) the primary sensitivity of a bridge with (ii) the capacity of the related load component.

Table 20 below lists values that were obtained for the bridges of the NASA balance. It is

Table 20: Non–Iterative Method =⇒ Maximum outputs† of the NASA balance.

rNF rSF rAF rPM rYM rRM
microV/V microV/V microV/V microV/V microV/V microV/V

1943.4 1861.6 1177.7 1347.4 1063.5 647.3

†
Maximum output ≡ product of primary bridge sensitivity and capacity of the related load component.

observed that the maximum output of the rolling moment bridge is only 647.3 microV/V .

This value is much lower than corresponding values for the other five bridges. Therefore,

the resolution of the rolling moment bridge output measurements across the rolling moment

range is not as good as the resolution of the output measurements of the other bridges.

Analysis Results for the Iterative Method

The Iterative Method may also be used for the data analysis and load prediction

of the NASA balance (see App. 10 for a description of the method). This alternate

load prediction method fits the six output differences D1, D2, D3, D4, D5, and D6 as

a function of the six tare corrected loads NF , SF , AF , PM , YM , and RM . After-

wards, a load iteration scheme is constructed from the regression models of the outputs

so that loads can be predicted from the outputs during a wind tunnel test. Table 21

below shows the regression model term combination for each one of the output differ-

ences of the balance. Again, absolute value terms were omitted in the regression models

of the output differences because the outputs are not bi–directional. A total of 28 terms,
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Table 21: Regression model terms of the six output differences of the NASA balance.

Intercept Term

Principal Linear Terms
NF, SF, AF, PM, YM, RM

Quadratic Terms
NF 2, SF 2, AF 2, PM2, Y M2, RM2

Cross–product Terms
(NF · SF ), (NF ·AF ), (NF · PM), (NF · YM), (NF ·RM)
(SF ·AF ), (SF · PM), (SF · YM), (SF ·RM), (AF · PM)

(AF · YM), (AF ·RM), (PM · YM), (PM ·RM), (YM ·RM)

†
D1=rNF−rNF◦,D2=rSF−rSF◦,D3=rAF−rAF◦,D4=rPM−rPM◦,D5=rYM−rYM◦,D6=rRM−rRM◦.

i.e., the intercept, six linear terms, six quadratic terms, and fifteen cross–product terms

were chosen for each output difference as (i) LaRC’s 5–Point Design supports all these

terms and (ii) no near–linear dependencies were detected between the column vectors that

the chosen terms and the tare corrected loads define. In addition, Weighting Method A

of App. 22 was applied during the analysis so that single component loads have more

influence on the regression analysis results.

Percent contributions of the regression model terms were also computed in order to

assess the importance of regression model terms (see App. 16 for more details). Figure 30

below shows the percent contributions of the thirty–six principal linear terms of the re–

D1 D2 D3 D4 D5 D6

Interpretation of the Percent Contribution (taken from App. 16)

Percent_Contribution = 100 % ................... primary/reference term (red)
ABS(Percent_Contribution) > 0.5 % ................. very important term (red)
0.1 % < ABS(Percent_Contribution) < 0.5 % ... term of minor importance (blue)
ABS(Percent_Contribution) < 0.1 % ............. term of no importance (black)

Fig. 30 Percent contributions of the thirty–six principal linear

regression model terms of the six fitted bridge output differences.

gression models of the output differences after global regression was used for the analysis.

Again, as it was the case for the regression models of the load components, interactions

are observed that cannot be neglected. For example, the side force SF and the yawing

moment YM make an important contribution in the regression model of the rolling moment

bridge output difference D6 as their percent contributions are −28.05 % and +21.40 %. As
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expected, these two values are similar in magnitude but opposite in sign to corresponding

percent contribution estimates of +24.53 % and−22.78 % for D2 and D5 that were obtained

for the regression model of the rolling moment RM (see Fig. 26; a rigorous proof of this

relationship between percent contribution sets is given in App. 16).

A tare load iteration was performed before global regression analysis was used to

determine the coefficients of the regression models of the six output differences. Therefore,

balance loads resulting from the weight of the calibration equipment and the metric part

of the balance were included in the load set that was used as input for the global regression

analysis of the calibration data. Table 22 below lists the computed tare loads for the first

Table 22: Iterative Method =⇒ Predicted tare loads of the first ten load series of

the NASA balance calibration data; loads are listed as a percentage of the load capacity.†

Series NF, % SF, % AF, % PM, % YM, % RM, %

1 –0.03 +0.01 +12.03 –0.05 ≈ 0 +0.11

2 +0.04 +0.03 –11.56 –0.01 +0.03 ≈ 0

3 +2.00 +0.06 +0.18 +1.60 +0.03 –0.18

4 –1.91 +0.05 +0.17 –1.57 +0.02 –0.16

5 +8.43 +0.03 +0.03 +1.48 +0.03 –0.15

6 –8.49 –0.02 +0.01 –1.57 ≈ 0 +0.06

7 +8.42 +0.02 +0.02 +1.50 +0.02 –0.15

8 –8.49 –0.01 +0.01 –1.56 ≈ 0 +0.06

9 +5.54 +0.02 +0.04 +1.51 +0.03 –0.09

10 –5.61 –0.01 –0.03 –1.59 ≈ 0 +0.06

†Boldface marks tare load estimates that slightly differ from values reported in Table 18.

ten load series. The tare loads listed in Table 22 above can be compared with values that are

listed in Table 18 for the Non–Iterative Method. The largest observed differences are on the

order of 0.01 % of capacity. These differences are more than one order of magnitude below

the threshold of 0.25 % that is typically used for the assessment of individual balance load

residuals. Therefore, it is concluded that the agreement between the tare load estimates

obtained from the Non–Iterative Method and Iterative Method is excellent.

The regression analysis of the data was successfully completed using (i) the tare cor-

rected loads and (ii) output differences relative to the natural zeros as input. Afterwards,

the load iteration equation was generated and calibration load residuals were computed.

Table 23 below lists the standard deviation of the load residuals of the calibration data for

each load component of the NASA balance. Overall, the agreement between these standard

deviations and corresponding values reported in Table 19 for the Non–Iterative Method is

excellent. Only the difference between the standard deviation values for the axial force

is 0.005 %. However, this difference is negligible because it is well below the threshold of

0.10 % that is traditionally used to assess the standard deviation of load residuals.
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Table 23: Iterative Method =⇒ Standard deviation of the load residuals.†

NF SF AF PM YM RM

0.023 % 0.057 % 0.044 % 0.040 % 0.056 % 0.048 %

†Standard deviations are expressed as a percentage of the load capacity.

Normal force residuals are plotted versus the tare corrected normal force in Fig. 31

below. As expected, the residuals show good qualitative and quantitative agreement with

corresponding values for the Non–Iterative Method (see Fig. 28).

Fig. 31 Iterative Method =⇒ Normal force residuals (∆NF ) of the

NASA balance plotted versus the tare corrected normal force (NF ).

Figure 32 below shows rolling moment residuals plotted versus the tare corrected

rolling moment. Again, the residuals show good qualitative and quantitative agreement

with corresponding values for the Non–Iterative Method (see Fig. 29).

Fig. 32 Iterative Method =⇒ Rolling moment residuals (∆RM) of the

NASA balance plotted versus the tare corrected rolling moment (RM).

The maximum output at capacity of each balance bridge was also determined using

primary sensitivity estimates that were derived from the regression models of the output

differences. The primary sensitivity of a bridge is defined in this context as the coefficient
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of the primary load component that is used in the regression model of a bridge output

difference. This statement can be illustrated by using the regression model of the output

difference D1 of the normal force bridge as an example. This regression model is given by

the following relationship where rNF◦ is the natural zero of the normal force bridge:

D1 = rNF − rNF◦ = b0 + b1 ·NF + b2 · SF + b3 ·AF + b4 · PM + . . . (19)

By definition, coefficient b1 is the primary sensitivity of D1. Then, because D1 and

rNF differ by a constant, the primary sensitivity of the normal force bridge is obtained:

Primary Sensitivity

(normal force bridge)
=⇒ b1 =

∂ D1

∂ NF
=

∂ [ rNF −
const.︷ ︸︸ ︷
rNF◦ ]

∂ NF
=

∂ rNF

∂ NF
(20)

Now, the maximum output at load capacity of the balance bridges can be computed.

Table 24 below lists values that were obtained for the six bridges of the NASA balance.

Table 24: Iterative Method =⇒ Maximum outputs† of the NASA balance.

rNF rSF rAF rPM rYM rRM
microV/V microV/V microV/V microV/V microV/V microV/V

1942.8 1860.9 1177.5 1347.4 1068.8 650.4

†
Maximum output ≡ product of primary bridge sensitivity and capacity of the related load component.

The numerical estimates listed in Table 24 above can be compared with alternate

estimates that were obtained during the application of the Non–Iterative Method to the

calibration data (see Table 20). The absolute value of the differences between related

estimates is given in Table 25 below. The differences for four of the six bridges are very

Table 25: Difference between estimated maximum outputs (Table 20 versus Table 24).

rNF rSF rAF rPM rYM rRM
microV/V microV/V microV/V microV/V microV/V microV/V

0.6 0.7 0.2 0.0 5.3 3.1

small, i.e., they are less than the empirical threshold of 1.0 microV/V that may be used to

identify negligible output changes. The yawing moment and rolling moment bridge outputs

are the exception. In those cases, the differences are 5.3 microV/V and 3.1 microV/V .

They still indicate an acceptable agreement between the independent estimates of the

maximum outputs at load capacity.

In conclusion, it was shown for a single–piece balance data example that the agreement

between load residuals, percent contributions, tare load estimates, and maximum outputs

at capacity of the Non–Iterative Method and the Iterative Method is excellent. These results

illustrate using real–world balance data that the accuracy of the two methods is the same

for all practical purposes.
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IX. Force Balance Example

Introduction

A manual calibration data set of NASA’s MK40A six–component force balance is

used to illustrate the analysis of data from a balance with known bi–directional bridge

output characteristics. First, physical characteristics of the balance and the calibration

load schedule are reviewed. Then, the determination of the natural zeros and the assess-

ment of bridge output characteristics are discussed. Afterwards, the selection of suitable

regression models is presented that support both the use of the Non–Iterative Method and

the Iterative Method for the balance load prediction. Tare load corrections are also ap-

plied to the calibration loads before the regression analysis is performed. Consequently,

the calibration loads can be described relative to the absolute load datum of zero load.

Finally, regression analysis results and the load prediction accuracy of the balance are

examined. Table 26 below summarizes the most important characteristics of the chosen

balance calibration data set of the MK40A six–component force balance.

Table 26: Overview of balance calibration data analysis example characteristics.

Balance Name Balance Design Calibration Comments

(diameter) (load format) Method

MK40A force balance design manual normal & side force bridge

(2.50 inches) (N1, N2, S1, S2, AF,RM) calibration outputs are bi–directional

The MK40A balance belongs to a family of six–component force balances that was

designed and manufactured by the Task/Able Corporation. The balance is frequently used

for tests in the NASA Ames 11–ft Transonic Wind Tunnel (TWT). Its load capacities are

close to the expected load range of typical aircraft models that are tested in this tunnel.

Figure 33 below shows the overall layout of the MK40A balance.

Fig. 33 Basic layout of NASA’s 2.5 inch MK40A force balance.

By design, the MK40A balance is a multi–piece force balance. It measures five forces

(forward & aft normal force, forward & aft side force, axial force) and one moment (rolling

moment). These loads can easily be converted to direct–read format by applying load
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transformations that are listed in App. 4. The balance has a cylindrical metric outer

sleeve and a non–metric inner rod (diameter of the outer sleeve = 2.50 in; total length of

the balance ≈ 11.0 in). Table 27 below lists capacities of the six load components of the

MK40A balance in engineering units.

Table 27: Load capacities of the MK40A balance (lbs ≡ pounds of force).

N1, lbs N2, lbs S1, lbs S2, lbs AF, lbs RM, in−lbs

3500 3500 2500 2500 400 8000

The non–metric part of the balance is typically mounted on a sting that is attached to

the rear model support strut of the Ames 11–ft TWT. A basic calibration of the MK40A

balance was performed in 2006 that only applied a limited number of combined loadings to

the balance. A data set from this calibration was selected for the discussion of force balance

characteristics. The data set is well suited for the demonstration of some basic ideas and

processes that are associated with calibration data analysis and the load prediction of force

balances. Details of the calibration are described in the next section.

Calibration Description

The manual calibration of the MK40A balance took place in 2006 at the Ames Balance

Calibration Laboratory. First, physical and electrical checks of the balance were performed.

Then, the natural zeros of the balance bridges were determined by using Method I that

is described in App. 8. Afterwards, the non–metric part of the balance was attached

to the load stand that is used for manual calibrations at the Ames Balance Calibration

Laboratory. Finally, the calibration body was attached to the metric part of the balance

so that calibration loads could be applied on its surfaces.

The selected load stand allows for the leveling of the calibration body by using man-

ually operated roll and pitch controls. The spatial orientation of the calibration body,

i.e., the inputs for its alignment relative to the direction of the gravitational acceleration,

are provided by using an Angle Measurement System unit that is rigidly connected to the

calibration body.

Manual loads were applied to the balance using gravity weights that were connected

to the calibration body by using a variety of hardware pieces (knife edges, yokes, moment

arms, threaded rods, flexures, and weight pans). The calibration body was leveled each

time an individual gravity weight was added or removed from a weight pan by using the roll

and pitch controls of the load stand. It is important to mention that the process of leveling

establishes a known orientation of the balance axis system relative to the direction of the

gravitational acceleration so that loads caused by gravity weights can easily be described

in the design load format of the balance.

Figure 34 below shows the chosen calibration load schedule for the MK40A balance.

The North American load sign conventions were used to describe the loads that acted on
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the balance (see Ref. [7] and App. 3 for more details). It can be seen that single–component

loads and a limited number of combined loads were applied. Single–component loads of

Fig. 34 Manual calibration load schedule of the MK40A force balance

(total number of load series ≡ 16; total number of data points ≡ 162).

the normal and side forces were applied by loading directly over corresponding forward

and aft bridges while keeping the roll axis of the balance perpendicular to the direction of

the gravitational acceleration. A sign change of an applied load at a forward or aft bridge

was achieved after rolling the calibration body by 180 degrees.

It was mentioned in the previous paragraph that only a limited number of combined

loadings were applied. For example, gravity weights were applied directly over the balance

moment center in load series 5 and 6 while the roll axis of the balance was perpendicular to

the direction of the gravitational acceleration. This approach results in combined loadings

of the forward and aft normal force, i.e., N1 and N2, whenever the normal force marker

on the balance face is parallel to the direction of the gravitational acceleration. Similarly,

combined loadings of the forward and aft side force, i.e., S1 and S2, are achieved in series

11 and 12 after aligning the side force marker on the balance face with the direction of the

gravitational acceleration. Table 28 below summarizes the forward and aft normal force

loads and load combinations that were applied during the calibration of the balance.
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Table 28: Applied forward & aft normal forces of the calibration load schedule.

Series Load Comments

1 +N1 • Positive normal force marker on balance face points towards the floor.

• Gravity weights are applied over the forward normal force bridge.

2 −N1 • Negative normal force marker on balance face points towards the floor.

• Gravity weights are applied over the forward normal force bridge.

3 +N2 • Positive normal force marker on balance face points towards the floor.

• Gravity weights are applied over the aft normal force bridge.

4 −N2 • Negative normal force marker on balance face points towards the floor.

• Gravity weights are applied over the aft normal force bridge.

5 +N1,+N2 • Positive normal force marker on balance face points towards the floor.

• Gravity weights are applied over the balance moment center.

6 −N1,−N2 • Negative normal force marker on balance face points towards the floor.

• Gravity weights are applied over the balance moment center.

Similarly, Table 29 below summarizes the side force loads and load combinations that

were applied during the calibration of the MK40A balance.

Table 29: Applied forward & aft side forces of the calibration load schedule.

Series Load Comments

7 +S1 • Positive side force marker on balance face points towards the floor.

• Gravity weights are applied over the forward side force bridge.

8 −S1 • Negative side force marker on balance face points towards the floor.

• Gravity weights are applied over the forward side force bridge.

9 +S2 • Positive side force marker on balance face points towards the floor.

• Gravity weights are applied over the aft side force bridge.

10 −S2 • Negative side force marker on balance face points towards the floor.

• Gravity weights are applied over the aft side force bridge.

11 +S1,+S2 • Positive side force marker on balance face points towards the floor.

• Gravity weights are applied over the balance moment center.

12 −S1,−S2 • Negative side force marker on balance face points towards the floor.

• Gravity weights are applied over the balance moment center.

A different strategy was used for the application of the axial force. In that case, the roll

axis of the balance was oriented parallel to the direction of the gravitational acceleration.

Then, knife edges, a yoke, and a weight pan were used to apply the positive axial force on

the front face of the calibration body assuming that the balance is pointing up. Afterwards,

the orientation was changed such that the balance was pointing down. In that case, the

weight pan was directly attached with a flexure to the front face of the calibration body

so that a negative axial force could be applied. Table 30 below summarizes all axial force
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loads that were applied during the calibration of the MK40A balance.

Table 30: Applied axial forces of the calibration load schedule.

Series Load Comments

13 +AF • Roll axis is parallel to the direction of the gravitational acceleration.

• Positive axial force points towards the floor.

• Gravity weights are applied at intersection of calibration body & roll axis.

14 −AF • Roll axis is parallel to the direction of the gravitational acceleration.

• Negative axial force points towards the floor.

• Gravity weights are applied at intersection of calibration body & roll axis.

The MK40A is a force balance that is primarily used for wind tunnel tests of aircraft.

Therefore, the normal force capacities are about one order of magnitude greater than the

axial force capacities (see Table 27). This characteristic also means that the sensitivity

of the axial force bridge is substantially larger than the sensitivities of the normal force

bridges. Consequently, it is important during the application of the normal forces to

minimize possible alignment errors of the calibration body so that interactions between

the applied normal forces and the axial force bridge outputs are kept to a minimum.

In theory, it is useful during the calibration of a balance to apply normal and axial

forces simultaneously so that built–in interactions resulting from physical characteristics

of the balance can clearly be separated from interactions that are caused by small mis-

alignments of the applied loads. Unfortunately, no hardware was available during the 2006

calibration of the MK40A balance to simultaneously apply the normal forces and the axial

force. Therefore, these load combination are not included in the load schedule that is

discussed in this section.

Finally, single–component loads of the rolling moment were applied after orienting

the calibration body such that (i) its roll axis is perpendicular to the direction of the

gravitational acceleration and (ii) the positive normal force direction marker on the balance

face is pointing towards the floor. Then, two rolling moment arms with a pair of weight

pans were attached to the calibration body at the location of the balance moment center.

Afterwards, an equal number of weights was placed on each weight pan and shifted from

one weight pan to the other so that both positive and negative rolling moments could

be applied. It always benefits the overall calibration data quality if the calibration load

schedule of a balance is symmetric. Therefore, the author recommends to repeat the rolling

moment loadings after rolling the calibration body by 180 degrees so that the negative

normal force marker on the balance face points towards the floor.

Gravity weights result in a small but constant normal force load on the balance if the

rolling moment is applied by using the approach that is described in the previous para-

graph. This unwanted normal force can be minimized by making the rolling moment arms

as long as possible. It should also be mentioned that the normal force instead of the side
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force was aligned with the direction of the gravitational acceleration during the application

of the rolling moments. This choice was made because the normal force capacities of the

balance are substantially larger than the side force capacities. Consequently, interactions

between the rolling moment and the balance bridges are kept to a minimum during the

application of the rolling moments. Table 31 below summarizes the rolling moments that

were applied during the calibration of the MK40A balance.

Table 31: Applied rolling moments of the basic calibration load schedule.

Series Load Comments

15 ±RM • Roll axis is perpendicular to the direction of the gravitational acceleration.

• Positive normal force points towards the floor.

• Moment arms are attached to calibration body at balance moment center.

• Weight pans are attached to the ends of the moment arms.

• Equal number of gravity weights is placed on each weight pan.

• Gravity weights are shifted between pair of weight pans.

16 ±RM • Roll axis is perpendicular to the direction of the gravitational acceleration.

• Negative normal force points towards the floor.

• Moment arms are attached to calibration body at balance moment center.

• Weight pans are attached to the ends of the moment arms.

• Equal number of gravity weights is placed on each weight pan.

• Gravity weights are shifted between pair of weight pans.

Again, as mentioned before, the total normal force is kept constant during the ap-

plication of the rolling moment because weights are simply shifted between the pair of

weight pans. Therefore, it is possible to make the total normal force a part of the tare

loads of those load series that are associated with the application of the rolling moments.

This approach has the advantage that individual loads on the forward & aft normal force

bridges are the result of the tare load iteration process. In other words, an analyst does

not have to explicitly compute and specify the normal forces for series 15 and 16 in the

calibration data input file as they are treated as tare loads.

A tare load iteration has to be applied during the calibration data analysis. Therefore,

it is critical that each one of the 16 load series of the calibration load schedule has zero load

points at the beginning and end of each series. These zero load points should have outputs

that are exclusively caused by (i) the combined weight of the metric part of the balance, the

calibration body, and the calibration hardware and, if applicable, by (ii) constant auxiliary

loads that are intentionally treated as part of the tare loads. Then, it is possible to format

the calibration data input file such that a tare load iteration can be performed (see App. 12

and App. 13 for more details). In addition, a comparison of the outputs at the beginning

and end of a load series helps an analyst to understand and quantify possible hysteresis

effects that may be a physical characteristic of the given balance design.
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The load spacing within each load series is dictated by the size of the weights and the

dimensions of the rolling moment arms that a balance calibration laboratory owns. Ideally,

at least two loads should be applied between 0 % and 100 % capacity. Then, information

is collected that could potentially be used to support a quadratic term in the regression

model of the calibration data. – The natural zeros of the balance bridges are the electrical

outputs that the balance would have in a weightless condition. Their determination is

briefly discussed in the next section.

Natural Zero Determination

It was decided to use Method I of App. 8 for the determination of the natural zeros

of the balance. Therefore, the balance was simply placed on a leveling table using V–

blocks and oriented such that the negative forward/aft normal force was pointing in the

direction of the gravitational acceleration. Then, raw outputs were recorded. Afterwards,

the balance was rotated by 90 deg, 180 deg, and 270 deg in order to obtain three more

sets of raw output readings. Finally, the electrical outputs of the four orientations were

averaged in order to get the natural zeros of the six bridges. Measured raw outputs and

results of the application of Method I are shown in Table 32 below.

Table 32: Natural zeros of the MK40A balance.

Roll Angle rN1◦ rN2◦ rS1◦ rS2◦ rAF◦ rRM◦

(Orientation) microV/V microV/V microV/V microV/V microV/V microV/V

0◦ −20.17 −2.71 −1.38 −56.87 −138.59 −19.77

90◦ −19.23 −1.98 +0.10 −55.77 −138.79 −19.88

180◦ −18.29 −1.26 −1.25 −56.81 −138.79 −19.64

270◦ −19.24 −2.01 −2.68 −57.94 −138.76 −19.56

Natural Zeros
† −19.23 −1.99 −1.30 −56.85 −138.73 −19.71

†The natural zeros are the arithmetic mean of the column values.

In theory, the natural zeros are repeatable physical constants as long as (i) no changes

to both wiring and gaging of the balance are made and (ii) the balance does not expe-

rience plastic deformation during use. Therefore, the estimates of the natural zeros of

2006 (Table 32) were compared with corresponding estimates that were obtained in 2004.

Table 33 below shows the estimated natural zeros of 2004 and 2006. The maximum

Table 33: Repeatability of the estimated natural zeros of the MK40A balance.

Calibration rN1◦ rN2◦ rS1◦ rS2◦ rAF◦ rRM◦
Date microV/V microV/V microV/V microV/V microV/V microV/V

2004 −20.21 −3.91 −2.98 −57.65 −139.98 −19.83

2006 −19.23 −1.99 −1.30 −56.85 −138.73 −19.71

83



difference between the estimates of 2004 and 2006 is on the order of 2.0 microV/V . These

variations are typical values that may be observed in a balance calibration laboratory. They

may be the result of small instrumentation set–up and/or measurement process changes

that influenced the measurement of the electrical outputs of the bridges. It is the author’s

experience that (i) better instrumentation, (ii) improved process control, and (iii) rigorous

laboratory staff training may reduce the observed natural zero variations to values that

can be between 0.5 microV/V and 1.0 microV/V .

Bi–directional characteristics of the bridge outputs of the MK40A balance are inves-

tigated in detail in the next section.

Bi–directional Output Characteristics

A semi–empirical test was developed that determines if an output of a balance bridge

has bi–directional characteristics if it is plotted versus the related primary bridge load (see

App. 7, section 7.3.2). Test results may be used to justify the inclusion of absolute value

terms in regression models of balance calibration data. Those types of terms should only

be chosen if the outputs of a balance bridge have known bi–directional characteristics.

The test works with both the Non–Iterative Method and the Iterative Method. Two

conditions need to be fulfilled for an output to be considered bi–directional if it is plotted

versus the related primary load component. First, the bi–directional part of the output

at load capacity needs to exceed 0.5 % of the to–capacity–scaled maximum of the dif-

ference between the bridge output and its natural zero. In addition, the p–value of the

principal absolute value term must be less than 0.001. First, the bi–directional parts are

examined. Table 34 below lists the bi–directional part at load capacity for each bridge

output of the MK40A balance. The estimates were computed during the application

of the Non–Iterative Method and the Iterative Method to data from the MK40A balance.

Table 34: Bi–directional part at load capacity of the bridges of the MK40A balance.†

Λ(D1,N1) Λ(D2,N2) Λ(D3,S1) Λ(D4,S2) Λ(D5,AF ) Λ(D6,RM)

microV/V microV/V microV/V microV/V microV/V microV/V

Non–Iterative +6.46 +12.81 +23.64 +26.09 +1.21 −0.31

Iterative +7.52 +11.79 +22.42 +25.05 +0.74 −0.27

Threshold ±6.12 ±6.65 ±6.29 ±6.48 ±7.14 ±6.54

†
D1=rN1−rN1◦, D2=rN2−rN2◦, D3=rS1−rS1◦, D4=rS2−rS2◦, D5=rAF−rAF◦, D6=rRM−rRM◦.

It is observed that the bi–directional parts of three bridges, i.e., rN2, rS1, and rS2, are

well above the threshold that is listed in the last row of Table 34. The bi–directional part

of one bridge output, i.e., rN1, is at the threshold and the bi–directional parts of two

bridge outputs, i.e., rAF and rRM , are well below the threshold.
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Next, the p–value of the t–statistic of the principal absolute value term was computed.

First, results for the Non–Iterative Method are reviewed. Table 35 below lists the computed

p–values of each absolute value term that were obtained after the Non–Iterative Method

was applied. It is observed that the absolute value terms related to output differences

Table 35: Non–Iterative Method =⇒ p–value of the absolute value term

of the primary bridge output difference of each fitted load component.†

p{|D1|} p{|D2|} p{|D3|} p{|D4|} p{|D5|} p{|D6|}

0.0463 < 0.001 < 0.001 < 0.001 0.5102 0.5926
not significant significant significant significant not significant not significant

†
D1=rN1−rN1◦, D2=rN2−rN2◦, D3=rS1−rS1◦, D4=rS2−rS2◦, D5=rAF−rAF◦, D6=rRM−rRM◦.

D2, D3, and D4 are statistically significant. Similarly, results for the Iterative Method are

examined. Table 36 below lists the computed p–values of each absolute value term that

were obtained after the Iterative Method was applied. Again, it is observed that the three

absolute value terms related to the load components N2, S1, and S2 are statistically

Table 36: Iterative Method =⇒ p–value of the absolute value term

of the primary load component of each fitted bridge output difference.

p{|N1|} p{|N2|} p{|S1|} p{|S2|} p{|AF |} p{|RM |}

0.0223 < 0.001 < 0.001 < 0.001 0.6853 0.6352
not significant significant significant significant not significant not significant

significant. It is concluded, after reviewing the test results listed in Tables 34, 35, and 36

that three of the six bridge outputs are bi–directional. They are the aft normal force bridge

output and the forward & aft side force bridge outputs. Final test results are summarized

in Table 37 below.

Table 37: Assessment of the bridge output characteristics of the MK40A balance.†

rN1 rN2 rS1 rS2 rAF rRM

Is output bi–directional ? no yes yes yes no no

†
A bridge output is bi–directional if two conditions are met: (i) the bi–directional part at capacity exceeds its

threshold (Tbl. 34) and (ii) the p–value of the principal absolute value term is less than 0.001 (Tbls. 35/36).

It is useful to illustrate the bi–directional part of two of the six outputs as an example.

The forward side force and the rolling moment bridge outputs were chosen for that purpose.

Figure 35 below shows the bi–directional part of the output of the forward side force bridge.
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Fig. 35 Bi–directional part of the electrical output of the forward

side force bridge plotted versus the tare corrected forward side force.

It can clearly be seen that the bi–directional part is above the empirical threshold at load

capacity. This observation visually confirms that the forward side force bridge output

of the MK40A balance has bi–directional characteristics when plotted versus the forward

side force. Figure 36 below shows the bi–directional part of the electrical output of the

Fig. 36 Bi–directional part of the electrical output of the rolling

moment bridge plotted versus the tare corrected rolling moment.

rolling moment bridge. In this case, the bi–directional part at capacity is well below the

threshold that is listed for the rolling moment bridge output in Table 34. This observation

visually confirms the test result that the rolling moment bridge output of the MK40A

balance is not bi–directional when plotted versus the rolling moment.

It must be mentioned at this point that results of the semi–empirical test only allow

an analyst to assess bi–directional characteristics between a bridge output and the related

primary load of the bridge. The test cannot investigate more complex bi–directional char-

acteristics that may exist between a bridge output and other balance loads components.

In that case, it is recommended (i) to temporarily include absolute value terms in the re-

gression models of the balance data, (ii) to perform a preliminary analysis, and (iii) to use

the percent contributions of the absolute value terms as a test metric in order to determine

if the chosen absolute value terms can model more complex connections between bridge

outputs and balance loads (see also the discussion in App. 7, section 7.5). The impor-

tance of modeling more complex bi–directional connections between bridge outputs and

balance loads in the load prediction equations must not be underestimated. An omission

of an important bi–directional connection typically results in an unwanted increase of the

calibration load residuals.

Complex bi–directional connections between the rolling moment and the outputs of

the rolling moment bridge and the forward side force bridge of the MK40A balance exist.

They can be used to illustrate their influence on the observed outputs of the balance
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bridges. Table 38 below shows the applied rolling moment, the rolling moment bridge

output difference, the forward side force, and the forward side force bridge output differ–

Table 38: Rolling moment, rolling moment bridge output difference, for–

ward side force, and forward side force bridge output difference of series 15.

RM D6 = rRM − rRM◦ S1 D3 = rS1− rS1◦
in−lbs microV/V lbs microV/V

−8000 −1305.45 0.0 −13.50

−6000 −979.84 0.0 −9.25

−4000 −653.94 0.0 −2.29

−2000 −327.39 0.0 +4.10

0 −0.26 0.0 +3.81

+2000 +326.80 0.0 +21.26

+4000 +653.94 0.0 +30.90

+6000 +980.60 0.0 +39.14

+8000 +1307.11 0.0 +46.85

ence of a subset of nine data points of load series 15. As expected, the rolling moment

bridge output difference (D6) shows a highly linear relationship with the applied rolling

moment (RM). This result is expected as (i) the rolling moment is its primary bridge load

and (ii) it is known that the rolling moment bridge output does not have bi–directional

characteristics when plotted versus the rolling moment (see also Table 37 and Fig. 36).

It is also observed in Table 38 that the forward side force bridge output difference

(D3) responds to the rolling moment (RM). The output range of the forward side force

bridge output is 60.35 microV/V for a rolling moment range of 16000 in−lbs. This output

range is well above the empirical threshold of 1 microV/V that is often used to identify

negligible output changes. Therefore, the observed output range indicates an interaction

between the rolling moment (RM) and forward side force bridge output difference (D3)

that cannot be ignored when the regression analysis of the calibration data is performed.

The rolling moment is considered an independent variable if the Iterative Method is used

to analyze balance calibration data. Consequently, the rolling moment is needed in the

regression model of the forward side force bridge output difference, i.e., D3, if the Iterative

Method is used to analyze the calibration data of the MK40A balance.

The connection shown in Table 38 must be interpreted differently if the Non–Iterative

Method is used for the balance calibration data analysis. In that case, independent and

dependent variables are switched. Then, the rolling moment (RM) becomes the rolling

moment bridge output difference (D6) and the forward side force bridge output difference

(D3) becomes the forward side force (S1). Consequently, the rolling moment bridge output
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difference (D6) is needed in the regression model of the forward side force (S1) if the Non–

Iterative Method is used to analyze the calibration data. Otherwise, the source of the

output range on the forward side force bridge output difference (D3) would not correctly

be interpreted in the regression model of the forward side force (S1) as the applied values

of the forward side force were all zero during series 15.

It is also observed in Table 38 that the forward side force bridge output difference

(D3) shows a bi–directional connection with the rolling moment (RM) as the output

is −13.50 microV/V for −8000 in–lbs and +46.85 microV/V for +8000 in–lbs. The

connection would not be bi–directional if the output differences at ±8000 in–lbs would

be similar in magnitude (e.g., ±30.18 microV/V ). Therefore, the absolute value term

of the rolling moment is needed in the regression model of the forward side force bridge

output difference if the Iterative Method is used to analyze the calibration data. Similarly,

the absolute value term of the rolling moment bridge output difference is needed in the

regression model of the forward side force if the Non–Iterative Method is applied.

The percent contributions of the regression model terms are also used in the next

two sections to illustrate conclusions resulting from the bi–directional connection between

rolling moment and forward side force bridge output difference.

Analysis Results for the Non–Iterative Method

The Non–Iterative Method is used in this section for the development of the load

prediction equations for the MK40A balance from the given calibration data (see App. 9 for

a description of the method). This approach directly fits the six balance load components,

i.e., N1, N2, S1, S2, AF , and RM as a function of the bridge output differences D1, D2,

. . ., D6 assuming that all loads are described relative to the absolute load datum of zero

load. Table 39 below shows the selected regression model term combination for each one

of the six load components of the balance. Absolute value terms were included in the

Table 39: Regression model terms of the six load components of the MK40A balance.

Intercept Term

Principal Linear Terms†

D1, D2, D3, D4, D5, D6

Principal Absolute Value Terms
|D1|, |D2|, |D3|, |D4|, |D5|, |D6|

Quadratic Terms
D2

1, D2
2, D2

3, D2
4, D2

5, D2
6

Principal Linear × Principal Absolute Value Terms
D1 · |D1|, D2 · |D2|, D3 · |D3|, D4 · |D4|, D5 · |D5|, D6 · |D6|

Cross–product Terms
(D1 ·D2), (D3 ·D4)

†
D1=rN1−rN1◦ , D2=rN2−rN2◦ , D3=rS1−rS1◦ , D4=rS2−rS2◦ , D5=rAF−rAF◦ , D6=rRM−rRM◦
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regression models of the load components because (i) three of the six bridge outputs have

bi–directional characteristics when plotted versus the related primary load component and

(ii) it is unknown if more complex bi–directional characteristics exist. No term reduction

was done during the regression analysis of the data, i.e., 27 terms were used to separately

fit each load component.

Figure 37a below shows the fitted coefficient value, standard error, t–statistic, p–value,

and Variance Inflation Factor for each term of the regression model of the forward normal

force as an example. These metrics may be used to assess the reliability of the regression

model of the load component. As expected, the t–statistic of the output difference D1 of

the forward normal force bridge output rN1 has the greatest magnitude, i.e., ≈ 873, as it is,

by design, the primary output of the forward normal force. Its p–value of less than 0.0001

indicates that the regression model term is highly significant. It is also observed that

moderate near–linear dependencies exists between many of the chosen regression model

terms. Related Variance Inflation Factors are between 14 and 21. They are highlighted

in blue color in Fig. 37a. Variance Inflation Factors at these levels are no surprise as they

are frequently observed with data from balances with bi–directional bridge outputs (see

also App. 18 for details related to the calculation of the Variance Inflation Factor).

Fig. 37a Coefficient values, standard error, t–statistic, p–value, and Variance

Inflation Factors of the regression model terms of the forward normal force (N1).

Percent contributions of the regression model terms were also determined after com-

pletion of the regression analysis of the calibration data. Figure 37b below shows the
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percent contributions of the thirty–six principal linear terms and the thirty–six principal

absolute value terms of the regression models of the six load components (for simplicity,

percent contributions of higher order terms are not discussed). Red color marks percent

contributions of very important terms. Blue color is used to identify terms that are of

minor importance. Finally, black color is used to mark terms of no importance. In gen-

eral, it can be seen that the interactions between the bridges cannot be neglected. A total

of 26 of the 72 terms are highlighted in red color (not counting the percent contribution

of 100 %). These 26 terms are considered to be very important terms as the magnitude of

N1           N2           S1           S2            AF           RM

Interpretation of the Percent Contribution (taken from App. 16)

Percent_Contribution = 100 % ................... primary/reference term (red)
ABS(Percent_Contribution) > 0.5 % ................. very important term (red)
0.1 % < ABS(Percent_Contribution) < 0.5 % ... term of minor importance (blue)
ABS(Percent_Contribution) < 0.1 % ............. term of no importance (black)

Fig. 37b Percent contributions of the principal linear and ab–

solute value terms of the six fitted balance load components.

their percent contributions exceeds the empirical threshold of 0.5 %. It is also interesting

to examine the relationship between the forward side force (S1) and the rolling moment

bridge output difference (D6) that was discussed in an earlier section. As expected, the

rolling moment bridge output difference (D6) is needed in the regression model of the

forward side force (S1) as a connection between the rolling moment bridge output (D6)

and the forward side force (S1) exists. The percent contribution of the term D6 of the

regression model of S1 has the relatively large value of −3.01 %. In addition, it is known

that the connection between the rolling moment bridge output (D6) and the forward side

force (S1) is bi–directional. This relationship is reflected in Fig. 37b above by the fact that

the percent contribution of the term |D6| also has the relatively large value of −2.41 %.

A tare load iteration was performed during the calibration data analysis so that bal-

ance loads resulting from the weight of the calibration equipment and the metric part of

the balance would be included in the load set that was ultimately used as input for the re-
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gression analysis (App. 12 describes the tare load iteration process that the Non–Iterative

Method uses). Table 40 below lists the computed tare loads for the sixteen load series.

Table 40: Non–Iterative Method =⇒ Predicted tare loads of the calibration data

of the MK40A balance; tare loads are listed as a percentage of the load capacity.

Series N1, % N2, % S1, % S2, % AF, % RM, %

1 +1.28 +0.38 +0.01 –0.01 +0.16 +0.01

2 –1.19 –0.37 –0.02 –0.01 +0.17 ≈ 0

3 +0.62 +1.10 –0.07 ≈ 0 +0.10 ≈ 0

4 –0.53 –0.99 –0.08 –0.05 +0.10 –0.01

5 +0.90 +0.79 –0.02 +0.01 +0.12 –0.01

6 –0.85 –0.71 –0.05 –0.03 +0.18 –0.02

7 +0.03 +0.06 +1.64 +0.47 +0.20 –0.03

8 –0.01 ≈ 0 –1.69 –0.44 +0.16 ≈ 0

9 +0.03 +0.05 +0.86 +1.47 +0.14 –0.03

10 +0.01 +0.02 –0.76 –1.36 +0.15 ≈ 0

11 +0.04 +0.04 +1.23 +0.85 +0.18 –0.03

12 ≈ 0 +0.01 –1.40 –0.94 +0.17 ≈ 0

13 +0.02 +0.04 ≈ 0 +0.02 +15.97 ≈ 0

14 +0.04 ≈ 0 +0.04 –0.03 –11.30 ≈ 0

15 +6.64 +6.41 +0.16 +0.15 +0.01 +0.02

16 –6.59 –6.42 +0.10 +0.05 +0.08 +0.04

The regression analysis of the data was successfully completed using (i) the tare cor-

rected loads and (ii) output differences relative to the natural zeros of the balance as input.

Table 41 below lists the standard deviation of the load residuals, i.e., of the difference be-

tween measured and fitted load, for each load component of the MK40A balance. The

standard deviations of all load components are well below the threshold of 0.10 % of load

capacity that is traditionally used in the aerospace testing community for the assessment

of the standard deviation of balance load residuals.

Table 41: Non–Iterative Method =⇒ Standard deviation of the load residuals.†

N1 N2 S1 S2 AF RM
lbs lbs lbs lbs lbs in−lbs

1.91 1.84 2.21 1.80 0.28 2.05
(0.055 %) (0.053 %) (0.089 %) (0.072 %) (0.070 %) (0.026 %)

†Standard deviations expressed as a percentage of the load capacity are listed in brackets.
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As an example, forward side force residuals of the MK40A balance are plotted versus

the tare corrected forward side force in Fig. 38a below. Most residuals are well within the

threshold of ±0.25 % of capacity that is traditionally used for the assessment of individual

load residuals. A few outliers are detected that appear near zero load. They are caused

Fig. 38a Non–Iterative Method =⇒ Forward side force residuals (∆S1) of

the MK40A balance plotted versus the tare corrected forward side force (S1).

by interactions. Therefore, it was decided to also plot the load residuals versus data point

index and load series number in Fig. 38b below in order to identify the source of the

residual outliers. It can clearly be seen in Fig. 38b that the residual outliers are located in

Fig. 38b Non–Iterative Method =⇒ Forward side force residuals (∆S1) of

the MK40A balance plotted versus data point index and load series number.

load series 15 and 16 (the alternating gray scale used in Fig. 38b above identifies individual

load series). The rolling moment was applied during both load series (see also Fig. 34).

Therefore, the threshold outliers are caused by interactions between the rolling moment

and the forward side force bridge output.
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Similarly, the rolling moment residuals of the MK40A balance are plotted versus the

tare corrected rolling moment in Fig. 39 below. This time, all residuals are within the

threshold of ±0.25 % of capacity. This result is no surprise because the regression model of

the fitted rolling moment showed highly linear characteristics and interactions were very

small (see also percent contributions listed in the last column of Fig. 37b).

Fig. 39 Non–Iterative Method =⇒ Rolling moment residuals (∆RM) of

the MK40A balance plotted versus the tare corrected rolling moment (RM).

The primary sensitivities of the balance bridges were also computed during the regres-

sion analysis of the calibration data. The primary sensitivity of a balance bridge is defined

as the first derivative of a bridge output with respect to the corresponding primary bridge

load. Therefore, it equals the inverse of the coefficient of the primary output difference that

is used in the regression model of a balance load component if the Non–Iterative Method

is used for the balance load prediction. This statement can be illustrated by using the

regression model of the forward normal force as an example. It is defined by the equation

N1 = a0 + a1 ·D1 + a2 ·D2 + a3 ·D3 + a4 ·D4 + . . . (21)

where the inverse of the primary sensitivity of the forward normal force bridge equals

a1 =
∂ N1

∂ D1
≈
{

∂ D1

∂ N1

}−1

=

{
∂ [ rN1−

const.︷ ︸︸ ︷
rN1◦ ]

∂ N1

}−1

=

{
∂ rN1

∂ N1

}−1

(22)

Consequently, the primary sensitivity of the forward normal force bridge output becomes:

Primary Sensitivity

(forward normal force bridge)
=⇒ ∂ rN1

∂ N1
≈ 1

a1
(23)

93



Table 42 below lists the primary sensitivities of the MK40A balance. As expected,

the axial force bridge has the highest sensitivity of all balance bridges because the axial

force capacity is about one order of magnitude below the normal and side force capacities.

Table 42: Non–Iterative Method =⇒ Primary sensitivities of the MK40A balance.

∂ rN1

∂ N1

∂ rN2

∂ N2

∂ rS1

∂ S1

∂ rS2

∂ S2

∂ rAF

∂ AF

∂ rRM

∂ RM

0.3423† 0.3708† 0.4897† 0.5025† 3.5684† 0.1639‡

†
[microV/V ]/ [lbs] ; ‡

[microV/V ]/ [in−lbs].

It is also useful to compare the maximum output at load capacity of the six bridges

of the MK40A balance. This metric is frequently used to scale instrumentation inputs so

that the best accuracy of the electrical output measurement of the balance bridges can be

achieved. The metric is defined as the product of (i) the prime sensitivity of a bridge with

(ii) the capacity of the related load component. Table 43 below lists corresponding values

that were obtained for the six bridges of the MK40A balance.

Table 43: Non–Iterative Method =⇒ Maximum output† of the MK40A balance.

rN1 rN2 rS1 rS2 rAF rRM
microV/V microV/V microV/V microV/V microV/V microV/V

1198.1 1297.9 1224.3 1256.2 1427.3 1311.0

†
Maximum output ≡ product of the primary bridge sensitivity and the capacity of the related load component.

It is observed that the maximum output has values between 1198 microV/V and

1427 microV/V . This result indicates that bridge outputs and load capacities are matched

very well as (i) the maximum outputs of all bridges are above 1000 microV/V and (ii) the

smallest and largest value only differ by 229 microV/V .

Table 44 below shows the subset of the thirty–six principal linear coefficients of the

regression models of the six load components of the MK40A balance that were ob–

Table 44: Non–Iterative Method =⇒ Principal linear coefficients

of the fitted regression model of each balance load component.
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tained. These coefficient values will be compared in the next section with corresponding

values that were obtained after the application of the Iterative Method.

Analysis Results for the Iterative Method

The Iterative Method is used in this section for calibration data analysis and the

load prediction of the MK40A balance (see Ref. [7] and App. 10 for a description of

the method). This approach first fits the electrical outputs of the balance bridges as a

function of the balance loads. Afterwards, a load iteration equation is constructed from

the regression coefficients of the fitted outputs so that loads can be predicted from measured

outputs during a wind tunnel test. Finally, iteration equation coefficients are stored in a

standardized data reduction matrix so that the iteration equation can easily be shared

and/or implemented in the data system of a wind tunnel.

Table 45 below shows the selected regression model term combination for each one

of the six bridge output differences D1, D2, . . ., D6 assuming that all balance loads are

described relative to the absolute load datum of zero load. The final regression model of

each output difference consisted of 27 terms (no term reduction was performed). Absolute

Table 45: Regression model terms of the six output differences† of the MK40A balance.

Intercept Term

Principal Linear Terms
N1, N2, S1, S2, AF, RM

Principal Absolute Value Terms
|N1|, |N2|, |S1|, |S2|, |AF |, |RM |

Quadratic Terms
N12, N22, S12, S22, AF 2, RM2

Principal Linear × Principal Absolute Value Terms
N1 · |N1|, N2 · |N2|, S1 · |S1|, S2 · |S2|, AF · |AF |, RM · |RM |

Cross–product Terms
(N1 ·N2), (S1 · S2)

†
D1=rN1−rN1◦ , D2=rN2−rN2◦ , D3=rS1−rS1◦ , D4=rS2−rS2◦ , D5=rAF−rAF◦ , D6=rRM−rRM◦

value terms were included in the regression models of the bridge output differences because

(i) three of the six bridge outputs have bi–directional characteristics when plotted versus

the related primary load component and (ii) it is unknown if more complex bi–directional

characteristics exist. No term reduction was done during the regression analysis of the

data, i.e., 27 terms were used to separately fit each output difference.

Figure 40a below shows the fitted coefficient value, standard error, t–statistic, p–value,

and Variance Inflation Factor of each term of the regression model of the forward normal
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force bridge output difference as an example. These metrics may be used to assess the

reliability of the regression model of the output difference. As expected, the t–statistic of

the forward normal force (N1) has the greatest magnitude, i.e., ≈ 792, as it is, by design,

the primary load component of the forward normal force bridge output difference. Its p–

value of less than 0.0001 indicates that the regression model term is highly significant. It is

also observed that moderate near–linear dependencies exists between many of the chosen

regression model terms. Related Variance Inflation Factors are between 14 and 21. They

are highlighted in blue color in Fig. 40a. Variance Inflation Factors at these levels are

no surprise as they are frequently observed with data from balances with bi–directional

bridge outputs (see also App. 18 for details related to the Variance Inflation Factor).

Fig. 40a Coefficient values, standard error, t–statistic, p–value, and Variance Inflation

Factors of the regression model of the forward normal force bridge output difference (D1).

Percent contributions of the regression model terms were also determined after com-

pletion of the regression analysis of the calibration data. Figure 40b below shows the

percent contributions of the thirty–six principal linear terms and the thirty–six principal

absolute value terms of the regression models of the six bridge output differences (for sim-

plicity, percent contributions of higher order terms are not discussed). Red color marks

percent contributions of very important terms. Blue color is used to identify terms that are

of minor importance. Finally, black color is used to mark terms of no importance. In gen-

eral, it can be seen that the interactions between the bridges cannot be neglected. A total

of 24 of the 72 terms are highlighted in red color (not counting the percent contribution

of 100 %). These 24 terms are considered to be very important terms as the magnitude of
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D1 D2 D3 D4 D5 D6

Interpretation of the Percent Contribution (taken from App. 16)

Percent_Contribution = 100 % ................... primary/reference term (red)
ABS(Percent_Contribution) > 0.5 % ................. very important term (red)
0.1 % < ABS(Percent_Contribution) < 0.5 % ... term of minor importance (blue)
ABS(Percent_Contribution) < 0.1 % ............. term of no importance (black)

Fig. 40b Percent contributions of the principal linear and

absolute value terms of the six fitted bridge output differences.

their percent contributions exceeds the empirical threshold of 0.5 %. More complex bi–

directional connections between load components and bridge output differences were de-

tected. It is interesting to examine the relationship between the forward side force bridge

output difference (D3) and the rolling moment (RM) that was discussed in an earlier

section. As expected, the rolling moment (RM) is needed in the regression model of

the forward side force bridge output difference (D3) as a connection between the rolling

moment and the forward side force bridge output difference exists (see also Table 38).

Therefore, the percent contribution of the rolling moment (RM) to the regression model

of the forward side force bridge output difference (D3) has the relatively large value of

+3.24 %. In addition, it is known that the connection between the rolling moment (RM)

and the forward side force bridge output difference (D3) is bi–directional. This relation-

ship is reflected in Fig. 40b above by the fact that the percent contribution of the absolute

value of the rolling moment (|RM |) has the relatively large value of +2.60 %.

It is rigorously proven in App. 16 that a direct connection between the percent con-

tributions of the regression models of the loads and the output differences of a balance

exists: percent contributions of pairs of related terms have to be similar in magnitude but

opposite in sign. This connection can be illustrated by using the percent contributions

that were discussed in the previous paragraph. First, it known from the regression model

of the forward side force bridge output difference (D3) that (i) the percent contribution of

the rolling moment (RM) equals +3.24 % and (ii) the percent contribution of the absolute

value of the rolling moment (|RM |) equals +2.60 % (taken from Fig. 40b). Now, the Non–

Iterative Method is used instead of the Iterative Method for the calibration data analysis.

Consequently, the forward side force (S1) is the related term to the forward side force
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bridge output difference (D3). Similarly, the rolling moment bridge output difference (D6)

is the related term to the rolling moment (RM). Then, it known from the regression model

of the forward side force (S1) that (i) the percent contribution of the rolling moment bridge

output difference (D6) equals −3.01 % and (ii) the percent contribution of the absolute

value of the rolling moment bridge output difference (|D6|) equals −2.41 % (values were

copied from Fig. 37b). As predicted, the percent contribution of D6 (−3.01 %) is similar

in magnitude but opposite in sign to the percent contribution of RM (+3.24 %). Likewise,

the percent contribution of |D6| (−2.41 %) is similar in magnitude but opposite in sign to

the percent contribution of |RM | (+2.60 %).

A tare load iteration was performed during the calibration data analysis so that bal-

ance loads resulting from the weight of the calibration equipment and the metric part

of the balance would be included in the load set that was ultimately used for the re-

gression analysis (App. 13 describes the tare load iteration process that the Iterative

Method uses). Table 46 below lists the computed tare loads for the sixteen load series. These

Table 46: Iterative Method =⇒ Predicted tare loads of the calibration data of

the MK40A balance; tare loads are listed as a percentage of the load capacity.†

Series N1, % N2, % S1, % S2, % AF, % RM, %

1 +1.28 +0.38 +0.01 ≈ 0 +0.16 +0.01

2 –1.19 –0.37 –0.02 –0.01 +0.17 ≈ 0

3 +0.62 +1.10 –0.07 ≈ 0 +0.10 ≈ 0

4 –0.53 –0.99 –0.08 –0.05 +0.10 –0.01

5 +0.90 +0.79 –0.02 +0.01 +0.13 –0.01

6 –0.86 –0.71 –0.05 –0.03 +0.18 –0.02

7 +0.03 +0.06 +1.64 +0.47 +0.20 –0.03

8 –0.01 ≈ 0 –1.69 –0.44 +0.16 ≈ 0

9 +0.03 +0.05 +0.86 +1.47 +0.13 –0.03

10 +0.01 +0.02 –0.76 –1.36 +0.15 ≈ 0

11 +0.04 +0.04 +1.23 +0.84 +0.18 –0.03

12 ≈ 0 +0.01 –1.40 –0.94 +0.17 ≈ 0

13 +0.02 +0.04 ≈ 0 +0.01 +15.97 ≈ 0

14 +0.04 ≈ 0 +0.04 –0.03 –11.30 ≈ 0

15 +6.65 +6.42 +0.15 +0.15 +0.02 +0.02

16 –6.60 –6.44 +0.10 +0.06 +0.08 +0.04

†Boldface marks tare load estimates that differ ≈ 0.01 % from values reported in Table 40.

values can directly be compared with values that are listed in Table 40 for the Non–

Iterative Method. The maximum observed differences are very small (≈ 0.01 % of load

capacity). Therefore, it is concluded that tare load estimates obtained after application
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of the Iterative Method are in excellent agreement with tare load estimates obtained after

application of the Non–Iterative Method.

The regression analysis of the data was successfully completed using (i) the tare cor-

rected loads and (ii) output differences relative to the natural zeros of the balance as input.

Afterwards, a data reduction matrix for the load prediction was generated. Table 47 be-

low lists the standard deviation of the load residuals of the calibration data, i.e., of the

difference between measured and fitted load, for each load component of the MK40A bal-

ance in engineering units (corresponding values expressed as a percentage of the capacity

are listed in brackets). The standard deviations of the predicted loads are well below

the threshold of 0.10 % that is traditionally used in the aerospace testing community for

Table 47: Iterative Method =⇒ Standard deviation of the load residuals.†

N1 N2 S1 S2 AF RM
lbs lbs lbs lbs lbs in−lbs

2.01 1.96 2.26 1.81 0.28 2.06
(0.058 %) (0.056 %) (0.090 %) (0.073 %) (0.070 %) (0.026 %)

†Standard deviations expressed as a percentage of the load capacity are listed in brackets.

the assessment of the standard deviation of balance load residuals. The standard deviations

shown in Table 47 can be compared with corresponding values that are listed in Table 41

for the Non–Iterative Method. The maximum difference between the standard deviations is

very small (≈ 0.003 %). Therefore, it is concluded that the standard deviation of the load

residuals show excellent agreement with corresponding values that were obtained after the

application of the Non–Iterative Method.

As an example, forward side force residuals of the MK40A balance are plotted versus

the tare corrected forward side force in Fig. 41a below. Most load residuals are well within

Fig. 41a Iterative Method =⇒ Forward side force residuals (∆S1) of the

MK40A balance plotted versus the tare corrected forward side force (S1).
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the threshold of ±0.25 % of capacity that is traditionally used to assess individual load

residual values. The residuals show excellent qualitative and quantitative agreement with

corresponding values that are shown in Fig. 38a for the Non–Iterative Method.

Similarly, Fig. 41b below shows the same load residuals plotted versus data point index

and load series number. Again, the residuals show excellent qualitative and quantitative

agreement with the residuals that are seen in Fig. 38b for the Non–Iterative Method.

Fig. 41b Iterative Method =⇒ Forward side force residuals (∆S1) of the

MK40A balance plotted versus data point index and load series number.

Finally, rolling moment residuals of the MK40A balance are plotted versus the tare

corrected rolling moment in Fig. 42 below. Again, all residuals are within the threshold

of ±0.25 % of capacity that is used to assess individual load residuals. In addition, the

residuals show excellent qualitative and quantitative agreement with the residuals that are

seen in Fig. 39 for the Non–Iterative Method.

Fig. 42 Iterative Method =⇒ Rolling moment residuals (∆RM) of the

MK40A balance plotted versus the tare corrected rolling moment (RM).
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The primary sensitivities of the balance bridges were also computed during the re-

gression analysis of the calibration data. The primary sensitivity of a bridge is defined in

this context as the coefficient of the primary load component that is used in the regression

model of a bridge output difference. This general statement can be illustrated by using the

regression model of the bridge output difference D1 of the forward normal force bridge as an

example. This regression model is defined in Eq. (24) below. The primary sensitivity of

D1 = rN1 − rN1◦ = b0 + b1 ·N1 + b2 ·N2 + b3 · S1 + b4 · S2 + . . . (24)

output difference D1 equals the coefficient of the forward normal force. Then, we get:

Primary Sensitivity

(forward normal force bridge)
=⇒ b1 =

∂ D1

∂ N1
=

∂ [ rN1−
const.︷ ︸︸ ︷
rN1◦ ]

∂ N1
=

∂ rN1

∂ N1
(25)

Table 48 below lists the primary sensitivities for the MK40A balance. Again, the

axial force bridge has the highest sensitivity of all balance bridges because the axial force

capacity is about one order of magnitude below the capacities of the normal and side forces.

Table 48: Iterative Method =⇒ Primary sensitivities of the MK40A balance.

∂ rN1

∂ N1

∂ rN2

∂ N2

∂ rS1

∂ S1

∂ rS2

∂ S2

∂ rAF

∂ AF

∂ rRM

∂ RM

0.3432† 0.3719† 0.4901† 0.5030† 3.5677† 0.1639‡

†
[microV/V ]/[lbs] ; ‡

[microV/V ]/[in−lbs].

The maximum output at capacity of the six balance bridges was also computed. This

metric is defined as the product of (i) the primary sensitivity of a bridge with (ii) the

capacity of the related load component. Table 49 below lists corresponding values that

were obtained for the six bridges of the MK40A balance.

Table 49: Iterative Method =⇒ Maximum output† of the MK40A balance.

rN1 rN2 rS1 rS2 rAF rRM
microV/V microV/V microV/V microV/V microV/V microV/V

1201.2 1301.8 1225.3 1257.4 1427.1 1311.0

†
Maximum output ≡ product of the primary bridge sensitivity and the capacity of the related load component.

The numerical estimates listed in Table 49 above can be compared with alternate

estimates that were obtained during the application of the Non–Iterative Method to the

calibration data (see Table 43). The absolute value of the differences between related

estimates is given in Table 50 below. The differences for four of the six bridges are very
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Table 50: Difference between estimated maximum outputs (Table 43 versus Table 49).

rN1 rN2 rS1 rS2 rAF rRM
microV/V microV/V microV/V microV/V microV/V microV/V

3.1 3.9 1.0 1.2 0.2 < 0.1

small. They are near or below the threshold of 1.0 microV/V that is used to identify

negligible output differences. The normal force bridge outputs are the exception. In those

cases, the differences are 3.1 microV/V and 3.9 microV/V . They are still relatively small

and indicate a good agreement between the independent estimates of the maximum output.

Finally, it is interesting to examine the non–iterative part of the load iteration equation

that is obtained after the application of the Iterative Method. The non–iterative part equals

square matrix C1
−1 that is traditionally used to define the primary load iteration equation

(see Ref. [7] or App. 10 for more details). Table 51 below lists the values of matrix C1
−1

that were obtained from the calibration data set of the MK40A balance. In theory, these

Table 51: Iterative Method =⇒ Coefficients of square matrix C1
−1. This

matrix is the constant, i.e., non–iterative part of the load iteration equation.

values should show good agreement with the thirty–six principal linear terms that were ob-

tained after the application of the Non–Iterative Method to the calibration data (Table 44).

The values of Table 51 can be compared with the values of Table 44 by simply examining

the ratio between two corresponding values. This ratio would equal one if a value pair

shows perfect agreement. The ratios of the thirty–six coefficients were computed. Then,

the arithmetic mean of the ratios was determined. A mean value of 0.9567 was obtained.

This value is very close to the value of one that describes perfect agreement between the

coefficient sets. This result confirms again that the load prediction accuracy differences

between Non–Iterative Method and Iterative Method can be neglected for all practical pur-

poses as long as regression models with similar function classes are used for the regression

analysis of the calibration data and a tare load iteration is performed.

In conclusion, it was shown that the agreement between the load residuals, percent

contributions, tare load estimates, and maximum outputs at capacity of the Non–Iterative

Method and the Iterative Method is excellent if the given calibration data of the MK40A

force balance is analyzed. These results quantitatively confirm that the accuracy of the

two methods is the same for all practical purposes.
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X. Semi–span Balance Example

Introduction

A calibration data set of NASA’s MC60 five–component semi–span balance is dis-

cussed in this chapter. First, basic characteristics of the balance and the chosen calibra-

tion load schedule are reviewed. Then, the determination of the natural zeros and a test of

bi–directional bridge output characteristics is discussed. Afterwards, regression models of

the calibration data for both the Non–Iterative Method and Iterative Method are presented

that may be used for the balance load prediction. Tare load corrections are also applied to

the data before the analysis is performed. Finally, regression analysis results are reviewed.

Table 52 below summarizes key characteristics of the calibration data of the MC60 balance.

Table 52: Overview of balance calibration data analysis example characteristics.

Balance Name Balance Design Calibration Comments

(diameter) (load format) Method

MC60 semi–span balance design manual outputs are not bi–directional

(27.5 in) (NF,AF, PM, YM,RM) calibration (absolute value terms not needed)

The MC60 semi–span balance belongs to a family of three five–component semi–span

balances that are used as floor balances for tests in the NASA Ames 11–ft Transonic Wind

Tunnel (TWT). Figure 43 below shows, for example, the overall layout and the principal

dimensions of one of NASA’s five–component semi–span balances.

15.0 [in] or 381 [mm]

18.0 [in]
or

457 [mm]

27.5 [in] or 699 [mm]

METRIC
FLANGE

NON-METRIC
FLANGE

Fig. 43 Principal dimensions of NASA’s semi–span balances.

The MC60 is a semi–span balance of single–piece design. It measures the normal force,

axial force, pitching moment, yawing moment, and the rolling moment on the model. The

balance is large. The diameter of the metric flange, for example, is 15.0 in (381 mm).

Figure 44 below shows details of the metric flange of the balance.
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Fig. 44 Details of the metric flange of NASA’s MC60 balance.

NASA’s five–component semi–span balances have similar geometry and balance–to–

model interfaces. They only differ in the capacities of the individual load components.

Table 53 below lists capacities of the five load components of the MC60 balance.

Table 53: Load capacities of the MC60 semi–span balance (lbs ≡ pounds of force).

NF, lbs AF, lbs SF, lbs PM, in−lbs Y M, in−lbs RM, in−lbs

6000 1200 not measured 36000 72000 360000

The balance is mounted on a turntable that is located below the floor of the test

section. Consequently, the combined weight of the model and the metric part of the balance

is forced to act in the direction of the side force. This constraint results in two advantages.

First, the natural zeros can directly be measured in the tunnel before the model is attached

to the balance. In addition, the influence of the model weight on the measurement of the

aerodynamic loads is minimized as the outputs in the wind–off condition are independent

of the pitch angle of the model. These outputs are needed so that loads resulting from the

combined weight of the model and the metric part can be computed and subtracted from

the wind–on loads that the model experiences during a wind tunnel test.

In general, the calibration of a high–capacity semi–span balance is challenging because

very large loads have to be precisely applied (see, e.g., discussions in Refs. [31] and [32]).

In addition, the MC60 balance has a net weight of approximately 1300 lbs and must be

handled with great care. The single–piece design used on NASA’s five–component semi–

span balances has proven itself to be extremely repeatable. Therefore, existing calibration

data can often successfully be used for a long period of time. The MC60 semi–span balance

was last calibrated in 2019. Details of this calibration are described in the next section.
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Calibration Description

The MC60 balance has the lowest capacities of NASA’s family of five–component

semi–span balances. Therefore, a different approach had to be used for the application of

the axial force during the calibration as the axial force capacity of 1200 lbs was on the order

of the combined weight of the calibration hardware and the metric part of the balance. The

calibration of the balance took place in Calspan Force Measurement Systems’ Large Load

Rig (LLR). The LLR is one of a few existing load rigs that can be used for the calibration

of NASA’s five–component semi–span balances. The normal force and the rolling moment

were applied by attaching a load chain with a leveling plate, flexure, load cell, and hydraulic

actuator to a load boom that was rigidly connected to the metric part of the balance. The

axial force and the yawing moment were applied by attaching a horizontal load arm to the

load boom at the same lateral positions that were used for the application of normal force

and rolling moment. Again, the axial force load chain consisted of a flexure, a load cell,

and a hydraulic actuator. The pitching moment, on the other hand, was applied by using

a separate moment arm pair in combination with gravity weights.

The North American balance load sign conventions were used during the calibration

of the MC60 balance assuming that the left–hand wing of an aircraft is attached to the

metric part of the balance. Corresponding load signs are specified in App. 3.

The chosen calibration load schedule consisted of 1839 data points that were dis-

tributed across 127 load series. A maximum of four load components, i.e., NF , AF , RM ,

and YM , were simultaneously applied during the calibration. No single–component loads

could be applied because the calibration hardware did not support those types of loadings.

Electrical outputs of all data points were measured for both bridge sets. In addition,

electrical outputs of zero load points were recorded at the beginning and end of each

load series. They are needed as input for the tare load iteration process. This process

determines hidden balance loads that are caused by the weight of the metric part and the

calibration hardware (see also App. 12 & 13). In addition, differences between the first and

last zero load point of a load series were used to monitor bridge output hysteresis effects.

The natural zeros of the balance bridges are the electrical outputs that the balance

would have in a weightless condition. They are an electrical description of the absolute

load datum of the balance. Three different methods may be used to determine the natural

zeros of a semi–span balance (see also App. 8). They are summarized in the next section.

Natural Zero Determination

In principle, three independent methods may be used to determine the natural zeros

of a five–component semi–span balance. The methods differ in (i) the orientation of the

pitch axis of the balance in space relative to the direction of the gravitational acceleration,

(ii) the hardware that is attached to the metric part of the balance, and (iii) the process

that is used to calculate the natural zeros. Figure 45 below shows typical orientations of the

pitch axis of a semi–span balance relative to the direction of the gravitational acceleration.
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The signs of the forces are assigned assuming that the left wing of an aircraft is attached

to the semi–span balance (see also the discussions in App. 3).

Fig. 45 Description of semi–span balance orientations

relative to the direction of the gravitational acceleration.

The first four orientations in Fig. 45 above, i.e., [0], [90], [180], [270], show the front

face of the metric part of the balance assuming that the pitch axis is perpendicular to

the direction of the gravitational acceleration. The arithmetic mean of the raw output

measurements of each bridge from the four orientations is an estimate of the natural zeros.

The remaining two orientations, i.e., [UP] and [DOWN], assume that the pitch axis of

the balance is parallel to the direction of the gravitational acceleration. In both cases, all

balance bridges are unloaded. Therefore, the measured raw outputs of either orientation

[UP] or orientation [DOWN] directly describe the natural zeros of the balance.

Figure 46a below shows the first method that may be used to determine the natural

zeros of the balance (Method I). The metric part of the balance is simply placed on a

leveled surface. In that case, as indicated in the previous paragraph, all balance bridges

are unloaded as the weight of the metric part acts in the direction of the side force.

Consequently, the measured raw outputs of the bridges are the natural zeros of the balance.

GRAVITATIONAL
ACCELERATION

LEVELED
SURFACE

METRIC PART

NON-METRIC PART

PITCH AXIS

BALANCE

Fig. 46a Method I: Determination of the natural zeros by using a leveled surface.

Figure 46b below shows the second method that may be used to determine the natural

zeros (Method II). In this case, the balance is mounted on a support system such that its
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pitch axis is perpendicular to the direction of the gravitational acceleration. Now, the

electrical outputs of the five bridges are caused by the weight of the metric part of the

balance. The electrical outputs of all bridges are recorded for the four balance orientations

[0], [90], [180], and [270] that are defined in Fig. 45. The arithmetic mean values of those

output measurements are the natural zeros of the five balance bridges.

BALANCE

GRAVITATIONAL
ACCELERATION

SUPPORT
SYSTEM

PITCH
AXISNON-METRIC PART

METRIC PART

Fig. 46b Method II: Determination of the natural

zeros by rotating the balance about the pitch axis.

Finally, Fig. 46c below shows the third method that may be used to obtain the natural

zeros (Method III). This time, the balance plus the attached calibration hardware, i.e., the

balance assembly, is mounted on a support system such that the pitch axis is perpendicular

to the direction of the gravitational acceleration. Now, the electrical outputs of the bridges

are caused by the weight of the metric assembly that consists of (i) the metric part of the

balance and (ii) the attached calibration hardware. Again, electrical outputs of all bridges

are recorded for the first four orientations that are defined in Fig. 45, i.e., [0], [90], [180],

and [270]. Then, the arithmetic mean values of those measurements are computed for each

bridge. They are the estimates of the natural zeros of the balance bridges.

SUPPORT
SYSTEMMETRIC PART

NON-METRIC PARTCALIBRATION HARDWARE
(BOOM & BLOCK)

PITCH
AXIS

“BALANCE ASSEMBLY”

GRAVITATIONAL
ACCELERATION

BALANCE

“METRIC ASSEMBLY”

Fig. 46c Method III: Determination of natural zeros by rotating the balance

assembly, i.e., the balance plus attached calibration hardware, about the pitch axis.

It must be mentioned for completeness that the natural zeros of the five bridges are

instrumentation dependent physical constants of the balance. In other words, small output

differences will be observed if bridge output voltages are measured using different sets of

instrumentation. Therefore, it is critical to use the same instrumentation for the output
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measurements if results of Methods I, II, and III are to be compared. Then, an analyst

can expect that the maximum difference between the independent natural zero estimates

from the three methods is on the order 1.0 microV/V . Table 54 below shows, for example,

the directly measured natural zeros of the MC60 balance after Method I was applied.

Table 54: Estimated natural zeros of the balance bridges after application of Method I.

ORIENTATION rNF rAF rPM rYM rRM

microV/V microV/V microV/V microV/V microV/V

UP
† +162.68 +24.34 +80.40 +97.24 +42.22

†The pitch axis is parallel to the direction of the gravitational acceleration.

Similarly, Table 55 below shows the natural zeros after Method II was applied. In

that case, no hardware was attached to the metric part when the four sets of outputs for

the determination of the natural zeros were recorded.

Table 55: Estimated natural zeros of the balance bridges after application of Method II.

ORIENTATION rNF rAF rPM rYM rRM

microV/V microV/V microV/V microV/V microV/V

0 +87.10 +24.41 +84.90 +97.06 +38.42

90 +171.03 +301.59 +85.33 +86.19 +41.45

180 +238.94 +22.95 +81.16 +97.50 +46.36

270 +155.01 −254.37 +80.27 +108.35 +43.47

natural zero
† +163.02 +23.65 +82.92 +97.28 +42.43

†The natural zeros are the arithmetic mean of the column values.

Finally, Table 56 below shows the natural zeros after Method III was applied. This

time, calibration hardware was attached to the metric part when the outputs for the

determination of the natural zeros were recorded. As expected, a larger output range for

each bridge is observed if the electrical outputs for different orientations are compared.

Table 56: Estimated natural zeros of the balance bridges after application of Method III.

ORIENTATION rNF rAF rPM rYM rRM

microV/V microV/V microV/V microV/V microV/V

0 −77.32 +26.58 +87.58 +96.79 −19.90

90 +188.51 +907.49 +91.18 −52.93 +39.97

180 +402.49 +20.72 +78.53 +97.51 +107.12

270 +136.28 −861.18 +74.38 +247.54 +46.93

natural zero
† +162.49 +23.40 +82.92 +97.23 +43.53

†The natural zeros are the arithmetic mean of the column values.
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It was decided to use the arithmetic mean of the natural zero values of the three

methods for the final analysis of the balance calibration data of the MC60 semi–span

balance. The resulting reference values are listed in Table 57 below.

Table 57: Arithmetic mean of estimated natural zeros of Tables 54, 55, and 56.

rNF rAF rPM rYM rRM
microV/V microV/V microV/V microV/V microV/V

+162.73 +23.80 +82.08 +97.25 +42.73

A comparison of the natural zero values listed in Tables 54, 55, and 56 confirms that

the values obtained after application of the three methods do not differ by more than

2.0 microV/V from the reference values that are reported in Table 57 above. – The bi–

directional output characteristics of the balance bridges are investigated in the next section.

They need to be understood so that suitable regression model terms can be selected for

calibration data analysis and balance load prediction.

Bi–directional Output Characteristics

The author developed a semi–empirical test in order to determine if the electrical

output of a balance bridge is bi–directional (for more details see App. 7). Test results

may be used to justify the inclusion of absolute value terms in the regression models of

the balance data. Those types of terms should only be used in a regression model if the

outputs of a balance bridge have known bi–directional characteristics.

The author’s test performs a preliminary linear fit of the calibration data using three

terms: intercept, primary linear term, and primary absolute value term (see App. 7).

Results of this fit provide the required numerical inputs for the application of the test.

The test can be summarized as follows: the output of a balance bridge is bi–directional if

(i) the estimated bi–directional part of the output at load capacity exceeds 0.5 % of the

to–capacity–scaled maximum of the difference between the bridge output and its natural

zero, and (ii) the p–value of the absolute value term is less than 0.001.

The test works best if it is applied to the subset of the balance calibration data that

exclusively consists of single–component loads. However, the test can also be applied to

an entire balance calibration data set as long as (i) no significant asymmetries exist in the

balance calibration load schedule design, (ii) the overall quality of the calibration data is

excellent, and (iii) the calibration data set is not over–fitted.

First, bi–directional parts of the balance bridge outputs are examined. Table 58 below

summarizes the estimated bi–directional parts of the five bridges of the balance that were

computed by using both the regression coefficients of the Non–Iterative Method and the

regression coefficients of the Iterative Method. In general, the agreement between the

estimates of the bi–directional parts is excellent. It is seen that the bi–directional parts

of the bridges are well below the threshold that is listed in the last row of Table 58. This

observations indicates that the bridge outputs are most likely not bi–directional.
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Table 58: Bi–directional part at load capacity and threshold of the MC60 balance.†

Λ(D1,NF ) Λ(D2,AF ) Λ(D3,PM) Λ(D4,Y M) Λ(D5,RM)

microV/V microV/V microV/V microV/V microV/V

Non–Iterative +0.13 +0.83 +0.87 +0.87 −0.25

Iterative +0.18 +0.67 +0.82 +0.72 −0.22

Threshold ±5.59 ±4.18 ±4.38 ±2.81 ±6.11

†
D1=rNF−rNF◦ , D2=rAF−rAF◦ , D3=rPM−rPM◦ , D4=rYM−rYM◦ , D5=rRM−rRM◦

The application of the test also requires the calculation of the p–value of the t–statistic

of the temporarily included absolute value term. This metric tests the statistical signif-

icance of the absolute value term assuming it would be used to fit the balance data. In

general, a term is statistically significant if its p–value is less than the threshold of 0.0010.

Table 59 below lists the computed p–values of each absolute value term if the Non–Iterative

Method is used for the balance calibration data analysis. Only the absolute value term of

Table 59: Non–Iterative Method =⇒ p–value of the absolute value term

of the primary bridge output difference of each fitted load component.†

p{|D1|} p{|D2|} p{|D3|} p{|D4|} p{|D5|}

0.1870 0.1110 < 0.001 0.0073 0.2830
insignificant insignificant significant insignificant insignificant

†
D1=rNF−rNF◦ , D2=rAF−rAF◦ , D3=rPM−rPM◦ , D4=rYM−rYM◦ , D5=rRM−rRM◦

the output difference of the pitching moment bridge, i.e., |D3|, appears to be statistically

significant. Table 60 below lists the computed p–values of each absolute value term if the

Iterative Method is used for the balance calibration data analysis. Now, the absolute value

term of the pitching moment, i.e., |PM |, appears to be statistically significant. At this

Table 60: Iterative Method =⇒ p–value of the absolute value term

of the primary load component of each fitted bridge output difference.

p{|NF |} p{|AF |} p{|PM |} p{|YM |} p{|RM |}

0.1163 0.2210 < 0.001 0.0291 0.0969
insignificant insignificant significant insignificant insignificant

point, all information is available to apply the semi–empirical test. It is concluded from

Table 58 above that the bi–directional parts of all outputs are well below corresponding

thresholds. In addition, only the absolute value term related to the pitching moment

appears to be statistically significant (see Tables 59/60). Consequently, the test of bi–

directional output characteristics failed for all bridges as both test conditions must simul-

taneously be fulfilled. None of the bridges of the MC60 balance has bi–directional output
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characteristics. Therefore, the use of absolute value terms in the regression models of the

balance cannot be justified. Final test results are summarized again in Table 61 below.

Table 61: Assessment of the bridge output characteristics of the MC60 balance.†

rNF rAF rPM rYM rRM

Is output bi–directional ? no no no no no

†
A bridge output is bi–directional if two conditions are met: (i) the bi–directional part at capacity exceeds

the threshold (Tbl. 58) and (ii) the p–value of the principal absolute value term is less than 0.001 (Tbls. 59/60).

It is interesting to show the bi–directional part of two of the five balance bridges as an

example. The normal force and the axial force bridge outputs were chosen for this purpose.

Figure 47 below shows the bi–directional part of the output of the normal force bridge. It

Fig. 47 Bi–directional part of the electrical output of the

normal force bridge plotted versus the tare corrected normal force.

can clearly be seen in Fig. 47 that the bi–directional part is well below the empirical

threshold at load capacity. This observation confirms that the normal force bridge output

of the MC60 balance does not have bi–directional characteristics. Figure 48 below shows

the bi–directional part of the output of the axial force bridge. Again, the bi–directional part

Fig. 48 Bi–directional part of the electrical output of the

axial force bridge plotted versus the tare corrected axial force.

at capacity is well below the threshold that is listed for the axial force bridge output in

Table 58. This observation confirms that the axial force bridge output of the MC60 balance

is not bi–directional.

Analysis Results for the Non–Iterative Method

First, the Non–Iterative Method is used for the development of the load prediction

equations for the MC60 semi–span balance from the given balance calibration data (see
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App. 9 for a description of the method). This approach directly fits the five balance

load components NF,AF, PM, YM,RM as a function of the bridge output differences

D1, D2, . . . , D5 assuming that all balance loads are described relative to the absolute load

datum of zero load. Table 62 below shows the selected regression model term combination

for each one of the five load components of the balance. Absolute value terms were omitted

Table 62: Regression model terms of the five load components of the MC60 balance.

Intercept Term =⇒ used in the regression model of each load component

Principal Linear Terms
{D1, D2, D3, D4, D5}† =⇒ used in the regression model of each load component

Quadratic Terms
D2

5 =⇒ used in the regression models of NF , AF , PM , and YM

Cross–product Terms
(D2 ·D3) =⇒ used in the regression model of NF
(D3 ·D5) =⇒ used in the regression model of AF

(D2 ·D5), (D4 ·D5) =⇒ used in the regression model of PM
(D1 ·D3), (D1 ·D4) =⇒ used in the regression model of YM

(D2 ·D3) =⇒ used in the regression model of RM

†
D1=rNF−rNF◦ , D2=rAF−rAF◦ , D3=rPM−rPM◦ , D4=rYM−rYM◦ , D5=rRM−rRM◦

because the balance bridge outputs do not have bi–directional characteristics. Term reduc-

tion was performed during the data analysis to prevent over–fitting of the calibration data.

The term reduction itself was executed by using a simplified term reduction algorithm that

is described in App. 19 of the current document. Figure 49a below shows the fitted co-

efficient values, standard error, t–statistic, p–value, and Variance Inflation Factor of the

regression model of the normal force as an example. These metrics may be used to assess

Fig. 49a Coefficient values, standard error, t–statistic, p–value, and Variance

Inflation Factors of the regression model terms of the normal force (NF ).

the reliability of the regression model of the load component. The t–statistic of the output

difference D1 of the normal force bridge output rNF has the greatest magnitude. It is
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approximately 27090. This results is expected as it is the primary output of the normal

force. A p–value of less than 0.0001 indicates that the regression model term is highly

significant. It is also observed that a moderate near–linear dependency exists between

the axial force bridge output (D2) and the yawing moment bridge output (D4). Related

Variance Inflation Factors of 23.97 and 23.94 are highlighted in blue color in Fig. 49a. This

dependency is caused by the fact that no single–component loads of the load components

could be applied during the calibration of the balance (see also App. 18 for details related

to the calculation of the Variance Inflation Factor).

Percent contributions of the regression model terms are also frequently used in the

aerospace testing community to assess the importance of regression model terms (see

App. 16 for more details). Figure 49b below shows the percent contributions of the twenty–

NF             AF             PM             YM            RM

Interpretation of the Percent Contribution (taken from App. 16)

Percent_Contribution = 100 % ................... primary/reference term (red)
ABS(Percent_Contribution) > 0.5 % ................. very important term (red)
0.1 % < ABS(Percent_Contribution) < 0.5 % ... term of minor importance (blue)
ABS(Percent_Contribution) < 0.1 % ............. term of no importance (black)

Fig. 49b Percent contributions of the twenty–five principal linear

regression model terms of the five fitted balance load components.

five principal linear terms of the regression models of the load components (for simplicity,

percent contributions of higher order terms are not discussed). Red color marks percent

contributions of very important terms. Blue color is used to identify terms that are of

minor importance. Finally, black color is used to mark terms of no importance. In gen-

eral, it can be seen that the interactions between the bridges cannot be neglected. This

observation is no surprise as the MC60 balance is a single–piece balance. Therefore, for

example, the bridge output differences D1 and D5 make an important contribution in the

regression model of the pitching moment (PM) as their percent contributions are +3.36 %

and −3.20 %.

A tare load iteration was also performed so that balance loads resulting from the

weight of the calibration equipment and the metric part of the balance would be included

in the load set that is ultimately used as input for the regression analysis (see App. 12 for

details about the tare load iteration process if the Non–Iterative Method is used for the

data analysis). Table 63 below lists the computed tare loads for the first six load series.
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Table 63: Non–Iterative Method =⇒ Predicted tare loads of the first six load series of

the calibration data of the MC60 balance (listed as a percentage of the load capacity).

Series NF, % AF, % PM, % YM, % RM, % Comment

1 +21.52 +4.30 –0.25 –2.49 +5.10 —

2 +21.51 +4.33 –0.27 –2.50 +5.11 repeat of series 1

3 +21.51 –4.04 –0.27 +3.06 +5.11 —

4 +21.52 –4.09 –0.27 +3.09 +5.11 repeat of series 3

5 +21.52 –4.07 –0.28 +3.76 +5.15 —

6 +21.52 –4.09 –0.29 +3.78 +5.15 repeat of series 5

The regression analysis of the data was completed using (i) the tare corrected loads

and (ii) output differences relative to the natural zeros as input. Table 64 below lists

the standard deviation of the load residuals of the calibration data, i.e., of the difference

between measured and fitted load, for each load component of the MC60 balance in both

engineering units and as a percentage of capacity. It is observed that the standard devia-

tions of the fitted load components are well below the empirical threshold of 0.10 % that

is often used for the assessment the standard deviation of balance load residuals.

Table 64: Non–Iterative Method =⇒ Standard deviation of the load residuals.†

NF, lbs AF, lbs PM, in−lbs YM, in−lbs RM, in−lbs

1.68 (0.028 %) 0.93 (0.077 %) 22.55 (0.063 %) 44.42 (0.062 %) 125.20 (0.035 %)

†Standard deviations expressed as a percentage of the load capacity are listed in brackets.

Normal force residuals of the MC60 balance are plotted versus the tare corrected

normal force in Fig. 50 below. The residuals are well within the threshold of ±0.25 % of

capacity that is traditionally used to assess load residuals of individual data points.

Fig. 50 Non–Iterative Method =⇒ Normal force residuals (∆NF ) of the

MC60 balance plotted versus the tare corrected normal force (NF ).

114



Similarly, axial force residuals of the MC60 balance are plotted versus the tare cor-

rected axial force in Fig. 51 below. Again, most residuals are within the threshold of

±0.25 % of capacity that is used to assess residuals of individual data points. It is ob–

Fig. 51 Non–Iterative Method =⇒ Axial force residuals (∆AF ) of the

MC60 balance plotted versus the tare corrected axial force (AF ).

served that the axial force residuals have more scatter than the normal force residuals if

Fig. 50 is compared with Fig. 51. These differences between the residuals of the normal

and axial force can better be understood if the primary sensitivities of the five balance

bridges and related maximum outputs at capacity are determined and compared.

In general, the primary sensitivity of a balance bridge is defined as the first derivative of

a bridge output with respect to the corresponding primary bridge load. Therefore, it equals

the inverse of the coefficient of the primary output difference that is used in the regression

model of a balance load component if the Non–Iterative Method is used for the balance load

prediction. This statement can be illustrated by using the regression model of the normal

force as an example. The regression model is defined in Eq. (26) below where the inverse

NF = a0 + a1 ·D1 + a2 ·D2 + a3 ·D3 + a4 ·D4 + . . . (26)

of the primary sensitivity of the normal force bridge output equals the regression coefficient

of the output difference D1. This conclusion is summarized in Eq. (27) below after taking

into account that the natural zero, i.e., rNF◦, is a constant.

a1 =
∂ NF

∂ D1
≈
{

∂ D1

∂ NF

}−1

=

{
∂ [ rNF − rNF◦ ]

∂ NF

}−1

=

{
∂ rNF

∂ NF

}−1

(27)

Then, we get the following equation for the primary sensitivity of the normal force bridge:

primary sensitivity (normal force bridge) =⇒ ∂ rNF / ∂ NF ≈ 1 / a1 (28)
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Table 65 below lists estimated primary sensitivities for the MC60 balance that were

obtained after completion of the regression analysis of the five load components of the

balance. As expected, the axial force bridge has the highest sensitivity of all balance

bridges because the axial force capacity is only one–fifth of the normal force capacity.

Table 65: Non–Iterative Method =⇒ Primary sensitivities of the MC60 balance.

∂ rNF

∂ NF

∂ rAF

∂ AF

∂ rPM

∂ PM

∂ rYM

∂ YM

∂ rRM

∂ RM

0.186325† 0.677216† 0.024099‡ 0.007761‡ 0.003419‡

†
[microV/V ]/ [lbs] ; ‡

[microV/V ]/ [in−lbs].

Now, the maximum output at capacity of the five bridges can be determined. This

metric is often used to scale instrumentation inputs so that the best accuracy of the

electrical output measurement can be achieved. The metric is defined as the product of

(i) the primary sensitivity of a bridge with (ii) the capacity of the related load component.

Table 66 below lists values were obtained for the five bridges of the MC60 balance.

Table 66: Non–Iterative Method =⇒ Maximum output† of the MC60 balance.

rNF rAF rPM rYM rRM
microV/V microV/V microV/V microV/V microV/V

1118.0 812.7 867.6 558.8 1230.8

†
Maximum output ≡ product of the primary bridge sensitivity and the capacity of the related load component.

It can be seen that the maximum output at capacity of the normal force bridge is

almost 300 microV/V greater than the maximum output of the axial force bridge. This

difference is partially responsible for the fact that the normal force residuals shown in

Fig. 50 are significantly smaller than the axial force residuals shown in Fig. 51.

Table 67 below shows the subset of twenty–five principal linear coefficients of the

regression models of the five load components of the MC60 semi–span balance that were

Table 67: Non–Iterative Method =⇒ Principal linear coefficients

of the fitted regression model of each balance load component.
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obtained. These coefficient values will be compared later with corresponding results that

were obtained for the Iterative Method.

Analysis Results for the Iterative Method

The Iterative Method can also be used for calibration data analysis and load prediction

of the MC60 semi–span balance. This approach first fits the outputs of the balance bridges

as a function of the balance loads. Afterwards, a load iteration equation is constructed

from the regression coefficients of the outputs so that loads can be predicted from outputs

during a wind tunnel test (see Ref. [7] and App. 10 for a description of the method).

It was decided to use output differences relative to the natural zeros of the balance

bridges instead of raw outputs during the application of the Iterative Method to the calibra-

tion data. In addition, term reduction was applied to prevent over–fitting (the algorithm

described in App. 19 was used for this purpose). Table 68 below shows the resulting re–

gression model terms for each one of the five output differences of the balance. Absolute

Table 68: Regression model terms of the five output differences† of the MC60 balance.

Intercept Term =⇒ used in the regression model of each output difference

Principal Linear Terms
NF, AF, PM, YM, RM =⇒ used in the regression model of each output difference

Quadratic Terms
PM2, RM2 =⇒ used in the regression model of D1

NF 2, RM2 =⇒ used in the regression model of D2

RM2 =⇒ used in the regression model of D3

RM2 =⇒ used in the regression model of D4

Cross–product Terms
(AF ·RM), (PM · YM), (PM ·RM) =⇒ used in the regression model of D1

(NF · YM), (PM ·RM) =⇒ used in the regression model of D2

(AF ·RM), (YM ·RM) =⇒ used in the regression model of D3

(NF · PM), (NF · YM) =⇒ used in the regression model of D4

(PM · YM) =⇒ used in the regression model of D5

†
D1=rNF−rNF◦ , D2=rAF−rAF◦ , D3=rPM−rPM◦ , D4=rYM−rYM◦ , D5=rRM−rRM◦

value terms were intentionally excluded in the regression models of the five output differ-

ences because the outputs of the balance are not bi–directional.

Figure 52a below shows the coefficient value, standard error, t–statistic, p–value, and

Variance Inflation Factor for each term of the regression model of the normal force bridge

output difference as an example. These metrics may be used to assess the reliability of the

regression model of the output. As expected, the t–statistic of the coefficient of the normal

force has the greatest magnitude, i.e., 31687, because it is the primary load component of

the normal force bridge. A p–value of less than 0.0001 indicates that the regression model
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term is highly significant. In addition, Variance Inflation Factors on the order of 10 or

less indicate that no near–linear dependencies exist in a regression model (see also App. 18

for details related to the calculation of this metric). In our case, a moderate near–linear

dependency appears to exist between the axial force (AF ) and the yawing moment (YM)

as the related pair of Variance Inflation Factors is approximately 24.

Fig. 52a Coefficient values, standard error, t–statistic, p–value, and Variance Inflation

Factors of the regression model terms of the normal force bridge output difference (D1).

A tare load iteration was performed and regression coefficients of the five output

differences of the balance bridges were successfully computed. The percent contributions of

the regression model terms were also determined (see App. 16 for a definition of the metric).

Figure 52b below shows the computed percent contributions of the twenty–five principal

linear terms of the fitted bridge output differences. As expected, the percent contributions

D1 D2 D3 D4 D5

Interpretation of the Percent Contribution (taken from App. 16)

Percent_Contribution = 100 % ................... primary/reference term (red)
ABS(Percent_Contribution) > 0.5 % ................. very important term (red)
0.1 % < ABS(Percent_Contribution) < 0.5 % ... term of minor importance (blue)
ABS(Percent_Contribution) < 0.1 % ............. term of no importance (black)

Fig. 52b Percent contributions of the twenty–five principal linear

regression model terms of the five fitted bridge output differences.

show good agreement with related percent contributions that are listed in Fig. 49b for the

corresponding regression models of the five load components. For example, the percent

contributions of the terms NF and RM of the regression model of the pitching moment
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bridge output difference D3 are −3.30 % and +3.52 % (taken from Fig. 52b above). Sim-

ilarly, the percent contributions of the terms D1 and D5 of the regression model of the

pitching moment PM are +3.36 % and −3.20 % (taken from Fig. 49b). This result numer-

ically illustrates the fact that the percent contribution of related terms of the regression

models of a load and an output difference must be similar in magnitude but opposite in

sign (a rigorous derivation of this connection in given in App. 16).

It was mentioned earlier that a tare load iteration was performed. Therefore, balance

loads resulting from the weight of the calibration equipment and the metric part of the

balance were included in the load set that was ultimately used as input for the regression

analysis. Table 69 below lists computed tare loads for the first six load series of the

Table 69: Iterative Method =⇒ Predicted tare loads of the first six load series of

the calibration data of the MC60 balance (listed as a percentage of the load capacity).

Series NF, % AF, % PM, % YM, % RM, % Comment

1 +21.52 +4.30 –0.25 –2.49 +5.10 —

2 +21.51 +4.33 –0.27 –2.50 +5.11 repeat of series 1

3 +21.51 –4.04 –0.27 +3.06 +5.11 —

4 +21.52 –4.09 –0.27 +3.09 +5.11 repeat of series 3

5 +21.52 –4.07 –0.28 +3.76 +5.15 —

6 +21.52 –4.09 –0.29 +3.78 +5.15 repeat of series 5

calibration data. These values show excellent agreement with corresponding values that

are listed in Table 63 for the Non–Iterative Method.

The regression analysis of the calibration data was successfully completed using (i) the

tare corrected loads and (ii) output differences relative to the natural zeros of the balance

as input. Table 70 below lists the standard deviations of the load residuals, i.e., of the

difference between measured and fitted load, for each load component of the MC60 balance

in engineering units (corresponding values expressed as a percentage of the capacity are

listed in brackets). All five standard deviations are below the empirical threshold of 0.10 %

of load capacity that is often used for the assessment of the standard deviation of balance

load residuals. The computed standard deviations also show excellent agreement with

corresponding values that are listed in Table 64 for the Non–Iterative Method.

Table 70: Iterative Method =⇒ Standard deviation of the load residuals.†

NF, lbs AF, lbs PM, in−lbs YM, in−lbs RM, in−lbs

1.50 (0.025 %) 0.94 (0.078 %) 22.62 (0.063 %) 44.50 (0.062 %) 125.26 (0.035 %)

†Standard deviations expressed as a percentage of the load capacity are listed in brackets.
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Normal force residuals of the calibration data are depicted as an example in Fig. 53 be-

low. The residuals show excellent qualitative and quantitative agreement with correspond-

ing residuals that were obtained after applying the Non–Iterative Method (see Fig. 50).

Fig. 53 Iterative Method =⇒ Normal force residuals (∆NF ) of the

MC60 balance plotted versus the tare corrected normal force (NF ).

Similarly, axial force residuals of the calibration data are depicted in Fig. 54 below.

Again, the residuals show excellent agreement with corresponding residuals that were com-

puted after applying the Non–Iterative Method (see Fig. 51).

Fig. 54 Iterative Method =⇒ Axial force residuals (∆AF ) of the

MC60 balance plotted versus the tare corrected axial force (AF ).

The excellent agreement between the standard deviations of the load residuals confirms

that the load prediction accuracy of the Non–Iterative Method and the Iterative Method is

more or less the same for the given semi–span balance calibration data set.
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The primary sensitivities of the five balance bridges were also computed during the

regression analysis of the calibration data and compared with corresponding values that

were obtained after the application of the Non–Iterative Method. The primary sensitivity

of a bridge output is defined as the coefficient of the primary load component that is

used in the regression model of the related output difference. This general statement

can be illustrated by using the regression model of the output difference of the normal

force bridge (D1) as an example. This regression model is defined in Eq. (29) below where

D1 = rNF − rNF◦ = b0 + b1 ·NF + b2 ·AF + b3 · PM + b4 · YM + . . . (29)

the primary sensitivity of the normal force bridge output is the first derivative of the output

difference with respect to the normal force. The derivative equals the regression coefficient

of the normal force. This conclusion is summarized in Eq. (30) below.

Primary Sensitivity

(normal force bridge)
=⇒ b1 =

∂ D1

∂ NF
=

∂ [ rNF −
const.︷ ︸︸ ︷
rNF◦ ]

∂ NF
=

∂ rNF

∂ NF
(30)

Table 71 below lists primary sensitivities that were obtained from the regression mod-

els of the output differences. As expected, the estimates show excellent agreement with

corresponding values that are reported in Table 65 for the Non–Iterative Method.

Table 71: Iterative Method =⇒ Primary sensitivities of the MC60 balance.

∂ rNF

∂ NF

∂ rAF

∂ AF

∂ rPM

∂ PM

∂ rYM

∂ YM

∂ rRM

∂ RM

0.186485† 0.677075† 0.024119‡ 0.007760‡ 0.003420‡

†
[microV/V ]/[lbs] ; ‡

[microV/V ]/[in−lbs].

Now, the maximum output at capacity of the five balance bridges can be computed.

The metric is defined as the product of (i) the primary sensitivity of a bridge with (ii) the

capacity of the related load component. Table 72 below lists corresponding values were

obtained for the five bridges of the MC60 balance.

Table 72: Iterative Method =⇒ Maximum output† of the MC60 balance.

rNF rAF rPM rYM rRM
microV/V microV/V microV/V microV/V microV/V

1118.9 812.5 868.3 558.7 1231.3

†
Maximum output ≡ product of the primary bridge sensitivity and the capacity of the related load component.
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The values listed in Table 72 above can easily be compared with corresponding esti-

mates that were obtained after the application of the Non–Iterative Method. The absolute

values of the differences between the independent estimates are listed in Table 73 below.

The differences are very small. They are below the empirical threshold of 1 microV/V that

is often used to identify negligible bridge output differences.

Table 73: Difference between estimated maximum outputs (Table 66 versus Table 72).

rNF rAF rPM rYM rRM
microV/V microV/V microV/V microV/V microV/V

0.9 0.2 0.7 0.1 0.5

Finally, it is interesting to examine the non–iterative part of the load iteration equation

that is obtained after the application of the Iterative Method. The non–iterative part equals

square matrix C1
−1 that is traditionally used to define the primary load iteration equation

(see Ref. [7] or App. 10 for more details). Table 74 below lists coefficients of matrix C1
−1

that were obtained from the calibration data set of the MC60 balance. In theory, these

Table 74: Iterative Method =⇒ Coefficients of square matrix C1
−1. This

matrix is the constant, i.e., non–iterative part of the load iteration equation.

values should show good agreement with the twenty–five principal linear terms that were

obtained after the application of the Non–Iterative Method to the calibration data (see

Table 67). The values of Table 74 can be compared with the values of Table 67 by simply

examining the ratio between two corresponding values. The ratio equals one if a value pair

shows perfect agreement. The ratios of the twenty–five coefficients were computed. Then,

the arithmetic mean of the ratios was calculated. A mean value of 0.9992 was obtained.

This value is very close to the value of one that describes a perfect agreement between the

independently computed coefficient sets. The result confirms again that load prediction

accuracy differences between the Non–Iterative Method and the Iterative Method are very

small. They can be neglected for all practical purposes as long as (i) regression models

with similar function classes are used for the regression analysis of the calibration data

and (ii) a tare load iteration is performed.
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Moment Arm Range Requirements

It is important to review connections between (i) the locations of the resultant normal

and axial forces on a semi–span model and (ii) the rolling and yawing moment arm range

of the calibration rig that is used for the balance calibration. They need to be understood

so that a calibration data set is not used outside its calibration range.

The discussion of the moment arm range requirements assumes that the semi–span

model of a commercial transport type aircraft is installed on the floor of the test section of

a wind tunnel. Figure 55 below shows, for example, the installation of the UHB semi–span

model in the test section of the NASA Ames 11–ft Transonic Wind Tunnel. First, the

Fig. 55 Installation of the UHB semi–span model in the Ames 11–ft TWT.

connection between normal force and rolling moment arm range is investigated. It is

known from theoretical considerations that the resultant wind–on normal force on a semi–

span model of a commercial transport type aircraft is located somewhere between a point

that is close to the metric flange of the balance and a point that is located near 50 %

of the semi–span of the model. These two points are shown in Fig. 56a below as a pair

of blue points that are located on the pitch axis of the balance. In addition, a typical

calibration rig can often only apply the normal force at a small number of selected load

points, i.e., rolling moment arms, relative to the balance moment center. The resulting

minimum and maximum of the rolling moment arm and the associated built–in range of

the load points are identified in Fig. 56a below as a pair of green points that are located

on the pitch axis of the balance. Consequently, the range of the resultant normal force
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Fig. 56a Rolling moment arm range requirement of the calibration rig.

locations on the model, i.e., the pair of blue points in Fig. 56a, must be located inside

the built–in range of the load points on the calibration rig in order to achieve the most

accurate normal force predictions. In all other cases, the predicted normal force on the

model will be extrapolated with an associated reduction of the load prediction accuracy.

Similar relationships between between axial force and yawing moment arm range exist.

Figure 56b below shows the corresponding relationships. Again, it is known from theo–
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Fig. 56b Yawing moment arm range requirement of the calibration rig.
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retical considerations that the resultant wind–on axial force is located somewhere between

a point that is close to the metric flange of the balance and a point that is located near

50 % of the semi–span of the model. These two points are identified in Fig. 56b above

as a pair of blue points that are located on the pitch axis of the balance. In addition,

a calibration rig can often only apply the axial force at a small number of selected load

points, i.e., yawing moment arms, relative to the balance moment center. The resulting

minimum and maximum of the yawing moment arm and the associated range of the load

points are identified in Fig. 56b above as a pair of green points that are located on the

pitch axis of the balance. Again, as it was the case for the normal force, the range of the

resultant axial force locations on the model, i.e., the pair of blue points in Fig. 56b, must

be located inside the built–in range of the load points on the calibration rig in order to

achieve the most accurate axial force predictions. In all other cases, the axial force will be

extrapolated with an associated decrease of the load prediction accuracy.

The discussion of the moment arm range requirements indicates that it is an advantage

if the calibration rig used for the characterization of a semi–span balance allows for the

direct application of the normal and axial forces at the balance moment center. Then, the

built–in range of the load points on the calibration rig would extend all the way to the

balance moment center. In addition, more reliable estimates of the primary sensitivities of

the normal and axial force bridges would be obtained as both load components could also

be applied as single–component loads during the balance calibration.
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XI. Observations, Conclusions, and Recommendations

General Remarks

Different ways to format, analyze, evaluate, and use strain–gage balance data are dis-

cussed in the report. This approach was chosen so that a variety of data analysis and

load prediction approaches could be compared side–by–side. The author’s most important

observations, conclusions, and recommendations are summarized in this part of the docu-

ment. This summary must remain incomplete because it is primarily based on the author’s

personal experiences. Nevertheless, the summary may provide information that could be

helpful for a novice balance engineer. In addition, it could become a starting point for

discussions among more experienced analysts, balance engineers, and balance users who

either made similar observations or came to alternate conclusions.

Fundamental Concepts

Load State =⇒ In general, a strain–gage balance experiences different load states

during calibration and use in the wind tunnel that may be observed as elastic deformations

of the balance geometry. Then, assuming that the balance is at a constant temperature,

each load state can be described by using either a set of tare corrected loads or a set of

measured electrical outputs of the balance bridges. Both descriptions of the load state

are equivalent. It is like describing something in two different languages. Therefore, the

following two conclusions can be drawn. First, the mathematical connection between the

tare corrected loads and the measured electrical outputs of the balance bridges must be

unique. In other words, a balance must be designed such that one specific load combination

only relates to one specific electrical output combination and vice versa. In addition,

according to the General Theorem of the Inversion of Transformations (see Ref. [73],

pp. 261–277), the total number of independent load components of a balance must always

match the total number of independent bridge output measurements.

Interpretation and Use of Balance Calibration Data =⇒ Calibration data of a balance

can be interpreted as a set of load states that an analyst selects to best describe the physical

relationship between tare corrected loads and measured electrical outputs of the balance.

The data set is analyzed by using either the Non–Iterative Method or the Iterative Method.

Each method establishes a mathematical relationship between loads and electrical outputs

of the balance that can be used for the load prediction during a wind tunnel test.

Absolute Load and Output Datum =⇒ It is critical to reference all loads and outputs

to an absolute datum if global regression analysis is applied to balance calibration data.

Therefore, it is recommended to perform a tare load iteration during the analysis of the

calibration data so that all loads are referenced to the datum of zero absolute load. Sim-

ilarly, it is recommended to measure the natural zeros of the balance bridges. They need

to be subtracted from the raw outputs of the bridges so that all outputs are referenced to

the datum of zero output. Then, the regression models obtained from the calibration data

will map the datum of zero absolute load to the datum of zero output (and vice versa).

127



Electrical Outputs

Electrical Units =⇒ Electrical outputs of the balance bridges are best described as

a dimensionless quantity. It is defined as the raw output measurement in units of micro

Volts (microV) divided by the excitation voltage in units of Volts (V). This choice has two

advantages. First, it makes the electrical outputs independent of the excitation voltage. In

addition, outputs of a typical balance become more suitable for visual inspection as they

will have numerical values between 0 and ±3000 microV/V .

Electrical Output Threshold =⇒ Two electrical outputs of a balance bridge can be

considered identical for all practical purposes if they differ by 1.0 microV/V or less. Pro-

cess improvements, hardware refinements, and laboratory staff training may lower this

threshold to between 0.3 and 0.5 microV/V .

Natural Zeros =⇒ The natural zeros are the raw outputs of the balance bridges in

an assumed weightless condition. In theory, they are physical constants of the balance.

However, their exact measurement is influenced by small instrumentation–dependent bias

errors. Therefore, it is suggested to measure the natural zeros each time an instrumentation

change is made during use of the balance. Then, instrumentation–dependent bias errors

can be removed from the output measurements if the difference between raw output and

natural zero is used to process balance data.

Electrical Output Format =⇒ The difference between the raw output and the related

natural zero of the bridge should be used as input for data analysis and load prediction.

Then, zero output becomes the electrical representation of zero absolute load. In addition,

absolute value terms can be included in the regression model of a load component if the

Non–Iterative Method is used to process data of a balance with bi–directional outputs.

Maximum Output at Load Capacity =⇒ The maximum output at load capacity is a

material constant of the balance. It indicates how well a balance bridge is matched to

the capacity of the related load component. The metric is defined as the product of the

primary sensitivity of a bridge with the capacity of the related load component. It is the

electrical representation of the load capacity. The bridges of most force balances have

maximum outputs that are between 1000 and 1500 microV/V . Some bridges of single–

piece balances are known to have values between 2500 and 3000 microV/V . Values near or

below 500 microV/V are also sometimes observed. They indicate a bridge that does not get

much output at capacity. This characteristic is often associated with an unwanted increase

of the standard deviation of the load residuals of the related primary load component.

Flight Data Recorder =⇒ The raw electrical outputs of the balance bridges can be

interpreted as information that is contained in a hypothetical flight data recorder of a

strain–gage balance. They describe the true load state of the balance in a format that di-

rectly reflects the influence of tare loads and auxiliary loads on the balance. No corrections

need to be applied to the raw outputs in order to evaluate them. Therefore, it is helpful

for troubleshooting purposes if a balance engineer develops the ability to interpret the raw

electrical outputs of the balance bridges. For example, a load component is probably not
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applied if the raw output of the related bridge differs from its natural zero by less than

1 microV/V . Similarly, a load component may have been loaded way beyond its capacity

if a raw output is greater than, say, 125 % of its maximum output at capacity.

Balance Loads

Load Format =⇒ Loads of a force or moment balance should be analyzed and predicted

in their design format, i.e., in force balance or moment balance format. Afterwards, loads

can be converted to direct–read format by applying simple transformations that are listed in

App. 4. This approach has the advantage that a single load component will be responsible

for more than 90 % of the electrical output of the related bridge if the load is given in

the design format of the balance. Consequently, loads and outputs can more clearly be

separated which simplifies both data interpretation and troubleshooting.

Tare Load Iteration =⇒ It is required to use tare corrected loads for the balance

calibration data analysis if (i) the electrical outputs of the bridges are formatted as output

differences relative to the natural zeros and (ii) global regression analysis is used to process

the data. It is recommended to use a tare load iteration algorithm for the determination

of tare loads. Then, the common center of gravity of the metric part and all attached

calibration hardware does not have to be known in order to determine the tare loads.

Calibration Experiment

Load Schedule Design =⇒ The overall quality of global regression analysis results of

balance calibration data and the reliability of the balance load predictions always benefits

from a systematic load schedule design (see, e.g., Refs. [41] for a comparison of different load

schedule designs). In particular, it is an advantage if either balance calibration hardware or

a balance calibration machine allows for the application of load schedules that are based

on the well known principles of Designed Experiments (see, e.g., Refs. [42] and [69] for

more details). Unfortunately, the design of many manual calibration load schedules is

dictated by (i) calibration hardware limitations and (ii) built–in characteristics of gravity

weight sets that a calibration laboratory owns. Compromises have to be found in those

situations so that useful single–component and combined loads are applied that allow for

the development of reliable load prediction equations.

Load Schedule Symmetry =⇒ In general, a load schedule should be as symmetric as

possible if global regression analysis is applied to balance calibration data. This approach

makes sure that (i) the regression analysis does not favor data with a particular load sign,

(ii) symmetric characteristics of the balance are captured, and (iii) bi–directional bridge

output behavior can be quantified (if applicable).

Load Range =⇒ Single–component loads for each load component should be applied

over the component’s entire positive and negative load range (from −100 % capacity to

+100 % capacity). Then, a data set is collected for the regression analysis that will result

in the most accurate numerical estimates of the primary bridge sensitivities.
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Single–component Loads =⇒ Global regression analysis implicitly assigns equal weight

to all data points of a calibration load schedule. This characteristic can decrease the

influence of single–component loads on the final regression analysis results because they

are only a very small part of a typical calibration load schedule. This decrease could

potentially lead to less accurate estimates of the primary sensitivities of the balance bridges

(see Ref. [16] for a discussion of this issue). Therefore, it is recommended to repeat single–

component loads in regular intervals in the calibration load schedule in order to increase

the percentage of single–component loads in the data set. Alternatively, an analyst may

use a weighted least squares approach to explicitly assign more weight to single–component

loads during the global regression analysis (see App. 22 for more details).

Balance Axis System, Gravitational Acceleration, Alignment =⇒ In theory, the orien-

tation of the forward face of the metric part of the balance in space defines the balance axis

system during both balance calibration and use in the wind tunnel. Therefore, it is critical

to precisely level the metric part during a balance calibration with gravity weights. Then,

a known orientation of the balance axis system is established relative to the direction of

the gravitational acceleration. This known orientation is needed so that gravity weights

and distances on the calibration body can be interpreted as forces and moments that act

on the balance. Alignment errors should be avoided at all cost as they cause unwanted

bridge interactions that could negatively influence the calibration data analysis.

Application of Moments =⇒ It is more accurate to apply a moment during a balance

calibration by using a small weight in combination with a long moment arm instead of

using a large weight in combination with a short moment arm.

Data Analysis and Load Prediction

Non–Iterative versus Iterative Method =⇒ The load prediction accuracy of the Non–

Iterative Method is as good as the load prediction accuracy of the Iterative Method as long

as (i) tare corrected loads and output differences relative to the natural zeros are used to

describe the balance calibration data and (ii) compatible function classes are used to build

regression models of the loads and outputs. The Non–Iterative Method, however, does not

require a load iteration to predict loads from outputs during a wind tunnel test. Therefore,

it is less complex and more easily implemented in the data system of a tunnel.

Identification of Important Regression Model Terms =⇒ It is recommended to use the

percent contribution of a regression model term for the assessment of the term’s impor-

tance. A term is considered important if the absolute value of its percent contribution

exceeds the empirical threshold of 0.5 % (threshold taken from App. 16, Table 16–3). Al-

ternatively, the p–value of the regression model term could be used to assess a regression

model term’s importance. However, the percent contribution has the advantage that it is

more easily implemented and understood.

Identification of Regression Model Terms of Minor Importance =⇒ The percent con-

tribution may be used to identify regression model terms of minor importance. A term

is considered a term of minor importance if the absolute value of its percent contribution
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is between 0.1 % and 0.5 % (range taken from App. 16, Table 16–3). An analyst needs to

use subject–matter knowledge and other information in order to decide if a term of minor

importance needs to be used or can be omitted.

Identification of Insignificant Regression Model Terms =⇒ The percent contribution

may be used to identify an insignificant term in the regression model of balance data. A

term of the regression model is considered insignificant if the absolute value of its percent

contribution is less than the empirical threshold of 0.1 % (threshold taken from App. 16,

Table 16–3). It is acceptable to drop an insignificant regression model term as long as the

final regression model remains hierarchical, i.e., has no missing lower order terms.

Hierarchical Regression Model =⇒ It is recommended to always use hierarchical re-

gression models for the analysis of strain–gage balance data. These models do not have any

missing lower order terms. Therefore, they can handle hidden offsets in the independent

variables that are used to build the regression model (see Ref. [20], pp. 6–8).

Absolute Value Terms =⇒ An absolute value term should be included in the regression

model of balance data if (i) it is supported by the calibration data and (ii) the absolute

value of its percent contribution exceeds the threshold of 0.5 % (see App. 16, Table 16–3).

Linear and Massive Near–linear Dependencies =⇒ Hidden linear or massive near–

linear dependencies in regression models of balance calibration data can greatly reduce

the reliability of the balance load prediction process. Therefore, terms must be removed

from the regression model that are responsible for these dependencies. For example, the

Variance Inflation Factor (VIF) may be used to detect and remove linear and massive

near–linear dependencies in regression models of balance calibration data. The following

maximum values of the VIF of a regression model are acceptable =⇒ single–piece balance

≈ 10; force balance with bi–directional bridge outputs ≈ 20; semi–span balance ≈ 30

(thresholds taken from App. 18, Section 18.5). Unfortunately, many standard data analysis

tools do not compute VIFs of a set of regression model terms. Therefore, a detailed

description of the numerical calculation of the VIFs is given in App. 18 for reference.

Temperature Effects =⇒ The temperature difference relative to a reference tempera-

ture should be used as the independent variable for the description of balance temperature

effects. Recommended correction methods for balance temperature effects are listed in

App. 14 (see methods 2 and 3 in App. 14, Table 14–1). Experience has shown that single–

component loads at three different temperatures should be applied during a temperature

calibration of the balance if the expected temperature range of the balance during a wind

tunnel test is between 294 degK (70 degF ) and 314 degK (105 degF ). This additional data

will have the information needed to determine an explicit load correction that addresses

an unwanted temperature–dependent bridge sensitivity shift.

Graphical Display of Calibration Load Residuals =⇒ Two types of plots should be

used to display and assess balance calibration load residuals. First, load residuals should

be plotted versus the tare corrected loads. This plot allows an analyst to understand

(i) the load prediction accuracy over the given load range of the balance and (ii) the
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level of interactions near zero load. Load residuals should also be plotted versus the data

point index. This alternate plot allows an analyst to quickly identify individual data point

numbers or point ranges that are responsible for larger–than–expected load residuals.

Assessment of the Standard Deviation of the Load Residuals =⇒ The standard devia-

tion of calibration load residuals of a typical six–component strain–gage balance is expected

to be less than or equal to the empirical threshold of 0.10 % of load capacity.

Assessment of the Load Residual of an Individual Data Point =⇒ The range of

±0.25 % of load capacity should be used for the evaluation of the load residual of an

individual calibration data point. It is ±2.5 times the empirical threshold of 0.10 % that

is traditionally used in aerospace testing for the evaluation of the standard deviation of

load residuals. The threshold also means that 98.8 % of all residuals of a load component

are expected to be within ±0.25 % of the load capacity if the load residuals are normally

distributed (percentages are taken from a table of two–tailed Gaussian probabilities).

Aerodynamic Loads =⇒ A goal of a wind tunnel test is the measurement of aerody-

namic loads that act on a model. Both the Non–Iterative Method and the Iterative Method

compute balance loads relative to the datum of zero absolute load whenever differences

between raw outputs and natural zeros are used as input. Therefore, aerodynamic loads

must be computed as the difference between a wind–on and a wind–off load set. The wind–

on load set is caused by aerodynamic effects and the combined weight of the model and

the metric part of the balance. It is obtained from outputs that are measured in wind–on

condition during the test. The wind–off load set is caused by the combined weight of the

model and the metric part of the balance. It can be computed if (i) weight, (ii) location

of the center of gravity, and (iii) orientation of the model relative to the direction of the

gravitational acceleration are known in the balance axis system. The weight and the loca-

tion of the center of gravity of the model are typically obtained from a wind–off data set

that is recorded for different model orientations (see Ref. [55]).

Balance Check Loads =⇒ Check loads need to be calculated by using two predicted

load sets per data point whenever (i) gravity weights are used for their application and

(ii) differences between raw outputs and natural zeros are the input for the load prediction.

The first load set is predicted from the electrical outputs of the check load point. This

load set is caused by the combined weight of the metric part of the balance, the calibration

equipment, and the gravity weights. The second load set is predicted from the electrical

outputs of the tare point of the check load series. This load set is caused by the combined

weight of the metric part of the balance and the calibration equipment. The second load set

must be subtracted from the first load set. Afterwards, the difference of the two predicted

load sets is compared with the check load set that is directly obtained from the gravity

weights and their distance to either the balance moment center or a balance bridge.

Interactions =⇒ Interactions are complex electro–mechanical phenomena that connect

the loads to the outputs of a strain–gage balance. They are the result of the fact that

bridges are attached to interconnected parts of the balance. These parts are deformed as
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soon as the load state of the balance changes. Consequently, significant output changes

may occur on more than one bridge even if only a single load component is applied.

Two types of interactions are always superimposed whenever calibration or check loads

are applied to a balance. The first type is the result of small load misalignments. These

interactions represent hidden errors in the data. They can be reduced or avoided by (i) re-

fining the load application process, (ii) replacing worn–out hardware, and (iii) improving

laboratory staff training. The second type is caused by physical characteristics of the bal-

ance. These interactions cannot be eliminated. However, they are repeatable and can be

described with interaction terms in the regression models of balance calibration data.

Repeatable interactions are primarily characterized with linear interaction terms in

regression models of balance calibration data that both the Non–Iterative Method and the

Iterative Method use. The identification of these linear terms can be illustrated with two

examples. First, it is assumed that interactions need to be quantified in a regression model

that the Non–Iterative Method uses to describe the aft normal force N2 of a six–component

force balance. In this case, the output difference D2 of the aft normal force bridge is the

primary output of the fitted load component. Consequently, the remaining five output

differences, i.e., D1, D3, D4, D5 and D6 are the linear interaction terms in the regression

model of N2. Similarly, interactions may need to be quantified in a regression model that

the Iterative Method uses to describe the output difference D2 of the aft normal force

bridge of a force balance. Now, the aft normal force N2 is the primary load component of

the fitted output difference. Therefore, the remaining five load components, i.e., N1, S1,

S2, AF and RM are the linear interaction terms in the regression model of D2.

Different approaches may be used to visualize interactions. The author suggests to use

balance data for the visualization that is recorded during the application of a single load

component to the balance (see also App. 24 for more details). This approach makes the

graphical description of interactions less complex. In addition, the description is completely

independent of regression models that are needed for the balance load prediction.

The recommended approach can be demonstrated with real–world data from a six–

component force balance. It was decided to plot interactions that result from the ap-

plication of the aft normal force. Therefore, a data set of a load series was selected

that fulfilled the following three requirements: (i) the aft normal force was applied dur-

ing the load series while keeping all other load components close to zero absolute load;

(ii) the first data point of the load series had outputs that were exclusively caused by

tare loads; (iii) the tare loads of the load series were small. Then, loads and outputs of

the first data point of the load series were subtracted from the loads and outputs of the

remaining data points of the load series (see also the discussion of bridge output format

Difference Type 2 in App. 6). Finally, the interactions, i.e., the reformatted electrical

outputs of all but the primary bridge of the aft normal force, were plotted versus the

reformatted aft normal force. Figure 57 below shows the observed interactions of the aft

normal force that were obtained for the chosen force balance. The output differences D1,
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D3, D4, D5, and D6 are the interactions that result from the application of the aft nor-

mal force as a single–component load. The output difference D2 is intentionally omitted

in the plot because it is the output difference of the aft normal force bridge itself. The in–

-30

-15

0

15

30

-2000 -1000 0 1000 2000

D1

D3

D4

D5

D6

+30

+15

0

-15

-30

N2, lbs
(aft normal force)

-2000 -1000  0 +1000 +2000

D1
forward normal

force bridge

D3
forward side
force bridge

D4
aft side

force bridge

D5
axial force bridge

D6
rolling moment bridge

Fig. 57 Interactions plotted versus the aft normal force of a force balance.

teractions of the five bridges show a characteristic star pattern as, by design, all interactions

must be zero when no load is applied.

Numerical estimates of the first derivatives of the interactions with respect to a load

component, i.e., the slopes of the five lines that are shown in Fig. 57 above, can be obtained

from the load prediction equations if interactions of single–component loads of balance

calibration data are plotted. The first derivatives are the off–diagonal coefficients of the

inverse matrix L−1 of the linear part of the regression coefficient matrix that the Non–

Iterative Method needs for the load prediction (see App. 9, section 9.6). Alternatively, the

first derivatives are the off–diagonal coefficients of the matrix C1 that the Iterative Method

uses. This matrix equals the inverse of matrix C1
−1 that is part of the definition of the

Primary Load Iteration Equation (see App. 10, section 10.12).

Interaction plots for the other five load components, i.e., N1, S1, S2, AF , and RM

of the force balance can easily be generated by using the same approach that was used

for the interaction plot of the aft normal force. It must be emphasized that the suggested

interaction plot is the description of a built–in design characteristic of the balance. It is

like a fingerprint of a single load component of the balance that is completely independent

of both calibration process and load prediction method. Therefore, an analyst can use the

suggested interaction plot to monitor the quality of a calibration or check load data set.

Any significant change of the interaction plot may indicate a hidden misalignment of the

load application hardware that should be investigated.
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Appendix 1

Balance Terminology

Absolute Load Datum ≡ It is the condition when (i) the balance is in a weightless state
and (ii) all load components are perfectly zero. It is the origin of the Load Space. The
Natural Zeros are its equivalent representation in the Output Space assuming that the
electrical outputs of the balance are expressed as Raw Outputs.

Absolute Voltage Measurement ≡ Voltage measurement of a Bridge Output that
uses zero volts as a datum. The output may have been corrected for small day–to–day
temperature variations in a laboratory or wind tunnel. The output is often divided by the
Excitation Voltage in order to make it dimensionless.

Aerodynamic Load ≡ Wind–On Load minus Wind–Off Load.

Aircraft–Fixed Axis System ≡ Body Axis System.

Alternate Load Iteration Equation ≡ One of two load iteration equations that are
used in the aerospace testing community to predict balance loads from measured bridge
outputs during a wind tunnel test. The method only converges if balance data is processed
in its Design Format. A description of the equation is given in App. 10, Eq. (10.31a).

Applied Load ≡ Force or a moment that is applied to the balance during its calibration.
It does not include the Tare Load that is caused by the weight of the Metric Part of
the balance, the Calibration Body, and other Calibration Fixtures.

Auxiliary Load ≡ Preload.

Balance Assembly ≡ Assembly that consists of the balance plus all calibration hardware
pieces that are temporarily attached to it.

Balance Axis System ≡ It is a Cartesian coordinate system that allows for a precise
description of balance loads. It must be defined such that balance loads can easily be
described in the body axis system of the wind tunnel model. Therefore, it is best to
attach the coordinate system to the part of the balance that is rigidly connected to the
test article. – Let us assume, for example, that the balance is a five–component semi–
span balance or a six–component primary balance. In that case, the orientation of the
Metric Part in space defines the coordinate system because it is the part of the balance
that is rigidly connected to the test article. In addition, the orientation of the Metric
Part in space always coincides with the orientation of the Calibration Body in space
because both pieces of hardware are rigidly connected. Therefore, loads applied on the
Calibration Body can easily be expressed in the coordinate system after the Calibration
Body is leveled relative to the direction of the gravitational acceleration. – Alternatively,
let us assume that the balance is an auxiliary three–component Moment Balance. In
that case, the orientation of the Non–Metric Part in space must be used to define the
coordinate system because it is the part of the balance that is rigidly connected to the
test article. The orientation of the Non–Metric Part in space always coincides with the
orientation of the Balance Support System in space because both pieces of hardware
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are rigidly connected. Consequently, loads described relative to the Balance Support
System during calibration can easily be expressed in the coordinate system after a known
orientation of the Balance Support System relative to the direction of the gravitational
acceleration is established.

Balance Load ≡ It is a positive or negative force or a moment that acts on the balance.

Balance Moment Center (BMC) ≡ Point on the balance that is used to define moments
(pitching moment, yawing moment, rolling moment). It is often located halfway between
the forward and aft bridges of the balance.

Balance Support System ≡ Piece of hardware that is connected to the Non–Metric
Part of the balance during calibration. It applies the reaction loads to the balance. In
addition, it has the capability to both roll and pitch the Non–Metric Part so that the
balance can be leveled during calibration.

Bi–directional ≡ Characteristic of one widely used family of Multi–Piece Balances
in which, e.g., the Primary Bridge Sensitivity of the two normal and the two side
force bridges is dependent on the sign of the load. Absolute value terms are needed in the
regression model of balance data to describe the characteristic.

Body Axis System ≡ It is a Cartesian coordinate system that is rigidly connected to
the wind tunnel model or test article. It is also called Aircraft–Fixed Axis System.

Bridge ≡ Wheatstone Bridge

Bridge Output ≡ Electrical output of a Bridge in units of milliV , microV , milliV/V ,
or microV/V (the recommended unit is microV/V ). It is used for the prediction of balance
loads during a wind tunnel test.

Bridge Output Datum ≡ It is a reference output for a load calculation. The Raw
Output at the beginning of a Load Series, for example, may be used as the datum.

Bridge Output Residual ≡ Difference between the measured and fitted bridge output
of a balance (or vice versa).

Buoyant Zero, Buoyant Component Offset ≡ Natural Zero

Calibration Body ≡ Piece of hardware that is rigidly connected to the Metric Part of
the balance. It allows for the precise application of loads or load combinations that can
easily be described in the Balance Axis System.

Calibration Fixture ≡ Piece of hardware (e.g., flexure, yoke, rod, moment arm) that is
needed for the application of calibration loads to a balance.

Calibration Matrix ≡ Regression Coefficient Matrix

Capacity ≡ Largest permitted/observed value of either a load component or an electrical
output of a balance bridge. It is often used to make a load or an output dimensionless.
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Check Load ≡ Load or combination of loads that is used to check the wiring and instal-
lation of a balance prior to a wind tunnel test. Its alignment is often not as good as the
alignment that was obtained during the balance calibration.

Combined Load Plot ≡ It is a plot of a pair of balance load components in a Cartesian
coordinate system. A total of fifteen combined load plots can be defined for all possible
load combinations of a six–component balance. A visual inspection of the combined load
plot of a load pair may be used to decide if the given balance calibration data set supports
the load pair’s cross–product term in a regression model of the balance data.

Confirmation Load ≡ Load or combination of loads that is used to assess the predictive
capability of the balance load prediction process. Ideally, it does not match any load or
combination of loads that was used during the original calibration of the balance.

Confirmation Point ≡ Data point with a load combination that was not applied during
the calibration of the balance.

Core ≡ Non–Metric Part

Count ≡ This term is often used in connection with the measurement of balance outputs.
It comes from the digital world. It describes an increase/decrease in the least significant
bit after an Analog–to–Digital (A/D) conversion takes place. The input change required
is determined by the full–scale range of the digitizer that is used as a part of the balance
output measurement system. For example, a measurement system with an A/D converter
and an amplifier may have the following characteristics: full scale A/D converter input
range = ±10.24 Volts (DC), A/D conversion = 16 bit, amplifier gain = 512. Then, the
chosen output measurement system is capable of 2 to the 16th power (65536) unique values.
One bit is reserved for the sign since the A/D converter input accepts both positive and
negative values. This condition leaves 2 to the 15th power (32768) discrete values to
describe the magnitude of the A/D converter input. Then, after dividing 10.24 Volts by
32768 and the gain of 512, it is concluded that one count equals an unamplified balance
output change of 0.6104 microVolts for the given measurement system characteristics.

Curve–Fit Matrix ≡ Regression Coefficient Matrix

Data Reduction Matrix ≡ This matrix is the final result of using the Iterative Method
for the analysis of balance calibration data. Its coefficients define the load iteration equa-
tion that the Iterative Method uses for the prediction of loads from the electrical outputs
of the balance.

Dependent Variable ≡ It is a load component if the Non–Iterative Method is used
to analyze balance calibration data. It is an electrical output of a balance bridge if the
Iterative Method is used to analyze balance calibration data.

Design Format ≡ Description of the loads and outputs of a balance that satisfies the
following requirement: each bridge is related to one single load component that, when
applied, is responsible for on the order of 90 % or more of its output. The following
three formats are traditionally used in the aerospace testing community: Direct–Read
Format, Force Balance Format, and Moment Balance Format.

Direct–Compute Method ≡ Non–Iterative Method.
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Direct–Read Balance ≡ Six–component balance whose load components are three forces
and three moments. The bridges are wired such that their outputs are directly proportional
to the corresponding force or moment (see also Direct–Read Format).

Direct–Read Format ≡ This format describes the loads of a balance by using three
forces and three moments. They are defined as follows: normal force, axial force, side
force, pitching moment, yawing moment, and rolling moment.

Excitation Voltage ≡ Voltage between 3.0 and 10.0 Volts that keeps the bridge circuits
of a balance energized. It is also the reference voltage that is used to make bridge outputs
dimensionless. The voltage is measured at a fixed reference point. The reference point
is the end of the excitation wires if a Four–Wire Balance is energized. The reference
point is either the end of the excitation wires or the end of the sense wires if a Six–Wire
Balance is energized. Unwanted self–heating of a bridge may occur if the applied voltage
is too high (for details see Ref. [7], p. 56, and, Ref. [81], p. 143). Sometimes, common
excitation is applied to the bridges of a six–component balance. Then, a single voltage
source is used to supply the excitation voltage in parallel to all balance bridges.

Fixed End ≡ Non–Metric Part

Flexure ≡ Part of a balance that elastically deforms under load. It is the interface
between Metric Part and Non–Metric Part. Strain gages are often attached to its
surface. – Spring–like calibration hardware that allows for an unrestrained alignment of a
Calibration Fixture with the direction of the gravitational acceleration.

Force Balance ≡ Six–component balance whose load components are described with five
forces and one moment. The forces at the forward & aft bridges are proportional to the
corresponding bridge outputs (see also Force Balance Format).

Force Balance Format ≡ This format describes the loads of a balance by using five forces
and one moment. They are defined as follows: forward/aft normal force, forward/aft side
force, axial force, and rolling moment.

Four–Wire Balance ≡ Each bridge of this balance type is connected with two excitation
wires and two signal wires to the signal conditioner (voltage source).

Gage ≡ Term describes a strain gage. It is also a synonym for Wheatstone Bridge.

Global Regression ≡ Single least squares fit is used to calculate the coefficients of a
multivariate regression model of balance calibration data.

Independent Variable ≡ It is an electrical output of a balance bridge if the Non–
Iterative Method is used to analyze balance calibration data. It is a load if the Iterative
Method is used to analyze balance calibration data.

Inner Rod ≡ Non–Metric Part of a Force Balance.

Interactions ≡ Interactions are complex electro–mechanical phenomena that connect the
acting loads to the observed outputs of a strain–gage balance. They result from the fact
that bridges are attached to interconnected parts of the balance. These parts experience
elastic deformations as soon as the Load State of the balance changes. Consequently,
significant output changes may occur on more than one bridge even if only a single load
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component is applied. – Two types of interactions are always superimposed in balance
calibration or check load data. The first type is associated with small load misalignments.
These interactions represent hidden errors in the given data set. They can be reduced or
avoided by (i) refining the load application process, (ii) replacing worn–out hardware, and
(iii) improving laboratory staff training. The second type is caused by physical character-
istics of the balance. These interactions are repeatable. They are primarily described with
Linear Interaction Terms in a regression model of balance calibration data.

Intercept ≡ Constant term in the math model of balance calibration data. It may have a
physical interpretation. Let us assume, for example, that the Iterative Method is used
to process the data. Then, the intercept is a least squares approximation of the Natural
Zero of the bridge output whenever Raw Outputs are fitted as a function of loads.

Iterative Method ≡ Load prediction method that fits the electrical outputs of a balance
bridge as a function of the calibration loads. Therefore, an iteration is required to predict
loads from outputs during a wind tunnel test. More details can be found in App. 10.

Knife Edge ≡ Hardware that allows for an unrestrained alignment of a Calibration
Fixture with the direction of the gravitational acceleration.

Leveling ≡ Term describes the fact that a Calibration Body must be aligned with the
direction of the gravitational acceleration whenever gravity weights are used for the load
application. Then, loads can easily be described in the Balance Axis System.

Linear Interaction Term ≡ Linear regression model term that describes interactions.
For example, the difference between the output of the normal force bridge and its Natural
Zero is a linear interaction term in the regression model of the axial force if the Non–
Iterative Method is used for the balance data analysis. Similarly, the normal force is
a linear interaction term in the regression model of the output of the axial force bridge if
the Iterative Method is used for the balance data analysis.

Live End –or– Live Side ≡ Metric Part

Load ≡ Force or moment that acts on a strain–gage balance.

Load Envelope ≡ Closed boundary of a region in a Combined Load Plot that is
defined by the Tare Corrected Loads.

Load Residual ≡ Difference between an applied and a predicted load (or vice versa).

Load Schedule ≡ Loads or load combinations that are used for the balance calibration.

Load Series ≡ Group of calibration or check load points. Groups differ by the load
component and/or the load combination that is applied. The calibration hardware is also
often changed from group to group. Each group should have at least one data point whose
outputs are exclusively caused by the weight of the calibration equipment and the Metric
Part of the balance. Then, it is possible to perform a Tare Load Iteration so that the
combined weight of the Metric Part and the calibration hardware can be included in the
final regression analysis of the balance data.

Load Space ≡ Multidimensional vector space. It contains all possible load combinations
that may act on a balance. Zero Absolute Load is the origin of the vector space.
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Load State ≡ Physical state or geometric shape of an elastically deformed strain–gage
balance that results from the application of forces & moments.

Math Model ≡ Mathematical description of the balance behavior. Coefficients of math
model terms are obtained after applying either Global Regression (p. 236f., p. 244ff.)
or Sequential Analysis (App. 28, Refs. [51], [52]) to balance calibration data.

Metric Assembly ≡ Metric Part of a balance plus all calibration hardware pieces that
are temporarily attached to it.

Metric Flange ≡ Part of a Single–Piece Balance that is used to attach the balance
to either the test article or the Calibration Body.

Metric Part ≡ Let us assume, for example, that a balance is a primary five– or six–
component balance. Then, it is the part of a balance that attaches either to the Calibra-
tion Body during calibration, or, to the model during a wind tunnel test. Calibration or
wind tunnel model loads act on it. In addition, the Balance Axis System is assumed
to be permanently attached to the Metric Part. Some analysts call the Metric Part
the Live End or Live Side of a balance. - Alternatively, let us assume that a balance is
an auxiliary three–component Moment Balance. Then, it is the unsupported part of a
balance where either the calibration loads are applied or the wind tunnel loads act.

Model Support System ≡ Hardware that supports the model, the balance, the sting,
and other hardware pieces during a wind tunnel test.

Moment Balance ≡ Six–component balance whose load components are described with
five moments and one force. The moments at the forward and aft moment bridges are
proportional to the corresponding bridge outputs (see also Moment Balance Format).

Moment Balance Format ≡ This format describes the loads of a balance by using
five moments and one force. They are defined as follows: forward/aft pitching moment,
forward/aft yawing moment, rolling moment, and axial force.

Multi–Piece Balance ≡ Balance type that is assembled from individual parts. Parts are
machined separately and joined together using screws and pins. One widely used family of
this balance type has Bi–directional normal and side force bridge outputs. In that case,
absolute value terms are needed in regression models of its calibration data. Details about
the connection between Bi–directional outputs and the use of absolute value terms in
regression models of balance calibration data can be found in Refs. [33], [34], and [35].

Natural Zero ≡ Raw Output of a bridge if the balance is in a weightless state. It is
the electrical description of Zero Absolute Load. It should be chosen as the Bridge
Output Datum if Raw Outputs are used for the analysis of balance calibration data.

Non–Iterative Method ≡ Load prediction method that directly fits calibration loads as
a function of the measured electrical outputs of the balance bridges. A detailed description
of the method is given in App. 9.

Non–Metric Flange ≡ Part of a Single–Piece Balance that is used to attach the
balance to either the Balance Support System or the Model Support System.
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Non–Metric Part ≡ Let us assume that a balance is a five– or six–component balance.
Then, it is the part of a balance that attaches to the Balance Support System during
calibration, or, to the Model Support System during a wind tunnel test. Reaction
loads act on it. Some analysts call the Non–Metric Part the Fixed End of a balance.
Alternatively, let us assume that a given balance is an auxiliary three–component Moment
Balance. Then, it is the part of a balance that is attached to the Balance Support
System during calibration, or, to the test article during a wind tunnel test.

Orientation ≡ Position of the Balance Axis System in space relative to the direction
of the gravitational acceleration. It is needed during the determination of the Natural
Zeros of the balance. The balance, for example, may be rotated while keeping its roll
axis perpendicular to the gravitational acceleration. In that case, four angles, i.e., 0 deg,
90 deg, 180 deg, and 270 deg, describe the position of the Balance Axis System in space.
The balance may also be oriented such that its roll axis is parallel to the direction of the
gravitational acceleration. Then, the terms up and down are used to describe the position
of the Balance Axis System in space.

Outer Sleeve ≡ Metric Part of a Force Balance.

Output ≡ Electrical signal of a strain gage or balance bridge (see also Bridge Output).

Output Space ≡ Multidimensional vector space. It contains all possible bridge output
combinations that could be measured on a strain–gage balance. The output vector defined
by the Natural Zeros of the balance bridges is the representation of Zero Absolute
Load whenever Raw Outputs are used to describe the outputs. Alternatively, the origin
of the vector space is the representation of Zero Absolute Load whenever the difference
between Raw Outputs and Natural Zeros is used to describe the outputs.

Preload ≡ Load component that is kept at a constant non–zero value while other load
components of the balance are applied.

Primary Bridge Load ≡ Load component that is responsible for the greatest part of the
Bridge Output. It can be defined for each bridge if a data set is analyzed in the Design
Format of the balance (i.e., a Force Balance data set is analyzed in Force Balance
Format, or, a Moment Balance data set is analyzed in Moment Balance Format,
or, a Direct–Read Balance data set is analyzed in Direct–Read Format).

Primary Bridge Output ≡ Output that responds to a Primary Bridge Load.

Primary Bridge Sensitivity ≡ First derivative of a fitted Primary Bridge Output
with respect to the related Primary Bridge Load. It should be described in units of
microV/V per load unit. It can be defined for all balance bridges if a balance data set
is analyzed in its Design Format (e.g., if a force balance data set is analyzed in Force
Balance Format, or, if a Moment Balance data set is analyzed in Moment Balance
format, or, if a Direct–Read Balance data set is analyzed in Direct–Read Format).

Primary Constant ≡ Primary Bridge Sensitivity
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Primary Load Iteration Equation ≡ One of two load iteration equations that may be
used to predict loads from measured bridge outputs during a wind tunnel test. It is the
load iteration equation that is described in App. 10, Eq. (10.27a).

Raw Output ≡ Absolute Voltage Measurement

Regression Model ≡ Math Model that describes the balance behavior. It is obtained
after applying Global Regression to balance calibration data (see p. 236f., p. 244ff.).

Regression Coefficient Matrix ≡ Matrix that describes the regression coefficients. The
coefficients are the result of applying Global Regression to balance calibration data.
The matrix has the coefficients of the regression model of a load component if the Non–
Iterative Method is used to predict balance loads. Alternatively, it has the coefficients
of the regression models of the bridge outputs if the Iterative Method is used to predict
balance loads. Users of the Iterative Method also use the terms Calibration Matrix
or Curve–Fit Matrix to describe the matrix.

Regular Data Points ≡ Loads and bridge outputs of these data points are recorded
during the calibration of the balance. Information contained in these points is used to
determine regression models that help predict the loads of the balance.

Resolved Balance Loads ≡ Loads of a Force Balance or Moment Balance that were
transformed to Direct–Read Format.

Response ≡ Dependent variable of a balance calibration data set. It is a load if the
Non–Iterative Method is used to predict balance loads. Alternatively, it is the electrical
output of a balance bridge if the Iterative Method is used to predict balance loads.

Sensitivity ≡ Primary Bridge Sensitivity

Sequential Analysis ≡ Coefficients of the terms of a multivariate Math Model are
obtained after superimposing analysis results of subsets of the balance calibration data.

Shell ≡ Metric Part of a Force Balance.

Shunt Resistor ≡ Resistor that simulates a load–induced Bridge Output.

Single Bridge Load ≡ Single–Component Load

Single–Component Load ≡ Non–zero load that is applied to a balance while keeping
all other load components close to Zero Absolute Load.

Single–Component Load Series ≡ Group of calibration or check load data points that
are obtained after applying a series of Single–Component Loads to a balance.

Single–Piece Balance ≡ Balance that is machined out of a single piece of metal. Loads
are given in Direct–Read Format. Outputs are highly repeatable and may not have
Bi–directional characteristics. Some outputs, however, may have large Interactions.

Six–Wire Balance ≡ Each bridge of this balance type is connected with two excitation
wires, two signal wires, and two sense wires to the signal conditioner (voltage source).

Symmetric Load Schedule ≡ Type of Load Schedule that has both positive and
negative loads or load combinations of similar magnitude.
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Tare Corrected Load ≡ It is the sum of the Applied Load and the Tare Load of
a Regular Data Point. It should be used as input for the final regression analysis of
balance calibration data as it uses Zero Absolute Load as its load datum.

Tare Load ≡ Balance load that is caused by the combined weight of the Metric Part,
the Calibration Body, Calibration Fixtures, and Weight Pans. It is added as a
correction to the Applied Load so that all balance loads can be expressed relative to the
universal load datum of Zero Absolute Load.

Tare Load Iteration Algorithm ≡ Numerical process that is used to determine the Tare
Loads. It uses intermediate solutions of the regression models of the balance calibration
data in order to obtain estimates of the Tare Loads.

Tare Output ≡ Zero Load Output of Load Series

Temperature Sensitivity ≡ Partial derivative of the electrical output of a bridge with
respect to the temperature at the bridge location.

Weight Pan ≡ Hardware that supports gravity weights during the calibration of a balance.
It is attached to the Calibration Body.

Wheatstone Bridge ≡ Electrical circuit that is the typical method of wiring four or
more strain gages together in a measurement system (see also Ref. [81], pp. 131–151).

Wind–Off Load ≡ Force or moment that is caused by the combined weight of the wind
tunnel model and the Metric Part of the balance. It is a function of the orientation of the
model relative to the gravitational acceleration if a six–component balance is used with a
full–span model. It is independent of the pitch angle of the model whenever a semi–span
model is installed on either the floor or ceiling of a test section.

Wind–On Load ≡ Force or moment that is caused by (i) aerodynamic effects and (ii) the
combined weight of the wind tunnel model and the Metric Part of the balance. It is a
function of (i) the tunnel conditions, (ii) the orientation of the model relative to the free–
stream direction of the flow in the test section, and (iii) the orientation of the model
relative to the gravitational acceleration.

Zero Absolute Load ≡ Force or moment with zero magnitude that acts when the balance
is in a weightless state. It is the origin of the Load Space. It should be used as the
universal load datum for the description of all loads that a balance experiences during
its calibration. The Natural Zero is its electrical representation in the Output Space
whenever the outputs of the balance are described as Raw Outputs.

Zero Load Output ≡ Natural Zero.

Zero Load Output of Load Series ≡ Electrical output of a balance bridge at the
beginning of a Load Series. It is caused by the combined weight of the (i) Metric Part,
(ii) Calibration Body, (iii) Calibration Fixtures, and (iv) Weight Pans. A signal
caused by a Preload may also be a part of the output if it is treated as a Tare Load.

Zero Load Point ≡ Regular Data Point of a Load Series that has the Tare Outputs.
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Appendix 2

Statistical Terminology

Adjusted R–Square ≡ This statistic is related to the R–Square statistic that is also
discussed in this appendix. Some analysts prefer to use it as it does not always increase
as terms are added to the regression model. A description of the metric can be found in
Ref. [68], p. 83, Eq. (3.27).

Degrees of Freedom (regression) ≡ Equals the number of regression coefficients not
counting the intercept term. A description of the metric can be found in Ref. [68], p. 26/27,
Table 2.4.

Degrees of Freedom (residual) ≡ Equals the number of observations minus the total
number of regression coefficients. A description of the metric can be found in Ref. [68],
p. 26/27, Table 2.4.

Degrees of Freedom (total) ≡ Equals the sum of the degrees of freedom of the regression
and the degrees of freedom of the residual. A description of the metric can be found in
Ref. [68], p. 26/27, Table 2.4.

F–Value of Regression ≡ Equals the ratio between the Mean Square of the regression
and the Mean Square of the residual. It may be used to compare the predictive capability
of different regression models. A description of the metric can be found in Ref. [69], p. 28,
Eq. (2.21), pp. 649–651.

Mean Square (regression) ≡ Equals the Sum of Squares of the regression divided by
the Degrees of Freedom of the regression. A description of the metric can be found in
Ref. [69], p. 28, Eq. (2.21).

Mean Square (residual) ≡ Equals the Sum of Squares of the residual divided by
the Degrees of Freedom of the residual. A description of the metric can be found in
Ref. [69], p. 28, Eq. (2.21).

p–Value of Coefficient ≡ This metric is determined from a comparison of the t–Statistic
with values in a Students T–Distribution. With a p–Value of, e.g., 10 % (or 0.1), an analyst
can say with a 90 % probability of being correct that the coefficient is having some effect.
More details on the p–Value can be found in Ref. [70], pp. 273–275.

p–Value of Regression ≡ This metric tells an analyst how confident he or she can be
that the selected regression model has some correlation with the dependent variable. More
details on the p–Value can be found in Ref. [70], pp. 273–275.

PRESS Statistic ≡ This statistic is computed by omitting one observation and fitting the
regression model to the remaining observations. The fit is used (i) to predict the withheld
observation and (ii) to compute the square of the difference between the observed and
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fitted value. The process is repeated for all observations. Finally, the statistic is defined as
the sum of all squared differences or residuals. – A large difference between the response
residual and the PRESS residual indicates a point where the regression model fits the data
well, but a regression model, built without that point, predicts poorly. A description of
the metric can be found in Ref. [68], pp. 141–142.

PRESS R–Square ≡ This metric is an indicator of the predictive capability of the model.
A description of the metric can be found in Ref. [69], p. 46–47.

R–Square ≡ This statistic of the regression is the fraction of the variation in the dependent
variable that is accounted for by the independent variables. The statistic is a value between
0 and 1. However, a large value of the statistic does not necessarily indicate a good
regression model. Adding a variable to the regression model will always increase the
statistic, regardless of whether the additional variable is significant or not. Thus, it is
possible for regression models that have large values of the statistic to yield poor predictions
of new observations. A description of the metric can be found in Ref. [69], p. 30.

Standard Error ≡ This metric is an estimate of the standard deviation of the coefficient.
It is a measure of the precision with which the coefficient is measured. A coefficient is
probably different from zero if its magnitude is large compared to the value of the metric.
A description of the metric can be found in Ref. [68], p. 23.

Sum of Squares (regression) ≡ This metric equals the difference between the sum of
the product of the observed and fitted responses and the square of the sum of the observed
responses divided by the number of observations. A description of the metric can be found
in Ref. [69], p. 29, Eq. (2.22).

Sum Of Squares (residual) ≡ This metric equals the sum of the squared difference
between the observed and fitted responses. A description of the metric can be found in
Ref. [69], p. 26, Eq. (2.17).

Sum of Squares (total) ≡ This metric equals the difference between the sum of the
squared observed responses and the square of the sum of the observed responses divided
by the number of observations. It is also the sum of the regression sum of squares and the
residual sum of squares. A description of the metric can be found in Ref. [69], p. 28/29,
Eqs. (2.20), (2.24).

t–Statistic of Coefficient ≡ This statistic equals the ratio between the coefficient value
and its standard error. A coefficient is probably significant if the statistic is greater than
the critical value of a Students T–Distribution. A description of the metric can be found
in Ref. [69], p. 32, Eq. (2.29).

Variance Inflation Factor ≡ This metric is used to detect unwanted near–linear de-
pendencies (also called collinearity or multicollinearity) that may exist between regression
model terms. Near–linear dependencies are non–existent or weak if the metric is less than
the literature recommended threshold of 10 (see, for example, the discussion in Ref. [68],
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pp. 323–341; threshold of 10 is listed in Ref. [68], p. 334). – Different definitions of the
metric exist in the literature. The author recommends to use the SAS compatible defini-
tion of the metric for strain–gage balance data applications. This definition can correctly
handle balance data with bi–directional bridge output characteristics (see Method 2 in
Ref. [20], p. 5, Table 1). – It is the author’s experience that the threshold for the metric
should be increased from 10 to 20 for the assessment of balance data with bi–directional
bridge output characteristics (see also discussions in Ref. [34], p. 17).
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Appendix 3

Balance Axis System and Load Sign Conventions

3.1 General Remarks
Forces and moments act on a strain–gage balance. They are described in a Cartesian

coordinate system, i.e., the balance axis system, such that the predicted balance loads
can easily be quantified in the body axis system of the wind tunnel model (see, e.g., the
discussions of coordinate systems in Ref. [1], pp. 12–14, and Ref. [7], p. 3). In theory, the
load transformation from the balance axis system to the body axis system of the wind
tunnel model should be independent of the elastic deformation of the balance under load.
Consequently, the balance axis system should be attached to the part of the balance that
is rigidly connected to the wind tunnel model. This requirement means, for example, that
the balance axis system should be attached to the metric part of a primary six–component
balance as this part of the balance is rigidly connected to either the model or the calibration
body. Similarly, the balance axis system should be attached to the non–metric part of a
three–component moment balance as, in this case, the non–metric part of the balance is
rigidly connected to the model (see also the discussions in App. 15).

3.2 Balance Axis System Conventions
It is best to express coordinates and load vectors of the balance in a right–handed

coordinate system. This choice has the advantage that the rules of vector algebra and
vector calculus can rigorously be used when mathematical operations are applied to the
balance loads. The aircraft–fixed system described in Ref. [1], for example, is a right–
handed coordinate system that is frequently used at wind tunnel facilities in Europe.
Figure 3–1 below summarizes characteristics of this coordinate system and the resulting
balance load sign definitions. Vectors with single arrows mark the positive direction of the
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Fig. 3-1 Definition of the balance forces and moments in a right–
handed balance axis system (taken from Ref. [1], p. 14, Figure 1–6).

three balance forces. Vectors with double arrows, on the other hand, are used to identify
the positive direction of the three moments. It is also assumed that moment vectors are
interpreted using the right–hand rule from classical mechanics.

Balance axis system and load sign conventions are also used in the aerospace testing
community that are not right–handed. The North American balance axis system is one
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such example. It is described in great detail in Ref. [7]. Axes and load sign definitions of
the North American system are summarized in Fig. 3–2 below. Again, vectors with single
and double arrows mark the positive direction of the forces and moments. It is observed
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Fig. 3-2 Definition of the balance forces and moments in the North
American balance axis system (taken from Ref. [7], p. 3, Fig. 1).

that the positive directions of the axial & normal force vectors are opposite to the positive
directions of the related axes. Therefore, both vectors violate the requirement for a right–
handed coordinate system. Consequently, the cross–product operator cannot be used with
(i) the position vector and (ii) the resultant force vector for the calculation of the resultant
moment vector in the North American balance axis system (see also Ref. [55], p. 14).

Load signs are critical pieces of information that describe the loads of a strain–gage
balance. Therefore, Tom Hegland of the Wind Tunnel Division at NASA Ames Research
Center came up with the following mnemonic to memorize the signs of balance loads that
are described in the North American balance axis system:

Hegland’s Mnemonic

The three forces and three moments of a six–component strain–gage balance
are all positive in the North American balance axis system if an unpowered
wind tunnel model of an airplane is envisioned to be in a climbing right turn.

By default, the North American balance axis system is used during tests at the NASA
Ames Unitary Plan Wind Tunnel. Therefore, all forces and moments in the current docu-
ment are described by using this balance axis system convention.
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Appendix 4

Load Transformations

4.1 General Remarks
Force and moment balances are specifically designed such that the description of the

balance loads can directly be linked to the physical location of the flexures and bridges on
the balance. These two balance types have the built–in characteristic that only a single
bridge shows a significant change of its electrical output if the related load component is
applied at the bridge location. This design feature makes the connection between loads
and outputs more transparent and easier to troubleshoot.

A force balance, for example, is designed such that five of its six bridges primarily
respond to a single force that acts at a related bridge location. The load state of this
balance type can be described in force balance format by using the forward & aft normal
forces, the forward & aft side forces, the axial force, and the rolling moment. Then, the
design format of a force balance can be summarized as follows:

force balance format =⇒ N1, N2, S1, S2, AF︸ ︷︷ ︸
5 forces

and RM︸ ︷︷ ︸
1 moment

Similarly, a moment balance is designed such that five of its six bridges primarily
respond to a single moment that acts at a bridge location. In this case, the load state
of the balance can be described in moment balance format by using the forward & aft
pitching moments, the forward & aft yawing moments, the rolling moment, and the axial
force. Then, the design format of a moment balance can be summarized as follows:

moment balance format =⇒ PM1, PM2, Y M1, Y M2, RM︸ ︷︷ ︸
5 moments

and AF︸ ︷︷ ︸
1 force

Many analysts recommend to predict loads of a force or moment balance in design
format. Then, balance data can more easily be examined. However, it is required during
a wind tunnel test to transform balance loads from design format to direct–read format so
that aerodynamic loads in the body axis system of the test article can be computed from
the predicted balance loads. Direct–read format uses three forces and three moments at
the balance moment center (BMC) for the description of the load state of a balance. The
forces are normal force, side force, and axial force. The moments are pitching moment,
yawing moment, and rolling moment. Then, direct–read format can be defined as follows:

direct−read format =⇒ NF, SF, AF︸ ︷︷ ︸
3 forces

and PM, YM, RM︸ ︷︷ ︸
3 moments

No transformations are required for the axial force and the rolling moment. These
two load components are common to all three load formats. However, transformations are
needed from the normal and side force pairs to normal force, side force, pitching moment,
and yawing moment if loads are predicted in force balance format. This first conclusion is
summarized below.

N1, N2, S1, S2︸ ︷︷ ︸
force balance format

⇐= transformations =⇒ NF, SF, PM, YM︸ ︷︷ ︸
direct−read format
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Similarly, transformations are needed from the pitching and yawing moment pairs to
normal force, side force, pitching moment, and yawing moment if loads are predicted in
moment balance format. This second conclusion is summarized below.

PM1, PM2, Y M1, Y M2︸ ︷︷ ︸
moment balance format

⇐= transformations =⇒ NF, SF, PM, YM︸ ︷︷ ︸
direct−read format

The description of the load state of a balance in force or moment balance format is
equivalent to the description of the same load state in direct–read format. No information
is lost. It is like describing something in two different languages.

4.2 Transformations for a Force Balance
The load transformations for a force balance can be defined if forces are introduced

at the forward & aft bridge locations of the balance. They replace the force & moment
that act at the BMC of the balance. Figure 4–1 below shows the relationship between the

FORWARD
BRIDGE

BALANCE
MOMENT
CENTER

AFT
BRIDGE

+F1 +F2

+F

+M

Fig. 4–1 Forces acting at the forward & aft bridges of a force balance.

force & moment at the BMC and the forces at the forward & aft bridge locations. The
sum of the forces at the bridges must equal the total force at the BMC. Then, we get:

F = F1 + F2 (4.1)

Similarly, it is known that the moment at the BMC equals the sum of the moment
contributions from the two forces at the bridges. It is assumed that the location of the
BMC and the bridge locations are described in a coordinate system that uses the balance
centerline as the coordinate system axis (see Fig. 4–1). Then, the BMC has the coordinate
ϑ, the forward bridge the coordinate c1, and the aft bridge the coordinate c2. Now, two
auxiliary coordinate differences d1 and d2 may be introduced that describe the distance
between the BMC and the forces F1 and F2 at the bridge locations. We get:
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d1 = ϑ − c1 (4.2a)

d2 = ϑ − c2 (4.2b)

Then, using the sign definitions of (i) the balance loads and of (ii) the coordinates
that are depicted in Fig. 4–1, the moment at the BMC can be expressed as follows:

M = F1 · d1 − F2 · (−d2) (4.3)

Equations (4.1) and (4.3) are a linear system of equations that describes the relation-
ship between the forces at the forward & aft bridge locations and the force & moment
at the BMC. The linear system can be used to compute the forces F1 and F2 so that
both forces are expressed as a function of the force and moment at the BMC. First, it is
concluded from Eq. (4.1) that the following relationship is valid:

F2 = F − F1 (4.4)

The right hand side of Eq. (4.4) may be used to replace the force F2 in Eq. (4.3). We get:

M = F1 · d1 − (F − F1) · (−d2) (4.5)

Then, after solving Eq. (4.5) for the force F1 at the forward bridge location, we get:

F1 = F · −d2
d1 − d2

+ M · 1

d1 − d2
(4.6)

Similarly, after using Eq. (4.6) to replace F1 in Eq. (4.4) and simplifying the result,
we get the corresponding relationship for the force F2 at the aft bridge location:

F2 = F · d1
d1 − d2

− M · 1

d1 − d2
(4.7)

Finally, the set of universal load transformation equations for a force balance is ob-
tained after using Eqs. (4.2a) and (4.2b) to replace the moment arms in Eqs. (4.3), (4.6),
and (4.7), and summarizing the four transformations that were derived above:

Force Balance – Universal Load Transformations

F = F1 + F2 (4.8a)

M = F1 · (ϑ − c1) − F2 · (c2 − ϑ) (4.8b)

F1 = F · c2 − ϑ

c2 − c1
+ M · 1

c2 − c1
(4.8c)

F2 = F · ϑ − c1
c2 − c1

− M · 1

c2 − c1
(4.8d)

Universal load transformations for the loads of a moment balance are derived in the
next section of the appendix.

165



4.3 Transformations for a Moment Balance
The load transformations for a moment balance can be derived if moments are intro-

duced at the forward & aft bridges of the balance. These moments replace the force &
moment at the BMC of the balance. Figure 4–2 below shows the relationship between the
force & moment at the BMC and the moments at the forward & aft bridges. It is known

FORWARD
BRIDGE

BALANCE
MOMENT
CENTER

AFT
BRIDGE

+M1 +M2

+F

+M

Fig. 4–2 Moments acting at the forward & aft bridges of a moment balance.

that the moment at the BMC of a strain–gage balance is a pure moment (force couple).
In addition, basic principles of statics say that a pure moment can be moved to different
locations on an object without changing anything. Therefore, after moving the pure mo-
ment from the BMC to the forward bridge location, the following relationship for the total
moment at the forward bridge location is obtained:

M1 = M − F · (ϑ − c1) (4.9)

Similarly, the moment at the BMC may be moved to the aft bridge location. Then,
the corresponding relationship for the moment at the aft bridge location is obtained:

M2 = M + F · (c2 − ϑ) (4.10)

Equations (4.9) and (4.10) are a linear system of equations that describes the relation-
ship between the moments at the forward & aft bridge locations and the force & moment
at the BMC. The linear system can used to compute the force & moment at the BMC
so that both loads are expressed as functions of the moments at the forward & aft bridge
locations. First, the left– and right–hand sides of Eq. (4.9) are subtracted from the left–
and right–hand sides of Eq. (4.10). Then, after simplifying the result, we get:

M2 − M1 = F · (c2 − c1) (4.11)
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Finally, after solving Eq. (4.11) above for the force at the BMC, we get:

F =
M2 − M1

c2 − c1
(4.12)

In the next step, the left– and right–hand sides of Eq. (4.9) are added to the left– and
right–hand sides of Eq. (4.10). Then, after simplifying the result, we get:

M1 + M2 = 2 M + F ·
{

c1 + c2 − 2 ϑ
}

(4.13)

Now, after using the right–hand side of Eq. (4.12) to replace the force F on the
right–hand side of Eq. (4.13), we get:

M1 + M2 = 2 M +
M2 − M1

c2 − c1
·
{

c1 + c2 − 2 ϑ
}

(4.14)

It is possible to solve Eq. (4.14) for the pure moment at the BMC. Then, the following
relationship is obtained:

M =
M1 + M2

2
− M2 − M1

2 ( c2 − c1 )
·
{
c1 + c2 − 2 ϑ

}
(4.15)

It is an advantage to simplify the right–hand side of Eq. (4.15). Therefore, the mul-
tipliers of the moments at the bridge locations are assembled. Then, we get:

M = M1 ·
{

1

2
+

c1 + c2 − 2 ϑ

2 (c2 − c1 )

}
+ M2 ·

{
1

2
− c1 + c2 − 2 ϑ

2 (c2 − c1 )

}
(4.16)

The multipliers of the moments at the forward and aft bridge locations can be sim-
plified further because the following two relationships are valid:{

1

2
+

c1 + c2 − 2 ϑ

2 (c2 − c1 )

}
=

(c2 − c1) + c1 + c2 − 2 ϑ

2 (c2 − c1 )
=

{
c2 − ϑ

c2 − c1

}
(4.17)

{
1

2
− c1 + c2 − 2 ϑ

2 (c2 − c1 )

}
=

(c2 − c1)− c1 − c2 + 2 ϑ

2 (c2 − c1 )
=

{
ϑ − c1
c2 − c1

}
(4.18)

Now, after replacing the multipliers in Eq. (4.16) above with the right–hand sides of
Eqs. (4.17) and (4.18), the following equation for the moment M at the BMC is obtained:

M = M1 ·
{

c2 − ϑ

c2 − c1

}
+ M2 ·

{
ϑ − c1
c2 − c1

}
(4.19)

Finally, the set of universal load transformation equations for a moment balance is
obtained after assembling the four transformations that were derived above, i.e., Eqs. (4.9),
(4.10), (4.12) and (4.19):
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Moment Balance – Universal Load Transformations

F =
M2 − M1

c2 − c1
(4.20a)

M = M1 ·
{

c2 − ϑ

c2 − c1

}
+ M2 ·

{
ϑ − c1
c2 − c1

}
(4.20b)

M1 = M − F · (ϑ − c1) (4.20c)

M2 = M + F · (c2 − ϑ) (4.20d)

Simplified versions of the universal load transformations for a force balance and a
moment balance can be derived if the BMC is located halfway between the forward and
aft bridges. These simplifications are discussed in the next section.

4.4 Simplified Transformations
The BMC of a balance is often located halfway between the forward and aft bridges.

In that case, the universal load transformations can be simplified if the bridge distance d
is introduced as a parameter. Consequently, after moving the coordinate system origin to
the location of the forward bridge, we get:

c1 = 0 (4.21a)

c2 = d (4.21b)

ϑ = d/2 (4.21c)

Then, the following simplified transformations for a force balance are obtained after
using Eqs. (4.21a) to (4.21c) in Eqs. (4.8a) to (4.8d):

Simplified Load Transformations – Force Balance
(only valid if the BMC is located halfway between the forward & aft force bridges)

F = F1 + F2 (4.22a)

M =
{
F1 − F2

}
· d

2
(4.22b)

F1 =
F

2
+

M

d
(4.22c)

F2 =
F

2
− M

d
(4.22d)
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The general relationships above can also be expressed by using the traditional nomen-
clature of the loads of a force balance. Then, the following simplified relationships between
the normal forces and the pitching moment are obtained:

Transformations – Normal Forces & Pitching Moment
(only valid if the BMC is located halfway between the forward & aft normal force bridges)

NF = N1 + N2 (4.23a)

PM =
{
N1 − N2

}
· a

2
(4.23b)

N1 =
NF

2
+

PM

a
(4.23c)

N2 =
NF

2
− PM

a
(4.23d)

where

a ≡ distance between normal force bridges

Similarly, the following simplified relationships between the side forces and the yawing
moment of a force balance are obtained:

Transformations – Side Forces & Yawing Moment
(only valid if the BMC is located halfway between the forward & aft side force bridges)

SF = S1 + S2 (4.24a)

YM =
{
S1 − S2

}
· b

2
(4.24b)

S1 =
SF

2
+

YM

b
(4.24c)

S2 =
SF

2
− YM

b
(4.24d)

where

b ≡ distance between side force bridges
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In the next step, the following simplified transformations for a moment balance are
obtained after using Eqs. (4.21a) to (4.21c) in Eqs. (4.20a) to (4.20d):

Simplified Load Transformations – Moment Balance
(only valid if the BMC is located halfway between the forward & aft moment bridges)

F =
M2 − M1

d
(4.25a)

M =
M1 + M2

2
(4.25b)

M1 = M − F · d

2
(4.25c)

M2 = M + F · d

2
(4.25d)

Again, the relationships above can be expressed by using the traditional nomenclature
of the loads of a moment balance. Then, the following simplified relationships between the
normal force and the pitching moments are obtained:

Transformations – Normal Force & Pitching Moments
(only valid if the BMC is located halfway between the forward & aft pitching moment bridges)

NF =
PM2 − PM1

g
(4.26a)

PM =
PM1 + PM2

2
(4.26b)

PM1 = PM − NF · g

2
(4.26c)

PM2 = PM + NF · g

2
(4.26d)

where

g ≡ distance between pitching moment bridges
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Finally, the following transformation equations are obtained after applying the simpli-
fied relationships given in Eqs. (4.25a) to (4.25d) to the side force and the yawing moments
of a moment balance:

Transformations – Side Force & Yawing Moments
(only valid if the BMC is located halfway between the forward & aft yawing moment bridges)

SF =
YM2 − YM1

h
(4.27a)

YM =
YM1 + YM2

2
(4.27b)

YM1 = YM − SF · h

2
(4.27c)

YM2 = YM + SF · h

2
(4.27d)

where

h ≡ distance between yawing moment bridges

Again, it must be emphasized that the simplified load transformations defined in
Eqs. (4.22a) to (4.27d) are only valid if the BMC is located halfway between the forward
and aft bridges of the balance. In all other cases, the universal load transformations defined
in Eqs. (4.8a) to (4.8d) for a force balance and in Eqs. (4.20a) to (4.20d) for a moment
balance must be applied.
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Appendix 5

Combined Load Diagram

5.1 Introduction

Generic two–dimensional plots were developed at the NASA Ames Balance Calibration
Laboratory for both visualization and interpretation of the relationship between magnitude
& location of a calibration load in a combined load plot (see Ref. [50] for more details).
These generic plots are called combined load diagrams. They were constructed by assuming
that a calibration force is applied at a certain distance from the balance moment center.
This calibration force is generated by using either gravity weights or a hydraulic actuator.
It results in a force and moment pair at the balance moment center.

The interpretation of each combined load diagram depends on the format that is
chosen to describe the loads (see also App. 4). Important lines and regions are highlighted
in the diagram that help interpret calibration data. For example, lines of constant force and
moment are marked. In addition, lines of pure force and pure moment may be highlighted.
Lines for a fixed location of the applied calibration force may also be displayed. Finally,
regions are marked in the diagram that help identify (i) the sign of a force or moment and
(ii) the location of each load relative to the bridges and the balance moment center.

Combined load diagrams for typical balance load formats are discussed in the next
three sections. Afterwards, a data set from the calibration of a force balance is used to
illustrate the application of a combined load diagram to real–world data.

5.2 Direct–Read Format

It is assumed that balance loads are given in direct–read format at the balance moment
center. Then, interpretation and use of the combined load diagram needs information
describing the lines of (i) constant force, (ii) constant moment, and (iii) constant location
of the force. The location of these lines is obtained after analyzing the basic relationship
between the applied calibration force and the resulting load pair at the balance moment
center in more detail.

Fundamental connections between (i) the applied calibration force and (ii) the re-
sulting force & moment at the balance moment center are described in Fig. 5–1a below.
Position 1 marks the location of the aft bridge, position 2 marks the location of the balance
moment center, position 3 marks the location of the forward bridge, and position 4 is the
location of the applied calibration force. The applied calibration force at position 4 can
be moved to the balance moment center without changing the load state of the balance
if a force couple is introduced. The force couple is defined by force +F at position 4 and
force −F at position 2. The force couple can be substituted by a pure moment M at
the balance moment center that is given in Eq. (5.1) below. Coordinate x describes the

M = F · x where |x| ≡ moment arm (5.1)

location of the applied calibration force relative to the balance moment center. The ab-
solute value of the coordinate, i.e., |x|, is the moment arm. Coordinate values x = ±d/2
identify the location of the forward & aft bridges of the balance if loads of either a force
or a moment balance are given in direct–read format. The combined load diagram of the
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Fig. 5–1a Connection between applied force and load pair at balance moment center.

load pair at the balance moment center is simply defined as the generic plot of the moment
M versus the applied force F . Figure 5–1b below shows the general layout of the diagram
in this case. Lines of constant force are depicted as vertical lines in the diagram. They
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Fig. 5–1b Combined load diagram for load pair given in direct–read format.
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can be described by using the relationship that is given in Eq. (5.2a) below.

line of constant force =⇒ F = const. (5.2a)

The pure moment line, i.e., the line where the force is zero, is the vertical line that
goes through the origin of the combined load diagram. It coincides with the ordinate of
the coordinate system. Therefore, it can be described as follows:

line of pure moment =⇒ F = 0 (5.2b)

The lines of constant moment are horizontal lines in the combined load diagram. They
can be described by using the following equation:

line of constant moment =⇒ M = const. (5.3a)

The pure force line, i.e., the line where the moment is zero, is the horizontal line that
goes through the origin of the coordinate system. It coincides with the abscissa of the
coordinate system. Therefore, it can be described by the following equation:

line of pure force =⇒ M = 0 (5.3b)

It is also of interest to identify data points that are obtained by varying the magnitude
of a force at a constant coordinate x relative to the balance moment center. These lines may
be described by using the basic relationship between force F , moment M , and coordinate
x. Then, assuming that coordinate x is fixed, it is concluded from Eq. (5.1) that all lines
of constant moment arm (i.e., |x| = const.) must go through the origin of the coordinate
system as the moment M is proportional to the force F . In addition, the partial derivative
of the moment M with respect to the force F is given as:

∂M

∂F
= x (5.4)

The derivative equals the coordinate x of the applied force. A positive derivative,
i.e., slope means that the coordinate of the applied force is positive. Likewise, a negative
derivative means that the coordinate of the applied force is negative.

The line of constant x will coincide with the ordinate of the coordinate system if
the absolute value of coordinate x approaches infinity. The force on the ordinate of the
combined load diagram is zero as the ordinate is the pure moment line. This conclusion
has an important practical implication. Often, it is difficult to apply a pure moment, i.e.,
a force couple, during the calibration of a balance as more complex calibration hardware
setups are needed. These difficulties may be avoided if the influence of a pure moment on
the measured balance bridge outputs is approximated by (i) combining a large moment
arm with (ii) a force of small magnitude such that the design load limit of the balance is
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not exceeded. Then, calibration data points can be obtained that are in the vicinity of the
pure moment line.

Figure 5–1c below summarizes important characteristics of the combined load diagram
for balance loads that are described in direct–read format. The color yellow marks regions
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Fig. 5–1c Quadrant characteristics for load pair given in direct–read format.

where the force is applied at or between the forward and aft bridges of the balance assuming
that loads of either a force or moment balance are described in direct–read format. The
color orange marks regions where the force is applied outside of the location of the bridges.
The dividing lines between the yellow and orange regions are the two diagonal lines. They
represent the situation when the calibration force is exactly applied at the forward or aft
bridge location of the balance (x = ±d/2).

5.3 Force Balance Format

The interpretation of the combined load diagram for loads given in force balance
format can be obtained by using the same approach that was used in the previous section.
First, it is assumed that the balance moment center is located halfway between the forward
& aft bridges of the force balance. Then, the loads described in direct–read format, i.e.,
F and M in Fig. 5–1a, are simply replaced by the resulting load pair F1 and F2 at the
forward & aft bridges of the force balance. Figure 5–2a below shows corresponding load
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pairs in direct–read and force balance format that act on the balance assuming that posi-
tions 3 and 1 are the forward & aft bridge locations. Now, the combined load diagram of
the load pair can be defined as the generic plot of the force F2 at the aft bridge location
plotted versus the force F1 at the forward bridge location. Figure 5–2b below shows what
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Fig. 5–2b Combined load diagram for load pair given in force balance format.

the diagram looks like in this case. The load transformation equations from direct–read
to force balance format may be used to identify lines of constant force, constant mo-
ment, and constant moment arm in the combined load diagram above. We know, using
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derivations presented in App. 4, that the relationship between the force and moment
and the forces at the forward & aft bridges can be summarized by the following equations

F = F1 + F2 (5.5a)

M =
[
F1 − F2

]
· d / 2 (5.5b)

where d is the distance between the bridges. The lines of constant force F can be obtained
from Eq. (5.5a). Solving, e.g., Eq. (5.5a) for F2, we get:

line of constant force =⇒ F2 = [ F ]︸ ︷︷ ︸
F ≡ const.

− F1 (5.6a)

The pure moment line is the line where the force F is zero. Therefore, after setting
the force in Eq. (5.6a) to zero, we get the equation of the pure moment line:

line of pure moment =⇒ F2 = −F1 (5.6b)

The line of constant moment still needs to be determined. It can be obtained after
solving Eq. (5.5b) for F2. Then, we get:

line of constant moment =⇒ F2 =

[
−2 ·M

d

]
︸ ︷︷ ︸
M,d ≡ const.

+ F1 (5.7a)

The pure force line is the line where the moment M is zero. Therefore, after setting
the moment in Eq. (5.7a) to zero, we get the equation of the pure force line:

line of pure force =⇒ F2 = F1 (5.7b)

Finally, lines of a constant coordinate x of the force are obtained in the combined
load diagram after (i) replacing the moment on the left–hand side of Eq. (5.1) with the
right–hand side of Eq. (5.5b) and (ii) the force on the right–hand side of Eq. (5.1) with the
right–hand side of Eq. (5.5a). Then, we get the relationship below where x is the coordi–[

F1 − F2

]
· d / 2 =

[
F1 + F2

]
· x (5.8)

nate of the applied force. Rearranging terms in Eq. (5.8) and solving for F2, we get the
relationship below for the line that corresponds to a constant value of coordinate x.

line of constant value of coordinate x (version 1) =⇒ F2 = F1 ·
[
d − 2 · x
d + 2 · x

]
(5.9a)

The above equation can also be expressed in a different format if numerator and
denominator of the fraction are divided by x. Then, we get:
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line of constant value of coordinate x (version 2) =⇒ F2 = F1 ·
[
d/x − 2

d/x + 2

]
(5.9b)

Alternatively, Eq. (5.9a) may be solved for the force component F1. Then, we get:

line of constant value of coordinate x (version 3) =⇒ F1 = F2 ·
[
d + 2 · x
d − 2 · x

]
(5.9c)

It is concluded from Eqs. (5.9a) and (5.9b) that the lines of constant moment arm
are straight lines that must go through the origin of the combined load diagram as the
fractions on the right hand side of the two equations satisfy the following conditions:

d & x ≡ const. =⇒
[
d − 2 · x
d + 2 · x

]
≡ const. =⇒ (5.9a) =⇒ F2 = F1 · const.

Similary, after taking a closer look at Eq. (5.9c), the following conclusions are made:

d & x ≡ const. =⇒
[
d + 2 · x
d − 2 · x

]
≡ const. =⇒ (5.9c) =⇒ F1 = F2 · const.

Now, four limiting cases are examined in order to complete the investigation of the
equations of the constant coordinate x that describes the location of the total force relative
to the balance moment center. Equations of the lines of the following four locations are
of interest: x = +d/2 (forward bridge), x = −d/2 (aft bridge), x = 0 (balance moment
center), and x → ±∞ (approximation of pure moment). Equations (5.9a), (5.9b), and
(5.9c) may be applied to find the corresponding lines in the combined load diagram. The
first line is obtained after applying the condition x = +d/2 to Eq. (5.9a). Then, we get:

coordinate of forward bridge =⇒ x = +d/2 =⇒ F2 = 0 (5.10a)

Then, after using x = −d/2 in Eq. (5.9c), we get the equation of the second line:

coordinate of aft bridge =⇒ x = −d/2 =⇒ F1 = 0 (5.10b)

Similarly, after using x = 0 in Eq. (5.9a), we get the equation of the third line:

coordinate of balance moment center =⇒ x = 0 =⇒ F2 = F1 (5.10c)

It is observed that the equation of the line for x = 0, i.e., Eq. (5.10c), is identical with
the equation of the pure force line that is given in Eq. (5.7b). This result is expected as
the force is applied at the balance moment center (see also Fig. 5–2a).

Finally, after taking the limit x→ ±∞ of the fraction given on the right–hand side of
Eq. (5.9b), we get the equation of the fourth line:
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line of pure moment =⇒ lim
x→±∞

[
d/x − 2

d/x + 2

]
= −1 =⇒ F2 = −F1 (5.10d)

It is interesting to note that the fourth line, i.e., Eq. (5.10d), is identical with the pure
moment line that is given in Eq. (5.6b). Therefore, outputs of the forward & aft bridges
of a force balance will more and more resemble outputs resulting from the application
of a pure moment whenever the absolute value of coordinate x, i.e., the moment arm, is
significantly larger than the distance d between the forward & aft bridges of the balance.
Figure 5–2c below summarizes quadrant characteristics of the combined load diagram for
a load pair that is described in force balance format.
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Fig. 5–2c Quadrant characteristics for load pair given in force balance format.

The first and third quadrants are identified by the yellow color. They have data
points where the applied force is located between the forward & aft bridges. The second
and fourth quadrants are marked using orange color. They have data points where the
force is located outside of the bridges.

5.4 Moment Balance Format
Now, the interpretation of the combined load diagram for a load pair is discussed that

is described in moment balance format. First, it is assumed that the balance moment center
is located halfway between the forward & aft bridges of the moment balance. Then, the
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loads described in direct–read format, i.e., F and M in Fig. 5–1a, are simply replaced by
the resulting moment pair M1 and M2 at the forward & aft bridges of the moment balance.
Figure 5–3a below shows the corresponding load pairs in direct–read and moment balance
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Fig. 5–3a Transformation from direct–read format to moment balance format.

format assuming that positions 3 and 1 are the forward & aft bridge locations identified
using the coordinates x = ±d/2. Now, the combined load diagram of the load pair can be
defined as the generic plot of the moment M2 at the aft bridge plotted versus the moment
M1 at the forward bridge. Figure 5–3b below shows what the diagram looks like in this case.
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Fig. 5–3b Combined load diagram for load pair given in moment balance format.

Load transformation equations from direct–read to moment balance format may be
used to identify lines of constant force, constant moment, and constant moment arm in the
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combined load diagram above. We know, using derivations presented in App. 4, that the
relationship between the force and moment and the moments at the forward & aft bridges
can be summarized by the following equations:

F =
[
M2 − M1

]
/ d (5.11a)

M =
[
M1 + M2

]
/ 2 (5.11b)

Lines of constant force F in the combined load diagram can be obtained from Eq. (5.11a).
Solving, e.g., Eq. (5.11a) for M2, we get:

line of constant force =⇒ M2 = [ F · d ]︸ ︷︷ ︸
F,d ≡ const.

+ M1 (5.12a)

The pure moment line is the line where the force F is zero. Then, after setting the
force in Eq. (5.12a) to zero, we get the equation of the pure moment line:

line of pure moment =⇒ F = 0 =⇒ M2 = M1 (5.12b)

The line of constant moment still needs to be determined. Now, after solving Eq. (5.11b)
for M2, we get:

line of constant moment =⇒ M2 = [ 2 ·M ]︸ ︷︷ ︸
M ≡ const.

− M1 (5.13a)

The pure force line is the line where the moment M is zero. Then, after setting the
moment in Eq. (5.13a) to zero, we get the equation of the pure force line:

line of pure force =⇒ M = 0 =⇒ M2 = −M1 (5.13b)

Lines of coordinate x remain to be defined that describe a fixed location of force F .
The required relationship is obtained after replacing the moment on the left–hand side of
Eq. (5.1) with the right–hand side of Eq. (5.11b) and the force on the right–hand side of
Eq. (5.1) with the right–hand side of Eq. (5.11a). Then, we get:[

M1 + M2

]
/ 2 =

[
M2 − M1

]
· x / d (5.14)

Now, after rearranging terms in Eq. (5.14), solving for the moment component M2,
and simplifying the result, we get the following relationship:

line of constant value of coordinate x (version 1) =⇒M2 = M1 ·
[

2 x + d

2 x− d

]
(5.15a)

The relationship above may be expressed in a different format after dividing both the
numerator and denominator of the fraction by the coordinate x. Then, we get:

line of constant value of coordinate x (version 2) =⇒M2 = M1 ·
[

2 + d/x

2− d/x

]
(5.15b)
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Alternatively, Eq. (5.15a) may be solved for the moment component M1. Then, we get:

line of constant value of coordinate x (version 3) =⇒M1 = M2 ·
[

2 x− d

2 x + d

]
(5.15c)

It is concluded from Eqs. (5.15a) and (5.15b) that the lines of constant coordinate x
are straight lines that go through the origin of the combined load diagram as the fractions
on the right–hand side of the two equations satisfy the following conditions:

d & x ≡ const. =⇒
[

2 · x + d

2 · x − d

]
≡ const. =⇒ (5.15a) =⇒ M2 = M1 · const.

Similarly, after taking a closer look at Eq. (5.15c), the following conclusions can be made:

d & x ≡ const. =⇒
[

2 · x − d

2 · x + d

]
≡ const. =⇒ (5.15c) =⇒ M1 = M2 · const.

Now, four limiting cases need to be evaluated to complete the investigation of the
equations of the constant coordinate x that describes the location of the applied force
relative to the balance moment center. Equations of the lines for the following four coor-
dinate values are of interest: x = +d/2 (forward bridge location), x = −d/2 (aft bridge
location), x = 0 (balance moment center), and x→ ±∞ (approximation of pure moment).
Equations (5.15a), (5.15b), and (5.15c) may be used to find the corresponding lines in the
combined load diagram. The first line is obtained after applying the condition x = −d/2
to Eq. (5.15a). Then, we get:

coordinate of aft bridge =⇒ x = −d/2 =⇒ M2 = 0 (5.16a)

Now, after using x = +d/2 in Eq. (5.15c), we get the equation of the second line:

coordinate of forward bridge =⇒ x = +d/2 =⇒ M1 = 0 (5.16b)

Similarly, after using x = 0 in Eq. (5.15a), we get the equation of the third line:

coordinate of balance moment center =⇒ x = 0 =⇒ M2 = −M1 (5.16c)

It is observed that the line for x = 0, i.e., Eq. (5.16c), is identical with the pure force
line that was derived in Eq. (5.13b). This observation is expected as the force is applied
in this case at the balance moment center (see also Fig. 5–3a).

Finally, after taking the limit x→ ±∞ of the fraction given on the right hand side of
Eq. (5.15b), we get the equation of the fourth line:

line of pure moment =⇒ lim
x→±∞

[
2 + d/x

2 − d/x

]
= 1 =⇒ M2 = M1 (5.16d)

It is interesting to note that the fourth line, i.e., Eq. (5.16d), is identical with the pure
moment line that is defined in Eq. (5.12b). Therefore, it is concluded that the outputs
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of the forward & aft bridges of a moment balance will more and more resemble outputs
resulting from the application of a pure moment whenever the absolute value of coordinate
x, i.e., the moment arm, is significantly larger than the distance d between the forward &
aft bridges of the balance.

Figure 5–3c below summarizes characteristics of each quadrant of the combined load
diagram for a load pair that is described in moment balance format.
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Fig. 5–3c Quadrant characteristics for load pair given in moment balance format.

The second and fourth quadrants (yellow color) have data points where the calibration
force is located between the bridges. The first and third quadrants, on the other hand,
have data points where the calibration force is located outside of the bridges.

We conclude, after comparing the diagram for a load pair given in moment balance
format (Fig. 5–3b & Fig. 5–3c) with the diagram for a load pair given in force balance
format (Fig. 5–2b & Fig. 5–2c), that lines of constant force, constant moment, and constant
moment arm for a load pair given in moment balance format can be obtained from the
corresponding lines of a load pair given in force balance format by using a −90◦ rotation
about the origin of the coordinate system.

5.5 Discussion of Example

A data set from a manual calibration of NASA’s MK3C force balance may be used to
illustrate the application of the combined load diagram to a realistic calibration data set.
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The chosen balance is a six–component force balance of Task/Able design. It measures
five forces and one moment (N1, N2, S1, S2, AF , RM). It has a diameter of 2.0 in and
a length of 11.25 in. Table 5–1 below lists the capacity of each load component.

Table 5–1: Load capacities of NASA’s MK3C balance (lbs ≡ pounds of force).

N1, lbs N2, lbs S1, lbs S2, lbs AF , lbs RM , in−lbs

900 900 450 450 500 1000

The balance calibration was performed using the hand load method. A total of 247
loads or load combinations were applied that were distributed across 13 load series. Com-
bined loadings were only applied to the normal force components (N1, N2).

It was decided to focus the discussion in this section on loads that are visible in the
combined load plot of the forward & aft normal force components (see Fig. 5–4 below).
Five distinct lines can be seen in the plot. Figure 5–2b, i.e., the combined load diagram
for a load pair given in force balance format, may be used to interpret them.
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Fig. 5–4 Combined load plot for load pair {N1, N2} of the MK3C balance.

Points on the abscissa (Line 1) have a N2 load value of zero. Therefore, these points
represent loads that were applied at the forward bridge of the balance (coordinate x =
+3.625 in). Points on the ordinate (Line 2), on the other hand, have a N1 load value of
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zero. Therefore, points located on the ordinate represent loadings that were applied at the
aft bridge of the balance (coordinate x = −3.625 in).

Comparing Fig. 5–2b with Fig. 5–4 we conclude that the calibration points located
inside of the second and fourth quadrant (Line 3) must have been taken outside of the
bridge locations. This observation can be confirmed if the load transformations given in
App. 4 are applied to estimate the moment arm. The calculated coordinate of the applied
calibration force is determined to be x = +10.375 in. Therefore, the calibration force was
located 6.75 in forward of the forward normal force bridge of the balance.

The principal diagonal of the second and fourth quadrant (Line 4) is the pure moment
line. In theory, calibration points can only be placed on this line if a force couple is applied
during the calibration. It would have been possible to approximate the influence of a
pure moment on the bridge outputs if calibration points would have also been obtained by
applying the force at the coordinate x = −10.375 in. In that case, calibration points would
have appeared on Line 5. Consequently, points on both Line 3 and Line 5 could have been
used for the regression analysis of the calibration data. Then, a very good approximation of
the influence of a pure moment on the bridge outputs could have potentially been included
in the regression model of the calibration data as the pure moment line (Line 4) is located
halfway between Line 3 and Line 5.

5.6 Summary and Conclusions
Combined load diagrams for balance load pairs were discussed in great detail that are

given in direct–read, force balance, and moment balance format. The diagrams may be
used to interpret the combined load plots of typical strain–gage balance calibration data.
In particular, lines of constant force, pure force, constant moment, and pure moment
were identified for each balance load format choice. Results of these investigations are
summarized in Table 5–2 below.

Table 5–2: Description of constant and pure force & moment lines.

Load Line Direct–Read Force Balance Moment Balance
Description Format (F,M) Format (F1, F2) Format (M1,M2)

constant force F = const. F2 = F − F1 M2 = F · d + M1

pure force M = 0 F2 = F1 M2 = −M1

constant moment M = const. F2 = −2 ·M/d + F1 M2 = 2 ·M −M1

pure moment F = 0 F2 = −F1 M2 = M1

Finally, a combined load plot from a basic calibration of a six–component force balance
was used to illustrate benefits of the diagrams.

It was also illustrated during the investigation of the combined load diagrams how
data points near the pure moment line may be obtained by combining a large moment
arm with a force of small magnitude. This approach may help an analyst to approximate
the influence of a pure moment on the bridge output measurements whenever the chosen
calibration approach does not support the application of a pure moment to the balance.
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Appendix 6

Bridge Output Format

6.1 Introduction

An analyst can describe bridge outputs of a strain–gage balance by using one of
three formats. The bridge output format needs to be chosen carefully because it has
an influence on the characteristics of the method that is selected for the balance load
prediction. For example, outputs of balances with bi–directional characteristics must be
formatted as output differences relative to the natural zeros of the bridges if the Non–
Iterative Method in combination with absolute value terms of the outputs is used for the
balance load prediction. Important characteristics of the three output format types are
discussed in detail in the next section. Afterwards, a data set from a typical six–component
strain–gage balance is used to illustrate application and interpretation of the three output
formats. Finally, useful interpretations of the outputs of unloaded bridges are provided
that are often observed during the manual calibration of a balance.

6.2 Bridge Output Format Types

Three bridge output format types exist that may be used to describe strain–gage bal-
ance data. The first type is the format Raw Output. It describes outputs as absolute voltage
measurements. The output format is defined in Eq. (6.1) below where i is the bridge index,

Raw Output =⇒ rFi(η) (6.1)

η is the data point index, and rFi(η) is the raw output of the bridge. The use of the
format Raw Output makes the preparation of the input file for the regression analysis of
balance calibration data trivial. First, outputs can be used as supplied by the calibration
laboratory’s instrumentation. In addition, the natural zeros of the bridges can directly be
used for the regression analysis as they are the raw outputs of the balance in an assumed
weightless condition. These non–zero values are the electrical representation of zero abso-
lute load. They are needed for the tare load iteration process (see App. 12 and App. 13 for
more details). Consequently, assuming that the Iterative Method is used for the calibration
data analysis, the intercept term must always be included in the regression model of the
outputs as it is a least squares approximation of the natural zeros.

The format Raw Output can be used to analyze balance calibration data of all bal-
ance types with all known output characteristics as long as an analyst applies the Iterative
Method. However, Raw Outputs cannot be used to analyze calibration data of balances
with bi–directional outputs if the Non–Iterative Method is chosen for the analysis. This
limitation results from the fact that the traditionally used math term groups in the regres-
sion model of a load component do not allow for a constant output shift (this restriction
is discussed in great detail in App. 7). Now, characteristics and application of the format
Raw Output can be summarized in Table 6–1 below as follows:
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Table 6–1: Output format ≡ Raw Output ; summary of characteristics.

• defined as an absolute voltage measurement that uses zero volts as a datum;

• data preparation is trivial as Raw Outputs are directly used as supplied;

• Raw Output can be used to analyze data of balances with all known

bridge output characteristics as long as the Iterative Method is applied;

• Raw Output cannot be used to analyze data of balances with bi–directional

bridge output characteristics whenever the Non–Iterative Method is applied;

• natural zeros are the Raw Outputs of a balance in a weightless condition;

• natural zeros could also be obtained from Raw Outputs of related load series;

• Iterative Method =⇒ intercepts are a least squares description of the natural zeros;

• Iterative Method =⇒ intercepts must be used in regression models of Raw Outputs;

• tare loads can be obtained from output data by using a tare load iteration;

• Raw Output can be used to analyze data of both primary & auxiliary balances;

The second output format type, i.e., Difference Type 1, uses the difference between
the raw output and the natural zero of a balance bridge for the analysis. This alternate
output format is defined in Eq. (6.2) below where i is the bridge index, η is the data point

Difference Type 1 =⇒ Di(η) = rFi(η) − Ni (6.2)

index, rFi(η) is the raw output, and Ni is the natural zero of the balance bridge. The use
of the format Difference Type 1 requires a global subtraction of the natural zeros from all
raw outputs of the balance bridges. In other words, it is a simple linear transformation
(output shift) that is applied to the raw outputs. Consequently, the transformed values of
the natural zeros are zeros. These zeros represent the updated electrical representation of
zero absolute load of the balance. They are needed as data inputs if a tare load iteration
is performed using the transformed bridge outputs as input. Therefore, assuming that the
Iterative Method is used for the balance calibration data analysis, the intercept term is
optional in the regression model of the outputs as it is a least squares approximation of
zero, i.e., of the transformed original natural zeros.

Regression analysis results for the format Difference Type 1 will exactly match cor-
responding analysis results obtained by directly using the format Raw Output if (i) an
intercept term is included in the math models and (ii) the same math model is used for the
analysis. Difference Type 1 can be used to analyze balance calibration data of all balance
types with all known output characteristics using either the Iterative or the Non–Iterative
Method. In particular, Difference Type 1 can be used in combination with the Non–Iterative
Method to analyze data of balances with bi–directional outputs. Now, characteristics and
use of the format Difference Type 1 can be summarized in Table 6–2 below as follows:
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Table 6–2: Output format ≡ Difference Type 1 ; summary of characteristics.

• defined as difference between raw outputs and natural zeros of the balance;

• data preparation requires subtraction of natural zeros from all outputs;

• Difference Type 1 can be used to analyze data of balances with all known

bridge output characteristics as long as the Iterative Method is applied;

• Difference Type 1 must be used to analyze data of balances with bi–directional

bridge output characteristics whenever the Non–Iterative Method is applied;

• natural zeros equal zeros in transformed output space of the balance;

• Iterative Method =⇒ intercepts are a least squares description of zero output;

• Iterative Method =⇒ intercepts are optional in regression models of outputs;

• tare loads can be obtained from output data by using a tare load iteration;

• Difference Type 1 can be used to analyze primary & auxiliary balance data;

• analysis results match those for Raw Output if the same math terms are used;

The third output format type is called Difference Type 2. It uses the difference between
the raw output of the data point and the output of the zero load point of the load series
for the analysis. The zero load point is the data point of a load series whose outputs are
exclusively caused by (i) the weight of the metric part of the balance, (ii) the weight of the
calibration body, and (iii) the weight of all attached calibration hardware (flexures, yokes,
threaded rods, weight pans, etc.). The third output format is defined in Eq. (6.3) below

Difference Type 2 =⇒ Di
′(η) = rFi(η) − Zi{µ(η)} (6.3)

where i is the bridge index, η is the data point index, µ is the load series index, rFi(η) is
the raw output of the balance bridge, and Zi{µ(η)} is the output of the zero load point
of the load series that a data point belongs to.

Difference Type 2 requires a subtraction of the outputs of the zero load point of a load
series from the raw outputs of the given data set. Therefore, the data input file preparation
for the use of Difference Type 2 is complex whenever a manual calibration data set consists
of a large number of load series. Difference Type 2, similar to Difference Type 1, is a simple
output transformation. However, Difference Type 2 subtracts the electrical outputs of a
local datum, i.e., the output of the zero load point of the load series, from the raw outputs.
Difference Type 1, on the other hand, subtracts the electrical outputs of a global datum,
i.e., the natural zeros, from the raw outputs. It is important to mention at this point that
the transformed values of all natural zeros are zeros. These zeros are the updated electrical
representation of zero absolute load. Again, assuming that the Iterative Method is used,
the intercept term is optional in the regression model of the outputs.

Difference Type 2 can be used to analyze balance calibration data of all balance types
with all known output characteristics as long as the maximum magnitude of the tare loads
of all load series is less than the empirical threshold of ≈ 2 % of load capacity. In other
words, the use of Difference Type 2 implicitly assumes that the tare loads of each load series
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are negligible. The output format does not support a tare load iteration as the subtraction
of the outputs of a zero load point of a load series removes information in the data that
quantifies the tare loads of a data point. Therefore, analysis results for Difference Type 2
are not as accurate as results that can be obtained by using either Difference Type 1 or Raw
Output as those two alternate formats support a tare load iteration. Finally, characteristics
of the format Difference Type 2 are summarized in Table 6–3 below as follows:

Table 6–3: Output format ≡ Difference Type 2 ; summary of characteristics.

• defined as difference between raw outputs and zero load outputs of load series

• data preparation is complex as output subtraction must be done series by series

• by design, tare loads are zero as transformed outputs imply negligible tare loads

• Difference Type 2 may be used if the magnitude of all tare loads is below 2 % of capacity

• transformed natural zeros equal zeros in transformed output space

• Iterative Method =⇒ intercepts are a least squares description of zero output

• Iterative Method =⇒ intercepts are optional in regression models of outputs

It is useful to summarize balance data processing characteristics that are associated
with the output format choices. Table 6–4 below lists five processing options that are
possible by using the three output formats that are described in this section.

Table 6–4: Balance data processing characteristics.

Option Raw Output Difference Type 1 Difference Type 2 Intercept Comments

1 × — — × natural zeros 6= 0

tare loads 6= 0

2 — × — × natural zeros = 0

tare loads 6= 0

3 — × — — natural zeros = 0

tare loads 6= 0

4 — — × × natural zeros = 0

tare loads = 0

5 — — × — natural zeros = 0

tare loads = 0

A calibration data set of NASA’s MK40A force balance is discussed in the next section
to illustrate the three output format choices that an analyst may use for the analysis of
strain–gage balance calibration data.

6.3 Discussion of Example
A data set from a basic manual calibration of the NASA’s MK40A balance was selected

to illustrate the application of the three bridge output formats to real–world data. The
MK40A is a six–component force balance of Task/Able design that measures five forces
and one moment (N1, N2, S1, S2, AF , RM). It has a diameter of 2.5 in (63.5 mm) and
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a total length of 17.31 in (439.7 mm). Table 6–5 below lists the load capacity of each load
component of the balance.

Table 6–5: Load capacities of NASA’s MK40A balance (lbs ≡ pounds of force).

N1, lbs N2, lbs S1, lbs S2, lbs AF , lbs RM , in− lbs

3500 3500 2500 2500 400 8000

The calibration of the balance was performed by using gravity weights. A total of 164
data points were recorded that were distributed across 16 load series. Single component
loadings of all load components were recorded. Limitations of the calibration hardware
only allowed for the simultaneous application of the forward & aft normal & side forces.
Calibration data input files were prepared in support of the five calibration data processing
options that are listed in Table 6–4. Figure 6–1 below shows the natural zeros of the
balance bridges and parts of the original calibration data input file of the balance when
the measured outputs were described in the format Raw Output.

Natural Zeros of the MK40A Balance

Fig. 6–1 Natural zeros and as supplied calibration data of the MK40A balance if the
format Raw Output is used to describe the outputs of each calibration data point.

The natural zeros of the bridges, data point identifications, load series numbers, ap-
plied loads, and measured raw outputs of the six balance bridges are listed in column
format. In addition, the outputs of the first zero load point of each series quantify the
influence of the tare loads on the electrical outputs of the bridges. The first zero load point
of a series can easily be recognized in Fig. 6–1 above. It is the data point of a load series
that has zero applied load for all load components. For example, outputs of point P-0001
of Series 1 and outputs of point P-0010 of Series 2 are outputs of zero load points.

Similarly, Fig. 6–2 below shows the transformed natural zeros and the revised cali-
bration data input file of the balance when outputs are described in the format Difference
Type 1. The last six data columns of Fig. 6–2 were obtained by simply subtracting the
natural zeros given in the header of Fig. 6–1 from the last six data columns of Fig. 6–1.
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Transformed Natural Zeros of the MK40A Balance

Fig. 6–2 Transformed natural zeros and calibration data of the MK40A balance if the
format Difference Type 1 is used to describe the outputs of each calibration data point.

Finally, Fig. 6–3 below shows the transformed natural zeros of the balance bridges and
parts of the revised calibration data input file of the balance when outputs are described
in the format Difference Type 2.

Transformed Natural Zeros of the MK40A Balance

Fig. 6–3 Transformed natural zeros and calibration data of the MK40A balance if the
format Difference Type 2 is used to describe the outputs of each calibration data point.

The last six data columns of Fig. 6–3 were obtained by subtracting the raw outputs
of the zero load point of each load series from all other outputs of the corresponding load
series. Therefore, for example, outputs of point P–0012 of Fig. 6–3 were obtained by
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subtracting the outputs of point P–0010 of Fig. 6–1, i.e, the outputs of the zero load point
of Series 2, from the outputs of point P–0012 of Fig. 6–1.

6.4 Interpretation of the Outputs of Unloaded Bridges

A good understanding of the electrical output format types of a balance bridge makes
it possible to better understand hidden characteristics of individual data points that are
contained in the calibration data set of a balance. In this section it is shown, for example,
how the raw outputs of the calibration data set of a six–component force balance may
directly be interpreted as the natural zeros of a bridge if an analyst is able to identify data
points with unloaded bridges.

In theory, a data point with unloaded bridges can be identified if the following two
conditions are fulfilled: (i) the data point is a zero load point of a load series; (ii) the orien-
tation of the balance and/or the calibration body relative to the gravitational acceleration
is known. Then, a subset of the bridges must be unloaded. In other words, the observed
electrical outputs of a subset of the bridges must be close to the corresponding values of
the natural zeros.

The previously discussed calibration data set of the MK40A balance may be used to
illustrate the identification of unloaded bridges and the direct measurement of the natural
zeros whenever outputs are given as raw outputs. Figure 6–4 below shows a typical setup
that is used during the calibration of the MK40A balance just before gravity weights are
placed on the weight pans (the calibration data itself is partially shown in Fig. 6–1).

CALIBRATION
BODY

ROD

BALANCE
(METRIC PART) 

BALANCE
MOMENT
CENTER

SUPPORT
SYSTEM 

WEIGHT
PAN

GRAVITATIONAL
ACCELERATION

BALANCE
(NON-METRIC PART) 

WIRE
HARNESS

Fig. 6–4 Typical hardware setup for the manual calibration of a balance.

The setup shown in Fig. 6–4 above describes the load state of the balance that is
responsible for the raw outputs of the zero load point of a load series. In this case, assuming
that (i) the calibration body was leveled and (ii) the forward and aft normal forces of the
balance are parallel to the direction of the gravitational acceleration, the two side force
bridges, the rolling moment bridge, and the axial force bridge must be unloaded. Similar
conclusions can be drawn for other orientations of the balance relative to the direction
of the gravitational acceleration. Table 6–6 below lists the unloaded bridges for three
different balance orientations relative to the direction of the gravitational acceleration.
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The direction of a balance load component relative to the gravitational acceleration is
used to describe the balance orientation.

Table 6–6: Force balance orientations relative to the direction of
the gravitational acceleration that result in sets of unloaded bridges.

Load(s) acting in direction of List of unloaded bridges of a
the gravitational acceleration six–component force balance

±N1 and ±N2 rS1, rS2, rAF , rRM

±S1 and ± S2 rN1, rN2, rAF , rRM

±AF rN1, rN2, rS1, rS2, rRM

For example, Fig. 6–5 below shows the zero load points (including repeats) of three of
the 16 load series of the calibration data of the MK40A balance. The raw outputs of the

Fig. 6–5 Interpretation and use of the unloaded bridges for
the measurement of the natural zeros of the MK40A balance.

bridges were simply copied from Fig. 6–1. Now, outputs of unloaded bridges need to be
identified in Fig. 6–5 that are among the outputs of the zero load points of the calibration
data. Load Series 1, for example, applied a positive forward normal force component
(+N1). This situation is described by the first line in Table 6–6 above. Consequently, the
two side force bridges, the rolling moment bridge, and the axial force bridge of the balance
must be unloaded bridges. The electrical outputs of these four unloaded bridges of Series
1 are highlighted in blue color in Fig. 6–5. As expected, they are close to the natural zeros
of the corresponding bridges that are reported in the header of Fig. 6–1 if experimental
error associated with balance alignment imperfections is temporarily ignored.

Similarly, Load Series 5 applied a positive forward side force component (+S1). This
situation is described by the second line in Table 6–6 above. Consequently, the two normal
force bridges, the rolling moment bridge, and the axial force bridge of the balance must
be unloaded bridges. The electrical outputs of these four unloaded bridges of Series 5 are
highlighted in blue color in Fig. 6–5. Again, as expected, they are close to the natural
zeros of corresponding bridges that are reported in the header of Fig. 6–1.

Finally, Load Series 9 applied a positive axial force component (+AF ). In that case,
the roll axis was parallel to the direction of the gravitational acceleration. This situation
is described by the third line in Table 6–6 above. Consequently, the two normal force
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bridges, the two side force bridges, and the rolling moment bridge of the balance must
be unloaded bridges. The electrical outputs of these four unloaded bridges of Series 5 are
highlighted in blue color in Fig. 6–5. Again, as it was the case for Series 1 and Series 5,
they are close to the natural zeros of the corresponding bridges that are reported in the
header of Fig. 6–1.

It is interesting to compare the blue values shown in Fig. 6–5 above with the natural
zeros of the balance bridges that are listed in Fig. 6–1. The values shown in Fig. 6–1
were obtained by averaging output sets of the balance that were measured after rotating
the balance four times on a leveling table. In all cases, differences between the averaged
natural zeros given in Fig. 6–1 and corresponding direct measurements given in Fig. 6–5
are very small (within ≈ ±2 microV/V ).

6.5 Summary
Characteristics of three bridge output format choices were discussed. The first output

format choice, i.e., Raw Output, works with balance data of all known output characteristics
as long as (i) the Iterative Method is used for the load prediction and (ii) an intercept is
included in the regression model of the outputs. However, the format Raw Output cannot
be selected whenever (i) an analyst wants to use the Non–Iterative Method for the load
prediction and (ii) the outputs of the balance have bi–directional characteristics (see also
the related discussion in App. 7). It also must be mentioned that the use of the format Raw
Output may make it possible to either determine or verify the natural zeros of a balance
bridge if an analyst can identify unloaded balance bridges of a calibration data point.

The second output format choice, i.e., Difference Type 1, is universally applicable. It
works with balance data of all known output characteristics if either the Iterative Method or
the Non–Iterative Method is chosen for the load prediction. The data input file preparation
is straight forward. The output differences are obtained by simply subtracting the natural
zeros of the balance bridges from the raw outputs.

The third output format choice, i.e., Difference Type 2, also works with data of all
known output characteristics if either the Iterative Method or the Non–Iterative Method is
used for the load prediction. It is defined as the difference between the raw output of a
bridge and the output of the zero load point of the load series of the given data point. It is
important to mention that Difference Type 2 only works correctly if the tare loads of each
data point are very small. Therefore, load prediction results obtained by using the format
Difference Type 2 are often not as accurate as results for the two other format choices as
those alternate formats support the tare load iteration process.

A good understanding of the bridge output format of a balance data set is not just
beneficial during the preparation of a balance data input file. It may also help an analyst to
correctly interpret calibration data that a wind tunnel customer used for the preparation
of the load prediction equations. In that situation, it may be possible to perform an
independent analysis of the customer’s data for troubleshooting purposes if problems with
the supplied load prediction equations surface during a wind tunnel test.
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Appendix 7

Bi–directional Output Characteristics

7.1 Introduction
The bridge outputs of some balance designs are known to have bi–directional char-

acteristics. In that case, it is observed that the primary bridge sensitivity, i.e., the first
derivative of a bridge output with respect to the related primary bridge load, is a function
of the sign of the load. In general, as Galway suggested in Ref. [6], absolute value terms† are
needed in regression models of bi–directional balance data to mathematically describe this
repeatable behavior (see Refs. [6], [7], [10], [33] to [35]).

Bi–directional output characteristics exist, for example, in data of Task/Able balances.
The bi–directional behavior of a Task/Able balance can be illustrated with calibration data
of NASA’s MK40A balance. It is known that the outputs of the normal and side force
bridges of this balance are bi–directional. Figure 7–1 below shows, for example, the out–
put of the MK40A’s forward side force bridge plotted versus the forward side force. It looks,

S1, lbs

+1126

-1126
0 +2500-2500

0

Fig. 7–1 Forward side force bridge output plotted versus the forward side force.

superficially viewed, as if the data plotted in Fig. 7–1 falls on a straight line. However,
a closer examination reveals that the slope of the forward side force bridge output shifts
by a small amount when the forward side force changes sign. This phenomenon accounts
for about 22 microV/V at load capacity if the bi–directional part of the output at load
capacity is extracted and plotted versus the forward side force (see Fig. 7–2 below).

S1, lbs

+22

-22

0

0 +2500-2500

Fig. 7-2 Bi–directional part of the forward side force bridge output.

† The idea of using the absolute value function for the description of bi–directional output characteristics
appears to have originated in Europe (Ref. [79], p. 5). Galway recognized benefits of this idea, extended it
to higher–order terms, and combined it with the global regression analysis approach (Ref. [6], pp. 21–23).
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The impact of bi–directional characteristics on the electrical outputs of a Task/Able
balance is small but cannot be neglected. Therefore, absolute value terms of either the
primary bridge outputs or the primary load components need to be included in regression
models of balance calibration data if either the Non–Iterative Method or the Iterative
Method is used for the data analysis and balance load prediction.

Important connections between (i) the chosen load prediction method, (ii) the bridge
output format, and (iii) the use of absolute value terms in the regression models of balance
data exist. They must be understood so that errors in the balance load prediction are kept
to a minimum. The connections are discussed in detail in the next section.

7.2 Bridge Output Format Choices for Bi–directional Outputs
Connections between the bridge output format and the absolute value term can easily

be understood if four different combinations of output format and data analysis method
are examined. Table 7–1 below describes the four possible combinations.

Table 7–1: Possible combinations of load prediction method and bridge output format.

Combination Load Prediction Method Bridge Output Format

1† Non–Iterative Method (App. 9) Raw Output (App. 6)

2 Non–Iterative Method (App. 9) Difference Type 1 (App. 6)

3 Iterative Method (App. 10) Raw Output (App. 6)

4 Iterative Method (App. 10) Difference Type 1 (App. 6)

†Non–Iterative Method cannot be used with format Raw Output if outputs are bi–directional.

Let us assume that the Non–Iterative Method is used for the load prediction. Then,
loads are fitted as a function of the outputs by using the regression model that is defined in
App. 9. Consequently, the loads are the dependent variables. They have to be plotted on
the vertical axis of the Cartesian coordinate system that shows characteristics of a bridge
with bi–directional outputs. Now, Combination 1 of Table 7–1 is examined. Then, a plot
of the primary bridge load versus the primary bridge output could look like the graph that
is shown in Fig. 7–3 below if the outputs are described using format Raw Output. The

3

natural zero

Fi
(Load)

ai,0

rFi
(Raw Output)

vertical off-set  =  load at zero output
intercept term is required

horizontal off-set  =  natural zero
term | rFi – Ni | is required

Fig. 7–3 Combination 1 ≡ Primary load plotted versus a bi–
directional primary output that is formatted as Raw Output.
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horizontal off–set of the solid line from the origin of Fig. 7–3 equals the natural zero of
the bridge. Consequently, a term like |rFi −Ni| would be needed in the regression model
of the load Fi in order to model the bi–directional characteristics of the bridge correctly.
Unfortunately, this regression model term is not a part of the traditional list of terms that
are given in App. 9. Therefore, the format Raw Output is not recommended for direct use
with the Non–Iterative Method whenever a balance has bi–directional outputs. Numerical
errors associated with the combined use of the terms rFi and |rFi| instead of the terms
rFi and |rFi −Ni| in the regression model of the load are expected to be too large.

In the next step, it is assumed that Combination 2, i.e., the Non–Iterative Method and
output format Difference Type 1, is used to analyze the data. Then, a plot of the primary
bridge load versus the transformed output of a bi–directional balance bridge could look like
the graph that is shown in Fig. 7–4 below. In that case, the horizontal off–set of the solid

4

Fi
(Load)

Di = rFi – Ni
(Difference Type 1)

i =  index of primary load or primary gage
Fi =  primary load
rFi =  primary gage output (raw output)
Ni =  natural zero of gage
ao,i =  intercept of the regression model of load Fi

Difference Type 1: ao,i = approximation of  “zero absolute load”

vertical off-set  =  zero load
intercept term is optional

Fig. 7–4 Combination 2 ≡ Primary load plotted versus a bi–
directional primary output that is formatted as Difference Type 1.

line from the origin has disappeared. Now, the intercept term of the regression model of
the load becomes an approximation of zero absolute load. This case can be processed by
using the Non–Iterative Method whenever (i) the linear term Di = rFi −Ni and (ii) the
absolute value term |Di| = |rFi −Ni| are used in the regression model of the load.

Alternatively, the Iterative Method may be used instead of the Non–Iterative Method
for the balance load prediction. Then, electrical outputs are fitted as a function of the
balance loads by using the regression model that is defined in App. 10. Consequently,
the electrical outputs are the dependent variables of the least squares fit of the balance
calibration data. Now, Combination 3 can be examined that is described in Table 7–1.
In this case, the electrical outputs are described as Raw Outputs. Then, the output of a
bi–directional balance bridge plotted versus the related primary bridge load could look like
the graph that is shown in Fig. 7–5 below. The solid black line in Fig. 7–5 represents the
functional relationship between electrical output and load. The vertical off–set of the solid
line from the coordinate system origin corresponds to the natural zero of the given bridge.
This value can be described by the intercept term in the regression model of the output.
Then, the bi–directional part of the output can be modeled in the regression model of the
raw output by the absolute value |Fi| of the related primary load component.
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1

Fi
(Load)

natural
zero

bi,0

rFi 
(Raw Output)

i =  index of primary load or primary gage
Fi =  primary load component
rFi =  primary gage output (raw output)
Ni =  natural zero of gage
bo,i =  intercept of regression model of raw gage output rFi

Raw Output: bo,i = approximation of  “natural zero”

vertical off-set  =  natural zero
intercept term is required

Fig. 7–5 Combination 3 ≡ Raw Output plotted
versus the primary load of a bi–directional bridge.

Finally, Combination 4 is investigated. Now, all electrical outputs are shifted by the
natural zero of the bridge. Consequently, output format Difference Type 1 is used to
analyze the balance data. Then, a plot of the shifted output versus the related primary
bridge load could look like the graph that is shown in Fig. 7–6 below.

2

Fi
(Load)

Di = rFi – Ni
(Difference Type 1)

i =  index of primary load or primary gage
Fi =  primary load
rFi =  primary gage output (raw output)
Ni =  natural zero of gage
bo,i =  intercept of regression model of output difference  rFi - Ni

Difference Type 1: bo,i = approximation of  “zero output”

vertical off-set  =  zero output
intercept term is optional

Fig. 7–6 Combination 4≡ Difference Type 1 plotted
versus the primary load of a bi–directional bridge.

The vertical off–set of the solid line from the origin has disappeared. Consequently, the
intercept term in the regression model of the output difference becomes an approximation
of zero output. In principle, the bi–directional characteristics of the two bridge output
format options shown in Figs. 7–5 and 7–6 can successfully be processed by using the
Iterative Method whenever at least (i) the intercept term, (ii) the linear term Fi, and
(iii) the absolute value term |Fi| are contained in the regression model of the output.
Again, the use of the intercept term is optional whenever an analyst selects output format
Difference Type 1 for the description of balance data.
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It is recommended to test if a bridge output has bi–directional characteristics. A
semi–empirical test was developed for that purpose that is discussed in the next section.

7.3 Test of Bi–directional Characteristics

7.3.1 General Remarks
The following description of the bi–directional behavior of a bridge output is given in

the literature (taken from Ref. [7], p. 12):

. . . it is not uncommon for the load/output relationship of balances, especially those of multi–
piece design, to exhibit some dependency on the sign of the strain in the measuring elements. . . .

The existence of bi–directional characteristics of the outputs is the justification for
the use of absolute value terms in the regression models of balance data. Therefore, the
following recommendation is made in the literature (taken from Ref. [7], p. 12):

. . . this asymmetric load behavior can be modeled effectively by an extension of the basic
math model to include terms combining the component loads with their absolute values. . . .

The authors of Ref. [7] only provided a qualitative description of the bi–directional
behavior of the bridge outputs of a balance. They did not address three questions:

Does every strain–gage balance of multi–piece design have bi–directional outputs ?
Does every bridge of a multi–piece balance have bi–directional characteristics ?
How large must the bi–directional part of an output be in order to be significant ?

Therefore, a semi–empirical test was developed for balance calibration data that sys-
tematically investigates the bi–directional characteristic of a balance bridge. The test
makes it possible to quantify the characteristic for each balance type and bridge output
combination. The original version of the test was intended for use with the Iterative
Method. Key elements of the test were recently improved so that the test can also work
with the Non–Iterative Method (see Ref. [33] for details).

7.3.2 Test Description
The improved semi–empirical test can be defined after making three assumptions:

(i) the balance calibration data is described in the design format of the balance, i.e., each
bridge output is primarily proportional to a single load component that, when applied, is
responsible for≈ 90 % or more of the output; (ii) the analyst chooses a temporary regression
model for the test that includes linear and principal absolute value terms; (iii) the bi–
directional part and the bridge output at load capacity are expressed in electrical units.
Then, the test can be described as follows:

Semi–empirical Test of Bi–directional Output Characteristics

A bridge output is bi–directional if (i) the absolute value of the output’s bi–directional
part at load capacity exceeds the threshold† of 0.5% of the absolute value of the bridge
output at load capacity, and, (ii) the p–value of the principal absolute value
term of the temporary regression model of the balance data is less than 0.001.

†A less conservative threshold of 0.3 % may be used for the test if (i) the given balance calibration
data set has highly precise & repeatable output measurements near load capacity, and (ii) the largest
positive and negative load values of each load component are of similar magnitude.
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A temporary regression model is used for the test because absolute value terms may
be omitted in the final model of the data if the bridge outputs are not bi–directional. The
expressions bi–directional part at load capacity, bridge output at load capacity, p–value,
and principal absolute value term are used in the definition of the test. They need to be
explained in the context of (i) the given balance calibration data and (ii) the two data
analysis methods. It is best to describe the expressions by using an example. Let us
assume that the bi–directional characteristic of an axial force bridge output is examined.
Then, the following statements can be made:

• The bi–directional part at load capacity is defined as the difference between (i) the
output of the axial force bridge at axial force capacity and (ii) the linear part of the output
at axial force capacity.

• The bridge output at load capacity equals the difference between the raw output of
the axial force bridge at axial force capacity and the natural zero of the axial force bridge.

• The principal absolute value term of the temporary regression model equals the
absolute value of the difference between the axial force bridge output and the natural zero
if the Non–Iterative Method is used for the data analysis.

• The principal absolute value term of the temporary regression model equals the
absolute value of the axial force if the Iterative Method is used for the data analysis.

• The p–value is used to assess if the principal absolute value term is statistically
significant. A significant regression model term has a very small p–value . The threshold
of 0.001 is often used to distinguish a significant from an insignificant term.

The bi–directional part at load capacity must be determined from the coefficients of
the temporary regression model that the Non–Iterative and the Iterative Method use for
the data analysis. These calculations are explained in the following two sections.

7.3.3 Bi–directional Part (Non–Iterative Method)
The Non–Iterative Method fits the tare corrected balance loads as a function of the

output differences relative to the natural zeros. Then, the temporary regression model
of a load component can be defined by the relationship that is given in Eq. (7.1) below.

Temporary Regression Model of a Load Component

F = a0 + . . . + aη · ( rF−N ) + . . . + aψ · | rF−N | + . . . (7.1)

Symbol F represents the fitted primary load component. It is associated with the
primary bridge output that symbol rF describes. The variable rF−N equals the difference
between the raw output and natural zero of the bridge. The coefficient a0 describes the
intercept term, aη is the coefficient of the output difference of the primary bridge, and aψ
is the coefficient of the absolute value of the output difference of the primary bridge.

It is helpful for the calculation of the bi–directional part of an output difference to iden-
tify the metric in a schematic. Figure 7–7 below shows the definition of the bi–directional
part at load capacity from the viewpoint of the temporary regression model of a load com-
ponent. Therefore, load F , i.e., the dependent variable, is shown on the vertical axis of
the Cartesian coordinate system. It is plotted versus the output difference rF−N , i.e.,
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the independent variable. The gray region contains the bi–directional parts of all output
differences of the bridge. It is concluded from Fig. 7–7 that the bi–directional part at load
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regression model of a load component
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Fig. 7–7 Definition of the bi–directional part at load capacity when viewed
from the perspective of the temporary regression model of a load component.

capacity is the difference of two coordinates. The first coordinate, i.e., x1, can be obtained
from a simplified version† of the temporary regression model of a load component that
consists of (i) the intercept and (ii) the principal linear term. Then, we get the equation

Eq. (7.1) =⇒ Fmax = a0 + aη · x1 (7.2a)

where Fmax is the load capacity. Now, after solving Eq. (7.2a) for x1, we get:

x1 =
[
Fmax − a0

]
/ aη (7.2b)

Similarly, the second coordinate, i.e., x2, can be obtained from a simplified version†

of the temporary regression model of a load component that consists of (i) the intercept,
(ii) the principal linear term, and (iii) the principal absolute value term. We get:

Eq. (7.1) =⇒ Fmax = a0 + aη · x2 + aψ · | x2 | (7.3a)

It is also known that |x2| equals x2 in the first quadrant of the coordinate system.
Then, after replacing |x2| with x2 in Eq. (7.3a) and solving the result for x2, we get:

x2 =
[
Fmax − a0

]
/
[
aη + aψ

]
(7.3b)

†The simplified versions of the temporary regression model of a load component are sufficiently accu-
rate for the determination of the two coordinates x1 and x2.

203



Finally, after subtracting the right–hand side of Eq. (7.2b) from the right–hand side
of Eq. (7.3b) and simplifying the result, the bi–directional part at load capacity is obtained:

Bi–directional Part at Load Capacity

Ω = x2 − x1 =
(−aψ) · ( Fmax − a0 )

aη · ( aη + aψ )
(7.4a)

It is important to mention that the absolute value of the right–hand side of Eq. (7.4a)
is compared with the threshold of 0.5 % of the absolute value of the bridge output at load
capacity when the semi–empirical test is applied. It is also useful to define the bi–directional
part for all load values (F ) and not just for the load capacity (Fmax). Then, by inspection,
we get the following relationship from Eq. (7.4a) above:

Ω′ =
(−aψ) · ( |F | − a0 )

aη · ( aη + aψ )
(7.4b)

In the next section, the bi–directional part at load capacity is derived that results from
the application of the Iterative Method to balance calibration data.

7.3.4 Bi–directional Part (Iterative Method)

Alternatively, the Iterative Method may be used to analyze balance calibration data.
This approach first fits electrical outputs of the balance bridges as a function of the loads.
Afterwards, an iteration equation is constructed from the regression coefficients of the
outputs so that loads can be predicted from the outputs during a wind tunnel test.

The definition of the bi–directional part at load capacity has to start with the descrip-
tion of the temporary regression model of a bridge output that the Iterative Method uses. It
is assumed that the difference between a raw output and the natural zero of a balance bridge
is fitted as a function of the tare corrected balance loads. Then, the chosen temporary
regression model of a bridge output difference can be described by Eq. (7.5) below. The

Temporary Regression Model of a Bridge Output Difference

rF−N = b0 + . . . + bη · F + . . . + bψ · | F | + . . . (7.5)

expression rF−N represents the output difference of the primary bridge relative to its
natural zero. The symbol F is the primary load component associated with bridge output
rF . The coefficient b0 describes the intercept term, bη is the coefficient of the primary
load, and bψ is the coefficient of the absolute value of the primary load.
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Again, it is helpful for the derivation of the bi–directional part at load capacity to
describe the metric in a schematic. Figure 7–8 below shows the definition of the bi–
directional part from the viewpoint of the temporary regression model of the bridge output
difference. The output difference rF−N , i.e., the dependent variable, is shown on the
vertical axis of the Cartesian coordinate system. It is plotted versus the primary load
component F , i.e., the independent variable. The gray region contains the bi–directional
parts of all output differences of the bridge. The graph shown in Fig. 7–8 can directly be

1

linear part of the temporary regression
model of a bridge output difference 

temporary regression model of a
bridge output difference, Eq. (7.5)
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Fig. 7–8 Definition of the bi–directional part at load capacity when viewed from
the perspective of the temporary regression model of a bridge output difference.

obtained from the graph shown in Fig. 7–7 (and vice versa). It is only required to reflect
all data points about the straight line that is identified as the Line of Reflection in both
graphs. This connection is valid as the relationship between the tare corrected load and
the related bridge output difference must be reversible. In that case, the independent and
dependent variables of a balance data set can be switched.

It is observed in Fig. 7–8 that the bi–directional part at load capacity is the difference
of two coordinates. The first coordinate, i.e., x1, can be derived from a simplified version†

of the temporary regression model of an output difference that consists of (i) the intercept
and (ii) the principal linear term. Then, assuming that Fmax is the load capacity, we get:

Eq. (7.5) =⇒ x1 = b0 + bη · Fmax (7.6a)

The second coordinate, i.e., x2, can be obtained from a simplified version† of the
temporary regression model of an output difference that consists of (i) the intercept, (ii) the
principal linear term, and (iii) the principal absolute value term. Now, we get:

Eq. (7.5) =⇒ x2 = b0 + bη · Fmax + bψ · |Fmax| (7.6b)

†The simplified versions of the temporary regression model of a bridge output difference are sufficiently
accurate for the determination of the two coordinates x1 and x2.

205



It is also known that |Fmax| equals Fmax in the first quadrant of the coordinate system.
Then, after replacing |Fmax| with Fmax in Eq. (7.6b), we get:

x2 = b0 + bη · Fmax + bψ · Fmax (7.6c)

Finally, after subtracting the right–hand side of Eq. (7.6a) from the right–hand side
of Eq. (7.6c), the bi–directional part at load capacity is obtained:

Bi–directional Part at Load Capacity

Ω = x2 − x1 = bψ · Fmax (7.7a)

It is important to mention that the absolute value of the right–hand side of Eq. (7.7a)
above is compared with the threshold of 0.5 % of the absolute value of the bridge output
at load capacity when the semi–empirical test is applied. It is also useful to define the
bi–directional part for all load values (F ) and not just for the load capacity (Fmax). Then,
by inspection, we get the following relationship from Eq. (7.7a) above.

Ω′ = bψ · |F | (7.7b)

The relationship defined in Eq. (7.7b) above, similar to Eq. (7.4b), may be used to
plot the bi–directional part of a bridge output difference as a function of the tare corrected
balance loads in order to visualize the connection between the bi–directional characteristic
of a bridge output and the absolute value function.

The bi–directional part at load capacity, i.e., Ω, is a physical characteristic that does
not depend on the method used for the regression analysis of the calibration data. There-
fore, a relationship between the regression coefficient sets used in Eqs. (7.4a) and (7.7a)
exists that is derived in the next section.

7.3.5 Relationship between Regression Coefficient Sets
A relationship between the regression coefficient sets used in Eqs. (7.4a) and (7.7a)

exists that can be understood if the temporary regression model of a load component, i.e.,
Eq. (7.1), is examined in more detail. The temporary regression model of a load component
was developed as a function of the output difference of the balance bridges relative to the
corresponding natural zeros. The natural zeros themselves are the outputs of the bridges
when the balance is at zero absolute load. Consequently, all terms on the right–hand
side of Eq. (7.1) are zero with exception of the intercept if the left–hand side is zero.
In other words, the intercept may be interpreted as a least squares approximation of zero
absolute load if it is included in the temporary regression model of a load component. This
conclusion also means that the use of the intercept is optional. Therefore, coefficient a0
can be omitted whenever differences between a raw output of a bridge and its natural zero
are used to fit a balance load. Then, the coefficient bψ on the right–hand side of Eq. (7.7a)
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must equal the fraction (−aψ)/{aη · (aη + aψ)} on the right–hand side of Eq. (7.4a) as the
bi–directional part at load capacity is a physical characteristic of the balance. This result
can be summarized as follows:

Relationship between Regression Coefficient Sets

a0 ≈ 0 =⇒ bψ =
− aψ

aη · ( aη + aψ )
(7.8)

The relationship above can be used to compare any regression model of a load compo-
nent with the related regression model of a bridge output difference as long as the following
two conditions are fulfilled: (i) the bridge output is known to be bi–directional; (ii) the
use of the intercept is optional in the regression model of the load component.

7.4 Discussion of Examples

7.4.1 General Remarks

The semi–empirical test was applied to calibration data of two balance types to illus-
trate typical test results. Key elements of the verbal description of the semi–empirical test
need to be revisited. Again, a bridge output is considered bi–directional if two conditions
are fulfilled. First, the absolute value of the bi–directional part at load capacity must ex-
ceed the threshold of 0.5 % of the absolute value of the bridge output at load capacity. In
addition, the p–value of the principal absolute value term of the regression model must be
less than 0.001. The two conditions are summarized below. The term |rF−N | is the

Bridge output is bi–directional if two conditions are fulfilled ...∣∣∣∣ bi−directional partat load capacity

∣∣∣∣︸ ︷︷ ︸
|Ω|

> 0.005 ×
∣∣∣∣ bridge output at

load capacity

∣∣∣∣︸ ︷︷ ︸
Θ ≡ output threshold

p−value of the principal absolute value
term of the temporary regression model

< 0.001

principal absolute value term if the given regression model fits a primary load component
F of the balance. Similarly, the term |F | is the principal absolute value term if the given
regression model fits a primary bridge output difference |rF−N | of the balance.
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Test results for the two chosen balance types are presented in the next two sections.
In addition, physical explanations for observed or detected bi–directional output charac-
teristics are provided whenever possible.

7.4.2 MK40B Balance (Task/Able Design)

The first example uses data from a 2019 machine calibration of NASA’s MK40B six–
component multi–piece force balance to illustrate the application of the semi–empirical
test. Figure 7–9 below shows the MK40B balance in its storage box. The MK40B is a

Fig. 7–9 NASA’s 2.5 inch diameter MK40B six–component force balance.

balance of Task/Able design that was manufactured by Aerophysics Research Instruments
of Corona, California. Table 7–2 below summarizes load capacities of the MK40B balance

Table 7–2: Load capacities of the MK40B Task/Able balance (lbs ≡ pounds of force).

N1, lbs N2, lbs S1, lbs S2, lbs AF , lbs RM , in–lbs

3500 3500 2500 2500 400 8000

in force balance format. The calibration of the balance was done in Calspan’s Automatic
Balance Calibration System (ABCS). The applied calibration load schedule consisted of
a total of 1646 data points that were distributed across 17 load series. Up to three load
components were applied simultaneously during the calibration. The data set was inde-
pendently analyzed by using both the Non–Iterative Method and the Iterative Method.

Table 7–3 below shows test results for each bridge output that were obtained after
applying the Non–Iterative Method to the machine calibration data. Absolute value terms
of the output differences relative to the natural zeros were included in the temporary
regression models of the balance loads so that the test could be performed. The first row

Table 7–3: Test results for the MK40B balance (Non–Iterative Method).

rN1 rN2 rS1 rS2 rAF rRM

Θ, microV/V 6.89 8.35 7.00 7.46 8.46 7.29

|Ω|, microV/V 4.57 < T 13.10 > T 16.90 > T 13.86 > T 5.21 < T 1.70 < T

p–value, |rF−N | < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Bi–directional ? NO YES YES YES NO NO
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in Table 7–3 lists the output threshold (Θ) for each bridge output. It equals 0.5 % of the
absolute value of the bridge output at load capacity. The second row has the absolute value
of the bi–directional part at load capacity (|Ω|) that was computed using Eq. (7.4a). The
third row has the p–values of the principal absolute value terms of the regression model of
each fitted load component. For example, the principal absolute value term of the forward
normal force is the difference between the forward normal force bridge output and the
related natural zero of the bridge. It is observed that three of the six bridge outputs of
the MK40B balance simultaneously fulfill both conditions that are needed for an output
to be bi–directional. Therefore, the use of absolute value terms of the related three bridge
output differences in the final regression models of the loads of the MK40B balance can
be justified if the Non–Iterative Method is applied.

It is useful to compare the predicted values of the bi–directional part at load ca-
pacity that are computed by using either the regression coefficients of the loads (Non–
Iterative Method) or the regression coefficients of the output differences (Iterative Method).
Table 7–4 below lists corresponding values for the MK40B balance. The agreement between

Table 7–4: Computed bi–directional part at load capacity for the MK40B balance.

rN1 rN2 rS1 rS2 rAF rRM
microV/V microV/V microV/V microV/V microV/V microV/V

Non–Iterative Method, Eq. (7.4a) +4.57 +13.10 +16.90 +13.86 +5.21 −1.70

Iterative Method, Eq. (7.7a) +4.93 +11.25 +16.49 +13.35 +5.21 −1.71

the values is excellent as long as small numerical differences are ignored. This result is
no surprise because the bi–directional part at load capacity is a physical property of the
balance. Therefore, it is independent of the method that is used for the data analysis.

Figure 7–10 below shows a plot of the forward side force bridge output versus the tare
corrected forward side force of the MK40B balance. The plot was obtained during the
analysis of the data. The outputs range from approximately −1401 to +1401 microV/V .
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Fig. 7–10 Plot of the forward side force bridge output
versus the forward side force of the MK40B balance.

Figure 7–11 below shows the bi–directional part at load capacity of the forward side force
bridge output plotted versus the forward side force of MK40B balance. The absolute value of
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Fig. 7–11 The bi–directional part at load capacity of the forward side force bridge
output plotted versus the forward side force (Eq. (7.4b), Non–Iterative Method).

the bi–directional part at load capacity was estimated to be 16.90 microV/V by using the
coefficients of the regression model of the forward side force as input (see also second row &
fourth column of Table 7–3). It is about 1.2 % of the output at load capacity. Consequently,
bi–directional properties of the forward side force bridge output are significant and cannot
be neglected. It must be mentioned that the bi–directional behavior is significant but still
very small when compared with the overall range of the forward side force bridge output.
Therefore, it cannot be detected by visual examination if an analyst plots the forward side
force output versus the forward side force (compare Fig. 7–10 with Fig. 7–11).

It is important to identify the most likely cause of the bi–directional characteristic
of a balance bridge in order to gain confidence in the chosen regression model’s ability
to model the physical behavior of the balance. The bi–directional characteristic can be
interpreted as an asymmetry in the first derivative if a bridge output is plotted versus
the related load component. This asymmetry may be associated with some kind of ge-
ometric asymmetry that is hidden in the design of the component parts of the balance.
Figure 7–12 below shows, for example, parts of a typical Task/Able balance. The balance
has a metric outer sleeve. It is the physical interface to the wind tunnel model. The
balance also has a non–metric inner rod. It is the interface to the balance support sys-
tem. Circumferential wall thickness variations of both the outer sleeve and inner rod can
clearly be seen. They are a known design feature of Task/Able balances. The wall thick–

SMALLEST
THICKNESS

METRIC 
OUTER
SLEEVE

COMPONENT PARTS OF THE
1.5" MK2B TASK BALANCE

GREATEST
THICKNESS

NON-METRIC 
INNER ROD

Fig. 7–12 Wall thickness variations of the metric outer sleeve
and the non–metric inner rod of a Task/Able force balance.

ness variations are responsible for a change of the elastic behavior of the balance (see also
related discussions in Ref. [2], p. 237). The change can be observed whenever (i) a load
is applied perpendicular to the roll axis and (ii) the load changes sign. These loads are
the forward & aft normal forces and the forward & aft side forces. The change in elastic
behavior is observed as a change of the slope when an output is plotted versus the related
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primary load component. The change is modeled during the analysis of balance calibration
data by using both linear and absolute value terms in the chosen regression models.

Magnitudes of the circumferential wall thickness variations of a Task/Able balance
are highly dependent on the design load capacities of the balance. The author observed
over the years that the magnitudes of the bi–directional characteristic of the two normal
force bridges and the two side force bridges of a Task/Able balance are often very close in
magnitude. However, magnitudes of the bi–directional output at capacity of the side force
bridge pair are often higher than corresponding values for the normal force bridge pair.
These observations clearly point towards a direct connection between the bi–directional
characteristics of the normal and side force bridges and the circumferential wall thickness
variations of the metric and non–metric component parts of a Task/Able balance.

It is useful to compare the magnitude of the bi–directional part at load capacity
for a family of Task/Able balances in order to better support the author’s conclusions.
Therefore, both the Non–Iterative Method and the Iterative Method were applied to cal-
ibration data of NASA’s MK29B, MK40A, and MK4A balances so that an estimate of
the bi–directional part at load capacity could be computed by using both Eq. (7.4a) and
Eq. (7.7a). Table 7–5 below lists results for the three balances. The first value in each box

Table 7–5: Bi–directional part at load capacity for a family of Task/Able balances.

Balance rN1 rN2 rS1 rS2 rAF rRM
(diameter) microV/V microV/V microV/V microV/V microV/V microV/V

MK29B +7.65 +10.68 +12.45 +18.52 +0.14 –1.41

(2.0 in) +7.30 +9.81 +10.89 +18.46 +0.17 +1.63

MK40A +10.07 +13.49 +23.12 +24.70 +0.33 –1.33

(2.5 in) +10.63 +12.71 +22.53 +23.76 +0.32 –1.26

MK4A +4.78 +7.75 +7.53 +4.58 +0.02 –0.27

(4.0 in) +4.82 +7.58 +7.38 +4.80 +0.00 –0.35

was obtained after applying Eq. (7.4a). This equation uses coefficients of the regression
models of the tare corrected balance loads as input. The second value in each box was
obtained after applying Eq. (7.7a). This alternate equation uses coefficients of the regres-
sion models of the bridge output differences as input. Several observations can be made
after examining Table 7–5 in more detail. First, values for Eq. (7.4a) and Eq. (7.7a) show
excellent agreement even though they were obtained by using coefficients of fundamentally
different regression models as input. In most cases, the agreement between the values is on
the order of 1.0 microV/V or better. It can also be seen that the magnitude of the values
for the normal and side force bridges of the balance are significantly larger than the magni-
tude of the values for the rolling moment and axial force bridges. This result confirms that
bi–directional characteristics of the normal and side force bridges of a Task/Able balance
are most likely caused by circumferential wall thickness variations.

7.4.3 MC60E Balance (HiCap Design)
The second example uses data from a machine calibration of NASA’s MC60E six–

component multi–piece force balance to illustrate the application of the semi–empirical
test. Figure 7–13 below shows the MC60E balance in its storage box. The MC60E is a
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1

Fig. 7–13 NASA’s 2.0 inch diameter MC60E six–component force balance.

force balance of HiCap design that was manufactured by Calspan Force Measurement
Systems of San Diego, California. Table 7–6 below summarizes load capacities of the
balance in force balance format. The calibration of the balance was performed in 2016 in

Table 7–6: Load capacities of the MC60E HiCap balance (lbs ≡ pounds of force).

N1, lbs N2, lbs S1, lbs S2, lbs AF , lbs RM , in–lbs

2500 2500 1250 1250 700 5000

Calspan’s Automatic Balance Calibration System. The calibration load schedule consisted
of a total of 2092 data points that were distributed across 16 load series. Up to five load
components were applied simultaneously during the calibration. Again, similar to the
MK40B balance data, the calibration data set was independently analyzed using both the
Non–Iterative Method and the Iterative Method.

Table 7–7 below shows results of the semi–empirical test for each bridge output after
applying the Iterative Method to the calibration data. Absolute value terms of the load
components were included in the temporary regression model of the output differences so
that the test could be performed. The first row of the table lists the output threshold (Θ)

Table 7–7: Test results for the MC60E balance (Iterative Method).

rN1 rN2 rS1 rS2 rAF rRM

Θ, microV/V 5.30 5.92 2.88 3.23 4.42 6.85

|Ω|, microV/V 0.86 < T 1.06 < T 0.25 < T 0.17 < T 1.10 < T 1.39 < T

p–value, |F | < 0.001 < 0.001 0.3471 0.5432 < 0.001 < 0.001

Bi–directional ? NO NO NO NO NO NO

for each bridge. It equals 0.5 % of the absolute value of the bridge output at load capacity.
The second row has the absolute value of the bi–directional part at load capacity (|Ω|) that
was obtained by using Eq. (7.7a). The third row has the p–values of the principal absolute
value terms of the regression model of each output that the Iterative Method uses. For
example, the principal absolute value term of the forward normal force bridge output is
the forward normal force. It is observed that none of the six bridge outputs of the MC60E
balance simultaneously fulfills both conditions that are needed for bridge output to be
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bi–directional. Therefore, the use of absolute value terms in the final regression models of
the calibration data of the MC60E balance cannot be justified.

Again, it is interesting to compare estimates of the bi–directional part at load capac-
ity that were computed by using either Eq. (7.4a) or Eq. (7.7a). Table 7–8 below lists
corresponding values. The agreement between the predicted values is excellent. This result

Table 7–8: Computed bi–directional part at load capacity for the MC60E balance.

rN1 rN2 rS1 rS2 rAF rRM
microV/V microV/V microV/V microV/V microV/V microV/V

Non-Iterative Method, Eq. (7.4a) +0.78 −2.14 +0.16 +0.44 −1.12 −1.47

Iterative Method, Eq. (7.7a) +0.86 −1.06 +0.25 +0.17 −1.10 −1.39

is expected as the bi–directional part at load capacity is a physical property of the balance.
In other words, it must be independent of the method that is used for the regression analysis
of the balance calibration data. Figure 7–14 below shows a plot of the aft normal force

Fig. 7–14 Plot of the aft normal force bridge output
versus the aft normal force of the MC60E balance.

bridge output versus the aft normal force of MC60E balance that was obtained during
the regression analysis of the calibration data. The outputs ranged from approximately
−1187 to +1187 microV/V during the calibration. Figure 7–15 below shows a plot of the
bi–directional part at load capacity of the aft normal force bridge output versus the aft
normal force of MC60E balance as an example. The absolute value of the bi–directional

Fig. 7–15 The bi–directional part at load capacity of the aft normal force bridge
output plotted versus the aft normal force (Eq. (7.7b), Iterative Method).
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part at load capacity was estimated to be approximately 1.06 microV/V (see also second
data row & second data column of Table 7–7). This value is less that 0.1 % of the output
at load capacity. Consequently, bi–directional effects of the aft normal force bridge output
of the MC60E balance are very small and can be neglected.

7.5 More Complex Bi–directional Characteristics

By design, the semi–empirical test defined in section 7.3.2 can only detect a bi–
directional characteristic that may exist between a bridge output and the related primary
balance load component. Consequently, the test cannot detect more complex bi–directional
characteristics that may exist between a bridge output and a load component that is dif-
ferent from the primary load component of the bridge. In that case, it is suggested to
investigate bi–directional characteristics by (i) temporarily including suitable groups of
absolute value terms in the regression models of the balance calibration data, (ii) per-
forming a preliminary regression analysis of the data, and (iii) assessing the importance of
those absolute value terms by using the percent contribution of a regression model term
as a test metric (see App. 16 for more details about the percent contribution). An ana-
lyst should use information about balance design and other subject matter knowledge as
the basis for the selection of suitable absolute value term groups (available absolute value
term groups are listed in App. 9, Table 9–1, and App. 10, Table 10–1). Theoretically, only
very important absolute value terms should be included in the regression model of the
calibration data in order to prevent over–fitting. Those absolute value terms should have
a percent contribution with a magnitude that exceeds the empirical threshold of 0.5 %
(percent contribution threshold is taken from App. 16, Table 16–3).

7.6 Summary and Conclusions

The use of absolute value terms in regression models of balance calibration data can
only be justified if balance bridge outputs are bi–directional. Therefore, a semi–empirical
test was developed that may be used to investigate the bi–directional characteristic of a
bridge output. The test was defined such that it can be applied to balance calibration data
that is processed by using either the Non–Iterative or the Iterative Method.

The test compares two metrics with thresholds in order to determine if a balance
bridge has a bi–directional characteristic. First, the absolute value of the bi–directional
part at load capacity has to exceed 0.5 % of the absolute value of the bridge output at load
capacity. In addition, the principal absolute value term of the temporary regression model
of the balance calibration data must be statistically significant. In other words, its p–value
must be less than 0.001.

Calibration data examples of two six–component force balances were used to illus-
trate the application of the test. The first example discussed characteristics of a six–
component balance of Task/Able design. In this case, three of the six bridge outputs have
bi–directional characteristics. These bi–directional characteristics are most likely caused
by circumferential wall thickness variations of the metric and non–metric component parts
of the balance. The second balance is a six–component balance of HiCap design. No bi–
directional characteristics of the bridge outputs were detected for this balance type. The
test was also successfully applied to data of balances of single–piece design (these results
are not reported in the appendix). These test results confirmed that bridge outputs of a
typical single–piece balance are often not bi–directional.
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The bi–directional part at load capacity is a very small quantity. Therefore, its reliable
numerical determination highly depends on the calibration load schedule design and the
overall quality of the given balance calibration data. The author observed over the years
that a calibration load schedule design with positive and negative loads of similar magni-
tude for each load component in combination with excellent data quality will lead to the
most accurate and repeatable estimates of the bi–directional part at load capacity.

The semi–empirical test has its limitations. It cannot be used to investigate the bi–
directional characteristic between a bridge output and a load component that differs from
the primary load component of the bridge. In that case, groups of absolute value terms
have to be temporarily included in the regression models of the calibration data. Then, a
preliminary regression analysis has to be performed. Afterwards, the percent contribution
should be used as a test metric in order to determine if the use of the chosen absolute
value terms in the regression models of the calibration data can be justified.
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Appendix 8

Determination of Natural Zeros

8.1 General Remarks

The absolute load datum of a balance is an important reference during both balance
data analysis and use. It is defined as the condition when the balance is in a weightless
load state. Alternatively, as originally suggested by Galway, the weightless load state of
a balance can be described by the raw electrical outputs of the bridges, i.e., the natural
zeros that are observed when no load is acting on the balance (see Ref. [6], p. 27; Galway’s
term buoyant component offset is a synonym for the term natural zero).

The natural zeros have two important applications. First, natural zeros are measured
as a part of the standard electrical checks of the balance. An unexpected large shift of
the natural zeros may indicate possible damage to the balance since it was last used. In
addition, it is best to describe all calibration loads of a balance relative to the datum
of zero absolute load if global regression analysis is used to process the calibration data.
This requirement can be fulfilled if estimates of the tare loads, i.e., estimates of loads
associated with the weight of the calibration equipment are added to the applied loads.
These estimates must be obtained numerically by using a tare load iteration algorithm
that needs the natural zeros of the balance bridges as an input.

8.2 Six–Component Balance

Different methods may be used to determine the natural zeros of the bridges of a six–
component strain–gage balance. Most of these methods are independent of the balance
design. Consequently, they may be applied to single–piece, multi–piece, and other balance
designs. Let us assume that an analyst needs to determine the natural zeros of the six
bridges of a force balance. Figure 8–1 below shows NASA’s MK34 Task/Able force balance

Fig. 8–1 NASA’s 2.5 inch diameter MK34 six–component force balance.

as an example. Figure 8–2 below shows a cut through a force balance that has the MK34’s
general lay–out. The balance consists of a metric outer sleeve and a non–metric inner rod.
The metric outer sleeve is the part that attaches the balance to the model. The non–metric
inner rod, on the other hand, connects the balance to the balance support system. The
metric part is marked using green color, the non–metric part is identified using blue, the
flexures & bridges are marked using yellow, and the balance moment center (BMC) is
highlighted as a magenta circle. The BMC is assumed to be located halfway between the
forward and aft bridges of the balance.
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NON-METRIC
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AXIS
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+NF 

x

z
balance axis system
definition is taken
from Ref.[7], p.3

Fig. 8–2 Principal parts of a six–component force balance ; green ≡ metric part ;
blue ≡ non–metric part ; yellow ≡ flexures ; magenta ≡ balance moment center.

Figure 8–3 below shows a force balance in a hypothetical weightless state. It is not
possible to put a six–component balance into a weightless state in a calibration laboratory
so that the natural zeros could directly be measured. Instead, the electrical outputs of a
weightless balance have to be approximated by using mean values of sets of electrical

BALANCE IN “WEIGHTLESS” STATE
(ZERO ABSOLUTE LOAD = ABSOLUTE LOAD DATUM)

Fig. 8–3 Definition of the absolute load datum of a strain–gage balance.

outputs that are measured for a variety of balance orientations relative to the direction of
the gravitational acceleration. These orientations are specifically selected such that, when
combined, all balance loads cancel each other out.

Figure 8–4 below shows six orientations of a balance relative to the direction of the
gravitational acceleration that are typically used for the determination of the natural zeros
in a calibration laboratory. They can be split into two groups. The first group assumes
that (i) the metric part of the balance is leveled and that (ii) its roll axis is perpendicular
to the direction of the gravitational acceleration. Then, the balance is rotated through four
angles that are identified by the values [0], [90], [180], and [270]. Only the normal force at
the BMC or, alternatively, the normal forces at the forward and aft normal force bridges
are acting when the balance is at [0] or [180]. Similarly, only the side force at the BMC or,
alternatively, the side forces at the forward and aft side force bridges are acting when the
balance is at [90] or [270]. Therefore, the balance loads cancel each other out if the loads
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[0]

facing the front end of the metric part
(sign convention is taken from Ref.[7], p.3)

[UP] [DOWN][270][180][90]

GRAVITATIONAL
ACCELERATION

-NF         -SF        +NF       +SF         +AF     -AF

FIRST GROUP
OF ORIENTATIONS

SECOND GROUP
OF ORIENTATIONS

Fig. 8–4 Balance orientations relative to the gravitational acceleration.

of the four orientations are superimposed. Consequently, the averages of the raw electrical
outputs of the balance bridges for these four orientations must be the outputs of the
weightless balance. This result can be summarized by the following relationship where

Ni =
[
rFi{[0]} + rFi{[90]} + rFi{[180]} + rFi{[270]}

]
/ 4 ; 1 ≤ i ≤ 6 (8.1)

Ni is the natural zero of the bridge, rFi{[0]} to rFi{[270]} are the raw electrical outputs
of the bridge at the different balance orientations, and i is the bridge index.

The second group of orientations assumes that the balance is leveled such that its roll
axis is parallel to the direction of the gravitational acceleration. Then, the balance may
be rotated through two orientations that are identified as [UP ] and [DOWN ]. Only the
axial force at the BMC is acting when the balance is at each one of those two orientations.
Again, loads cancel each other out when loads of the two orientations are superimposed.
Therefore, the averages of the raw outputs of the two orientations for each one of the six
balance bridges must be the outputs of the weightless balance. This result can be sum–
marized by the relationship below where Ni is the natural zero of the bridge, rFi{[UP ]}

Ni =
[
rFi{[UP ]} + rFi{[DOWN ]}

]
/ 2 ; 1 ≤ i ≤ 6 (8.2)

and rFi{[DOWN ]} are the raw outputs at the two balance orientations, and i is the bridge
index. The natural zeros are balance specific constants. Therefore, the values obtained by
using either Eq. (8.1) or Eq. (8.2) are expected to not differ by more than 1.0 microV/V .
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In principle, six specific methods can be defined for the determination of the natural
zeros. They use the balance orientations shown in Fig. 8–4 above as input for the calcula-
tion of the natural zeros. First, Methods 1 and 2 are reviewed. These two methods use a
leveling table and record outputs at orientations [0], [90], [180], and [270] so that Eq. (8.1)
can be applied. Method 1 places the balance on a V–block that rests on the leveling table.
This approach only works if either the balance has a metric outer sleeve, or, if the balance
has metric and non–metric parts with matching diameters.

Figure 8–5 below shows the situation if Method 1 is applied to a typical force balance
with a metric outer sleeve. In that case, the V–block supports the metric part of the

LEVELING
TABLEGRAVITATIONAL

ACCELERATION

NON-METRIC
PART

METRIC
PART

Fig. 8–5 Method 1 ≡ Force balance is supported by a V–block on a leveling table.

balance. Therefore, depending on the orientation of the balance in the V–block, either the
normal or the side force bridges experience a physical load. This load is caused by the
weight of the non–metric part of the balance.

Alternatively, Fig. 8–6 below shows the situation when Method 1 is applied to a
single–piece balance. It is assumed that the balance has metric and non–metric parts with
matching diameters. Then, the V–block supports both the metric and the non–metric part

LEVELING
TABLEGRAVITATIONAL

ACCELERATION

METRIC
PART

NON-METRIC
PART

Fig. 8–6 Method 1≡ Single–piece balance is supported by a V–block on a leveling table.
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of the balance while keeping its roll axis perpendicular to the direction of the gravita-
tional acceleration. The balance may experience very small loads at each one of the four
orientations that may be the result of balance design asymmetries.

Figure 8–7 below shows the situation when Method 2 is applied to a force balance.
Now, the metric part of the balance is supported by the calibration body itself that is placed
on a leveling table. Either the normal or the side force bridges experience a physical load
depending on the orientation of the balance in the calibration body. Again, this load is
exclusively caused by the weight of the non–metric part of the balance.

“LOAD” = WEIGHT OF “NON-METRIC PART”

NON-METRIC
PARTLEVELING

TABLEGRAVITATIONAL
ACCELERATION

METRIC
PART

CALIBRATION BODY

Fig. 8–7 Method 2 ≡ Balance is supported by a calibration body on a leveling table.

In the next step, Methods 3 and 4 are reviewed. They also use the four orientations
[0], [90], [180], and [270] in combination with Eq. (8.1) for the determination of the natural
zeros. The methods have two characteristics in common: (i) the non–metric part of the
balance is mounted in a balance support system and (ii) the roll axis of the balance is
perpendicular to the direction of the gravitational acceleration. Figure 8–8 below shows
the situation for Method 3. This time, the weight of the metric part of the balance re–

BALANCE SUPPORT SYSTEM

GRAVITATIONAL
ACCELERATION

METRIC PART

Fig. 8–8 Method 3 ≡ Balance is supported by the balance support system;
the roll axis of the balance is perpendicular to the gravitational acceleration.
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sults in a physical load on the normal or side force bridges of the balance depending on its
orientation in space. Figure 8–9 below shows the situation for Method 4. Now, the weight
of the metric assembly of the balance, i.e., the combined weight of the metric part and the
calibration body results in a physical load on the normal or side force bridges.

CALIBRATION BODY BALANCE SUPPORT SYSTEM

GRAVITATIONAL
ACCELERATION

METRIC PART

Fig. 8–9 Method 4 ≡ Balance assembly is supported by the balance support sys–
tem; the roll axis of the balance is perpendicular to the gravitational acceleration.

Finally, Methods 5 and 6 are reviewed. They have the following common character-
istics: (i) the non–metric part of the balance is mounted in a balance support system;
(ii) the roll axis of the balance is parallel to the direction of the gravitational acceleration;
(iii) orientations [UP ] and [DOWN ] of Fig. 8–4 are used. Figure 8–10 below shows the

Fig. 8–10 Method 5 ≡ Balance is supported by the balance support system;
the roll axis of the balance is parallel to the gravitational acceleration.

situation for Method 5. Again, similar to Method 3, the weight of the metric part is
responsible for a physical load on the balance. This time, however, the load is detected by
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the axial force bridge. Figure 8–11 below shows the corresponding situation for Method 6.

Fig. 8–11 Method 6 ≡ Balance assembly is supported by the balance support
system; the roll axis of the balance is parallel to the gravitational acceleration.

Now, the weight of the metric assembly, i.e., the combined weight of the metric part and
the calibration body results in a physical load that is detected by the axial force bridge
of the balance. – Table 8–1 below summarizes key characteristics of the six methods that
were discussed in this section. Method 2 to Method 6 may be applied to six–component
balances of all current designs (single–piece, multi–piece, etc.). In addition, each method

Table 8–1: Determination of natural zeros of a six–component balance.

Method Balance Orientations Comments

1 [0], [90], [180], [270] Balance† is supported by a V–block

that is placed on a leveling table.

2 [0], [90], [180], [270] Balance assembly, i.e., metric part plus cali–

bration body, is placed on a leveling table.

3 [0], [90], [180], [270] Balance is mounted on a support system; roll axis

is perpendicular to the gravitational acceleration.

4 [0], [90], [180], [270] Balance assembly is mounted on a support system; roll

axis is perpendicular to the gravitational acceleration.

5 [UP ], [DOWN ] Balance is mounted on a support system; roll

axis is parallel to the gravitational acceleration

6 [UP ], [DOWN ] Balance assembly is mounted on a support system;

roll axis is parallel to gravitational acceleration

†
Balance must have . . . a metric outer sleeve –or– metric & non–metric parts with matching diameters.
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leads to an independent estimate of the natural zeros. Experience has shown that these
independent estimates should not differ by more than 1.0 microV/V .

8.3 Five–Component Semi–span Balance

NASA owns a family of three five–component semi–span balances that are of single–
piece design with common metric/non–metric flange geometries. They are called MC60,
ARC30K, and MC400. These high–capacity balances are frequently used for tests in the
NASA Ames 11–ft Transonic Wind Tunnel. Each balance weighs approximately 1300 lbs.
Therefore, they must be handled with great care during both installation and check–out
in order to avoid physical damage to the bridges.

NASA’s five–component semi–span balances measure the following two forces and
three moments on a wind tunnel model: normal force, axial force, pitching moment, rolling
moment, and yawing moment. The omission of the side force measurement results in a
unique characteristic of these balances: an orientation of the balance exists relative to the
direction of the gravitational acceleration that allows an analyst to directly measure the
natural zeros. Therefore, the determination of the natural zeros of NASA’s five–component
semi–span balances is treated separately in this section in order to better discuss this unique
characteristic.

The determination of the natural zeros of a five–component semi–span balance can
more easily be understood if the balance is described by using only its principal parts.
Figure 8–12 below shows, for example, the general lay–out of the ARC30K five–component
semi–span balance. The image was taken just before the balance flexures were gaged. The
metric part, the non–metric part, and the balance flexures can clearly be identified.

ATOM Group

METRIC
FLANGE

NON-METRIC
FLANGE

PITCH
AXIS

FLEXURES

Fig. 8–12 NASA’s ARC30K five–component semi–span balance.

Figure 8–13 below shows a cut through a balance that is similar to the ARC30K. The
metric part is marked using green, the non–metric part is identified using blue, flexures
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+SF
(not measured)

x
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balance axis system
definition is taken
from Ref.[7], p.3

Fig. 8–13 Principal parts of a five–component semi–span balance; green ≡ metric
part; blue ≡ non–metric part ; yellow ≡ flexures ; magenta ≡ balance moment center.

and bridges are marked using yellow, and the balance moment center is highlighted as a
magenta circle. The pitch axis of the balance coincides with the y–axis of the balance axis
system of the semi–span balance.

It was mentioned earlier that a five–component semi–span balance has an orientation
relative to the direction of the gravitational acceleration that allows an analyst to directly
measure the natural zeros. The balance simply has to be placed on a leveled surface in
the [UP ] orientation such that its pitch axis is parallel to the direction of the gravitational
acceleration. This approach, i.e., Method 7, is shown in Fig. 8–14 below. In this case, the

LEVELED
SURFACE

GRAVITATIONAL
ACCELERATION

METRIC PART

NON-METRIC PART

PITCH AXIS
[UP]

Fig. 8–14 Method 7 ≡ Non–metric flange of the semi–span balance is placed on a
leveled surface; the pitch axis of the balance is parallel to the gravitational acceleration.

weight of the metric part acts in the direction of the side force. By design, the balance
does not measure the side force. In addition, its bridge sets were installed such that they
experience no load in this orientation. Then, their outputs match the natural zeros of the
balance. This conclusion is summarized in Eq. (8.3) below where Ni is the natural zero of
the bridge, rFi{[UP ]} is the raw output in the [UP ] orientation, and i is the bridge index.

Ni = rFi{[UP ]} ; 1 ≤ i ≤ 5 (8.3)
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Basic ideas of Methods 3 & 4 of Table 8–1 may also be used for the determination of
the natural zeros of a five–component semi–span balance if (i) the pitch axis instead of the
roll axis of the balance is kept perpendicular to the gravitational acceleration and (ii) the
balance is rotated through four angles. Figure 8–15 below shows the definition of the

[0] [270][180][90]

GRAVITATIONAL
ACCELERATION

-NF        +AF       +NF        -AF 

facing the front end of the metric part
(sign convention is taken from Ref.[7], p.3)

Fig. 8–15 Semi–span balance orientations relative to the gravitational acceleration.

required four balance orientations, i.e., [0], [90], [180], and [270], assuming that the balance
is used for tests of a left wing model. Then, the natural zeros of the five bridges are obtained
by averaging the raw electrical outputs that were obtained for the four balance orientations.
This result can be described by the following relationship:

Ni =
[
rFi{[0]} + rFi{[90]} + rFi{[180]} + rFi{[270]}

]
/ 4 ; 1 ≤ i ≤ 5 (8.4)

Now, Method 8 and Method 9 may be defined for a five–component semi–span balance.
Figure 8–16 below shows the situation for Method 8. In this case, the weight of the metric

GRAVITATIONAL
ACCELERATION

BALANCE
SUPPORT
SYSTEM

METRIC
PART

“LOAD” = WEIGHT OF “METRIC PART”

PITCH
AXIS

Fig. 8–16 Method 8 ≡ Semi–span balance is mounted on a balance support sys–
tem; the pitch axis of the balance is perpendicular to the gravitational acceleration.
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part of the balance results in a physical load on the normal or axial force bridges depending
on the orientation of the balance. Figure 8–17 below shows the situation for Method 9.

“LOAD” = WEIGHT OF “METRIC ASSEMBLY”

GRAVITATIONAL
ACCELERATION

BALANCE
SUPPORT
SYSTEM

METRIC
PART

PITCH
AXIS

CALIBRATION
HARDWARE

BALANCE ASSEMBLY

METRIC
ASSEMBLY

Fig. 8–17 Method 9≡ Semi–span balance assembly is mounted on a balance support sys–
tem; the pitch axis of the balance is perpendicular to the gravitational acceleration.

Now, the weight of the metric assembly consisting of the metric part and the calibration
hardware results in a physical load on the normal or axial force bridges.

Table 8–2 below summarizes characteristics of the three methods that were discussed
in this section. Each method, if correctly applied, leads to an independent estimate of

Table 8–2: Determination of natural zeros of a five–component semi–span balance.

Method Balance Orientations Comments

7 [UP ] Non–metric flange is placed on a leveled surface; the

natural zeros of the five bridges can directly be measured.

8 [0], [90], [180], [270] Balance is mounted on a balance support system; pitch

axis is perpendicular to the gravitational acceleration.

9 [0], [90], [180], [270] Balance assembly is mounted on a balance support system;

pitch axis is perpendicular to the gravitational acceleration.

the natural zeros. Ideally, these estimates should not differ by more than the empirical
threshold of 1.0 microV/V . – It was mentioned earlier that a five–component semi–
span balance is heavy and can easily get damaged during transport and/or installation.
Therefore, the author recommends to use Method 7 for both determination & monitoring
of the natural zeros of this balance type whenever the balance is moved between facilities.
This approach will make sure that problems are detected and corrected well before the
balance is installed in a wind tunnel facility.

8.4 Discussion of Examples
The determination of the natural zeros of two balances is discussed in this section

to better illustrate the application of methods that were presented in the previous two
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sections. The first balance is NASA’s MK3C force balance. This Task/Able balance has
a diameter of 2.0 in. It measures five forces and one moment (forward/aft normal force,
forward/aft side force, axial force, rolling moment). Table 8–3 below lists its nominal load

Table 8–3: Load capacities of the MK3C balance (lbs ≡ pounds of force).

N1, lbs N2, lbs S1, lbs S2, lbs AF, lbs RM, in−lbs

900 900 450 450 500 1000

capacities. It was decided to determine the natural zeros of the MK3C by using Method 3
and Method 5 (see Table 8–1). First, Method 3 was applied (see Fig. 8–8). In that case,
the non–metric part of the balance was attached to a balance support system such that
the roll axis of the balance would be perpendicular to the direction of the gravitational
acceleration. Then, the metric part of the balance, i.e., the metric outer sleeve, was leveled
such that the positive normal force would point upward. This orientation is identified as
[0] in Fig. 8–4. Afterwards, the electrical outputs of the six primary bridges were recorded.
Then, the balance was rotated to the remaining three orientations, i.e., [90], [180], [270],
and electrical outputs were recorded each time. The first four rows in Table 8–4 below
list the measured electrical outputs that were obtained at the four orientations. Finally,
Eq. (8.1) was applied and the mean of the outputs of the four orientations was computed
for each bridge. These mean values are listed in the fifth data row of Table 8–4.

Table 8–4: Natural zeros N1, N2, . . . , N6 of the MK3C force balance.

rF1=rN1 rF2=rN2 rF3=rS1 rF4=rS2 rF5=rAF rF6=rRM

microV/V microV/V microV/V microV/V microV/V microV/V

[0] −321.0 +92.9 +55.8 −212.3 +169.1 −102.6

[90] −318.1 +95.3 +51.0 −216.5 +169.1 −101.8

[180] −315.4 +97.7 +55.9 −212.2 +169.2 −101.8

[270] −318.3 +95.3 +60.8 −207.9 +169.2 −102.6

Method 3 −318.2 +95.3 +55.9 −212.2 +169.2 −102.2

[UP ] −319.3 +95.4 +55.8 −212.2 +177.7 −102.2

[DOWN ] −319.4 +95.1 +56.0 −212.7 +162.4 −102.3

Method 5 −319.4 +95.3 +55.9 −212.5 +170.1 −102.3

Ni =⇒ −318.8 +95.3 +55.9 −212.4 +169.7 −102.3

In the next step, Method 5 was applied (see also Fig. 8–10). This time, the non–metric
part of the balance was attached to a balance support system such that the roll axis of
the balance would be parallel to the direction of the gravitational acceleration. Then, the
metric part of the balance, i.e., the outer sleeve, was leveled such that the positive axial
force would point upward. This orientation is identified as [UP ] in Fig. 8–4. Afterwards,
the electrical outputs of the six bridges were recorded. Then, the balance was rotated such
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that the negative axial force would align with the direction of the gravitational acceleration
and the six outputs were recorded again. This second orientation is described by the term
[DOWN ] in Fig. 8–4. Data rows six and seven in Table 8–4 above show the electrical
outputs that were measured. Finally, Eq. (8.2) was applied and the mean of the outputs
of the two orientations was computed for each bridge. These mean values are listed in the
eighth data row of Table 8–4.

Now, after comparing results for Method 3 with results for Method 5, it is concluded
that the two sets of independent estimates of the natural zeros do not differ by more than
1.2 microV/V . Finally, mean values of the two independent estimates of the natural zeros
are computed and listed in the ninth data row of Table 8–4. Those values were used as
input for the balance data analysis.

It was mentioned during the discussion of Methods 3 and 5 that the balance experi-
ences a physical load in those two cases that is caused by the weight of the metric part.
Therefore, it is possible to estimate the weight of the metric part if (i) the output changes
for certain orientations are multiplied with (ii) the inverse of the sensitivities of related
bridges. Table 8–5 below lists the sensitivities of the bridges of the MK3C balance.

Table 8–5: Bridge sensitivities of the MK3C force balance.

∂ rN1

∂ N1

∂ rN2

∂ N2

∂ rS1

∂ S1

∂ rS2

∂ S2

∂ rAF

∂ AF

∂ rRM

∂ RM

microV/V

lbs

microV/V

lbs

microV/V

lbs

microV/V

lbs

microV/V

lbs

microV/V

in−lbs

1.803 1.844 3.135 3.171 2.756 1.169

First, orientation [180] in Table 8–4 is selected. In that case, the weight of the metric
part, i.e., the weight of the metric outer sleeve of the MK3C balance, acts in the normal
force directions. Then, after combining the output changes of the normal force bridges
relative to their natural zeros with related bridge sensitivities, we get the following result
(natural zeros were taken from the last row of Table 8–4):

W ≈
[
∂ rN1

∂ N1

]−1
·
[
rF1{[180]} − N1

]
+

[
∂ rN2

∂ N2

]−1
·
[
rF2{[180]} − N2

]
≈

[
1

1.803

]
·
[
(−315.4)− (−318.8)

]
+

[
1

1.844

]
·
[
(+97.7)− (+95.3)

]
≈ 3.19 lbs

(8.5)

Similarly, orientation [UP ] in Table 8–4 is selected. In that case, the weight of the
metric part acts in the axial force direction. Then, after combining the output changes of
the axial force bridge relative to its natural zero with the related sensitivity, we get the
following result (natural zero was taken from the last row of Table 8–4):
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W ≈
[
∂ rAF

∂ AF

]−1
·
[
rF5{[UP ]} − N5

]
≈

[
1

2.756

]
·
[

(+177.7) − (+169.7)
]

≈ 2.90 lbs

(8.6)

The estimates of the weight of the metric part are 3.19 lbs and 2.90 lbs. These two
values are within the expected range of values for the MK3C balance considering the facts
that (i) the weight of the outer sleeve of a typical force balance is about half of the total
weight of the balance and that (ii) the total weight of the MK3C balance is 6.79 lbs.

The second example uses data from NASA’s MC400 five–component semi–span bal-
ance. The balance is a high–capacity single–piece balance that measures two forces and
three moments (normal force, axial force, rolling moment, pitching moment, and yawing
moment). Table 8–6 below lists capacities of its load components.

Table 8–6: Load capacities of the MC400 semi–span balance (lbs ≡ pounds of force).

NF, lbs PM, in−lbs Y M, in−lbs RM, in−lbs AF, lbs

40000 240000 480000 2280000 8000

It was decided to use Method 7 (Fig. 8–14) and Method 8 (Fig. 8–16) for the determi-
nation of the natural zeros (see also Table 8–2 for a summary of the two methods). First,
Method 7 was applied. In that case, the non–metric flange of the balance was placed on a
leveled surface such that the side force would be parallel to the direction of the gravitational
acceleration (this orientation is identified as [UP ] in Fig. 8–14). None of the five bridges
of the balance experiences a load in this orientation as the balance does not measure the
side force. Therefore, no averaging is needed and the natural zeros of the five bridges
can directly be measured. Values of bridge set 1 are listed in the first data row of Table 8–7.

Table 8–7: Natural zeros N1, N2, . . . , N5 of bridge set 1 of the MC400 balance.

rF1=rNF rF2=rPM rF3=rYM rF4=rRM rF5=rAF

microV/V microV/V microV/V microV/V microV/V

Method 7 −78.3 +394.9 +35.2 −101.1 +17.0

[0] −88.8 +397.2 +34.9 −102.1 +16.8

[90] −79.2 +396.6 +32.8 −101.7 +53.9

[180] −67.6 +397.5 +35.1 −101.5 +16.8

[270] −77.2 +397.7 +37.1 −102.0 −20.3

Method 8 −78.2 +397.3 +35.0 −101.8 +16.8

Ni =⇒ −78.3 +396.1 +35.1 −101.5 +16.9
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In the next step, Method 8 was applied (see also Fig. 8–16). In that case, the non–
metric part of the balance was attached to a balance support system such that the pitch
axis of the balance would be perpendicular to the direction of the gravitational acceleration.
Then, the metric part of the balance was leveled such that the positive normal force would
point upward. This orientation is identified as [0] in Fig. 8–15. Afterwards, electrical
outputs of the five bridges of bridge set 1 were recorded. Then, the balance was rotated
to the remaining three orientations, i.e., [90], [180], [270], and the electrical outputs were
recorded each time. Data rows two to five in Table 8–7 above list the measured electrical
outputs that were obtained at the four orientations. Finally, Eq. (8.4) was applied and the
mean of the outputs of the four orientations was computed for each bridge. These mean
values are listed in the sixth data row of Table 8–7.

Now, after comparing results for Method 7 with results for Method 8, it is concluded
that the two sets of independent estimates of the natural zeros do not differ by more than
2.4 microV/V . Finally, mean values of the two independent estimates of the natural zeros
are computed and listed in the seventh data row of Table 8–7. The mean values were used
for the balance data analysis.

It was mentioned during the discussion of Method 8 that the balance experiences a
physical load that is caused by the weight of the metric part. Therefore, it is possible to
estimate the weight of the metric part if (i) the output changes for certain orientations are
multiplied with (ii) the inverse of the sensitivities of related bridges. Table 8–8 below lists
sensitivities of the bridges of bridge set 1 of the MC400 balance.

Table 8–8: Bridge sensitivities of the MC400 semi–span balance (bridge set 1).

∂ rNF

∂ NF

∂ rPM

∂ PM

∂ rYM

∂ YM

∂ rRM

∂ RM

∂ rAF

∂ AF

microV/V

lbs

microV/V

in−lbs
microV/V

in−lbs
microV/V

in−lbs
microV/V

lbs

0.023278 0.004970 0.001651 0.000307 0.087830

First, orientation [180] in Table 8–7 is selected. In that case, the weight of the metric
part acts in the positive normal force direction. Then, after combining the output changes
of the normal force bridge relative to its natural zero with the related bridge sensitivity,
we get the following result (natural zero was taken from the last row of Table 8–7):

W ≈
[
∂ rNF

∂ NF

]−1
·
[
rF1{[180]} − N1

]
≈

[
1

0.023278

]
·
[

(−67.6) − (−78.3)
]

≈ 459.7 lbs

(8.7)
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Similarly, orientation [90] in Table 8–7 is selected. In that case, the weight of the
metric part acts in the positive axial force direction. Then, after combining the output
changes of the axial force bridge relative to its natural zero with related bridge sensitivity,
we get the following result (natural zero was taken from the last row of Table 8–7):

W ≈
[
∂ rAF

∂ AF

]−1
·
[
rF5{[90]} − N5

]
≈

[
1

0.087830

]
·
[

(+53.9) − (+16.9)
]

≈ 421.4 lbs

(8.8)

The two independent estimates of the weight of the metric part of the balance are
459.7 lbs and 421.4 lbs. These values are close to the expected value of ≈ 420 lbs that was
computed from estimates of the metric part’s volume and density.

An empirical rule is often applied that describes the connection between the primary
bridge sensitivity and the expected accuracy of the prediction of the related primary bridge
load in engineering units. The rule can be summarized as follows (see also p. 17):

Empirical Evaluation of the Primary Bridge Sensitivity

The sensitivity of a primary bridge is a physical constant of the balance.
The greater the sensitivity of a primary bridge is the more accurate the
prediction of the related primary bridge load in engineering units will be.

Therefore, the estimate of 421.4 lbs is most likely the more accurate value because the
sensitivity of the axial force bridge is almost four times as large as the sensitivity of the
normal force bridge (see Table 8–8). In addition, it is observed that the weight estimate
from the normal force bridge output change is 38.3 lbs larger than the estimate from the
axial force bridge output change (459.7 lbs versus 421.4 lbs). This weight difference equals
approximately 0.1 % of the normal force capacity of the MC400 balance. In other words,
the weight difference is well within the threshold of ±0.25 % that is often used for the
assessment of the difference between the applied and the predicted load of an individual
calibration data point.
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Appendix 9

Non–Iterative Method

9.1 General Remarks
The Non–Iterative Method is one of two balance load prediction approaches that are

used in wind tunnel testing. First, it analyzes balance calibration data by fitting each load
as a function of the measured outputs of all bridges. Then, loads are predicted during
the wind tunnel test by directly combining output measurements of a data point with the
regression models of the loads. These regression models are defined in the next section.

9.2 Regression Model of Single Load Component
In principle, the total number of load components of a balance must always match

the total number of independent bridge output measurements (see Chapter II, p. 11 for
more details). The loads can be described, for example, by using the symbols F1, . . ., Fn
where n equals the total number of load components. Similarly, the independent output
measurements can be described as raw outputs by using the symbols rF1, . . ., rFn. Then,
the load prediction equation of a single load component Fi can be defined as a regression
model of the load that is constructed from the raw outputs rF1, . . ., rFn of the bridges.

Bridge outputs may be used as independent variables of the regression model of a bal-
ance load component. They are typically reported as raw outputs (absolute voltages). This
output format, however, makes the regression model difficult to use during a wind tunnel
test as (i) raw output measurements frequently experience small instrumentation–induced
shifts and (ii) significant instrumentation hardware differences may exist between the wind
tunnel and the balance calibration laboratory. Alternatively, the difference between a raw
output and the natural zero of a balance bridge may be used to construct the regression
model of a load. Resulting output differences are defined in Eq. (9.1) below. The output
difference is also called Difference Type 1 in App. 6. The use of output differences for

Difference Type 1 =⇒ Di = rFi − Ni ; 1 ≤ i ≤ n (9.1)

the analysis of balance data has three benefits: (i) improved control of instrumentation–
induced output shifts as the natural zeros are used as the output datum, (ii) better math-
ematical description of balance data characteristics near zero absolute load, and (iii) the
use of the intercept term in the regression model is optional as it can be interpreted as a
least squares approximation of zero absolute load. Then, the regression model of a load
can be summarized as follows where λ equals the maximum number of terms (including

Fi = ai,0 + ai,1 ·D1 + ai,2 ·D2 + . . .︸ ︷︷ ︸
λ = maximum number of model terms

= ai,0 +
9∑

ψ=1

Sψ(ai,ω) (9.2a)

where

intercept is optional as output differences are used =⇒ ai,0 ≈ 0 (9.2b)
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the optional intercept) and ai,0, ai,1, . . . are the regression coefficients. Table 9–1 below
shows terms that are suitable for the definition of the regression model of a balance load

Table 9–1: Term group choices for the regression model of a load component.

ψ
Sψ(ai,ω) . . . ≤ ω ≤ . . . σψ

(summation definition) (coefficient index range) (number of terms)

1
n∑
j=1

ai,ω ·Dj 1 ≤ ω ≤ σ1 n

2
n∑
j=1

ai,ω · |Dj | 1 + σ1 ≤ ω ≤
2∑

ψ=1

σψ n

3
n∑
j=1

ai,ω ·D 2
j 1 +

2∑
ψ=1

σψ ≤ ω ≤
3∑

ψ=1

σψ n

4
n∑
j=1

ai,ω ·Dj · |Dj | 1 +
3∑

ψ=1

σψ ≤ ω ≤
4∑

ψ=1

σψ n

5
n−1∑
j=1

n∑
k=j+1

ai,ω ·Dj ·Dk 1 +
4∑

ψ=1

σψ ≤ ω ≤
5∑

ψ=1

σψ
n · (n− 1)

2

6 †
n∑
j=1

n∑
k=1
k 6=j

ai,ω ·Dj · |Dk| 1 +
5∑

ψ=1

σψ ≤ ω ≤
6∑

ψ=1

σψ n · (n− 1)

7

n−1∑
j=1

n∑
k=j+1

ai,ω · |Dj ·Dk| 1 +

6∑
ψ=1

σψ ≤ ω ≤
7∑

ψ=1

σψ
n · (n− 1)

2

8
n∑
j=1

ai,ω ·D 3
j 1 +

7∑
ψ=1

σψ ≤ ω ≤
8∑

ψ=1

σψ n

9
n∑
j=1

ai,ω · |D 3
j | 1 +

8∑
ψ=1

σψ ≤ ω ≤
9∑

ψ=1

σψ n

— — — Σ ≡ 2 · n · (n+ 2)

†Alternate description of terms of groups 7 & 8 that are listed in App. 10, Table 10–1 (see also App. 20).

component. The term group order and choices given in Table 9–1 above for the regression
model of a load component differ from those that are traditionally used to define the re-
gression model of a bridge output (see App. 10, Table 10–1). The origin of these differences
is discussed in great detail in App. 23.

By design, the order of the term groups of Table 9–1 is hierarchical (see also comments
in App. 23). The table’s last column has the maximum number of terms of each group.
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Terms of groups 1, 3, 5, and 8 are derived from a multivariate Taylor Series expansion of
the unknown relationship between the load and the outputs. Absolute value terms, i.e.,
terms of groups 2, 4, 6, 7, and 9, should only be used if the outputs of the given balance are
known to have bi–directional behavior (see, e.g., Refs. [33] to [35] for a discussion of this
phenomenon). The maximum number of regression model terms on the right–hand side of
Eq. (9.2a) above can easily be expressed as a function of the total number of independent
output measurements of the balance if (i) the sum of the values of the last column of
Table 9–1 above is computed and (ii) one is added for the intercept term. Then, we get:

λ = 1 +
9∑

ψ=1

σψ = 1 + 6 · n + 2 · n · (n− 1)︸ ︷︷ ︸
contribution of S1 , ... ,S9

(9.3)

Let us assume, for example, that a calibration data set was obtained in order to
characterize the behavior of a six–component balance. Then, the following maximum
number of regression model terms of a load component is computed:

n = 6 =⇒ Eq. (9.3) =⇒ λ = 97 (9.4)

Only a subset of the maximum number of terms is typically supported and/or chosen
by an analyst whenever the regression model defined in Eq. (9.2a) is applied to real–world
balance calibration data. This conclusion can be summarized by the following inequality:

δ = number of supported/chosen terms < λ

The subset of terms may or may not include the optional intercept term depending
on an analyst’s preference.

Analysts have identified term group combinations that work with most balance de-
signs. Table 9–2 below, for example, lists three group combinations that the author often
uses for the definition of the upper bound of the regression model of a load component:

Table 9–2: Typical term group combinations (see also Table 9–1).

Balance Design Characteristic Term Group Combination

single–piece balance Dj , D 2
j , Dj ·Dk

balance with known bi–directional outputs (option 1)† Dj , |Dj |, D 2
j , Dj ·Dk

balance with known bi–directional outputs (option 2)† Dj , |Dj |, D 2
j , Dj · |Dj |, Dj ·Dk

†For example, balances of Task/Able design have bi–directional normal & side force bridge outputs.

The author’s group combination choices capture the most important physical char-
acteristics of the corresponding balance design. In addition, they potentially prevent un-
wanted over–fitting of calibration data by keeping an analyst’s term choices to a minimum.

Supported regression model terms (δ) must be used instead of the maximum number
of terms (λ) for the definition of the regression model of a load. Then, the regression
analysis problem of the calibration data will have a non–singular/unique solution. In that
context, it is important to test the regression model term combination for linear or massive
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near–linear dependencies by using the Variance Inflation Factor (VIF)†. The maximum
VIF of the chosen regression model of a load should be less than an empirical threshold
value. Then, the model is guaranteed to define a unique relationship between the fitted
load and the outputs of the balance (see App. 18 for detailed discussions of the VIF and
the selection of the empirical threshold for the dependency test).

9.3 Global Regression Analysis
The global regression analysis problem associated with the determination of the un-

known coefficients of the supported/chosen regression model terms of a load component
Fi can be expressed in matrix format if row and column vectors are used to describe
Eq. (9.2a). It is assumed, for example, that an analyst chooses the intercept term and a
supported subset of both linear & non–linear terms for the regression model of the load.
In addition, it is assumed that tare corrections were added to the applied calibration loads
(see App. 12 for more details). Then, three vectors can be defined:

A1×δ = [ 1 D1 D2 . . . D 2
1 . . . ]︸ ︷︷ ︸

δ = number of supported terms

(9.5a)

xδ×1 =


ai,0
ai,1
ai,2

...

 (9.5b)

R1×1 = Fi (9.5c)

Now, the supported subset of Eq. (9.2a) can be described by the following matrix equation:

A1×δ · xδ×1 = R1×1 (9.6)

In the next step, assuming that the balance calibration data set consists of a total
number of p data points, i.e., of p individual load states, the row vector A on the left–hand
side of Eq. (9.6) becomes a matrix with p rows. Similarly, the right–hand side of Eq. (9.6)
becomes a column vector with p rows. We get the following extensions:

A1×δ =⇒ Ap×δ =


1 D1(1) D2(1) . . . D 2

1 (1) . . .

1 D1(2) D2(2) . . . D 2
1 (2) . . .

...
...

...
...

...
...

1 D1(p) D2(p) . . . D 2
1 (p) . . .

 (9.7a)

R1×1 =⇒ Rp×1 =


Fi(1)
Fi(2)

...

Fi(p)

 (9.7b)

†A connection between the reliability of multivariate regression models of balance data and the Variance
Inflation Factor was first detected in 2007. At that time, an observed divergence of the load iterations of
the Iterative Method was traced back to the presence of large Variance Inflation Factors (Ref. [27], p. 4).
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Finally, after introducing the two extensions above in Eq. (9.6), the global regression
analysis problem of the given balance calibration data can be summarized by the following
equation where column vector x has the coefficients of the regression model of the load

Global Regression Analysis Problem

Ap×δ︸ ︷︷ ︸
known

· xδ×1︸︷︷︸
unknown

= Rp×1︸ ︷︷ ︸
known

(9.8)

component. The coefficients are obtained after solving the regression analysis problem
that Eq. (9.8) describes. The solution is an application of the Moore–Penrose Inverse (see
Ref. [64], pp. 35–39, and Refs. [77], [78]). It is described by the following matrix equation:

Regression Coefficients
(solution of global regression analysis problem)

xδ×1 =
[

AT · A
]−1
δ×δ ·

[
AT · R

]
δ×1 (9.9)

At this point, the analytical relationship between the load component of the balance
and its electrical outputs is known as (i) the regression model of the load is defined in
Eq. (9.2a) and (ii) the regression coefficients ai,0, ai,1, . . . of the supported/chosen terms
are given by the right–hand side of Eq. (9.9). The current analysis implicitly assumes that
all calibration loads contained in the right–hand side vector R are tare corrected. In other
words, they include load contributions resulting from the weight of the metric part of the
balance and all attached calibration hardware pieces. The analytic determination of these
tare corrections is discussed in great detail in App. 12 of the current document.

9.4 Balance Load Calculation
Equation (9.9) above specifies coefficients of the regression model of a single load

component of the balance. Coefficients of other load components have to be obtained by
updating the contents of (i) matrix A that has the supported/chosen regression model
terms and (ii) column vector R that has the calibration loads Fi(1), . . . , Fi(p) of the load
component. Afterwards, computed coefficients of all load components can be stored in a
rectangular matrix so that a single matrix multiplication may be used for the simultaneous
calculation of all load components during a wind tunnel test.

The rectangular matrix needed for the calculation of all balance loads is obtained by
first mapping the column vector x with the known coefficients of each load component
from the supported/chosen δ terms to the maximum number of λ terms. The mapping is
done without changing the result of the regression analysis of the loads as coefficients of
unused terms of Eq. (9.2a) are explicitly set to 0. Then, the transformed solution vector
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of the coefficients of the regression model of a single load component with index i can be
expressed as follows:

{ supported terms (δ) =⇒ all terms (λ) } =⇒ { xδ×1 =⇒ yλ×1 } (9.10a)

The number and type of chosen terms of the individual load components of the balance
may or may not be the same depending on an analyst’s term selections. However, the
transformed solution vectors y of the coefficients of each single load can be combined in
a rectangular matrix with a total of λ rows and n columns after coefficients of each load
were mapped one by one from the supported/chosen terms to the maximum number of
terms. This conclusion can be summarized as follows:

{ single component (1) =⇒ all components (n) } =⇒ { yλ×1 =⇒ zλ×n } (9.10b)

Similarly, it is necessary to transform the columns of matrix A from the number of
δ supported terms to the maximum number of λ terms. This time, however, matrix A
consists of a single row as only information from a single data point is needed for the
prediction of the balance loads for a given set of output differences D1, . . . , Dn that is
recorded during a wind tunnel test. Then, we get:

{ supported terms (δ) =⇒ all terms (λ) } =⇒ { A1×δ =⇒ B1×λ } (9.10c)

Now, the matrix multiplication describing the balance load prediction during a wind
tunnel test can be expressed by the following equation where FT

bal is a row vector that has

{
FT
bal

}
1×n = [ F1 . . . Fi . . . Fn ] = {B}1×λ · {z}λ×n (9.11)

the predicted balance load components. Then, after taking the transpose of both sides
of Eq. (9.11), knowing from matrix algebra that (XY)T = YTXT (see Ref. [65], p. 334),
and dropping the subscripts that describe the vector or matrix size, we get the following
exact relationship for the predicted absolute balance loads of a single data point if the
Non–Iterative Method is applied:
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Absolute Balance Loads (exact relationship)
(assumptions ≡ output differences are used as input ; regression models have intercepts)

Fbal(rF1, . . . , rFn) =



F1
..
.

Fi
...

Fn

 = zT · BT (9.12a)

|←······ linear part ······→|

zT = const. =


a1,0
a2,0

...

an,0

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

...
...

an,1 an,2 . . . an,n

a1,n+1 a1,n+2 . . .
a2,n+1 a2,n+2 . . .

...
...

...

an,n+1 an,n+2 . . .


︸ ︷︷ ︸

regression coefficient matrix

(9.12b)

BT(rF1, . . . , rFn) =



1
D1

D2
...

D 2
1

...


=



1
(rF1 −N1)
(rF2 −N2)

..

.

(rF1 −N1)2

...


︸ ︷︷ ︸

model terms

(9.12c)

The matrix multiplication defined by Eq. (9.12a) describes the load calculation for a
single data point that is recorded during a wind tunnel test. It can easily be implemented
in the data system of a wind tunnel. The coefficients of the regression coefficient matrix
zT remain constant for the balance that is used during a wind tunnel test. Only the
coefficients of vector BT need to be updated for every data point as they are a function
of the electrical outputs of the data point and the natural zeros of the balance bridges.

9.5 Exclusion of Intercept Terms
It was mentioned earlier that the use of the intercept term in the regression model

of a load is optional as long as regression model terms are generated from the difference
between a raw output and the natural zero of a bridge. In this case, the predicted load
values hardly change if the intercept is included in the regression model because it is, by
choice, a least squares approximation of zero load. Therefore, the author recommends to
always include the intercept term in the regression model of a load if the electrical outputs
are described as output differences. Nevertheless, it is helpful to list equations of this
appendix that can be simplified or need to be modified if an analyst chooses to exclude
the intercept term. The following relationship is valid if the intercept term is omitted:
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intercept is omitted =⇒ ai,0 = 0 where 1 ≤ i ≤ n (9.13)

Then, the following simplifications and modifications of a subset of equations can be made:

Eq. (9.5a) =⇒ A1×δ = [ D1 D2 . . . D 2
1 . . . ]︸ ︷︷ ︸

δ = number of supported terms

(9.14a)

Eq. (9.5b) =⇒ xδ×1 =

 ai,1ai,2
...

 (9.14b)

Eq. (9.7a) =⇒ Ap×δ =


D1(1) D2(1) . . . D 2

1 (1) . . .
...

...
...

...
...

D1(p) D2(p) . . . D 2
1 (p) . . .

 (9.14c)

Eq. (9.12b) =⇒ zT =

 0 a1,1 a1,2 a1,3 . . .
...

...
...

...
...

0 an,1 an,2 an,3 . . .

 (9.14d)

It must be pointed out that the number of rows or columns used in Eqs. (9.14a),
(9.14b), and (9.14c) is reduced by one even though variable δ does not explicitly show that
change. In addition, the first column of the matrix on the right–hand side of Eq. (9.14d)
must explicitly be set to zero. This assignment is needed as the matrix is used in a fixed
column format that, by design, always equals the maximum number of regression model
terms of Eq. (9.2a). Finally, it has to be emphasized that the predicted absolute balance
loads can still be considered exact values even if the intercept term is not used in the
original regression model of the balance load. This conclusion results from the fact that
the use of the intercept term is optional whenever output differences are used as input for
the regression analysis of balance calibration data.

9.6 First Derivative of Interactions
The linear part of the regression coefficient matrix is explicitly identified in Eq. (9.12b).

It is a square matrix that consists of the coefficients of the terms that the output differences
D1, D2, . . . , Dn define. The matrix is summarized in Eq. (9.15) below.

Eq. (9.12b) =⇒ linear part =⇒ L =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

...
...

an,1 an,2 . . . an,n

 (9.15)

The inverse L−1 of square matrix L has an important practical interpretation. Its
off–diagonal coefficients are the first derivatives of the interactions of the balance bridges
with respect to the load components assuming that each load component is applied as a
single–component load (see also related comments in Chapter 11, pp. 132–134).

240



Appendix 10

Iterative Method

10.1 General Remarks
The Iterative Method is one of two balance load prediction approaches that are used

in wind tunnel testing. First, the method fits electrical outputs of balance calibration data
as a function of the balance loads. Afterwards, a load iteration equation is constructed
from the regression coefficients of the outputs so that loads can be predicted from outputs
during a wind tunnel test (see also Ref. [7], pp. 22–24).

It is useful to develop a new derivation of the load iteration equation as often only one
of two possible iteration equation types is discussed in the literature. The new derivation
assumes that the Iterative Method is applied to a balance that measures n load components.
In principle, the number of load components of a balance must always match the number
of measured bridge outputs (a justification for this requirement is given in Chapter II,
p. 11). Balance loads may be described by using the following symbols: F1, F2, . . . , Fn.
Similarly, the raw outputs of the balance bridges may be described by using the following
symbols: rF1, rF2, . . . , rFn. Then, the regression model of a single raw output rFi can
be described by the following generic relationship where i is the bridge index:

rFi = fi(F1, F2, . . . , Fn) (10.1)

The coefficients of the regression model of each raw output rFi may be computed by
applying global regression analysis to balance calibration data. Then, the coefficients are
used to define the load iteration equation. The regression model of a raw output is defined
in detail in the next section. Afterwards, two load iteration equations are developed.

10.2 Regression Model of Single Raw Output
A balance calibration provides data for the development of the load iteration equation

that the Iterative Method uses for the load prediction. In theory, a single raw output of a
balance bridge may be a function of all loads that are applied to the balance. Then, as-
suming that a raw output, i.e., an absolute voltage measurement, with index i is expressed
as a function of the traditional set of regression model terms for balance data (see Ref. [7],
p. 12, Eq. (3.1.3)), the following regression model of the output can be defined:

Multivariate Regression Model (Raw Output)

rFi = bi,0 + bi,1 · F1 + bi,2 · F2 + · · ·︸ ︷︷ ︸
λ = maximum number of model terms

= bi,0 +
10∑
ψ=1

Tψ(bi,ω) (10.2)

where

intercept is required as bi,0 ≈ Ni ≡ natural zero of balance bridge
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The intercept term and various types of regression model terms are used on the right–
hand side of Eq. (10.2) above. They may be described by using ten summation term groups
T1, T2, . . ., T10 that are defined in Table 10–1 below.

Table 10–1: Term group choices for the regression model of an electrical output.

ψ
Tψ(bi,ω) . . . ≤ ω ≤ . . . σψ

(summation definition) (coefficient index range) (number of terms)

1

n∑
j=1

bi,ω · Fj 1 ≤ ω ≤ σ1 n

2
n∑
j=1

bi,ω · |Fj | 1 + σ1 ≤ ω ≤
2∑

ψ=1

σψ n

3

n∑
j=1

bi,ω · F 2
j 1 +

2∑
ψ=1

σψ ≤ ω ≤
3∑

ψ=1

σψ n

4

n∑
j=1

bi,ω · Fj · |Fj | 1 +

3∑
ψ=1

σψ ≤ ω ≤
4∑

ψ=1

σψ n

5
n−1∑
j=1

n∑
k=j+1

bi,ω · Fj · Fk 1 +
4∑

ψ=1

σψ ≤ ω ≤
5∑

ψ=1

σψ
n · (n− 1)

2

6
n−1∑
j=1

n∑
k=j+1

bi,ω · |Fj · Fk| 1 +
5∑

ψ=1

σψ ≤ ω ≤
6∑

ψ=1

σψ
n · (n− 1)

2

7 †
n−1∑
j=1

n∑
k=j+1

bi,ω · Fj · |Fk| 1 +

6∑
ψ=1

σψ ≤ ω ≤
7∑

ψ=1

σψ
n · (n− 1)

2

8 †
n−1∑
j=1

n∑
k=j+1

bi,ω · |Fj | · Fk 1 +

7∑
ψ=1

σψ ≤ ω ≤
8∑

ψ=1

σψ
n · (n− 1)

2

9
n∑
j=1

bi,ω · F 3
j 1 +

8∑
ψ=1

σψ ≤ ω ≤
9∑

ψ=1

σψ n

10
n∑
j=1

bi,ω · |F 3
j | 1 +

9∑
ψ=1

σψ ≤ ω ≤
10∑
ψ=1

σψ n

— — — Σ ≡ 2 · n · (n+ 2)

†Terms of groups 7 & 8 are related; they must either be used together or not at all (see also App. 20).

The second column of Table 10–1 above lists the ten term groups that are traditionally
used for the regression analysis of a bridge output. These term groups and their group
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order have become the de–facto standard for all users of the Iterative Method ever since
the first edition of Ref. [7] was published in 2003 (see also Ref. [7], p. 12, Eq. (3.1.3)).

The order of the ten term groups is non–hierarchical as the term group |Fj ·Fk| comes
before term groups Fj · |Fk| and |Fj | · Fk (see also the detailed discussion of term group
hierarchy that is given in App. 23). Terms of groups 1, 3, 5, and 9 are derived from a
multivariate Taylor series expansion of the unknown functional relationship between the
outputs and the loads. Absolute value terms, i.e., terms of groups 2, 4, 6, 7, 8, and 10,
should only be used if the outputs of the given balance are known to have bi–directional
behavior (see, e.g., Refs. [33] to [35] for a discussion of this phenomenon). The maximum
number of terms can be obtained by (i) computing the sum of the last column of Table 10–1
and (ii) adding one for the intercept. Then, we get the following formula:

λ = 1 + m = 1 +
10∑
ψ=1

σψ = 1 + 6 · n + 2 · n · (n− 1)︸ ︷︷ ︸
contribution of T1 , ... ,T10

(10.3)

Let us assume, for example, that a calibration data set from a six–component balance
is analyzed. Then, the following maximum number of regression model terms is obtained:

n = 6 =⇒ Eq. (10.3) =⇒ λ = 97 (10.4)

Only a subset of the maximum number of possible regression model terms is typically
supported/chosen by an analyst whenever the regression model of an output is derived
from real–world balance calibration data. The total number of supported/chosen terms
fulfills the following inequality:

δ = number of supported/chosen terms < λ

Analysts have identified term group combinations that work with most balance de-
signs. Table 10–2 below, for example, lists three term group combinations that the author
often uses for the definition of the upper bound of the regression model of an output:

Table 10–2: Typical term group combinations (see also Table 10–1).

Balance Design Characteristic Term Group Combination

single–piece balance Fj , F 2
j , Fj · Fk

balance with known bi–directional outputs (option 1)† Fj , |Fj |, F 2
j , Fj · Fk

balance with known bi–directional outputs (option 2)† Fj , |Fj |, F 2
j , Fj · |Fj |, Fj · Fk

†For example, balances of Task/Able design have bi–directional normal & side force bridge outputs.

The author’s term group combination choices above have the advantage that they
capture the most important physical behavior of the corresponding balance design. In ad-
dition, they help prevent unwanted over–fitting of calibration data by keeping an analyst’s
term choices to a minimum.

The number of supported/chosen terms must be used instead of the maximum number
of possible terms for the definition of the global regression analysis problem so that a non–
singular/unique solution of the analysis problem can exist. In that context, it is critical to
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test the regression model term combination of an output for linear or massive near–linear

dependencies by using the Variance Inflation Factor (VIF)†. The maximum VIF of the
chosen regression model of an output should be less than an empirical threshold value.
Then, the model is guaranteed to define a unique relationship between the fitted output
and the loads of the balance (see App. 18 for detailed discussions of the VIF and the
selection of the empirical threshold for the dependency test).

10.3 Global Regression Analysis for Single Raw Output
The global regression analysis problem associated with the determination of the un-

known coefficients of the supported/chosen regression model terms of a raw output rFi can
be expressed in matrix format if Eq. (10.2) is described by using row and column vectors.
It is assumed, for example, that an analyst chooses the intercept term and a supported
subset of both linear and non–linear terms for the regression model of an output. In that
case, the following three auxiliary vectors can be defined:

A1×δ = [ 1 F1 F2 . . . F 2
1 . . . ]︸ ︷︷ ︸

δ = number of supported terms

(10.5a)

xδ×1 =


bi,0
bi,1
bi,2

...

 (10.5b)

R1×1 = rFi (10.5c)

Then, the chosen subset of Eq. (10.2) can be described by the following matrix equation:

A1×δ · xδ×1 = R1×1 (10.6)

Now, assuming that the balance calibration data set consists of a total number of p
data points, i.e., of p individual load states, the two vectors A and R of Eq. (10.6) above
must be extended from a single row to p rows. Then, we get:

A1×δ =⇒ Ap×δ =


1 F1(1) F2(1) . . . F 2

1 (1) . . .

1 F1(2) F2(2) . . . F 2
1 (2) . . .

...
...

...
...

...
...

1 F1(p) F2(p) . . . F 2
1 (p) . . .

 (10.7a)

R1×1 =⇒ Rp×1 =


rFi(1)
rFi(2)

...

rFi(p)

 (10.7b)

†A connection between the reliability of multivariate regression models of balance data and the Variance
Inflation Factor was first detected in 2007. At that time, an observed divergence of the load iterations of
the Iterative Method was traced back to the presence of large Variance Inflation Factors (Ref. [27], p. 4).
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Finally, after introducing the two extensions above in Eq. (10.6), the global regres-
sion analysis problem of the given balance calibration data for a single output can be
summarized by the matrix equation below where vector x has the unknown coefficients of

Global Regression Analysis Problem

Ap×δ︸ ︷︷ ︸
known

· xδ×1︸︷︷︸
unknown

= Rp×1︸ ︷︷ ︸
known

(10.8)

the regression model of the output. The coefficients need to be determined by solving the
global regression analysis problem. The solution of the regression analysis problem can
directly be obtained from a well–known application of the Moore–Penrose Inverse that
is described in the literature (see Ref. [64], pp. 35–39, and Refs. [77], [78]). Then, the
solution of the global least squares problem, i.e., the regression coefficient set of a raw
bridge output, is given by the following matrix equation:

Regression Coefficients
(solution of global regression analysis problem)

xδ×1 =
[

AT · A
]−1
δ×δ ·

[
AT · R

]
δ×1 (10.9)

It is possible to describe the regression coefficients of a single raw output above by
using alternate nomenclature. Then, load iteration equations of the Iterative Method can
be developed in a format that is compatible with relationships reported in Ref. [7]. The
following four nomenclature substitutions are defined for that purpose:

x = C′ T (10.10a)

AT = G′ (10.10b)

A = G′ T (10.10c)

R = rFT (10.10d)

Now, after applying the four substitutions above to Eq. (10.9), we get the following
alternate format of the solution of the global least squares problem for a single output:

C′ Tδ×1 =
[

G′ · G′ T
]−1
δ×δ ·

[
G′ · rFT

]
δ×1 (10.11)
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In the next step, after taking the transpose of both sides of Eq. (10.11) and using the
two well–known relationships (XT)T = X and (XY)T = YTXT to describe the result,
we get (the relationships were taken from Ref. [65], p. 334):

C′1×δ = rF1×p · G′ Tp×δ ·
[ [

G′ · G′ T
]−1]T

δ×δ
(10.12a)

We also know that (X−1)T = (XT)−1 (see Ref. [65], p. 334). Then, we get

C′1×δ = rF1×p · G′ Tp×δ ·
[ [

G′ · G′ T
]T]−1

δ×δ
(10.12b)

In addition, using again the relationships (XY)T = YTXT and (XT)T = X, we get:[
G′ · G′ T

]T
= G′ · G′ T (10.13)

Then, after using the right–hand side of Eq. (10.13) to simplify the contents of the
outer square brackets on the right–hand side of Eq. (10.12b), we get the following alternate
description of the fitted regression coefficients of a single output:

Regression Coefficients
(alternate description, compatible with nomenclature of Ref. [7])

C′1×δ = rF1×p · G′ Tp×δ ·
[

G′ ·G′ T
]−1
δ×δ (10.14)

Both sides of Eq. (10.14) agree with both sides of Eq. (3.1.11) in Ref. [7] if remaining
nomenclature differences are ignored and the subscript n in Eq. (3.1.11) of Ref. [7] is
replaced by 1. The subscript n instead of 1 appears in Ref. [7] because the authors
of Ref. [7] implicitly made the regression model term combination of all bridge outputs
identical. The current derivation of the Iterative Method, on the other hand, is more general
in nature. It allows an analyst to use regression models with different term combinations
for each output of a balance bridge.

10.4 From Single Output to Multiple Outputs
It must be emphasized that Eq. (10.14) above only specifies coefficients of the regres-

sion model of a single raw output. Coefficients of other outputs of the balance have to be
obtained by updating (i) row vector rF = RT that has the outputs rFi(1), ..., rFi(p) of
the chosen bridge (see Eq. (10.7b) and (10.10d)) and (ii) matrix G′ = AT that has the
regression model terms derived from all load components of the n–component balance (see
Eqs. (10.7a) and (10.10b)). Afterwards, it is possible to store the regression coefficients
of all outputs in a rectangular matrix so that a single load iteration equation for all load
components can be constructed. This rectangular matrix is obtained by first mapping
the row vector C′ with the coefficients of each output from the supported δ terms to the
maximum number of λ terms. The mapping does not change the result of the regression
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analysis of the output as coefficients of unused regression model terms of Eq. (10.2) are
assigned to be zero. Then, the solution vector of the coefficients of the regression model
of a single output with index i can be expressed as follows:

{ supported terms (δ) =⇒ all terms (λ) } =⇒ { C′1×δ =⇒ C′1×λ } (10.15a)

It is important to keep in mind that the analyst may choose to use different term
combinations for the different balance outputs. However, the solution vectors C′ of each
single output can be combined in a rectangular matrix with a total of n rows and λ columns
after coefficients of each output were mapped from the supported terms to the maximum
number of terms. This conclusion can be summarized as follows:

{ single output (1) =⇒ all outputs (n) } =⇒ { C′1×λ =⇒ C′n×λ } (10.15b)

At this point, the analytical relationship between balance loads and electrical outputs
is known for all outputs. It is described by the regression coefficient values that are stored
in the extended matrix C′ that has n rows and λ columns. It remains to construct a
load iteration process from the extended matrix C′ so that loads can be predicted from
electrical outputs during a wind tunnel test. This load iteration process can be defined by
using an output difference vector as a starting point. This vector is derived in the next
section of the appendix.

10.5 Output Difference Vector
In principle, the load iteration equation of the balance can be developed from a mod-

ified version of Eq. (10.6) after subscript δ is replaced by λ. First, it is required to extend
this relationship from a single output to all n outputs of the balance. Then, by inspection,
Eq. (10.6) can be expressed as follows:

A1×λ · xλ×1 = R1×1︸ ︷︷ ︸
single output ... from Eq. (10.6)

=⇒ A1×λ · xλ×n = R1×n︸ ︷︷ ︸
extension from 1 to n outputs

(10.16a)

In addition, after applying the four nomenclature substitutions defined in Eqs. (10.10a)
to (10.10d) to the second equation shown in Eq. (10.16a) above, we get:

A1×λ · xλ×n = R1×n︸ ︷︷ ︸
extension from 1 to n outputs

=⇒ G′ T1×λ · C′ Tλ×n = rFT
1×n (10.16b)

Finally, after taking the transpose of the second equation of Eq. (10.16b) above, we get:

C′n×λ · G′λ×1 = rFn×1 (10.16c)

The load iteration equation can be derived from Eq. (10.16c) after the intercept term,
i.e., bi,0, of the regression model is subtracted from the raw output, i.e., rFi, of the re-
lated bridge (see also Eq. (10.2)). Then, the load prediction becomes independent of any
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instrumentation–induced output off–set that may be contained in the output measurements
during a wind tunnel test. This approach has the added benefit that the intercept terms of
the bridges themselves can practically be ignored during the load prediction as long as the
differences between the measured raw output and the natural zero of the balance bridge,
i.e., Difference Type 1 of App. 6, is used as input for the balance load prediction during a
wind tunnel test.

By design, intercept terms of the regression models of the outputs are stored in the
first column of matrix C′ that is used in Eq. (10.16c). Therefore, the subtraction of the
intercepts can be accomplished if the matrix is split into a column vector and a matrix.
Then, knowing from Eq. (10.3) that λ equals 1 +m, we get the following relationship

C′n×λ = C′n×(1+m) = [ bn×1 Cn×m ] (10.17a)

where vector b has the intercepts of the n balance bridges and matrix C has all remaining
coefficients. The coefficients of vector b and matrix C are simply given as:

b(i) = C ′(i, 1) for 1 ≤ i ≤ n where b(i) = bi,0 (10.17b)

C(i, j) = C ′(i, j + 1) for 1 ≤ i ≤ n and 1 ≤ j ≤ m (10.17c)

Similarly, vector G′ of Eq. (10.16c) may be split into two parts where I represents the

G′(1+m)×1 =

[
I1×1

Gm×1

]
(10.17d)

identity matrix described with the single scalar 1 and vector G is defined as follows:

G(i) = G′(i+ 1) for 1 ≤ i ≤ m (10.17e)

Then, after using the right–hand sides of Eqs. (10.17a) and (10.17d) to replace C′ and
G′ in Eq. (10.16c) and switching the left– and right–hand sides of the resulting equation,
we get the following relationship for a total of n outputs:

rFn×1 = C′n×(1+m) · G′(1+m)×1

= [ bn×1 Cn×m ] ·
[

I1×1

Gm×1

]
= bn×1 · I1×1 + Cn×m · Gm×1

= bn×1 + Cn×m · Gm×1

(10.18)

It is necessary to rearrange Eq. (10.18) further so that the starting point for the
derivation of the load iteration equations is obtained. Therefore, vector b is moved to the
left–hand side of Eq. (10.18). Then, the following relationship is obtained:

rFn×1 − bn×1 = Cn×m · Gm×1 (10.19)

The left–hand side of Eq. (10.19) is a vector difference. It equals the difference between
a vector consisting of raw outputs and a vector consisting of intercept terms. It can be
abbreviated by introducing the output difference vector ∆rF. Then, we get:
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Output Difference Vector

∆rFn×1 = rFn×1︸ ︷︷ ︸
raw outputs

− bn×1︸ ︷︷ ︸
intercepts

(10.20)

The output difference vector ∆rF defined in Eq. (10.20) above is the input for the
load iteration equations that will be derived in the next section. The right–hand side of
Eq. (10.19) has the regression models of the outputs that are left if intercept terms are
ignored. Equation (10.19) can be written in more compressed form after replacing the
left–hand side of Eq. (10.19) with the left–hand side of Eq. (10.20). Then, we get:

∆rFn×1 = Cn×m · Gm×1 (10.21)

Equation (10.21) above is the common starting point for the derivation of the two
load iteration equations that may be used for the prediction of balance loads during a
wind tunnel test. The load iteration equations are identified as Primary Load Iteration
Equation and Alternate Load Iteration Equation. First, the Primary Load Iteration Equa-
tion is derived. Afterwards, the Alternate Load Iteration Equation is defined. Then, the
calculation of balance loads during a wind tunnel test and differences between the two
iteration equations are discussed.

10.6 Primary Load Iteration Equation
The coefficient matrix C used in Eq. (10.21) above has to be split into two parts in

order to develop a load iteration process. The two parts are called matrix C1 and matrix
C2. Then, we get:

Cn×m =
[

C1n×n
C2n×(m−n)

]
(10.22a)

Regression coefficients of the n linear load terms are saved in square matrix C1. This
matrix is defined as:

C1(i, j) = C(i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ n (10.22b)

Regression coefficients of all remaining load terms are saved in rectangular matrix C2.
This matrix is defined as:

C2(i, j) = C(i, j + n) for 1 ≤ i ≤ n and 1 ≤ j ≤ m− n (10.22c)

Similarly, it is necessary to split the auxiliary column vector G into two corresponding
parts. The two parts are called vector F and vector H. Then, we get:

Gm×1 =

[
Fn×1

H(m−n)×1

]
(10.23a)
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where
F (i) = G(i) for 1 ≤ i ≤ n (10.23b)

H(i) = G(i+ n) for 1 ≤ i ≤ m− n (10.23c)

Now, after using Eq. (10.22a) and Eq. (10.23a) to replace the matrix C and vector G
in Eq. (10.21), we get:

∆rFn×1 = Cn×m · Gm×1

=
[

C1n×n
C2n×(m−n)

]
·
[

Fn×1
H(m−n)×1

]
= C1n×n

· Fn×1 + C2n×(m−n)
· H(m−n)×1

(10.24)

Then, after solving Eq. (10.24) above for load vector F, we get:

Fn×1 =
[

C1
−1
n×n

]
· ∆rFn×1 −

[
C1
−1
n×n
· C2n×(m−n)

]
· H(m−n)×1 (10.25a)

Vector H is a function of F as (i) H is a subset of G and (ii) G is a subset of G′ that
is derived from matrix A. This conclusion can be summarized as follows:

H = H(F) (10.25b)

Now, after (i) using the right–hand side of Eq. (10.25b) to replace vector H in
Eq. (10.25a) and (ii) dropping auxiliary subscripts that describe the vector or matrix
size, we get:

F =
[

C1
−1 ] · ∆rF −

[
C1
−1 C2

]
· H(F) (10.26)

Load vector F appears on both sides of Eq. (10.26). Therefore, it can only be computed
by using an iteration process. Finally, after introducing the iteration step index ξ in
Eq. (10.26), we get the Primary Load Iteration Equation:

Primary Load Iteration Equation

Fξ =
[

C1
−1 ] · ∆rF −

[
C1
−1 C2

]
· H(Fξ−1) (10.27a)

. . . where the initial guess of the load vector equals . . .

Fξ=0 =

 0
...
0

 (10.27b)

The iteration equation defined in Eq. (10.27a) above computes the loads of a single
data point by using the output difference vector ∆rF as input that is used in Eq. (10.21). It
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matches the iteration equation that is frequently recommended in the literature if nomen-
clature differences are temporarily ignored (see, e.g., Ref. [7], p. 23, Eq. (3.3.7)). – The
derivation of a second alternate load iteration equation is described in the next section.

10.7 Alternate Load Iteration Equation
The rectangular coefficient matrix C used in Eq. (10.21) can also be decomposed into

three parts that may be used to develop an alternate load iteration process. This task can
be accomplished by splitting square matrix C1 of Eq. (10.22a) into two square matrices
B1 and B2. Then, after modifying the right–hand side of Eq. (10.22a) accordingly, we get:

Cn×m =
[ {

B1n×n
+ B2n×n

}︸ ︷︷ ︸
C1n×n

{
C2n×(m−n)

} ]
(10.28a)

The coefficients on the principal diagonal of the first n×n submatrix of matrix C are
saved in matrix B1. This matrix is defined as:

B1(i, j) =

{
C(i, j) for i = j and 1 ≤ i, j ≤ n

0 for i 6= j and 1 ≤ i, j ≤ n
(10.28b)

Off–diagonal coefficients of the first n × n submatrix are saved in matrix B2. This
matrix is defined as:

B2(i, j) =

{
0 for i = j and 1 ≤ i, j ≤ n

C(i, j) for i 6= j and 1 ≤ i, j ≤ n
(10.28c)

All remaining coefficients are saved in matrix C2. Its coefficients were already defined
in Eq. (10.22c) above. Now, after using (i) the right–hand side of Eq. (10.28a) to replace
matrix C and (ii) the right–hand side of Eq. (10.23a) to replace vector G, Eq. (10.21) can
be expressed as follows:

∆rFn×1 = Cn×m · Gm×1

=
[ {

B1n×n
+ B2n×n

} {
C2n×(m−n)

} ]
·
[

Fn×1
H(m−n)×1

]
=

{
B1n×n

+ B2n×n

}
· Fn×1 + C2n×(m−n)

· H(m−n)×1

= B1n×n
· Fn×1 + B2n×n

· Fn×1 + C2n×(m−n)
· H(m−n)×1

(10.29)

Then, after multiplying both sides of Eq. (10.29) with the inverse of matrix B1,
solving the result for load vector F, dropping auxiliary subscripts that describe the vector
or matrix size, and replacing vector H by the right–hand side of Eq. (10.25b), we get:

F =
[

B1
−1 ] · ∆rF −

[
B1
−1 · B2

]
· F −

[
B1
−1 · C2

]
· H(F) (10.30)

Again, as it was the case in Eq. (10.26), load vector F appears on both sides of
Eq. (10.30). Therefore, it can only be computed by using an iteration process. Finally,
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after introducing the iteration step index ξ in Eq. (10.30), we get the Alternate Load
Iteration Equation:

Alternate Load Iteration Equation

Fξ =
[
B1
−1] ·∆rF −

[
B1
−1B2

]
· Fξ−1 −

[
B1
−1C2

]
·H(Fξ−1) (10.31a)

. . . where the initial guess of the load vector equals . . .

Fξ=0 =

 0
...
0

 (10.31b)

The iteration equation defined in Eq. (10.31a) above computes the loads for a single
data point by using the output difference vector ∆rF as input. – Characteristics of the
two load iteration equation choices are compared in the next section of the appendix.

10.8 Comparison of Load Iteration Equations
The author applied the Primary and the Alternate Load Iteration Equation to a wide

variety of balance calibration data sets. He observed that both equations converge to
identical load sets as long as (i) primary sensitivities of all bridges are defined, (ii) regression
models of the outputs do not have hidden linear dependencies, and (iii) the influence of
the higher order terms [C1

−1C2 ] ·H(F) and [B1
−1C2 ] ·H(F) is small. This observation is

no surprise because the coefficients of both load iteration equations are derived from the
same regression models of the outputs. Therefore, it possible to define a Universal Load
Iteration Equation that simultaneously describes both equations (for details see App. 25).

It must not be overlooked that the Primary Load Iteration Equation is, by design,
more widely applicable than the Alternate Load Iteration Method. It often converges even
if not all primary bridge sensitivities are defined. On the other hand, the Alternate Load
Iteration Method cannot converge in this situation (see Ref. [14] for a detailed discussion
of this characteristic). These circumstances typically exist whenever (i) loads of a force or
moment balance are given in direct–read format and (ii) electrical outputs of the bridges
are described in their original design format.

The regression model of the difference between the raw output and the natural zero of
a bridge, i.e., Difference Type 1 of App. 6, may be used instead of the regression model of
a raw output to analyze balance calibration data and construct a load iteration equation.
This alternate approach is the author’s recommended choice. It is discussed in detail in
the next section.

10.9 Regression Model of Output Differences
Regression models of the difference between raw output and the natural zero of the

related balance bridge may also be used to analyze balance calibration data and construct
a load iteration equation for the balance load prediction. This output format choice has
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the advantage that (i) instrumentation–induced shifts between output measurements in the
calibration laboratory and the wind tunnel facility are better controlled and (ii) the use
of the intercept term becomes optional. A good understanding of the alternate regression
analysis approach starts with the definition of the natural zeros of the balance bridges. The
set of natural zeros of the balance bridges are the electrical representation of zero absolute
load (the determination of the natural zeros is described in great detail in App. 8). This
definition of the natural zeros can be summarized as follows:

natural zeros of a balance ≡ electrical description of zero absolute load

It is convenient to describe the natural zeros of an n–component balance in vector
format. Then, we get:

natural zeros =⇒ Nn×1 =



N1
...

Ni
...

Nn

 (10.32)

Raw outputs of balance bridges may also be described in vector format. We get:

raw outputs =⇒ rFn×1 =



rF1
...

rFi
...

rFn

 (10.33)

The difference between raw output and natural zero of a balance bridge, i.e., Difference
Type 1 of App. 6, is the new dependent variable of the regression analysis problem that
the Iterative Method solves. The difference is defined by the following relationship:

Di = rFi − Ni ; 1 ≤ i ≤ n (10.34a)

Again, it is convenient to describe the output differences in vector format. We get:

output differences =⇒ Dn×1 = rFn×1 − Nn×1 =



rF1 −N1
...

rFi −Ni
...

rFn −Nn

 (10.34b)
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Now, after replacing the raw outputs on the left–hand side of Eq. (10.2) with the corre-
sponding output differences that are described above, the following multivariate regression
model of an output difference (Difference Type 1) can be defined:

Multivariate Regression Model (Difference Type 1)

Di = bi,0 + bi,1 · F1 + bi,2 · F2 + · · ·︸ ︷︷ ︸
λ = maximum number of model terms

= bi,0 +

10∑
ψ=1

Tψ(bi,ω) (10.35)

where

intercept is optional as bi,0 ≈ 0 ≡ approximation of zero output

By design, the intercept term bi,0 is a least squares approximation of zero output if
tare corrected loads are used to fit output differences of a balance bridge. Therefore, the
use of the intercept term becomes optional. The remaining regression model term groups
used on the right–hand side of Eq. (10.35) match those that are used on the right–hand
side of Eq. (10.2). In addition, all steps required for the definition of the two load iteration
equations, i.e., Eqs. (10.27a) and (10.31a), remain valid if the regression model of an output
difference instead of the regression model of a raw output is used.

It is mentioned above that the use of the intercept is optional if output differences of
a balance bridge are fitted as a function of the balance loads. In this case, the predicted
output values hardly change if the intercept is included in the regression model because it is,
by choice, a least squares approximation of zero output. Therefore, the author recommends
to always include the intercept term in the regression model of an output if the electrical
outputs are described as either raw outputs or output differences. Nevertheless, it is helpful
to list equations of this appendix that can be simplified or need to be modified if an analyst
chooses to intentionally omit the intercept term. The following relationship is valid if the
intercept term is omitted:

intercept is omitted =⇒ bi,0 = 0 where 1 ≤ i ≤ n (10.36)

Then, the following simplifications and modifications of a subset of equations of this
appendix can be made:

Eq. (10.5a) =⇒ A1×δ = [ F1 F2 . . . F 2
1 . . . ]︸ ︷︷ ︸

δ = number of supported terms

(10.37a)

Eq. (10.5b) =⇒ xδ×1 =

 bi,1bi,2
...

 (10.37b)
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Eq. (10.7a) =⇒ Ap×δ =



F1(1) F2(1) . . . F 2
1 (1) . . .

F1(2) F2(2) . . . F 2
1 (2) . . .

F1(3) F2(3) . . . F 2
1 (3) . . .

...
...

...
...

...

F1(p) F2(p) . . . F 2
1 (p) . . .


(10.37c)

Eq. (10.17b) =⇒ b(i) = C ′(i, 1) for 1 ≤ i ≤ n where b(i) = 0 (10.37d)

It must be pointed out that the number of rows or columns used in Eqs. (10.37a),
(10.37b), and (10.37c) and is reduced by one even though variable δ does not explicitly
show that change. Differences exist between the two output formats when the resulting
load iteration equations are used to compute the balance load during a wind tunnel test.
These differences are discussed in the next two sections.

10.10 Balance Load Calculation (Raw Outputs)

It was demonstrated in the previous sections how load iteration equations for the
prediction of balance loads can be developed from the regression models of raw outputs
(see Eq. (10.2)). These load iteration equations predict balance loads, i.e., loads relative to
the load datum of zero absolute load, using raw output measurements during a wind tunnel
test as input. It is useful for the discussion of the balance load calculations to introduce
the following abbreviation of the load iteration process where F is the final result of the
load iterations, Fξ is the load iteration equation, and ∆rF is the output difference vector.

F = Iteration
|δF| < TOL

{
Fξ

}
= Iteration

|δF| < TOL

{
Fξ(∆rF︸ ︷︷ ︸

input

)
}

(10.38)

The output measurements themselves are hidden in the components of vector ∆rF
that is an input for the load iteration equations (see Eqs. 10.20), (10.27a), and (10.31a)). It
is assumed that the load iteration equations were generated from the regression models of
the raw outputs. Then, intercepts terms are an essential part of the regression model of the
output. They cannot be ignored. Consequently, using Eq. (10.20), the output difference
vector for the load iteration equation is described by the following relationship:

raw outputs =⇒ ∆rFn×1 = rFn×1︸ ︷︷ ︸
raw outputs

− bn×1︸ ︷︷ ︸
intercepts

(10.39)

The intercept terms of the regression models of the raw outputs are contained in vector
b above. Their numerical values have a useful physical interpretation: they are the least
squares approximation of the natural zeros of the bridges that were measured when the
balance was calibrated in the laboratory. This conclusion can be summarized as follows:

b =⇒
{
vector with least squares approximations of natural
zeros that were recorded in the calibration laboratory

}
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The conclusion can also be described by using the following mathematical relationship:

b =



b1,0
...

bi,0
...

bn,0

 = {b}lab. ≈ {N}lab. =



N1
...

Ni
...

Nn


lab.

(10.40)

Instrumentation used for the measurement of bridge outputs in the wind tunnel can
substantially differ from the instrumentation that was used in the calibration laboratory.
These differences can result in hidden output shifts that need to be taken into account when
balance loads are computed. The output shifts are contained in both the raw outputs and
the natural zeros that are measured in the wind tunnel. In addition, the intercept term is
an essential part of the output difference vector ∆rF that is the input for the load iteration
equations. Consequently, absolute balance loads have to be computed in the wind tunnel
by using the raw outputs and the natural zeros as input for two separate load iterations.
The predicted absolute balance loads are simply the difference of the results of these two
load iterations. Finally, the exact relationship for the calculation of absolute balance loads
in the wind tunnel can be described by the following equations:

Absolute Balance Loads (exact relationship)
(assumptions ≡ raw outputs are used as input ; regression models have intercepts)

Fbal = Iteration
|δF| < TOL

{
Fξ(∆rF1)

}
− Iteration
|δF| < TOL

{
Fξ(∆rF2)

}
(10.41a)

where

∆rF1 = {rF}tunnel︸ ︷︷ ︸
raw outputs

− {b}lab.︸ ︷︷ ︸
required

(10.41b)

∆rF2 = {N}tunnel︸ ︷︷ ︸
raw outputs

− {b}lab.︸ ︷︷ ︸
required

(10.41c)

Fξ ≡ iteration equation obtained from fit of raw outputs

It is often observed that the intercepts of the regression models of the raw outputs,
i.e., the components of vector {b}lab. in Eqs. (10.41b) and (10.41c) above, are close to the
natural zeros of the balance bridges, i.e., the components of vector {N}tunnel, that were
measured using the tunnel’s instrumentation. Then, the following approximation is valid:

approximation =⇒ {b}lab. ≈ {N}tunnel (10.42)

Now, an approximation of Eq. (10.41a) can be developed after using the right–hand
side of Eq. (10.42) to replace vector {b}lab. in Eqs. (10.41b) and (10.41c). Then, the second
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load iteration on the right–hand side of Eq. (10.41a) is no longer needed as ∆rF2 equals
zero. Consequently, the following approximation for the absolute balance loads is obtained:

Absolute Balance Loads (approximation)
(assumptions ≡ raw outputs are used as input ; regression models have intercepts)

Fbal ≈ Iteration
|δF| < TOL

{
Fξ(∆rF1)

}
(10.43a)

where

∆rF1 = {rF}tunnel︸ ︷︷ ︸
raw outputs

− {N}tunnel︸ ︷︷ ︸
raw outputs

(10.43b)

Fξ ≡ iteration equation obtained from fit of raw outputs

It must be mentioned for completeness that the vector ∆rF1 defined in Eq. (10.43b)
above is called delta bridge output vector in the literature (see Ref. [7], p. 22, Eq. (3.3.1)).

10.11 Balance Load Calculation (Difference Type 1)
A load iteration process for the prediction of balance loads during a wind tunnel test

can also be developed from the regression models of output differences that are defined in
Eq. (10.35). Resulting load iteration equations predict absolute balance loads, i.e., loads
relative to the load datum of zero absolute load, using output difference measurements
during a wind tunnel test as input. The output differences themselves are hidden in the
components of vector ∆rF that is an input for the load iteration equation (see Eqs. (10.20),
(10.27a), and (10.31a) for more details).

Again, it is assumed that the load iteration equation was generated from the regression
models of the output differences. Then, using Eq. (10.20), the output difference vector,
i.e., the input for the load iteration process, is defined by the following relationship:

output differences =⇒ ∆rFn×1 = Dn×1︸ ︷︷ ︸
differences

− bn×1︸ ︷︷ ︸
intercepts

(10.44)

The intercept of the regression model of an output difference must be a least squares
approximation of zero output. Therefore, vector b can be described as follows:

b =⇒ { vector with least squares approximations of zero output }

The above description of vector b also means that the intercept of the regression
model of an output difference may be omitted. Now, let us assume that no intercepts are
used in the regression models of the output differences. Then, all components of vector b
are perfectly zero. In that case, the output difference vector can be simplified as follows:

intercepts omitted =⇒ ∆rFn×1 = Dn×1 (10.45)
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It was mentioned in the previous section that instrumentation used for the measure-
ment of bridge outputs in the wind tunnel can substantially differ from instrumentation
that was used in the calibration laboratory. These differences can result in hidden output
shifts that need to be taken into account when absolute balance loads are computed in the
wind tunnel. The output shifts are present in both the raw outputs and the natural zeros
that are measured using the tunnel’s instrumentation. Consequently, they disappear if
differences between the raw outputs and the natural zeros are computed using the tunnel’s
instrumentation (see Eq. (10.34a)). Therefore, the exact relationship for the calculation of
the balance loads using the iteration equations from the regression analysis of the output
differences can be described by the following equations:

Absolute Balance Loads (exact relationship)
(assumptions ≡ output differences are used as input ; regression models have no intercepts)

Fbal = Iteration
|δF| < TOL

{
Fξ(D)

}
(10.46a)

where

D = {rF}tunnel − {N}tunnel︸ ︷︷ ︸
Difference Type 1, Eq. (10.34b)

(10.46b)

Fξ ≡ iteration equation obtained from fit of output differences

It is interesting to compare the exact relationship given by Eq. (10.46a) above with
the corresponding exact relationship that is given in Eq. (10.41a). Both relationships
correctly deal with hidden output shifts that may be introduced by instrumentation dif-
ferences. However, the use of the iteration equation from the fitted output differences
requires only one load iteration as intercepts can be omitted in corresponding regression
models. Therefore, the iteration process described by Eq. (10.46a) is easier to implement
than the iteration process described in Eq. (10.41a).

10.12 First Derivative of Interactions
It is explained in another part of the appendix how the regression coefficients of the

fitted outputs can be used to construct the Primary Load Iteration Equation. A square
matrix C1 is introduced for this purpose in Eq. (10.22a). It has the coefficients of the
regression model terms that the load components F1, F2, . . . , Fn themselves define.
Matrix C1 has an important practical interpretation. Its off–diagonal coefficients are
the first derivatives of the interactions of the balance bridges with respect to the load
components assuming that each load component is applied as a single–component load
(see also related comments in Chapter 11, pp. 132–134).
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Appendix 11

Load Iteration Convergence Test

11.1 General Remarks

An iteration process is needed for the calculation of balance loads during a wind tunnel
test whenever an analyst selects the Iterative Method for the balance load prediction (see
App. 10 for more details). It is recommended to investigate convergence characteristics of
the load iterations within the use envelope of the balance so that reliable load predictions
can be guaranteed during the wind tunnel test. A new load iteration convergence test was
derived in Ref. [15] for this task that is summarized in this appendix. The new test was
developed in order to correct an analytical error in an alternate test that Smith describes in
Ref. [63]. The analytical error was caused by the fact that the partial derivative ∂fi/∂Xj

of Smith’s definition of the Lipschitz Constant is not always dimensionless (for details see
Ref. [63], Eqs. (8), (B6), (B8)). Consequently, Smith’s definition is flawed because it
computes the sum of quantities that are not all dimensionless.

The description of the new test starts with a discussion of the two load iteration
equations that are used in the aerospace testing community. Table 11–1 below lists the
iteration equations where F is a vector that has the predicted balance loads, ∆rF is a
vector that has the raw outputs or output differences of the balance bridges, B1, B2, C1,
and C2 are coefficient matrices that uniquely define the load iteration characteristics of
the chosen balance, and ξ is the iteration step index (see App. 10 for more details).

Table 11–1: Definition of balance load iteration equations.

Primary Load Iteration Equation . . . App. 10, Eq. (10.27a)

Fξ =
{
C1
−1} · ∆rF −

{
C1
−1C2

}
· H(Fξ−1)

Alternate Load Iteration Equation . . . App. 10, Eq. (10.31a)

Fξ =
{
B1
−1} · ∆rF −

{
B1
−1B2

}
· Fξ−1 −

{
B1
−1C2

}
· H(Fξ−1)

The new load iteration convergence test uses the Lipschitz Condition in combination
with an estimate of the upper bound of the Lipschitz Constant for the assessment of
convergence characteristics of the load iterations. The Lipschitz Condition and the related
Lipschitz Constant are described in Henrici’s textbook on numerical analysis (Ref. [71]).
Henrici investigated convergence properties of the following vector sequence:

F0, F1, F2, . . . , Fξ, . . . where Fξ = f(Fξ−1) (11.1a)

The column vector on the left–hand side of Eq. (11.1a) is defined by the equation
below where ξ is the iteration step index (Ref. [71], p. 99, Eq. (95–6)). Vector Fξ can be
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Fξ =



F1
...

Fi
...

Fn


n×1

(11.1b)

interpreted as the load vector of an n–component balance. In addition, the right–hand
side of Eq. (11.1a) above may be interpreted as the right–hand side of a load iteration
equation that is defined in Table 11–1. Then, Eq. (11.1a) can be described as follows:

f(Fξ−1) =



f1(Fξ−1)
...

fi(Fξ−1)
...

fn(Fξ−1)


n×1

=



C1
−1∆rF − C1

−1C2 ·H(Fξ−1)︸ ︷︷ ︸
Primary Load Iteration Equation

B1
−1∆rF−B1

−1B2 · Fξ−1 −B1
−1C2 ·H(Fξ−1)︸ ︷︷ ︸

Alternate Load Iteration Equation

(11.1c)

Now, after replacing the left–hand side of Eq. (11.1a) with the right–hand side of
Eq. (11.1b) and the right–hand side of Eq. (11.1a) with the term of Eq. (11.1c) that is
between the equal signs, we get:

F0, F1, F2, . . . , Fξ, . . . where



F1
...

Fi
...

Fn


︸ ︷︷ ︸

Fξ

=



f1(Fξ−1)
...

fi(Fξ−1)
...

fn(Fξ−1)


︸ ︷︷ ︸

f(Fξ−1)

(11.2)

The explicit description of the sequence above highlights two important facts: (i) the
unit of component Fi on the left–hand–side of Eq. (11.2) must always match the unit of
component fi on the right–hand side of Eq. (11.2), and, (ii) units of load components F1

to Fn are not necessarily all the same because the load component of a balance is either
a force or a moment. These two facts have to be taken into account whenever Henrici’s
generic description of the Lipschitz Condition is applied to load iteration equations of a
balance. This application is discussed in more detail in the next section.

11.2 Load Iteration Convergence Test
Henrici rigorously showed that the generic vector sequence F0, F1, F2, . . . defined

in Eq. (11.2) above will converge to a single value if the Lipschitz Condition is fulfilled,
i.e., if the Lipschitz Constant of the iteration process is less than the threshold of one (see
Ref. [71], p. 99–101). Henrici’s description of the iteration convergence test can directly be
applied to the load iteration process if a conservative upper bound Lmax of the Lipschitz
Constant is obtained using (i) a suitable upper bound Fψ of the load vector and (ii) the
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partial derivatives ∂ fi(Fψ)/∂Fj as input. Then, the Lipschitz Condition for the balance
load iteration process can be summarized as follows:

Lipschitz Condition

Lmax

{
∂ f1(Fψ)

∂ F1
, . . . ,

∂ fi(Fψ)

∂ Fj
, . . . ,

∂ fn(Fψ)

∂ Fn

}
< 1 (11.3)

It is critical to realize that Henrici’s generic convergence test compares the Lipschitz
Constant with the dimensionless threshold of one. Numerator and denominator of the par-
tial derivatives ∂ fi(Fψ)/∂Fj describe balance loads in the current application of the test
that do not necessarily have matching units. In addition, the derivatives are added during
the calculation of the upper bound of the Lipschitz Constant. Therefore, all derivatives
must be made dimensionless before use so that the resulting estimate of the upper bound
of the Lipschitz Constant, i.e., Lmax, is also dimensionless. Unfortunately, this important
requirement was overlooked in Ref. [63]. Consequently, Eqs. (8), (B6), and (B8) of Ref. [63]
are incorrect as some of the partial derivatives given in those equations could, for example,
have a force in the numerator and a moment in the denominator (or vice versa).

The partial derivatives of the load components can be made dimensionless by simply
multiplying each derivative with a scale factor. This scale factor equals the inverse of
the ratio between the capacities of the related load pair. Then, the revised and improved
definition of the upper bound of the Lipschitz Constant can be summarized as follows:

Upper Bound of the Lipschitz Constant

Lmax =

√√√√√√
n∑
i=1

n∑
j=1

{
∂ fi(Fψ)

∂ Fj
· Γj

Γi

}
︸ ︷︷ ︸
dimensionless derivative

2

(11.4)

where

Fψ ≡ upper bound of the load vector

∂ fi(Fψ)

∂ Fj
≡ coefficient of the Jacobian Matrix J {f(Fψ)}

Γj
Γi

≡ scale factor that makes
∂ fi(Fψ)

∂ Fj
dimensionless

Γϕ ≡ capacity of balance load component with index ϕ
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The upper bound of the Lipschitz Constant can be computed after (i) the upper bound
of the load vector Fψ and (ii) the partial derivatives ∂fi(Fψ)/∂Fj are defined. First, the
selection of the upper bound of the load vector is discussed.

Three choices for the upper bound of the load vector are suggested in the literature.
Each choice is either a function of the load capacities of the balance or a function of the
largest applied calibration load of each component (see, e.g., the discussion in Ref. [63],
App. B). A fourth choice is also of interest. It is the load vector whose components
equal the loads of the calibration data point with the greatest dimensionless length in
n–dimensional space (length ≡ Euclidean Norm). In theory, convergence characteristics
of this fourth choice should be closest to the observed convergence characteristics of the
balance calibration data set that generated the load iteration equation in the first place.
All four choices for the upper bound of the load vector can be summarized as follows:

Upper Bound of Load Vector

Fψ =


Fψ1

Fψ2

...

Fψn


n×1

=



Choice 1 =⇒ 3/2 · F ′

Choice 2 =⇒ F ′

Choice 3 =⇒ F ′′

Choice 4 =⇒ F ′′′

(11.5)

where

F ′ ≡ vector of load capacities Γ1, Γ2, . . . Γn
F ′′ ≡ vector of largest tare corrected loads
F ′′′ ≡ load vector of calibration point with greatest dimensionless length

It is important to point out that Choice 1, Choice 2, and Choice 3 above are very
conservative in nature. They assume that all load components are simultaneously applied.
This situation rarely exists during actual use of the balance. Choice 4, on the other hand,
uses loads of the calibration data point with the greatest dimensionless length. Therefore,
it is the least conservative choice.

In theory, partial derivatives used for the definition of the Lipschitz Constant above
should be obtained from the Jacobian Matrix of the right–hand sides of the load iteration
equations that are described in Table 11–1. This n × n matrix is defined as follows

J {f(Fψ)} =

[
∂ f(Fψ)

∂ F1
. . .

∂ f(Fψ)

∂ Fj
. . .

∂ f(Fψ)

∂ Fn

]
n×n

(11.6a)

where vector f(Fψ) equals the right–hand side of Eq. (11.1c) after replacing Fξ−1 with
Fψ. Each column of the Jacobian Matrix can be described as a vector. Then, we get
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j−th column of J {f(Fψ)} =⇒ ∂ f(Fψ)

∂ Fj
=



∂ f1(Fψ)

∂ Fj
...

∂ fi(Fψ)

∂ Fj
...

∂ fn(Fψ)

∂ Fj


n×1

(11.6b)

which can also be expressed by explicitly using the load iteration equations. Then, we get:

∂ f(Fψ)

∂ Fj
=



∂

∂ Fj

{
C1
−1∆rF − C1

−1C2 ·H(Fψ)
}

︸ ︷︷ ︸
Primary Load Iteration Equation

∂

∂ Fj

{
B1
−1∆rF − B1

−1B2 · Fψ − B1
−1C2 ·H(Fψ)

}
︸ ︷︷ ︸

Alternate Load Iteration Equation

(11.6c)

The first term on the right–hand side of Eq. (11.6c) is independent of the balance load
component Fj . Therefore, we get:

∂

∂ Fj

{
C1
−1∆rF

}
=

 0
...
0


n×1

(11.7a)

∂

∂ Fj

{
B1
−1∆rF

}
=

 0
...
0


n×1

(11.7b)

Then, after using Eqs. (11.7a) and (11.7b) to simplify the right–hand side of Eq. (11.6c),
we get the following relationship for the columns of the Jacobian Matrix :

∂ f(Fψ)

∂ Fj
=



∂

∂ Fj

{
− C1

−1C2 ·H(Fψ)
}

︸ ︷︷ ︸
Primary Load Iteration Equation

∂

∂ Fj

{
− B1

−1B2 · Fψ − B1
−1C2 ·H(Fψ)

}
︸ ︷︷ ︸

Alternate Load Iteration Equation

(11.8)
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The right–hand sides of Eqs. (11.6b) and (11.8) above define one of a total of n
column vectors of partial derivatives ∂fi(Fψ)/∂Fj that are needed for the calculation of
the upper bound of the Lipschitz Constant. The author recommends to determine these
partial derivatives numerically by using the Central Difference Formula. This approach is
described in detail in the next section.

11.3 Numerical Calculation of Partial Derivatives
A numerical estimate of the partial derivatives ∂fi(Fψ)/∂Fj can be computed by using

the Central Difference Formula (see, e.g., Ref. [66], p. 181, Eq. (5.7.7), for more details).
An auxiliary vector g(Fψ) is introduced to better describe the application of the Central
Difference Formula in this context. It is defined as follows:

g(Fψ) =



g1(Fψ)
...

gi(Fψ)
...

gn(Fψ)


n×1

=



C1
−1C2 ·H(Fψ)︸ ︷︷ ︸

Primary Load Iteration Equation

B1
−1B2 · Fψ + B1

−1C2 ·H(Fψ)︸ ︷︷ ︸
Alternate Load Iteration Equation

(11.9)

Then, after taking the derivative ∂/∂Fj on both sides of Eq. (11.9) and comparing
the result with the right–hand side of Eq. (11.8), we conclude:

∂ g(Fψ)

∂ Fj
= (−1) · ∂ f(Fψ)

∂ Fj
(11.10)

In addition, it is concluded that the components ∂ gi(Fψ)/∂Fj and ∂ fi(Fψ)/∂Fj of
vectors ∂g(Fψ)/∂Fj and ∂ f(Fψ)/∂Fj satisfy the following relationship:[

∂ gi(Fψ)

∂ Fj

]2
=

[
∂ fi(Fψ)

∂ Fj

]2
(11.11)

The right–hand side of Eq. (11.11) is used in the definition of the upper bound of
the Lipschitz Constant that is given in Eq. (11.4). Therefore, ∂ gi(Fψ)/∂Fj can be used
instead of ∂ fi(Fψ)/∂Fj in Eq. (11.4) without changing the result. This replacement has
the advantage that all negative signs on the right–hand side of Eq. (11.8) can be avoided.
Then, we get an alternate definition for the upper bound of the Lipschitz Constant that
can be summarized by the following relationship:

Upper Bound of the Lipschitz Constant

Lmax =

√√√√ n∑
i=1

n∑
j=1

{
∂ gi(Fψ)

∂ Fj
· Γj

Γi

}2

(11.12)
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Now, the Central Difference Formula may be applied to the i–th row of column vector
g(Fψ) in Eq. (11.9) so that estimates of the partial derivatives ∂ gi(Fψ)/∂Fj are obtained.
The application of the Central Difference Formula is described in Eq. (11.13a) below. The

Central Difference Formula

∂ gi(Fψ)

∂ Fj
≈

gi(+)
− gi(−)

2 · ∆Fj
(11.13a)

where

gi(+)
= gi

(
Fψ1 , . . . , Fψj + ∆Fj , . . . , Fψn

)
(11.13b)

gi(−)
= gi

(
Fψ1 , . . . , Fψj −∆Fj , . . . , Fψn

)
(11.13c)

∆Fj ≡ step size of load component Fj

Central Difference Formula has to be applied a total of n×n times in order to compute all
partial derivatives that are needed for the calculation of the upper bound of the Lipschitz
Constant for an n–component balance.

It is known that the accuracy of the Central Difference Formula is influenced by the
roundoff error in the chosen step size ∆Fj . Therefore, step size ∆Fj has to be selected
such that Fψj and Fψj±∆Fj differ by an exactly representable number. An optimal choice
for the step size ∆Fj exists that is a function of a characteristic scale λj and the relative
machine precision ε. The optimal choice of ∆Fj for the Central Difference Formula is
given by the following formula where λj is the characteristic scale and ε is the relative

∆Fj ≈ λj · ε1/3 (11.14a)

machine precision at runtime (the formula is taken from Ref. [66], p. 182, Eq. (5.7.8)).
Estimates of the characteristic scale λj and the relative machine precision ε are needed in
order to apply Eq. (11.14a). The scalar value of the perturbed variable itself, i.e., Fψj , is
a good choice for λj in our context because it is a positive number that is related to the
load range of the j–th load component. Therefore, we can write:

λj = Fψj (11.14b)

In addition, the Forsythe, Malcolm, and Moler algorithm may be used to determine
the relative machine precision ε at runtime (for more details see Ref. [67], pp. 13–14). This
simple algorithm computes an approximate value for the smallest quantity such that 1 + ε
is greater than 1 in floating point arithmetic. The implementation of the algorithm as a
function call in a generic programming language could look as follows:
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FUNCTION GetRelativeMachinePrecision

Epsilon = 1.0D0

Delta = 1.0D0 + Epsilon

WHILE ( Delta > 1.0D0 ) DO BEGIN

Epsilon = Epsilon / 2.0D0

Delta = 1.0D0 + Epsilon

ENDWHILE

return, Epsilon

END

An estimate of the lower bound of the number of load iterations is derived in great
detail in the next section.

11.4 Lower Bound of Number of Iterations
A theoretical estimate of the lower bound of the number of required load iterations can

be computed as a function of (i) the upper bound of the Lipschitz Constant, (ii) the load
vector, (iii) the load iteration equation type, and (iv) the chosen load iteration tolerance.
The derivation of this estimate uses a generic inequality as a starting point that is given
in the literature (Ref. [71], p. 99, Eq. (5–9)).

The generic inequality uses the Euclidean Norm of a vector as input. This scalar is
defined by the following relationship assuming that X is a generic n–dimensional vector:

X︸︷︷︸
vector

=

X1
...
Xn


n×1

=⇒ ‖ X ‖︸ ︷︷ ︸
scalar

=

√
X1

2 + X2
2 + . . . +Xn

2︸ ︷︷ ︸
Euclidean Norm

(11.15)

In addition, a square matrix S needs to be defined so that balance loads or load
differences can be made dimensionless. This n×n matrix has the inverse of the capacity of
each load component on its principal diagonal. It is defined by the following relationship:

S =



1/Γ1 0 · · · 0

0 1/Γ2 · · · 0

...
...

...
...

0 0 · · · 1/Γn


n×n

(11.16)

Now, the generic inequality from the literature (Ref. [71], p. 99, Eq. (5–9)) can be
written as follows after all balance loads were made dimensionless by using matrix S
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‖ S · ( Fξ − F∞) ‖ ≤ (Lmax)
ξ

1 − Lmax
· ‖ S · ( Fη − Fν ) ‖ (11.17)

where ξ is the load iteration step, Lmax is the upper bound of the Lipschitz Constant
(see Eq. (11.12)), ‖Fξ − F∞‖ is the Euclidean Norm of a load vector difference that is
associated with the lower bound of the load change, ‖Fη − Fν‖ is the Euclidean Norm of
a load vector difference that is associated with the upper bound of the load change, and S
is the square matrix that is defined in Eq. (11.16) above. Finally, after solving Eq. (11.17)
for the load iteration step ξ, we get the following inequality that defines the lower bound
of the number of required load iterations:

Lower Bound of the Number of Required Load Iterations

ξ ≥

ln

{
( 1 − Lmax ) · ‖ S · ( Fξ − F∞) ‖

‖ S · ( Fη − Fν ) ‖

}
ln { Lmax }

(11.18)

The upper bound Lmax of the Lipschitz Constant was already defined in Eq. (11.12).
It remains to estimate the lower and upper bounds of the load change.

The lower bound of the load change can be obtained from (i) the Euclidean Norm of
the dimensionless upper bound S ·Fψ of load vector Fψ and (ii) the chosen load iteration
tolerance. The value of 0.0001 % of the upper bound of the loads is a suitable choice for
the load iteration tolerance. Then, we get:

Lower Bound of Load Change

‖ S · ( Fξ − F∞) ‖ ≈ Θ

100
· ‖ S · Fψ ‖ (11.19a)

where

Θ ≡ tolerance in percent = 0.0001 % (11.19b)

Similarly, the upper bound can be related to the Euclidean Norm of the load change
that is obtained by using Fψ as input on a modified right–hand side of Eq. (11.1c). The
modified right–hand side of Eq. (11.1c) is obtained after temporarily removing the terms
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C1
−1∆rF and B1

−1∆rF as those terms are independent of the load change. Then, after
applying square matrix S such that the modified right–hand side of Eq. (11.1c) becomes
dimensionless, we get the following estimate of the upper bound of the load change:

‖ S · ( Fη − Fν) ‖ ≈



‖ S · { − C1
−1C2 ·H(Fψ) } ‖︸ ︷︷ ︸

Primary Load Iteration Equation

‖ S · { − B1
−1B2 · Fψ − B1

−1C2 ·H(Fψ) } ‖︸ ︷︷ ︸
Alternate Load Iteration Equation

(11.20)

All negative signs on the right–hand side of Eq. (11.20) can be converged to positive
signs without changing the result because the Euclidean Norm uses the square of each
vector component as input. Then, we get the final relationship for the upper bound of the
load change for the two load iteration equation types:

Upper Bound of Load Change

‖ S · ( Fη − Fν) ‖ ≈



‖ S · { C1
−1C2 ·H(Fψ) } ‖︸ ︷︷ ︸

Primary Load Iteration Equation

‖ S · { B1
−1B2 · Fψ + B1

−1C2 ·H(Fψ) } ‖︸ ︷︷ ︸
Alternate Load Iteration Equation

(11.21)

Detailed discussions of real–world balance data examples with estimates for both the
Lipschitz Constant and the lower bound of the number of required load iterations can be
found in Ref. [15].
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Appendix 12

Tare Load Iteration for Non–Iterative Method

12.1 Introduction

Strain–gage balance calibration data should include loads in the description of the
load state of the balance that are caused by the combined weight of (i) the metric part
of the balance, (ii) the calibration body, (iii) calibration fixtures, and (iv) weight pans.
These hidden loads are traditionally called tare loads. They make it possible to describe
all loads relative to the common load datum of zero absolute load if they are added to the
applied calibration loads. The tare loads can be defined as follows:

Tare Loads ≡ loads that are exclusively caused by the combined weight of
the metric part of the balance and all attached calibration hardware pieces.

A balance calibration load schedule is often split into individual load series. Each load
series consists of a set of loads or load combinations that were applied while keeping the
calibration hardware itself unchanged. Therefore, tare loads must remain constant within
a given load series. In addition, electrical outputs of the zero load points of the load series,
i.e., outputs of the first and last point of the load series, are exclusively caused by the
tare loads if no gravity weights are placed on a weight pan. Consequently, they are the
electrical representation of the hidden tare loads of a load series.

In theory, it is possible to estimate the tare loads from the known weight and common
center of gravity location of the metric part and the attached calibration hardware pieces.
However, this approach is difficult to apply in a real–world situation as the determination
of the common center of gravity of the metric part and the attached calibration hardware
pieces can be become very complex. Therefore, many analysts use a tare load iteration
algorithm for the assessment of the hidden tare loads. The basic idea behind this iteration
process is summarized in the paragraph below:

Tare Load Iteration Algorithm

Electrical outputs of each zero load point of a load series may be used in combination

with (i) the natural zeros of the balance bridges and (ii) interim regression models of the

balance calibration data for an iterative determination of numerical estimates of the tare

loads of all load series. This tare load iteration process is considered converged if the

following conditions are met: (i) the maximum difference between two consecutive tare load

estimates is below a specified tolerance; (ii) the tare load residuals decrease monotonically.

The first tare load iteration algorithm for balance calibration data was developed
in the 1970s by Robin Galway of NRC Canada. His algorithm was finally published in
the open literature in 1999 (Ref. [80]). Afterwards, AIAA’s Internal Balance Technology
Working Group adopted it for use with the Iterative Method (see 1st edition of Ref. [7]).
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A new description of a tare load iteration algorithm was prepared for this appendix.
It closely follows Galway’s original algorithm as his basic ideas can also be used with
the Non–Iterative Method (see Ref. [7], pp. 21–22, pp. 27–45). However, two differences
between Galway’s and the author’s definition of a tare load iteration algorithm exist. First,
Galway’s algorithm exclusively uses output format Difference Type 2 for the calculation
of the coefficients of the linear matrix that the determination of a first estimate of the
tare loads needs (see Ref. [7], p. 32; Difference Type 2 is defined in App. 6, Eq. (6.3);
see also the discussion in section 12.7 of the appendix). Furthermore, Galway’s algorithm
performs one load calculation for each iteration step. The author’s algorithm, on the other
hand, performs two load calculations for each iteration step. This modification was made
in order to control an iteration convergence instability that results from the use of the
intercept term in the regression model of a load component. The problem is illustrated
with an example in section 12.6 of the appendix.

12.2 Natural Zeros, Zero Load Outputs

The development of an improved description of the tare load iteration algorithm for
the Non–Iterative Method has to start with basic definitions. In principle, the Non–Iterative
Method fits each balance load component of some given calibration data as a function of all
electrical outputs that describe the load state of the balance. The required regression model
is defined by using output differences as independent variables. The output differences
equal the difference between the raw output and the natural zero of a bridge. This output
format is identified as Difference Type 1 in App. 6. The regression model is ultimately
used for the load prediction during a wind tunnel test (see also App. 9 for more details).

It is assumed that a single load component F of an n–component balance is analyzed.
The chosen balance measures a total of n raw outputs rF1, . . . , rFn. In addition, the
natural zeros of all bridges, i.e., N1, . . . , Nn, are known. Then, a generic regression model
of the load component can be defined that uses the output differences as independent
variables. This regression model can be described by the following relationship:

F = f(D1, . . . , Di, . . . , Dn) where Di = rFi − Ni (12.1)

Equation (12.1) describes the final result of a multivariate least squares fit of the
given balance calibration data. The balance load is assumed (i) to be a function of n
independent output measurements and (ii) the loads include tare loads that were obtained
after applying the tare load iteration algorithm to the balance calibration data.

It is helpful for the detailed description of the tare load iteration algorithm to express
raw electrical outputs of the balance in vector format. Then, we get:

raw outputs =⇒ rF =



rF1
...

rFi
...

rFn

 (12.2)

The components of the output vector are raw outputs, i.e., absolute voltage measure-
ments. They cannot directly be used for the determination of the tare loads unless the
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natural zeros of the balance bridges, i.e., the electrical descriptions of zero absolute load,
are known (the determination of the natural zeros of the balance bridges is described in
great detail in App. 8). The definition of the natural zeros can be summarized as follows:

Natural Zeros ≡ electrical description of the load datum of zero absolute load.

Natural zeros of a balance can also be described in vector format. Then, we get:

natural zeros =⇒ N =



N1
...

Ni
...

Nn

 (12.3)

Tare loads of a load series, i.e., loads caused by the weight of the metric part and all
attached calibration hardware pieces, are indirectly quantified by the raw electrical outputs
that are measured at the beginning and end of each load series assuming no weights are
attached to the calibration hardware. These raw voltage measurements are called zero
load outputs of a load series. They can be defined as follows:

Zero Load Outputs of a Load Series ≡ raw electrical outputs
that are exclusively caused by the Tare Loads of a load series.

The zero load outputs of a load series with index k are assumed to be raw outputs.
They can also be described by using an n–component vector that can be defined by the
following equation (q ≡ total number of load series of the given calibration data):

zero load outputs of a load series =⇒ Zk =



Z1,k

...

Zi,k
...

Zn,k

 ; 1 ≤ k ≤ q (12.4)

The difference between the zero load output of a load series and the natural zeros is
the electrical description of the tare loads in the output space if it is assumed that output
differences are used for the regression analysis of balance calibration data. This conclusion
can be expressed as follows:
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Electrical Description of Tare Loads
(output format ≡ Difference Type 1, App. 6)

∆Zk = Zk −N =



∆Z1,k

...

∆Zi,k
...

∆Zn,k

 =



Z1,k −N1

...

Zi,k −Ni
...

Zn,k −Nn

 ; 1 ≤ k ≤ q (12.5a)

Similarly, the difference between the natural zeros of the bridges and themselves repre-
sents the electrical description of the load datum of zero absolute load if output differences
are used for the regression analysis of balance calibration data. This conclusion can be
expressed as follows:

Electrical Description of Zero Absolute Load
(output format ≡ Difference Type 1, App. 6)

∆Z0 = N−N =



∆Z1,0

...

∆Zi,0
...

∆Zn,0

 =


0
...
0
...
0

 (12.5b)

Past experience has shown that the trivial electrical description of zero absolute load,
i.e., Eq. (12.5b) above, is needed as input for the tare load iteration process in order to
avoid iteration convergence stability problems whenever an analyst includes the intercept
term in the regression model of a balance load.

The tare loads of each load series are a function of the output differences that are
defined in Eqs. (12.5a) and (12.5b). This conclusion can also be described in vector format:

tare loads =⇒ ∆F =



∆F1(∆Z1,∆Z0)
...

∆Fk(∆Zk,∆Z0)
...

∆Fq(∆Zq,∆Z0)


(12.6)

At this point, all balance data inputs have been defined that make the numerical
determination of the tare loads possible. Now, the tare load iteration algorithm itself
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needs to be described. This description is split into two parts. First, the calculation of a
first estimate, i.e., the initial guess of the tare loads is discussed. Afterwards, the tare load
iteration process itself is summarized.

12.3 First Estimate of Tare Loads

The application of an iteration process requires the calculation of a first estimate of
the tare loads that must be reasonably close to the final answer. The first estimate may
be obtained from a simple linear regression model of the original balance calibration data.
This regression model, i.e., Regression Model A, of a balance load F is defined in Eq. (12.7)
below assuming that (i) the balance has n independent bridge outputs and (ii) the intercept
term a0 is included (see also related comments in App. 9). The symbols D1, . . . , Dn are

Regression Model A

F = a0︸︷︷︸
intercept

+ a1 ·D1 + · · · + an ·Dn︸ ︷︷ ︸
supported linear terms

(12.7)

the output differences of the bridges that are formatted as Difference Type 1 (see also
Eq. (12.1) or App. 6, Eq. (6.2)). The symbols a0, a1, . . . , an are regression coefficients.

The coefficients of Regression Model A above can be obtained by applying global re-
gression analysis to the uncorrected balance calibration data (see, e.g., Ref. [64], pp. 35–39,
for a description of the global regression analysis approach). The applied, i.e., uncorrected,
calibration loads F (1), . . ., F (ν), . . ., F (p) of the calibration points are one input for the
regression analysis (ν ≡ data point index; p ≡ number of data points). They can be
described by the following relationship:

Applied/Uncorrected Calibration Loads

Func =



F (1)
...

F (ν)
...

F (p)


p×1

(12.8)

In addition, raw outputs rF1(1), . . ., rFi(ν), . . ., rFn(p) of each data point were
measured and the natural zeros N1, . . ., Nn of the bridges are known. Then, the output
difference used on the right–hand side of Eq. (12.7) above is defined by the following
relationship if output format Difference Type 1 of App. 6 is used:
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Output Difference

Di(ν) = rFi(ν) − Ni (12.9)

where

1 ≤ i ≤ n ; 1 ≤ ν ≤ p

Now, matrix A of the global regression analysis problem can be defined as a function
of (i) the output differences and (ii) the chosen regression model terms. We get:

Regression Model Term Values for Regression Model A

Ap×(n+1) =

 1 D1(1) . . . Dn(1)
...

...
...

...

1 D1(p) . . . Dn(p)

 (12.10)

The unknown coefficients of Regression Model A can be described by the following vector:

x = x(n+1)×1 =


a0
a1
...
an

 (12.11)

Next, the tare load iteration step index needs to be initialized. Then, we get:

First Iteration Step

µ = 1 (12.12)

At this point, the global regression analysis problem resulting from the application of
Regression Model A to the balance calibration data can be defined. The dependent variable
of the regression analysis is the balance load F . Its value is stored for each calibration
point in vector Func that is defined in Eq. (12.8) above. Then, the load vector for the first
iteration step is given by the following relationship:

{Fcor}µ=1 = Func (12.13)

Now, the global regression analysis problem associated with the first iteration step
can be described as a matrix equation. We get:
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Global Regression Analysis Problem

A · x = {Fcor}µ=1 (12.14a)

The solution of the global regression analysis problem above is the regression coefficient
set of Regression Model A. The solution is an application of the Moore–Penrose Inverse
that is given by the following matrix equation (taken from Ref. [64], pp. 35–39):

Solution of Global Regression Analysis Problem

x = (ATA)−1 · AT · {Fcor}µ=1 (12.14b)

Now, the first estimate of the tare loads of the load series can be computed as the
coefficients a0, a1, . . . , an of Regression Model A are given by the right–hand side of
Eq. (12.14b) above. It is only required to define a compatible auxiliary matrix A′ that
uses (i) the electrical description of the tare loads given in Eq. (12.5a) and (ii) the regression
model definition itself as input. This q× (n+ 1) matrix can be expressed as follows where

A′q×(n+1) =



1 ∆Z1,1 . . . ∆Zn,1
...

...
...

...

1 ∆Z1,k . . . ∆Zn,k
...

...
...

...

1 ∆Z1,q . . . ∆Zn,q

 (12.15)

index q is the total number of load series of the given calibration data set and index n is
the total number of bridge outputs.

In the next step, the first estimate of the tare loads of all load series is obtained by
simply multiplying matrix A′ with vector x that has the regression coefficients. We get:

Tare Loads of Load Series (first estimate)

{∆F ′}µ=1 =



∆F1
...

∆Fk
...

∆Fq


q×1

= A′ · x (12.16)
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The vector containing the first estimate of the tare loads has q rows, i.e., one row
for each load series. The vector still needs to be mapped to a vector with p rows so that
the tare load corrections can directly be added to all uncorrected calibration loads. It is
assumed that a transformation σ(ν) exists that uniquely relates load series index k to data
point index ν. This transformation could be expressed as follows:

σ(ν) = k where σ(1) = 1 , σ(2) = 1 , . . . , σ(p− 1) = q , σ(p) = q (12.17)

Then, after applying the transformation above to the first estimate of the tare loads,
the first set of tare load corrections of the loads of the calibration data points can be
defined as follows:

Tare Loads of Calibration Points (first estimate)

{∆F}µ=1 =



∆Fσ(1)
...

∆Fσ(ν)
...

∆Fσ(p)


p×1

(12.18)

The above estimate of the tare loads of the calibration loads will be used as the initial
guess for the tare load iteration process that is described in the next section.

12.4 Tare Load Iteration Process

This section describes the tare load iteration process itself. Now, the analyst’s chosen
final regression model term combination is used instead of a simple linear term combination
for the regression analysis of the calibration data. This regression model, i.e., Regression
Model B, of load component F is defined by Eq. (12.19) below assuming that (i) the balance

Regression Model B

F = a0︸︷︷︸
intercept

+ a1 ·D1 + a2 ·D2 + · · · + aω ·D1
2

+ · · ·︸ ︷︷ ︸
supported linear, absolute value & non−linear terms

(12.19)

has n independent bridge outputs, (ii) linear terms, non–linear terms, and the intercept are
used, and (iii) a total of δ regression model terms are supported by the balance calibration
data. At this point, matrix B of the global regression analysis problem can be defined as a
function of (i) the output differences and (ii) the chosen regression model terms. We get:
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Regression Model Term Values for Regression Model B

Bp×δ =



1 D1(1) D2(1) . . . D1
2
(1) . . .

...
...

...
...

...
...

1 D1(ν) D2(ν) . . . D1
2
(ν) . . .

...
...

...
...

...
...

1 D1(p) D2(p) . . . D1
2
(p) . . .


(12.20)

The unknown coefficients of Regression Model B can be described by the following vector:

y = yδ×1 =


a0
a1
a2
...

 (12.21)

In the next step, the iteration step counter is increased by one. We get:

Iteration Step Increase

µ =⇒ µ + 1 (12.22)

The tare corrected calibration loads need to be updated so that the coefficients of
the new regression model of the calibration data can be obtained. Therefore, the previous
estimate of the tare loads of the individual calibration points, i.e., {∆F}µ−1, is added to
the uncorrected calibration loads, i.e., Func, that are defined in Eq. (12.8) above. Then, a
new interim estimate of the tare corrected calibration loads is obtained. We get:

Tare Corrected Calibration Loads (interim estimate)

{Fcor}µ = Func + {∆F}µ−1 (12.23)

Now, the global regression analysis problem associated with the interim tare load
iteration step can be described as a matrix equation. We get:
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Global Regression Analysis Problem

B · y = {Fcor}µ (12.24a)

The solution of the global regression analysis problem above describes the interim
regression coefficients of Regression Model B. The solution is an application of the Moore–
Penrose Inverse. It is given by the following equation (taken from Ref. [64], pp. 35–39):

Solution of Global Regression Analysis Problem

y = (BTB)−1 · BT · {Fcor}µ (12.24b)

Finally, the new estimate of the tare loads of the load series can be computed as the
interim coefficients a0, a1, . . . of Regression Model B are given by the right–hand side
of Eq. (12.24b). It is only required to define a compatible auxiliary matrix B′ that uses
(i) the electrical description of the tare loads given in Eq. (12.5a) and (ii) the definition of
the regression model itself as input. This q × δ matrix can be expressed as follows:

∆Z1 , . . . , ∆Zq︸ ︷︷ ︸
Eq. (12.5a)

=⇒ B′q×δ =



1 ∆Z1,1 ∆Z2,1 . . . ∆Z1,1
2

. . .
...

...
...

...
...

...

1 ∆Z1,k ∆Z2,k . . . ∆Z1,k
2

. . .
...

...
...

...
...

...

1 ∆Z1,q ∆Z2,q . . . ∆Z1,q
2

. . .


(12.25a)

In addition, a second rectangular matrix B′′ needs to be defined that uses (i) the trivial
electrical description of zero absolute load given in Eq. (12.5b) and (ii) the regression model
definition itself as input. This q × δ matrix can be expressed as follows:

∆Z0︸ ︷︷ ︸
Eq. (12.5b)

=⇒ B′′q×δ =


1 0 0 . . . 0 . . .
...

...
...

...
...

...
1 0 0 . . . 0 . . .
...

...
...

...
...

...
1 0 0 . . . 0 . . .

 (12.25b)

Now, the new estimate of the tare loads can be computed by (i) multiplying matrices
B′ and B′′ with vector y and (ii) taking the difference of the results. We get:
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Tare Loads of Load Series (interim estimate)

{∆F ′}µ =



∆F1
...

∆Fk
...

∆Fq


q×1

= B′ · y︸ ︷︷ ︸
tare loads

− B′′ · y︸ ︷︷ ︸
zero load

(12.26)

The second product B′′y is needed in Eq. (12.26) in order to avoid a known conver-
gence instability. This instability prevents tare load residuals from decreasing monotoni-
cally whenever the intercept term a0 is included in Regression Model B. Alternatively, the
second product equals zero and can be dropped altogether if an analyst omits the intercept
term in Regression Model B.

Again, the transformation defined in Eq. (12.17) needs to be applied so that the
tare loads of each load series can be mapped to all calibration points. Then, the vector
describing the new interim estimate of the tare loads of the calibration points can be
described by the following equation:

Tare Loads of Calibration Points (interim estimate)

{∆F}µ =



∆Fσ(1)
...

∆Fσ(ν)
...

∆Fσ(p)


p×1

(12.27)

A tare load iteration convergence test needs to be applied at this point. Therefore,
the absolute values of the tare load changes δF , i.e., the absolute values of the difference
between tare load estimates of the current and previous iteration step, are computed and
made dimensionless by using the capacity Γ of the load component. Then, the maximum
of the dimensionless tare load changes is expressed as a percentage. This test metric is
compared with the empirical threshold of 0.0001 %. Two cases must be distinguished.
First, the test metric could be greater or equal to the threshold. Then, the iteration
process continues by going back to Eq. (12.22) and starting the calculation of a new set
of tare loads. Alternatively, the test metric could be less than the threshold. In that case,
the iteration converged and is terminated after the final set of tare corrected calibration
loads is computed. The tare load iteration convergence test is summarized below.
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Tare Load Iteration Convergence Test

δF = {∆F ′}µ − {∆F ′}µ−1︸ ︷︷ ︸
tare load change

=



δF1
...

δFk
...

δFq

 (12.28a)

δFk = {∆Fk}µ − {∆Fk}µ−1 (12.28b)

V = MAX

{ ∣∣∣∣δF1

Γ

∣∣∣∣ , . . . , ∣∣∣∣δFqΓ

∣∣∣∣ } · 100 % (12.28c)

V ≥ 0.0001 % =⇒ go back to Eq. (12.22) =⇒ continue . . . (12.28d)

V < 0.0001 % =⇒ advance to Eq. (12.29) =⇒ stop . . . (12.28e)

The final set of tare corrected calibration loads is computed after the condition de-
scribed in Eq. (12.28e) above is met. Then, the final tare loads of the calibration points
are added to the uncorrected calibration load set. We get:

Final Set of Tare Corrected Calibration Loads

Fcor = Func︸ ︷︷ ︸
Eq. (12.8)

+ {∆F}µ︸ ︷︷ ︸
Eq. (12.27)

(12.29)

The final set of regression coefficients of Regression Model B is computed by using
(i) the output differences of the calibration data defined in Eq. (12.9) and (ii) the tare
corrected calibration loads defined in Eq. (12.29) above as input.

The Non–Iterative Method, by design, performs a regression analysis for one load com-
ponent at a time when it is applied to calibration data. Therefore, the tare load iteration
process is only presented in this section for a single load component. Consequently, the
process has to be independently applied to all load components of the balance by saving
the applied/uncorrected load values of the load component in column vector Func and
selecting a suitable regression model for the analysis.

12.5 Exclusion of Intercept Term
It was mentioned in App. 9 that the use of the intercept term in the regression model

of a load is optional whenever output differences are used to define regression model terms.
It is helpful to summarize simplifications of important equations whenever the intercept
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term is not used. The following relationship is valid if the intercept term is omitted:

intercept is omitted =⇒ a0 = 0 (12.30)

Then, the following simplifications and modifications of a subset of equations of this
appendix can be made:

Eq. (12.7) =⇒ F = a1 ·D1 + · · · + an ·Dn︸ ︷︷ ︸
supported linear terms

(12.31a)

Eq. (12.10) =⇒ Ap×n =

 D1(1) . . . Dn(1)
...

...
...

D1(p) . . . Dn(p)

 (12.31b)

Eq. (12.11) =⇒ x = xn×1 =

 a1...
an

 (12.31c)

Eq. (12.15) =⇒ A′q×n =



∆Z1,1 . . . ∆Zn,1
...

...
...

∆Z1,k . . . ∆Zn,k
...

...
...

∆Z1,q . . . ∆Zn,q

 (12.31d)

Eq. (12.19) =⇒ F = a1 ·D1 + a2 ·D2 + · · · + aω ·D1
2

+ · · ·︸ ︷︷ ︸
supported linear, absolute value & non−linear terms

(12.31e)

Eq. (12.20) =⇒ Bp×δ =



D1(1) D2(1) . . . D1
2
(1) . . .

...
...

...
...

...

D1(ν) D2(ν) . . . D1
2
(ν) . . .

...
...

...
...

...

D1(p) D2(p) . . . D1
2
(p) . . .


(12.31f)

Eq. (12.21) =⇒ y = yδ×1 =

 a1a2
...

 (12.31g)

Eq. (12.25a) =⇒ B′q×δ =



∆Z1,1 ∆Z2,1 . . . ∆Z1,1
2

. . .
...

...
...

...
...

∆Z1,k ∆Z2,k . . . ∆Z1,k
2

. . .
...

...
...

...
...

∆Z1,q ∆Z2,q . . . ∆Z1,q
2

. . .


(12.31h)
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Eq. (12.25b) =⇒ B′′q×δ =


0 0 . . . 0 . . .
...

...
...

...
...

0 0 . . . 0 . . .
...

...
...

...
...

0 0 . . . 0 . . .

 (12.31i)

Eq. (12.26) =⇒ {∆F ′}µ =



∆F1
...

∆Fk
...

∆Fq

 = B′ · y︸ ︷︷ ︸
tare loads

(12.31j)

It must be pointed out that the number of rows or columns used in Eqs. (12.31f),
(12.31g), (12.31h), and (12.31i) is reduced by one even though the related variable δ does
not explicitly show that change. The next section discusses typical tare load iteration
results for data from the manual calibration of a force balance.

12.6 Discussion of Example

A data set from the manual calibration of a strain–gage balance is used in this section
to illustrate the application of the tare load iteration algorithm for the Non–Iterative
Method. The chosen balance is called the NASA MK3C. It was manufactured by the
Task/Able Corporation. It is a six–component force balance that measures five forces and
one moment (N1, N2, S1, S2, AF , RM). It has a diameter of 2.0 in and a total length
of 11.25 in. Table 12–1 shows the capacity of each load component of balance.

Table 12–1: Load capacities of the MK3C force balance (lbs ≡ pounds of force).

N1, lbs N2, lbs S1, lbs S2, lbs AF, lbs RM, in−lbs

900 900 450 450 500 1000

It was decided to discuss the tare load iteration of the forward normal force component
of the balance as an example. Absolute value terms of the output differences were included
in Regression Model B of the forward normal force as the balance has bi–directional outputs.
Three different approaches were applied to determine the tare loads. Table 12–2 below
summarizes characteristics of the three approaches.

Approach 1 includes the intercept term in the regression model of the load and uses
two load calculations for each tare load iteration step. This approach is described by
Eq. (12.26) and matches Method B that is discussed in Ref. [11]. Approach 2 also includes
the intercept term in the regression model of the load but uses one load calculation for
each tare load iteration step (the second term on the right–hand side of Eq. (12.26), i.e.,
B′′y, is intentionally omitted). Finally, Approach 3 excludes the intercept term in the
regression model of the load and uses one load calculation for each tare load iteration step.
This approach is described in Eq. (12.31j) above.
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Table 12–2: Description of investigated tare load iteration approaches.

Approach Definition of interim Is intercept Does the tare load Comments

estimate of tare loads included ? iteration converge ?

1 B′ · y − B′′ · y yes yes Eq. (12.26)

2 B′ · y − 0 yes no Eq. (12.26)

3 B′ · y no yes Eq. (12.31j)

Table 12–3 below shows parts of the original calibration data of the MK3C balance.
Only 21 of a total of 247 data points are shown. The natural zeros and the electrical
outputs of all bridges are listed as raw outputs in units of microV/V . The applied, i.e.,
uncorrected forward normal force (N1) is also listed in the last column of the data table
for each data point and load series.

Table 12–3: Description of the calibration data of the forward normal force
using raw outputs (absolute voltage measurements) and applied/uncorrected loads.

NATURAL ZEROS (ABSOLUTE VOLTAGE MEASUREMENTS)

rN1 rN2 rS1 rS2 rAF rRM
microV/V microV/V microV/V microV/V microV/V microV/V
-318.58 95.28 55.89 -212.30 169.44 -102.23

PT. ID SERIES rN1 rN2 rS1 rS2 rAF rRM N1
- - microV/V microV/V microV/V microV/V microV/V microV/V lbs
P-1 1 -239.01 108.67 55.80 -211.46 170.56 -102.38 0
P-2 1 -59.90 105.07 56.21 -210.96 170.53 -102.37 100
P-3 1 120.30 101.70 56.67 -210.46 170.16 -102.56 200
P-4 1 301.18 98.20 56.92 -210.05 169.99 -102.47 300
P-5 1 482.15 94.78 56.83 -209.89 169.80 -102.61 400
P-6 1 663.20 91.43 57.28 -209.37 169.71 -102.40 500
P-7 1 843.98 87.96 57.31 -209.03 169.53 -102.57 600
P-8 1 1024.69 84.46 57.18 -208.81 169.53 -102.53 700
P-9 1 1204.81 80.95 57.27 -208.49 169.25 -102.57 800
P-10 1 1385.42 77.52 57.42 -208.20 169.28 -102.40 900
P-11 1 1207.31 80.99 57.23 -208.62 169.24 -102.54 800
P-12 1 1028.10 84.36 57.01 -208.80 169.43 -102.51 700
P-13 1 847.66 87.95 57.17 -209.02 169.44 -102.62 600
P-14 1 666.39 91.42 56.72 -209.31 169.40 -102.77 500
P-15 1 485.03 94.83 56.96 -209.89 169.60 -102.51 400
P-16 1 303.36 98.27 56.63 -210.23 169.78 -102.52 300
P-17 1 121.73 101.71 56.55 -210.57 169.89 -102.43 200
P-18 1 -59.20 105.21 56.39 -210.90 170.34 -102.41 100
P-19 1 -239.60 108.69 55.78 -211.44 170.66 -102.35 0
P-20 2 -297.66 166.53 55.96 -212.57 173.44 -102.40 0
P-21 2 -299.37 351.63 56.07 -213.30 177.60 -102.55 0
… … … … … … … … …

Table 12–4 below shows parts of the calibration data of the MK3C balance if output
differences, i.e., Difference Type 1 of App. 6, are used to describe the balance calibration
data. Now, the natural zeros, i.e., the electrical representations of zero absolute load
in output difference format equal zero microV/V . In addition, the electrical outputs of
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the first point P–1 of load series 1 are the components of vector ∆Z1 that is defined in
Eq. (12.5a). They are the electrical description of the tare loads of load series 1. We get:

Table 12−4 =⇒ Series 1 =⇒ ∆Z1 =


+79.57 microV/V
+13.40 microV/V
−0.09 microV/V
+0.84 microV/V
+1.12 microV/V
−0.15 microV/V

 (12.32)

The data format shown in Table 12–4 below was used as input for the definition of
the regression model of the forward normal force. Then, the three tare load iteration

Table 12–4: Description of the calibration data of the forward normal force
using output differences (Difference Type 1, App. 6) and applied/uncorrected loads.

      NATURAL ZEROS (OUTPUT DIFFERENCE RELATIVE TO NATURAL ZERO)

rN1 rN2 rS1 rS2 rAF rRM
microV/V microV/V microV/V microV/V microV/V microV/V
0.00 0.00 0.00 0.00 0.00 0.00

PT. ID SERIES rN1 rN2 rS1 rS2 rAF rRM N1
- - microV/V microV/V microV/V microV/V microV/V microV/V lbs
P-1 1 79.57 13.40 -0.09 0.84 1.12 -0.15 0
P-2 1 258.68 9.79 0.31 1.34 1.08 -0.14 100
P-3 1 438.88 6.42 0.78 1.84 0.71 -0.33 200
P-4 1 619.77 2.93 1.03 2.25 0.55 -0.24 300
P-5 1 800.73 -0.50 0.93 2.41 0.36 -0.38 400
P-6 1 981.78 -3.85 1.39 2.93 0.27 -0.17 500
P-7 1 1162.56 -7.31 1.42 3.27 0.09 -0.34 600
P-8 1 1343.27 -10.81 1.28 3.49 0.09 -0.30 700
P-9 1 1523.39 -14.33 1.38 3.81 -0.19 -0.34 800
P-10 1 1704.01 -17.76 1.52 4.10 -0.16 -0.17 900
P-11 1 1525.89 -14.29 1.34 3.68 -0.20 -0.31 800
P-12 1 1346.68 -10.91 1.12 3.50 -0.01 -0.28 700
P-13 1 1166.24 -7.33 1.28 3.28 0.00 -0.39 600
P-14 1 984.97 -3.85 0.83 2.99 -0.04 -0.54 500
P-15 1 803.61 -0.45 1.07 2.41 0.16 -0.28 400
P-16 1 621.94 2.99 0.73 2.07 0.34 -0.29 300
P-17 1 440.31 6.43 0.66 1.73 0.45 -0.20 200
P-18 1 259.38 9.94 0.50 1.40 0.90 -0.18 100
P-19 1 78.98 13.42 -0.11 0.86 1.21 -0.12 0
P-20 2 20.92 71.25 0.06 -0.27 4.00 -0.17 0
P-21 2 19.21 256.35 0.18 -1.00 8.16 -0.32 0
… … … … … … … … …

approaches described in Table 12–2 above were applied and, whenever possible, tare loads
of the 13 load series of the calibration data set were computed. Table 12–5 below shows the
computed tare loads of each load series. In general, the predicted tare loads of Approach 1
and Approach 3 show excellent agreement because the maximum difference between the
two tare load estimates is 0.006 % of the capacity of the forward normal force. No tare
loads were obtained for Approach 2 as the tare load iteration process did not converge.
Further investigations confirmed the existence of an iteration convergence instability when
Approach 2 was applied to the balance calibration data. This instability prevented the
tare load residuals from decreasing monotonically. The unwanted convergence instability
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Table 12–5: Estimated tare loads of the forward normal force.

Load ∆N1, lbs ∆N1, lbs | Tare Load Difference |
Series (Approach 1) (Approach 3) (percent of load capacity)

1 +44.108 +44.137 0.003 %

2 +11.900 +11.928 0.003 %

3 +15.109 +15.125 0.002 %

4 –29.136 –29.117 0.002 %

5 –10.235 –10.214 0.002 %

6 +0.102 +0.157 0.006 %

7 +0.060 +0.115 0.006 %

8 –0.004 +0.052 0.006 %

9 +0.168 +0.224 0.006 %

10 –0.159 –0.106 0.006 %

11 –0.963 –0.929 0.004 %

12 –76.691 –76.640 0.006 %

13 +75.288 +75.339 0.006 %

can be avoided if either two load calculations for each tare load iteration step are per-
formed (Approach 1), or, alternatively, if the intercept term is omitted in the regression
model of the forward normal force (Approach 3). Observed tare load iteration convergence
characteristics for the three approaches are summarized in the fourth column of Table 12–2.

12.7 Tare Load Iteration Algorithm Differences

It is mentioned in the introduction of the appendix that Galway’s original tare load
iteration algorithm uses output format Difference Type 2 for the calculation of the linear
matrix that is needed for the determination of a first estimate of the tare loads. In other
words, Galway’s algorithm replaces Difference Type 1 with Difference Type 2 in the defi-
nition of Regression Model A that is described in Eq. (12.7). This bridge output format
choice difference is summarized in Table 12–6 below.

Table 12–6: Output format choices of tare load iteration algorithms.

Regression Model A Regression Model B
. . . see Eq. (12.7) . . . see Eq. (12.19)

Galway’s Algorithm Difference Type 2 Difference Type 1

Author’s Algorithm Difference Type 1 Difference Type 1

It seems, superficially viewed, that this format change could influence the final result
of the tare load iterations. However, the author observed that the final tare load estimates
for both bridge output format choices are identical for all practical purposes. Galway’s
output format choice simply results in a more rapid convergence of the tare load iterations
as his first estimate of the tare loads is closer to the final answer. The author’s output
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format choice, on the other hand, makes an implementation of the tare load iteration
algorithm less complex as only one output format type, i.e., Difference Type 1 is used in
both Regression Model A and Regression Model B during the tare load iteration process.
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Appendix 13

Tare Load Iteration for Iterative Method

13.1 Introduction

Strain–gage balance calibration data should include loads in the description of the
load state of the balance that are caused by the combined weight of (i) the metric part
of the balance, (ii) the calibration body, (iii) calibration fixtures, and (iv) weight pans.
These hidden loads are traditionally called tare loads. They make it possible to describe
all loads relative to the common load datum of zero absolute load if they are added to the
applied calibration loads. The tare loads can be defined as follows:

Tare Loads ≡ balance loads that are exclusively caused by the combined
weight of the metric part and all attached calibration hardware pieces.

A balance calibration load schedule is often split into individual load series. Each load
series consists of calibration points, i.e., load states, that were applied while keeping the
calibration hardware itself unchanged. Therefore, tare loads must remain constant within
a given load series. In addition, electrical outputs of the zero load points of the load series,
i.e., outputs of the first and last point of the load series, are exclusively caused by the
tare loads if no gravity weights are placed on a weight pan. Consequently, they are the
electrical representation of the hidden tare loads of a load series.

In theory, it would be possible to estimate the tare loads from the total weight and
common center of gravity location of the metric part and all calibration hardware pieces.
However, this approach is difficult to apply within the context of a real–world calibration.
In particular, the determination of the common center of gravity of the metric part and all
calibration hardware pieces can be challenging. Therefore, many analysts use a tare load
iteration algorithm for the assessment of the hidden tare loads. The basic idea behind this
iteration process is summarized in the paragraph below:

Tare Load Iteration Algorithm

The electrical outputs of each zero load point of a load series are used in combination

with (i) the natural zeros of the balance bridges and (ii) interim regression models

of the balance calibration data in order to successively compute numerical estimates

of the tare loads for all load series. The iteration is considered converged if two

conditions are met: (i) the maximum difference between two consecutive tare load estimates

is below a specified iteration tolerance; (ii) the tare load residuals decrease monotonically.

The first tare load iteration algorithm for balance calibration data was developed
in the 1970s by Robin Galway of NRC Canada. His algorithm was finally published in
the open literature in 1999 (Ref. [80]). Afterwards, AIAA’s Internal Balance Technology
Working Group adopted it for use with the Iterative Method (see 1st edition of Ref. [7]).
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A new description of a tare load iteration algorithm was prepared for this appendix.
It closely follows Galway’s original algorithm (see Ref. [7], pp. 21–22, pp. 27–45). However,
two differences between Galway’s and the author’s definition of a tare load iteration algo-
rithm exist. First, Galway’s algorithm exclusively uses output format Difference Type 2
for the calculation of the coefficients of the linear matrix that the determination of a first
estimate of the tare loads needs (see Ref. [7], p. 32; Difference Type 2 is defined in App. 6,
Eq.(6.3); see also the discussion in section 13.7 of the appendix). Furthermore, Galway’s
algorithm performs one load calculation for each iteration step. The author’s algorithm,
on the other hand, performs two load calculations for each iteration step. This modifica-
tion was made in order to control an iteration convergence instability that results from
the use of the intercept term in the regression model of a load component if the tare load
iteration algorithm is used in combination with the Non–Iterative Method (see example in
App. 12). The modification is also used in the description of the algorithm for the Iterative
Method even though it is not needed in this case. This choice was made so that a universal
algorithm is defined that can reliably be used with either the Non–Iterative Method or the
Iterative Method.

13.2 Balance Load and Output Descriptions

The development of the new description of the tare load iteration algorithm starts with
basic definitions. In principle, the Iterative Method fits each bridge output as a function
of all loads that describe the load state of the balance during its calibration. Afterwards,
the regression models of the outputs are used to construct a load iteration process for the
load prediction during a wind tunnel test (see also App. 10 for more details).

The balance bridge output is assumed to be a function of the loads of n load compo-
nents. These loads are assumed to include tare loads that are obtained after applying the
tare load iteration algorithm to the calibration data. It is helpful for the description of the
tare load iteration algorithm to express loads of a balance in vector format. Then, we get:

loads (uncorrected) =⇒ F =



F1
...

Fi
...

Fn

 (13.1)

Similarly, electrical outputs of the balance can be described in vector format. Then,
assuming that the number of independent bridge output measurements matches the num-
ber of load components, the raw outputs of a balance can be described as follows:

raw outputs =⇒ rF =



rF1
...

rFi
...

rFn

 (13.2)

The components of the output vector above are described as absolute voltage mea-
surements (raw outputs). They cannot directly be used for the determination of the tare
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loads unless the natural zeros of the balance bridges, i.e., the electrical descriptions of zero
absolute load, are known (the determination of the natural zeros of the balance bridges is
described in great detail in App. 8 of the current document). The definition of the natural
zeros can be summarized as follows:

Natural Zeros ≡ electrical description of the load datum of zero absolute load.

It is convenient to also express the natural zeros in vector format. Then, we get:

natural zeros =⇒ N =



N1
...

Ni
...

Nn

 (13.3)

Now, it is possible to define an alternate bridge output format, i.e., Difference Type 1
of App. 6, that may be used for the regression analysis of the balance data and the definition
of a tare load iteration algorithm. This format uses the difference between the raw output
of a bridge and its natural zero for the regression analysis of the balance calibration data
and the load prediction. This output difference can be defined by the following relationship:

output differences =⇒ D =



D1
...

Di
...

Dn

 =



rF1 −N1
...

rFi −Ni
...

rFn −Nn

 (13.4)

An analyst has the option to either fit raw outputs or output differences relative
to the natural zeros during the regression analysis of balance calibration data whenever
the Iterative Method is applied (see also comments in App. 10). Characteristics of the
regression analysis of the outputs are briefly reviewed in the next section.

13.3 Regression Analysis of Calibration Data

The Iterative Method individually fits the outputs of the balance bridges as a function
of all loads that describe the load state of the balance during its calibration. Afterwards,
the resulting regression models are used to construct a load iteration process so that loads
can be predicted from outputs during a wind tunnel test. It was mentioned in the previous
section that an analyst can either fit raw outputs or output differences during the regression
analysis of some given balance calibration data. It is useful for the discussion of the tare
load iteration process to review basic characteristics of regression analysis that may be
used to process the balance calibration data. Let us assume, for example, that an analyst
decides to directly fit raw outputs. The resulting regression model of a single output may
be defined by the following equation:
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Regression Model of Outputs (Raw Output)

rFi = bi,0︸︷︷︸
intercept

+ bi,1 · F1 + bi,2 · F2 + · · · + bi,ω · F1
2

+ · · ·︸ ︷︷ ︸
supported linear, absolute value & non−linear terms

(13.5a)

where

bi,0 ≈ Ni ≡ natural zero of balance bridge (13.5b)

In this case, the intercept must be used in the regression model of each output. This
requirement results from the fact that all terms but the intercept disappear on the right–
hand side of Eq. (13.5a) if the acting balance loads are zero. Then, the output of the balance
bridge, i.e., the left–hand side of Eq. (13.5a) above, equals its natural zero. Consequently,
the intercept term bi,0 becomes a least squares approximation of the natural zero of the
balance bridge after completion of the regression analysis of the calibration data.

Now, it is assumed that an analyst chooses to fit differences between the raw outputs
and the natural zeros of the bridges. The resulting regression model is described by the
relationship that is given in Eq. (13.6a) below. This time, the use of the intercept is

Regression Model of Outputs (Difference Type 1)

Di = bi,0︸︷︷︸
intercept

+ bi,1 · F1 + bi,2 · F2 + · · · + bi,ω · F1
2

+ · · ·︸ ︷︷ ︸
supported linear, absolute value & non−linear terms

(13.6a)

where

bi,0 ≈ 0 =⇒ use of intercept is optional (13.6b)

optional as it is the least squares approximation of zero output. Again, all terms but
the intercept term disappear on the right–hand side of Eq. (13.6a) when all loads of the
balance are zero. Then, the output difference of the balance bridge, i.e., the left–hand
side of Eq. (13.6a), must be zero. Consequently, the intercept term bi,0 becomes the least
squares approximation of zero output after completion of the regression analysis of the
balance calibration data. In other words, it may be omitted as it will hardly influence the
regression analysis result.

The coefficients of the regression models of all bridge outputs of an n–component
balance can be obtained by combining global regression analysis of the balance calibration
data with a tare load iteration process (see, e.g., Ref. [64], pp. 35–39, for a description of
the global regression analysis approach). The applied, i.e., uncorrected, calibration loads
Fi(1), . . ., Fi(ν), . . ., Fi(p) of the n load components and the p calibration points are one
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input for the regression analysis and the tare load iteration. They can be described by the
following rectangular matrix:

Applied Calibration Loads (uncorrected)

Func =



F1(1) . . . F1(ν) . . . F1(p)
...

...
...

...
...

Fi(1) . . . Fi(ν) . . . Fi(p)
...

...
...

...
...

Fn(1) . . . Fn(ν) . . . Fn(p)


n×p

(13.7)

In addition, electrical outputs are needed. In that case, an analyst has two options.
First, an analyst can use the raw outputs rFi(1), . . ., rFi(ν), . . ., rFi(p) of the n balance
bridges and the p calibration points as input for the regression analysis and the tare load
iteration. They can be described by the following rectangular matrix:

Measured Bridge Outputs (Raw Output)

rFraw =



rF1(1) . . . rF1(ν) . . . rF1(p)
...

...
...

...
...

rFi(1) . . . rFi(ν) . . . rFi(p)
...

...
...

...
...

rFn(1) . . . rFn(ν) . . . rFn(p)


n×p

(13.8a)

Alternatively, an analyst may use output differences Di(1), . . ., Di(ν), . . ., Di(p) of
the n balance bridges and the p calibration points for the regression analysis and the tare
load iteration. They can be described by the following rectangular matrix:

Measured Bridge Outputs (Difference Type 1)

rFdiff =



D1(1) . . . D1(ν) . . . D1(p)
...

...
...

...
...

Di(1) . . . Di(ν) . . . Di(p)
...

...
...

...
...

Dn(1) . . . Dn(ν) . . . Dn(p)


n×p

(13.8b)
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The coefficients of the regression models above have to be determined in an iterative
process as tare load estimates need to be added to the originally applied calibration loads
that are contained in matrix Func. These tare loads are predicted from the zero load
outputs of each load series. The definition of these subsets of outputs is discussed in more
detail in the next section.

13.4 Electrical Description of Tare Loads and Zero Absolute Load

Tare loads of each load series of the balance calibration data set are indirectly quan-
tified by electrical outputs that are measured at the beginning and end of each load series
when no gravity weights are placed on a weight pan. These raw outputs are called the zero
load outputs of a load series. They can be defined as follows:

Zero Load Outputs of a Load Series ≡ electrical outputs
that are exclusively caused by the Tare Loads of a load series.

The zero load outputs of a load series with index k can be described by using an
n–component vector. Then, we get:

zero load outputs of a load series (raw output format) =⇒ Zk =



Z1,k

...

Zi,k
...

Zn,k

 (13.9)

The intercept terms of the regression models defined in Eq. (13.5a) and (13.6a) are
least squares approximation of corresponding outputs at zero absolute load. They define
an important output datum for the assessment of the zero load outputs of a load series.
It is convenient to express the intercepts of the regression models of the outputs of an
n–component balance in vector format. Then, we get:

intercepts =⇒ b =



b1,0
...

bi,0
...

bn,0

 (13.10)

By design, the output difference vector ∆rF is the input for the load iteration. It is
defined as the difference between (i) a raw output and (ii) the intercept if raw outputs are
used as input for the load iteration (see App. 10, Eq. (10.39)). Similarly, it is defined as
the difference between (i) the output difference and (ii) the intercept if output differences
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are used as input for the load iteration (see App. 10, Eq. (10.44)). Therefore, the electrical
description of the tare loads should be referenced to the intercept term so that the input for
the load iteration of each tare load iteration step has the required format. This difference
can be described by the following vector equation assuming that an analyst chose raw
outputs for the regression analysis of the balance calibration data. In that case, the
intercepts (bi,0) are least squares approximations of the natural zeros (Ni).

Electrical Description of Tare Loads (Raw Output)

∆Zk︸ ︷︷ ︸
1≤k≤q

= { Zk }︸ ︷︷ ︸
raw

−



b1,0
...

bi,0
...

bn,0


︸ ︷︷ ︸
intercepts
bi,0 ≈ Ni

=



Z1,k − b1,0
...

Zi,k − bi,0
...

Zn,k − bn,0

 (13.11a)

Similarly, the difference between zero load outputs and intercepts of a load series with
index k can be described by the following vector equation assuming differences between
raw outputs and natural zeros are chosen for the regression analysis of the calibration data.
Then, the intercepts (bi,0) are least squares approximations of zero output.

Electrical Description of Tare Loads (Difference Type 1)

∆Zk︸ ︷︷ ︸
1≤k≤q

= { Zk −N }︸ ︷︷ ︸
difference

−



b1,0
...

bi,0
...

bn,0


︸ ︷︷ ︸
intercepts
bi,0 ≈ 0

=



(Z1,k −N1)− b1,0
...

(Zi,k −Ni)− bi,0
...

(Zn,k −Nn)− bn,0


(13.11b)

An approximation the two electrical descriptions above can be introduced if the inter-
cepts are substituted by related outputs. Then, after replacing either bi,0 in Eq. (13.11a)
with Ni or after replacing bi,0 in Eq. (13.11b) with zero output, we get the following ap-
proximation of the two exact relationships that are defined in Eqs. (13.11a) and (13.11b):
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Electrical Description of Tare Loads (Approximation)

∆Zk︸ ︷︷ ︸
1≤k≤q

≈ { Zk −N }︸ ︷︷ ︸
difference

=



Z1,k −N1

...

Zi,k −Ni
...

Zn,k −Nn

 (13.11c)

An electrical description of zero absolute load can be developed that uses Eq. (13.11a)
and Eq. (13.11b) as a starting point. In theory, vector N is the electrical description of
zero absolute load. Therefore, it is only required to replace vector Zk in Eqs. (13.11a) and
(13.11b) by vector N and simplify the result. First, raw outputs are investigated. In that
case, vector Zk in Eq. (13.11a) is replaced by vector N. Then, we get:

Electrical Description of Zero Absolute Load (Raw Output)

∆Z0 = { N }︸ ︷︷ ︸
raw

−



b1,0
...

bi,0
...

bn,0


︸ ︷︷ ︸
intercepts
bi,0 ≈ Ni

=



N1 − b1,0
...

Ni − bi,0
...

Nn − bn,0

 (13.12a)

Now, output differences are investigated. In that case, vector Zk in Eq. (13.11b) is
replaced by vector N. Then, we get:

Electrical Description of Zero Absolute Load (Difference Type 1)

∆Z0 = { N−N }︸ ︷︷ ︸
difference

−



b1,0
...

bi,0
...

bn,0


︸ ︷︷ ︸
intercepts
bi,0 ≈ 0

=



−b1,0
...

−bi,0
...

−bn,0

 (13.12b)
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Finally, similar to Eq. (13.11c), an approximation of the vectors defined in Eqs. (13.12a)
and (13.12b) above can be introduced after either replacing bi,0 in Eq. (13.12a) with Ni or
after replacing bi,0 in Eq. (13.12b) with zero. Then, we get:

Electrical Description of Zero Absolute Load (Approximation)

∆Z0 ≈

 0
...
0

 (13.12c)

The tare loads of each load series with series index k are a function of (i) the electrical
description of the tare loads of the series and (ii) the electrical description of zero absolute
load. This conclusion can also be described in vector format. We get:

tare loads =⇒ ∆Fk =



∆F1,k(∆Zk,∆Z0)
...

∆Fi,k(∆Zk,∆Z0)
...

∆Fn,k(∆Zk,∆Z0)


(13.13)

Characteristics of different tare load iteration analysis options, i.e., possible combina-
tions of the regression model of the outputs, the electrical description of the tare loads,
and the electrical description of zero absolute load are summarized in Table 13–1 below.

Table 13–1: Characteristics of Tare Load Iteration Analysis Options.

Option Output Regression ∆Zk ∆Z0 Intercept Comments

Format Model

1 Raw Output (13.5a) (13.11a) (13.12a) used exact input

2† Raw Output (13.5a) (13.11c) (13.12c) used approximation

3 Diff. Type 1 (13.6a) (13.11b) (13.12b) used exact input

4† Diff. Type 1 (13.6a) (13.11b) (13.12b) omitted exact input

5† Diff. Type 1 (13.6a) (13.11c) (13.12c) used approximation

†Option matches Galway’s tare load iteration algorithm (see Ref. [7], pp. 21–22).

Options 1, 3, and 4 use the exact electrical description of (i) the tare loads and (ii) zero
absolute load as input for the tare load iteration process. Options 2 and 5, on the other
hand, use an approximate electrical description of (i) the tare loads and (ii) zero absolute
load as input for the tare load iteration process.

At this point, all balance data inputs have been defined that make the numerical
determination of the tare loads possible. Now, the tare load iteration algorithm itself
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needs to be described. This description is split into two parts. First, the calculation of
a first estimate (initial guess) of the tare loads is discussed. Afterwards, the tare load
iteration process itself is summarized.

13.5 First Estimate of Tare Loads

The application of any iteration process requires the calculation of a first estimate of
the solution that must be reasonably close to the final answer. It is possible to obtain the
first estimate of the tare loads from a simple linear regression model of the original balance
calibration data. First, let us assume that an analyst chooses to fit raw outputs of the given
balance calibration data as a function of the balance loads. Then, the linear regression
model of raw output rFi, i.e., Regression Model A–1, can be defined in Eq. (13.14a) below

Regression Model A–1 (Raw Output)

rFi = bi,0︸︷︷︸
intercept

+ bi,1 · F1 + · · · + bi,n · Fn︸ ︷︷ ︸
supported linear terms

(13.14a)

where

bi,0 ≈ Ni ≡ natural zero of balance bridge (13.14b)

assuming that (i) the balance has a total of n load components and that (ii) the intercept
term is included. Alternatively, an analyst may choose to fit the output difference Di of
a balance bridge relative to the natural zeros as a function of the load components of the
balance. The corresponding linear regression model, i.e., Regression Model A–2, can be
defined by the equation below assuming that the intercept is included in the list of chosen

Regression Model A–2 (Difference Type 1)

Di = bi,0︸︷︷︸
intercept

+ bi,1 · F1 + · · · + bi,n · Fn︸ ︷︷ ︸
supported linear terms

(13.15a)

where

bi,0 ≈ 0 =⇒ use of intercept is optional (13.15b)

regression model terms. The coefficients of both Regression Model A–1 and Regression
Model A–2 above can be obtained by applying global regression analysis to the uncorrected
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balance calibration data (see, e.g., Ref. [64], pp. 35–39, for a description of the global
regression analysis approach). The applied, i.e., uncorrected, calibration loads of the p
calibration points are one input for the regression analysis. They are contained in the
rectangular matrix Func that was defined in Eq. (13.7). In addition, the raw outputs of
the p calibration points are needed if an analyst chooses Regression Model A–1 for the
data analysis. They are contained in the rectangular matrix rFraw that was defined in
Eq. (13.8a). Alternatively, the output differences of the p calibration points are needed if
an analyst chooses Regression Model A–2 for the data analysis. They are contained in the
rectangular matrix rFdiff that was defined in Eq. (13.8b). Now, the tare load iteration
step index needs to be initialized. Then, we get:

First Iteration Step

µ = 1 (13.16)

At this point the global regression analysis problem can be defined that is posed by the
balance calibration data and Regression Model A–1 or Regression Model A–2. Individual
steps of the global regression analysis process are described in great detail in App. 10.
Therefore, it is sufficient for the discussion of the tare load iteration process to simply list
inputs and outputs of the global regression analysis of the balance calibration data. The
following inputs are needed for the global regression analysis:

inputs =⇒



{Func} , rFraw, Regression Model A−1︸ ︷︷ ︸
Applied Loads, Raw Output, Regression Model

. . . or . . .

{Func} , rFdiff , Regression Model A−2︸ ︷︷ ︸
Applied Loads, Difference Type 1 , Regression Model

(13.17)

The coefficient matrices C1 of the Primary Load Iteration Equation or B1 and B2

of the Alternate Load Iteration Equation are the results of the global regression analysis
whenever regression models with only linear terms are used for the balance data analysis
(the coefficient matrix C2 of the non–linear terms is zero in this case). These results can
be summarized as follows:

regression analysis results =⇒ C1 or B1,B2 where C2 = {0} (13.18)

It is also known from App. 10 that the following relationship is valid for the matrices
C1, B1, and B2:

App. 10, Eq. (10.28a) =⇒ C1 = B1 + B2 (13.19)
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Now, first estimates of the tare loads of the load series can be computed by using
vectors ∆Zk and ∆Z0 as input for the load prediction equation that can be constructed
from the coefficient matrices C1, B1, and B2. It is sufficient to use approximations of the
two vectors ∆Zk and ∆Z0 for the load prediction as only an initial guess of the tare loads
is computed. These approximations can be summarized by the following relationship where
∆Zk is the electrical description of the tare loads and ∆Z0 is the electrical description of
zero absolute load:

approximations =⇒


∆Zk ≈ { Zk −N } . . . taken from Eq. (13.11c)

∆Z0 ≈

 0
...
0

 . . . . . . . . . taken from Eq. (13.12c)
(13.20)

It was mentioned above that the coefficient matrix C2 of the non–linear terms is zero.
Therefore, no load iteration is needed to compute the first estimate of the tare loads of
each load series. In addition, the output difference vector ∆Z0 is zero. Consequently, the
tare loads of a single load series with index k are simply given by the following equations:

Tare Loads of Single Load Series (first estimate, no load iteration)

{∆Fk}µ=1 =

 C1
−1 ∆Zk ⇐⇒ Primary Load Iteration Equation

[ B1 + B2 ]
−1

∆Zk ⇐⇒ Alternate Load Iteration Equation

(13.21a)

where

{∆Fk}µ=1 =



∆F1,k

...

∆Fi,k
...

∆Fn,k


n×1

(13.21b)

The above equations have to be applied using the output difference vectors ∆Zk of
each load series as input. Afterwards, the tare loads of all load series can be assembled in
a rectangular matrix that is defined as follows:
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Tare Loads of All Load Series (first estimate)

{∆F ′}µ=1 = [∆F1 . . . ∆Fq] =



∆F1,1 . . . ∆F1,k . . . ∆F1,q

...
...

...
...

...

∆Fi,1 . . . ∆Fi,k . . . ∆Fi,q
...

...
...

...
...

∆Fn,1 . . . ∆Fn,k . . . ∆Fn,q


n×q

(13.22)

The tare load estimates contained in the rectangular matrix above still need to be
mapped to a rectangular matrix with p columns so that the tare load corrections can
directly be applied to all uncorrected calibration loads. It is assumed that a transfor-
mation σ(ν) exists that uniquely relates load series index k to data point index ν. This
transformation could be expressed as follows:

σ(ν) = k where σ(1) = 1 , σ(2) = 1 , . . . , σ(p− 1) = q , σ(p) = q (13.23)

Then, after applying the above transformation to the first estimate of the tare loads
that are contained in the rectangular matrix above, the first tare load corrections of the
calibration loads can be defined in matrix format as follows:

Tare Loads of Calibration Points (first estimate)

{∆F}µ=1 =



∆F1,σ(1) . . . ∆F1,σ(ν) . . . ∆F1,σ(p)

...
...

...
...

...

∆Fi,σ(1) . . . ∆Fi,σ(ν) . . . ∆Fi,σ(p)
...

...
...

...
...

∆Fn,σ(1) . . . ∆Fn,σ(ν) . . . ∆Fn,σ(p)


n×p

(13.24)

The above estimates of the tare loads of the individual calibration data points are the
initial guess of the tare loads that is needed for the tare load iteration process. The matrix
of tare loads defined in Eq. (13.24) above is an n × p matrix. Therefore, it can be added
to the matrix Func of applied/uncorrected calibration loads that is defined in Eq. (13.7).
– The tare load iteration process itself is discussed in more detail in the next section.

13.6 Tare Load Iteration Process

This section describes the tare load iteration process. Now, the analyst’s final regres-
sion model term combination choice with both linear and non–linear terms is used for the
regression analysis of the balance calibration data.
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Let us assume, for example, that an analyst chooses to fit raw outputs of the calibration
data. Then, the final regression model of the raw output rFi, i.e., Regression Model B–1,
is defined as follows:

Regression Model B–1 (Raw Output)

rFi = bi,0︸︷︷︸
intercept

+ bi,1 · F1 + bi,2 · F2 + · · · + bi,ω · F1
2

+ · · ·︸ ︷︷ ︸
supported linear, absolute value & non−linear terms

(13.25a)

where

bi,0 ≈ Ni (natural zero of balance bridge) (13.25b)

Similarly, let us assume that an analyst chooses to fit output differences relative to
the natural zeros instead of raw outputs. In that case, the final regression model of the
output difference Di, i.e., Regression Model B–2, can be defined as follows:

Regression Model B–2 (Difference Type 1)

Di = bi,0︸︷︷︸
intercept

+ bi,1 · F1 + bi,2 · F2 + · · · + bi,ω · F1
2

+ · · ·︸ ︷︷ ︸
supported linear, absolute value & non−linear terms

(13.26a)

where

bi,0 ≈ 0 =⇒ use of intercept is optional (13.26b)

Now, the tare load iteration step is increased by one. We get:

Iteration Step Increase

µ =⇒ µ + 1 (13.27)

In the next step, inputs for the global regression analysis of the calibration data need
to be assembled. The electrical outputs of the calibration data points remain unchanged.
Therefore, only the calibration loads need to be updated by simply adding the tare load
estimates of the previous tare load iteration step to the uncorrected calibration loads.
Then, an interim estimate of the tare corrected calibration loads of all calibration points
is obtained that can be described by the following relationship assuming that the initial
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guess {∆F}µ=1 of the tare loads is given by Eq. (13.24):

Tare Corrected Calibration Loads (interim estimate)

{Fcor}µ = Func + {∆F}µ−1 (13.28)

Now, the inputs of the global regression analysis problem associated with the interim
tare load iteration step can be summarized by the following equation:

inputs =⇒



{Fcor}µ , rFraw, Regression Model B−1︸ ︷︷ ︸
Corrected Loads, Raw Output, Regression Model

. . . or . . .

{Fcor}µ , rFdiff , Regression Model B−2︸ ︷︷ ︸
Corrected Loads, Difference Type 1 , Regression Model

(13.29)

Then, after solving the global regression analysis problem using the inputs specified
in Eq. (13.29) above, the following coefficient matrices are obtained:

regression analysis results =⇒ C1,C2 or B1,B2,C2 where C2 6= {0} (13.30)

Now, the load iteration equations resulting from the outputs of the global regression
analysis can be defined by using the electrical descriptions of the tare loads of each load
series with index k as input. We get:

Fξ(∆Zk) =



C1
−1∆Zk − C1

−1C2 ·H(Fξ−1)︸ ︷︷ ︸
Primary Load Iteration Equation

B1
−1∆Zk − B1

−1B2 · Fξ−1 − B1
−1C2 ·H(Fξ−1)︸ ︷︷ ︸

Alternate Load Iteration Equation

(13.31a)

Similarly, the load iteration equations associated with the electrical description of zero
absolute load are given by the following equations:

Fξ(∆Z0) =



C1
−1∆Z0 − C1

−1C2 ·H(Fξ−1)︸ ︷︷ ︸
Primary Load Iteration Equation

B1
−1∆Z0 − B1

−1B2 · Fξ−1 − B1
−1C2 ·H(Fξ−1)︸ ︷︷ ︸

Alternate Load Iteration Equation

(13.31b)
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Now, the interim estimate of the tare loads of each load series is obtained by performing
the load iterations and taking the difference of the resulting two load vectors. We get:

Tare Loads of Single Load Series (interim estimate)

{∆Fk}µ = Iteration
|δF| < TOL

{
Fξ(∆Zk)

}
− Iteration

|δF| < TOL

{
Fξ(∆Z0)

}
(13.32a)

where

{∆Fk}µ =



∆F1,k

...

∆Fi,k
...

∆Fn,k

 (13.32b)

The above load iterations have to be applied using the output difference vectors of all
load series as input. Afterwards, similar to Eq. (13.22), the interim estimates of the tare
loads of all load series can be stored in a rectangular matrix that is defined as follows:

Tare Loads of all Load Series (interim estimate)

{∆F ′}µ = [∆F1 . . . ∆Fq] =



∆F1,1 . . . ∆F1,k . . . ∆F1,q

...
...

...
...

...

∆Fi,1 . . . ∆Fi,k . . . ∆Fi,q
...

...
...

...
...

∆Fn,1 . . . ∆Fn,k . . . ∆Fn,q


n×q

(13.33)

Then, after applying the transformations defined in Eq. (13.23) to the interim estimate
of the tare loads that are contained in the rectangular matrix above, the interim tare load
corrections of the calibration loads can be defined in matrix format as follows:
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Tare Loads of Calibration Points (interim estimate)

{∆F}µ =



∆F1,σ(1) . . . ∆F1,σ(ν) . . . ∆F1,σ(p)

...
...

...
...

...

∆Fi,σ(1) . . . ∆Fi,σ(ν) . . . ∆Fi,σ(p)
...

...
...

...
...

∆Fn,σ(1) . . . ∆Fn,σ(ν) . . . ∆Fn,σ(p)


n×p

(13.34)

A tare load iteration convergence test is applied at this point. Therefore, tare load
changes, i.e., differences between tare load estimates of the current and previous iteration
step are computed. Then, the absolute value of the maximum difference is expressed as a
percentage of the load capacity. This test metric is compared with the empirical threshold
of 0.0001 % of load capacity. Two cases must be distinguished. First, the test metric could
be greater than or equal to the threshold. Then, the iteration continues by going back to
Eq. (13.27). Alternatively, the test metric could be less than the threshold. In that case,
the iteration converged and is terminated after the final set of tare corrected calibration
loads is computed. The iteration convergence test is summarized below.

Tare Load Iteration Convergence Test

δF ′ = {∆F ′}µ − {∆F ′}µ−1︸ ︷︷ ︸
tare load change

=



δF1,1 . . . δF1,k . . . δF1,q

...
...

...
...

...

δFi,1 . . . δFi,k . . . δFi,q
...

...
...

...
...

δFn,1 . . . δFn,k . . . δFn,q

 (13.35a)

δFi,k = {∆Fi,k}µ − {∆Fi,k}µ−1 (13.35b)

V = MAX

{ ∣∣∣∣δF1,1

Γ1

∣∣∣∣ , . . . , ∣∣∣∣δFi,kΓi

∣∣∣∣ , . . . , ∣∣∣∣δFn,qΓn

∣∣∣∣ } · 100 % (13.35c)

V ≥ 0.0001 % =⇒ go back to Eq. (13.27) =⇒ continue . . . (13.35d)

V < 0.0001 % =⇒ advance to Eq. (13.36) =⇒ stop . . . (13.35e)

The final set of tare corrected calibration loads is computed after the condition de-
scribed in Eq. (13.35e) above is fulfilled. Then, the tare loads of the calibration points of
the final iteration step are added to the applied/uncorrected loads in order to obtain the
final set of tare corrected calibration loads. We get:
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Final Set of Tare Corrected Calibration Loads

Fcor = Func︸ ︷︷ ︸
Eq. (13.7)

+ {∆F}µ︸ ︷︷ ︸
Eq. (13.34)

(13.36)

Now, the final set of regression coefficients of either Regression Model B–1 or Regres-
sion Model B–2 of the balance calibration data can be computed by using (i) the electrical
outputs given in Eq. (13.8a) or Eq. (13.8b) and (ii) the tare corrected calibration loads
given in Eq. (13.36) above as input.

13.7 Comparison of Tare Load Iteration Algorithms

It is mentioned in the introduction of the appendix that Galway’s tare load iteration
algorithm always uses output format Difference Type 2 for the calculation of the linear
matrix that is needed for the determination of the first estimate of the tare loads. In other
words, Galway’s algorithm replaces Raw Output with Difference Type 2 in the definition
of Regression Model A–1 that is described in Eq. (13.14a). Similarly, Galway’s algorithm
replaces Difference Type 1 with Difference Type 2 in the definition of Regression Model
A–2 that is described in Eq. (13.15a). It seems, superficially viewed, that this change of
the output format could influence the final result of the tare load iterations. However,
the author observed that the final tare load estimates for both output format choices are
identical for all practical purposes. Galway’s output format choice simply results in a
more rapid convergence of the tare load iterations as his first estimate of the tare loads is
closer to the final answer. The author’s output format choice, on the other hand, makes
an implementation of the tare load iteration algorithm less complex as only one output
format type, i.e., Raw Output in both Regression Model A–1 and Regression Model B–1 or
Difference Type 1 in both Regression Model A–2 and Regression Model B–2 is used during
the entire tare load iteration process.

It is also mentioned in the introduction that the author’s algorithm uses two load
calculations for each tare load iteration step that are defined in Eq. (13.32a) above. The
inputs for these two load calculations are (i) the electrical description ∆Zk of the tare
loads of each load series and (ii) the electrical description ∆Z0 of zero absolute load.
Both load calculations lead to non–zero solutions whenever intercept terms are used in
the regression models of the outputs. This situation exists if an analyst chooses either
Option 1 or Option 3 for the tare load iteration process (Table 13–1).

Alternatively, an analyst may choose to use approximations of both ∆Zk and ∆Z0 as
input for the calculation of the interim tare loads of each iteration step. In that case, the
predicted load for the electrical description of zero absolute load is zero. Consequently, only
one load calculation is performed for each tare load iteration step. This situation exists
whenever an analyst chooses either Option 2 or Option 5 of Table 13–1 for the tare load
iteration process. Those two options match Galway’s tare load iteration algorithm that is
described in the literature. In other words, Galway’s tare load iteration algorithm can be
considered a special case of the author’s tare load iteration algorithm if (i) approximations
instead of the exact values for the electrical descriptions of the tare loads and zero absolute
load are used and (ii) an intercept term is included in the regression models of the data.
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Finally, an analyst (i) may use differences between raw outputs and natural zeros
for the description of the outputs and (ii) decide to omit optional intercept terms in the
regression models of the output differences. This case is identified as analysis Option 4
in Table 13–1. It uses exact electrical descriptions of the tare loads and zero absolute
load. Only one load calculation for each tare load iteration step is performed as the second
term on the right–hand side of Eq. (13.32a) is zero. Consequently, Option 4 also matches
Galway’s tare load iteration algorithm that is described in the literature.

A data set from the manual calibration of a six–component force balance is used in
the next section in order to illustrate the application of the tare load iteration process.

13.8 Discussion of Example

A data set from the manual calibration of a strain–gage balance is used to illustrate
the application of the tare load iteration algorithm for the Iterative Method. The chosen
balance is called the NASA MK3C. It was manufactured by the Task/Able Corporation.
It is a six–component force balance that measures five forces and one moment (N1, N2,
S1, S2, AF , RM). It has a diameter of 2.0 in and a total length of 11.25 in. Table 13–2
shows the capacity of each load component of the balance.

Table 13–2: Load capacities of the MK3C force balance (lbs ≡ pounds of force).

N1, lbs N2, lbs S1, lbs S2, lbs AF, lbs RM, in−lbs

900 900 450 450 500 1000

It was decided to discuss the application of the tare load iteration algorithm for three
of the five analysis options that are listed in Table 13–1. Absolute value terms of the loads
were included in the regression models of the outputs for all options as the MK3C balance
is known to have bi–directional outputs. Table 13–3 below describes basic assumptions
associated with the three chosen analysis options.

Table 13–3: Description of investigated tare load iteration analysis options.

Option Output Format Regression Model of Outputs Intercept

1 Raw Output rFi = bi,0 + bi,1 ·N1 + . . . bi,0 ≈ Ni
( see App. 6, Eq. (6.1)) (required)

3 Difference Type 1 Di = bi,0 + bi,1 ·N1 + . . . bi,0 ≈ 0
( see App. 6, Eq. (6.2)) (included)

4† Difference Type 1 Di = 0 + bi,1 ·N1 + . . . bi,0 = 0
( see App. 6, Eq. (6.2)) (omitted)

†Option matches Galway’s tare load iteration algorithm (Ref. [7], pp. 21–22).

Options 1 and 3 use two load calculations for each tare load iteration step as the in-
tercept term is included in both regression models (see also Eq. (13.32a) for the definition
of the two load calculations). In addition, the author decided to use the same regression
model term selection for the outputs of Options 1 and 3. Therefore, the regression coeffi-
cients of both options will be identical with the exception of the coefficient of the intercept
term. Consequently, the tare loads estimates of those two approaches are identical even
though the fitted outputs have different formats.
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Option 4, on the other hand, uses one load calculation for each tare load iteration step.
In that case, the optional intercept term is intentionally omitted in the regression model of
the output differences. This analysis option matches Galway’s tare load iteration algorithm
that is described in the literature. It is are also identified as Method A in Ref. [11].

Table 13–4 below shows parts of the original calibration data of the MK3C balance.
Only 21 of a total of 247 data points are shown. The natural zeros and the electrical outputs
of all bridges are listed as raw outputs in units of microV/V . Both the applied/uncorrected
loads and the raw outputs of each data point are shown for the first load series. The forward
normal force component was applied during load series one.

Table 13–4: Calibration data of the MK3C balance described as (i) applied
i.e., uncorrected loads and (ii) raw outputs (absolute voltage measurements).

rN1 rN2 rS1 rS2 rAF rRM

 NATURAL ZEROS OF THE BALANCE BRIDGES   ------> 
microV/V microV/V microV/V microV/V microV/V microV/V
-318.58 95.28 55.89 -212.30 169.44 -102.23

PT. ID SERIES N1 N2 S1 S2 AF RM rN1 rN2 rS1 rS2 rAF rRM
- - lbs lbs lbs lbs lbs in-lbs microV/V microV/V microV/V microV/V microV/V microV/V
P-1 1 0 0 0 0 0 0 -239.01 108.67 55.80 -211.46 170.56 -102.38
P-2 1 100 0 0 0 0 0 -59.90 105.07 56.21 -210.96 170.53 -102.37
P-3 1 200 0 0 0 0 0 120.30 101.70 56.67 -210.46 170.16 -102.56
P-4 1 300 0 0 0 0 0 301.18 98.20 56.92 -210.05 169.99 -102.47
P-5 1 400 0 0 0 0 0 482.15 94.78 56.83 -209.89 169.80 -102.61
P-6 1 500 0 0 0 0 0 663.20 91.43 57.28 -209.37 169.71 -102.40
P-7 1 600 0 0 0 0 0 843.98 87.96 57.31 -209.03 169.53 -102.57
P-8 1 700 0 0 0 0 0 1024.69 84.46 57.18 -208.81 169.53 -102.53
P-9 1 800 0 0 0 0 0 1204.81 80.95 57.27 -208.49 169.25 -102.57
P-10 1 900 0 0 0 0 0 1385.42 77.52 57.42 -208.20 169.28 -102.40
P-11 1 800 0 0 0 0 0 1207.31 80.99 57.23 -208.62 169.24 -102.54
P-12 1 700 0 0 0 0 0 1028.10 84.36 57.01 -208.80 169.43 -102.51
P-13 1 600 0 0 0 0 0 847.66 87.95 57.17 -209.02 169.44 -102.62
P-14 1 500 0 0 0 0 0 666.39 91.42 56.72 -209.31 169.40 -102.77
P-15 1 400 0 0 0 0 0 485.03 94.83 56.96 -209.89 169.60 -102.51
P-16 1 300 0 0 0 0 0 303.36 98.27 56.63 -210.23 169.78 -102.52
P-17 1 200 0 0 0 0 0 121.73 101.71 56.55 -210.57 169.89 -102.43
P-18 1 100 0 0 0 0 0 -59.20 105.21 56.39 -210.90 170.34 -102.41
P-19 1 0 0 0 0 0 0 -239.60 108.69 55.78 -211.44 170.66 -102.35
P-20 2 0 0 0 0 0 0 -297.66 166.53 55.96 -212.57 173.44 -102.40
P-21 2 0 100 0 0 0 0 -299.37 351.63 56.07 -213.30 177.60 -102.55
… … … … … … … … … … … … … …

The electrical outputs of the first data point P–1 of load series 1 are the components
of vector Z1 that is defined in Eq. (13.9). They are the electrical outputs of the zero load
point of the load series 1. In addition, they are the electrical description of the tare loads
of load series 1. We get:

Z1 =


−239.01 microV/V
+108.67 microV/V
+55.80 microV/V
−211.46 microV/V
+170.56 microV/V
−102.38 microV/V

 (13.37)

Table 13–5 below shows parts of the calibration data of the MK3C balance after the
differences between raw outputs and natural zeros of the balance bridges were computed.
The output differences were simply obtained by subtracting the natural zeros from the raw
outputs that are both listed in Table 13–4 above. We get:
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Table 13–5: Calibration data of the MK3C balance described as (i) applied,
i.e., uncorrected loads and (ii) output differences relative to the natural zeros.

… … … … … … … … … … … … … …
PT. ID SERIES N1 N2 S1 S2 AF RM rN1 rN2 rS1 rS2 rAF rRM

- - lbs lbs lbs lbs lbs in-lbs microV/V microV/V microV/V microV/V microV/V microV/V
P-1 1 0 0 0 0 0 0 79.57 13.40 -0.09 0.84 1.12 -0.15
P-2 1 100 0 0 0 0 0 258.68 9.79 0.31 1.34 1.08 -0.14
P-3 1 200 0 0 0 0 0 438.88 6.42 0.78 1.84 0.71 -0.33
P-4 1 300 0 0 0 0 0 619.77 2.93 1.03 2.25 0.55 -0.24
P-5 1 400 0 0 0 0 0 800.73 -0.50 0.93 2.41 0.36 -0.38
P-6 1 500 0 0 0 0 0 981.78 -3.85 1.39 2.93 0.27 -0.17
P-7 1 600 0 0 0 0 0 1162.56 -7.31 1.42 3.27 0.09 -0.34
P-8 1 700 0 0 0 0 0 1343.27 -10.81 1.28 3.49 0.09 -0.30
P-9 1 800 0 0 0 0 0 1523.39 -14.33 1.38 3.81 -0.19 -0.34
P-10 1 900 0 0 0 0 0 1704.01 -17.76 1.52 4.10 -0.16 -0.17
P-11 1 800 0 0 0 0 0 1525.89 -14.29 1.34 3.68 -0.20 -0.31
P-12 1 700 0 0 0 0 0 1346.68 -10.91 1.12 3.50 -0.01 -0.28
P-13 1 600 0 0 0 0 0 1166.24 -7.33 1.28 3.28 0.00 -0.39
P-14 1 500 0 0 0 0 0 984.97 -3.85 0.83 2.99 -0.04 -0.54
P-15 1 400 0 0 0 0 0 803.61 -0.45 1.07 2.41 0.16 -0.28
P-16 1 300 0 0 0 0 0 621.94 2.99 0.73 2.07 0.34 -0.29
P-17 1 200 0 0 0 0 0 440.31 6.43 0.66 1.73 0.45 -0.20
P-18 1 100 0 0 0 0 0 259.38 9.94 0.50 1.40 0.90 -0.18
P-19 1 0 0 0 0 0 0 78.98 13.42 -0.11 0.86 1.21 -0.12
P-20 2 0 0 0 0 0 0 20.92 71.25 0.06 -0.27 4.00 -0.17
P-21 2 0 100 0 0 0 0 19.21 256.35 0.18 -1.00 8.16 -0.32
… … … … … … … … … … … … … …

Now, tare load estimates for the 13 load series of the balance calibration data set were
computed by using the three options that are listed in Table 13–3. Table 13–6 below shows
the tare load estimates for Options 1 and 3.

Table 13–6: Estimated tare loads of the MK3C balance for Options 1 & 3.

Load ∆N1 ∆N2 ∆S1 ∆S2 ∆AF ∆RM
Series lbs lbs lbs lbs lbs in−lbs

1 +43.914 +8.016 –0.112 +0.226 +0.518 –0.126

2 +11.901 +38.531 +0.018 –0.068 +1.059 –0.109

3 +15.098 +11.200 –0.167 +0.000 +0.555 –0.189

4 –29.003 –8.195 –0.428 +0.328 +0.143 –1.107

5 –10.207 –25.312 –0.378 +0.452 –2.083 –1.221

6 +0.061 +0.085 +42.537 +7.782 –0.728 –1.532

7 +0.037 +0.003 +10.698 +39.782 –0.821 –1.805

8 –0.001 –0.033 –43.063 –8.037 –0.461 –1.014

9 +0.167 –0.041 –11.387 –40.021 –0.427 +0.355

10 –0.146 –0.494 –0.251 +0.025 +55.037 –0.115

11 –1.006 +0.387 +0.295 –0.394 –36.575 –0.279

12 –76.599 +22.212 –0.272 –0.297 +1.345 –0.125

13 +75.177 –22.791 –0.043 +0.015 –0.041 +0.370

Similarly, tare load estimates for the 13 load series of the balance calibration data set
were computed by using the Option 4 that is described in Table 13–3. Table 13–7 below
shows the tare load estimates for Options 4.
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Table 13–7: Estimated tare loads of the MK3C balance for Option 4.

Load ∆N1 ∆N2 ∆S1 ∆S2 ∆AF ∆RM
Series lbs lbs lbs lbs lbs in−lbs

1 +43.942 +8.046 –0.116 +0.234 +0.501 –0.090

2 +11.928 +38.559 +0.014 –0.061 +1.043 –0.074

3 +15.113 +11.216 –0.170 +0.004 +0.546 –0.170

4 –28.985 –8.176 –0.430 +0.333 +0.132 –1.082

5 –10.189 –25.293 –0.380 +0.457 –2.094 –1.196

6 +0.114 +0.141 +42.531 +7.797 –0.759 –1.463

7 +0.090 +0.058 +10.691 +39.797 –0.851 –1.737

8 +0.052 +0.023 –43.069 –8.023 –0.492 –0.944

9 +0.219 –0.014 –11.393 –40.006 –0.458 +0.424

10 –0.096 –0.441 –0.257 +0.040 +55.008 –0.047

11 –0.973 +0.421 +0.291 –0.385 –36.594 –0.236

12 –76.553 +22.261 –0.278 –0.283 +1.318 –0.064

13 +75.223 –22.742 –0.048 +0.029 –0.069 +0.431

In general, the computed tare load estimates for Option 1 & 3 (Table 13–6) show
excellent agreement with corresponding values for Option 4 (Table 13–7).

Computed tare load estimates for the forward normal force component (∆N1) can
be compared with corresponding values that are reported for the Non–Iterative Method
in Table 12–5 of App. 12. The agreement between the estimates reported in Table 12–5
(Approach 3) and Table 13–7 for the forward normal force component is very good. The
maximum difference between the tare load estimates is less than 0.2 lbs or 0.02 % of the
capacity of the forward normal force component.
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Appendix 14

Balance Temperature Effects

14.1 Introduction
In general, the influence of temperature changes on the accuracy of the load prediction

of a strain–gage balance is well understood. For example, Ewald, Polanski, and Graewe
summarize related problems and challenges as follows (taken from Ref. [36], p. 2):

. . . Through the temperature range zero point shifts and sensitivity shifts occur.

These effects must be minimized by careful matching of the gages and remaining errors

must be calibrated and corrected by a numerical process for satisfying accuracy. . . .

Similarly, Ferris writes (taken from Ref. [37], p. 2):

. . . To obtain accurate force data over the large temperature range experienced in

the NTF, it is necessary to eliminate or correct for the effects of any thermally–

induced output so that the remaining output is a function of the applied load only.

These thermally–induced outputs may appear as changes in the zero load output

(apparent strain), in the output for a given applied load (sensitivity shift), and

in the output due to mechanical deformation caused by thermal transients. . . .

Ferris emphasizes that thermal effects influence the measured electrical outputs of
the balance bridges when a set of calibration loads is applied. Mechanical deformations
associated with thermal transients are complex and very difficult to quantify. Therefore, it
was decided to focus the discussions in this appendix on the first two temperature effects
that Ferris mentions above. They can be summarized as follows:

• shifts of the zero load outputs, i.e., natural zeros of each bridge
• shifts of the sensitivities of each bridge.

Temperature–dependent shifts of the natural zeros can easily be addressed by apply-
ing a linear correction to the natural zeros. An analyst only needs to observe how the
natural zero of each bridge changes whenever a temperature change occurs. Then, this
experimental information is used to define the correction equations for the outputs.

The development of a correction for the temperature–dependent shift of the bridge
sensitivity is more complicated. In that case, both balance temperature and primary load
of the bridge need to be changed during a calibration to quantify the shift. An analyst
has several options to address the influence of a sensitivity shift on the load prediction.
For example, a correction for each balance load of a data point can be computed that is
a function of (i) the observed bridge sensitivity shift, (ii) the temperature change, and
(iii) the bridge output. Alternatively, it is possible to include temperature effects in the
regression models of the calibration data that are used for the load prediction. Each option
has advantages and disadvantages. The first option is simple to apply. However, it has the
disadvantage that it separates the processing of calibration data recorded at a constant
temperature from the processing of calibration data that describes temperature effects.
The second option, on the other hand, generates regression models for the load prediction
from a single temperature–dependent calibration data set.
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Most derivations of this appendix are based on investigations and results that are
presented in Ref. [38] and [39]. These references recommend to describe the temperature–
dependent behavior of a balance by using the difference between the uniform balance
temperature (T ) and a suitable reference temperature (T◦) as input. This difference is a
new independent variable for both balance calibration and load prediction. The balance
itself must have a uniform temperature during both calibration and use. Otherwise, the
associated increase in the number of independent variables makes the balance calibration
task impractical. The importance of having a uniform temperature of the balance is also
emphasized in the literature. For example, Ewald, Polanski, and Graewe summarize the
requirement for uniform balance temperature distribution as follows (Ref. [36], p. 4):

. . . Even more important is the fact that copper beryllium has a heat conductivity

five times higher than maraging steel. The advantage will be a more uniform tem–

perature distribution in the balance or the same distribution in shorter times. . . .

The use of the temperature difference as an independent variable for the description
of temperature effects suggests itself because a Taylor series approximation of the multi-
variate behavior of a strain–gage balance can be considered the theoretical basis for the
definition of the regression model terms of balance calibration data. Then, the extended
independent variable set for calibration and use of the balance is given by the temperature
difference in combination with either the output differences of the balance bridges (Non–
Iterative Method) or the balance loads (Iterative Method). The new independent variable,
i.e., the temperature difference, can be expressed as follows where T is the uniform

Temperature Difference

∆T = T − T◦ (14.1)

balance temperature and T◦ is the chosen reference temperature for the balance calibration.
Ideally, this reference temperature should be located within the range of all temperatures
that the balance is expected to experience during the wind tunnel test. In most practical
situations, however, the reference temperature equals the constant temperature that the
balance had during its calibration.

At this point, the new variable needed for the characterization of temperature effects is
defined. Now, correction methods can be discussed that address (i) the shift of the natural
zeros of the bridges and (ii) the shift of the bridge sensitivities. First, a temperature–
dependent correction for the shift of the natural zeros of the bridges is derived.

14.2 Natural Zero Shift

14.2.1 General Remarks

A temperature–dependent correction for the natural zero shift of a bridge can eas-
ily be obtained if the unknown output shift is approximated by a first order Taylor
series. Alternatively, outputs may be compared in the model’s wind–off home posi-
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tion. Furthermore, it is an advantage for the derivation of the correction to describe
the electrical outputs of a balance bridge as the difference between (i) the raw output and
(ii) the natural zero of the bridge. Then, the output difference Di of a balance bridge
with index i can be described by the following equation where rFi is the raw output
of the bridge, Ni describes the natural zero of the bridge, and T◦ is the chosen reference

Bridge Output Difference (temperature = constant)

Di(T◦) = rFi(T◦) − Ni(T◦) ; 1 ≤ i ≤ n (14.2)

temperature of the balance. Now, it is assumed that (i) the temperature changes from the
reference temperature T◦ to a new temperature T and (ii) all balance loads are close to
zero load. In that case, the raw outputs of the balance bridge change by a small amount
as no temperature compensation of a balance bridge is perfect. Then, the bridge output
difference at the new temperature can be described by the following relationship as the

Di(T ) = rFi(T ) − Ni(T ) (14.3)

natural zero, i.e., the raw output at zero absolute load, also changes. The exact relationship
describing the temperature–dependent change of the natural zero is unknown. One of two
options may be used to estimate the change. First, it is possible to record the natural
zeros in a balance calibration laboratory at different temperatures and describe the bridge
characteristics by using a first order Taylor series. Alternatively, output observations at
the wind–off home position of the wind tunnel model can be used to determine the output
change. First, the application of a Taylor series approximation for the description of the
temperature–dependent output change is discussed. Afterwards, the use of data from the
wind tunnel model’s wind–off home position is explained.

14.2.2 Taylor Series Approximation of Output Change

In principle, it is possible to approximate the unknown relationship between the nat-
ural zero and the balance temperature by recording natural zeros in a balance calibration
laboratory at difference temperatures. Afterwards, a first order Taylor series expansion is
developed from the data in order to describe the temperature characteristics of the bridge
near zero absolute load. Then, we get the following approximation of the temperature–

first order Taylor series =⇒ Ni(T ) ≈ Ni(T◦) +

[
d rFi
d T

]
T◦

· ∆T (14.4)

dependent natural zero of a bridge where Ni(T◦) is the natural zero at the reference
temperature T◦ and drFi/dT is the first derivative of the bridge output with respect to
the temperature. Finally, after replacing Ni(T ) in Eq. (14.3) with the right–hand side of
Eq. (14.4), we get the following relationship for the output difference Di(T ) where the
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Bridge Output Difference (temperature 6= constant)

Di(T ) ≈ rFi(T ) − {Ni(T◦) + ∆Ni }︸ ︷︷ ︸
corrected natural zero

(14.5a)

where

∆Ni ≈
[
d rFi
d T

]
T◦

· ∆T (14.5b)

approximation ∆Ni of the temperature–dependent shift of the bridge output with index
i is given by the right–hand side of Eq. (14.5b). The first derivative drFi/dT must be
obtained experimentally in the neighborhood of the reference temperature T◦ by recording
the output of each bridge at different temperatures while keeping all balance loads near
zero. For example, let us assume that only one additional temperature Tξ is used to
characterize the shift. Then, the following approximation is valid:

Temperature–dependent Output Change at Zero Load

F1, . . . , Fn ≈ 0 =⇒
[
d rFi
d T

]
T◦

≈ rFi(Tξ) − rFi(T◦)

Tξ − T◦
(14.6)

It is important to mention that the correction of the natural zero, i.e., Eq. (14.5b)
above, is a linear approximation of the output shift. It is only valid in the neighborhood of
the reference temperature of the balance. Therefore, other correction approaches must be
applied if the observed temperature change exceeds the empirical limit of 25 to 30 Kelvin.

14.2.3 Wind–Off Home Position

It is also possible to determine the shift of the natural zero of a bridge directly during
a wind tunnel test. Then, the use of Eq. (14.5b) above can be avoided. An analyst
only needs to frequently record the temperature–dependent change of the balance bridge
outputs when the wind tunnel model is in its wind–off home position. Then, the output
correction is given by the following relationship:

Temperature–dependent Bridge Output Change in
Wind Tunnel Model’s Wind–off Home Position

F1, . . . , Fn ≈ 0 =⇒ ∆Ni ≈ rFi(T )︸ ︷︷ ︸
wind−off

− rFi(T◦)︸ ︷︷ ︸
wind−off

(14.7)
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Balance loads are a relatively small percentage of the load capacity of the balance
when a wind tunnel model is in the wind–off home position. Therefore, the observed
temperature–dependent shift of the outputs must be close to the expected temperature–
dependent shift of the natural zeros even though the balance loads are not perfectly zero
in that situation. – Correction methods for the temperature–dependent bridge sensitivity
shift are discussed in the next section of the appendix.

14.3 Bridge Sensitivity Shift

14.3.1 General Remarks

The development of a correction for the temperature–dependent shift of the sensitivity
of a bridge is complicated by the fact that both balance temperature and primary load of
the bridge need to change during a calibration in order to quantify the shift. In addition,
the bridge sensitivity value itself is hidden among the regression coefficients of the balance
calibration data. This statement needs more explanation. Let us assume, for example,
that the calibration data set of a balance is given in the design format of the balance (e.g.,
a force balance data set is described in force balance format). Now, an analyst decides
to use the Non–Iterative Method for the balance load prediction (see App. 9). Then, the
inverse of the sensitivity equals the coefficient ai,i of the primary bridge output difference
Di in the regression model of the primary load component Fi. Alternatively, an analyst
may decide to use the Iterative Method for the balance load prediction (see App. 10). In
that case, the sensitivity equals the coefficient bi,i of the primary load component Fi in
the regression model of the primary bridge output difference Di.

It is critical for the development of a correction for the temperature–dependent bridge
sensitivity shift that the balance data set is given in the design format of the balance.
Otherwise, balance calibration and the development of the correction approach for the
sensitivity shift are complicated by the fact that the regression model of either a load (Non–
Iterative Method) or a bridge output difference (Iterative Method) will need more than
one temperature–dependent regression coefficient to quantify the shift. This important
observation can be summarized as follows:

Balance Data Format Recommendation

Temperature–dependent balance calibration data should be given in the design format of the

balance (e.g., force balance data should be described in force balance format, or, direct–read

balance data should be described in direct–read format). Then, the development of a correction

for the temperature–dependent shift of the bridge sensitivities is greatly simplified as the regression

model of either a load component (Non–Iterative Method) or a bridge output difference (Iterative

Method) will only need a single temperature–dependent regression coefficient to describe the shift.

An analyst has different options to develop a correction for an unwanted temperature–
dependent shift of the bridge sensitivity. For example, a correction can be defined after
(i) making the sensitivity itself a function of temperature and (ii) relating it to the uncor-
rected balance forces. Alternatively, temperature effects can directly be included in the
regression models of the calibration data that are used for the balance load prediction. In
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that case, new regression model terms are added to the regression model of the balance
calibration data that quantify the temperature–dependent bridge sensitivity shift.

Each option has advantages and disadvantages. The first option is simple to apply.
However, it has the disadvantage that it processes calibration data recorded at a constant
temperature separately from calibration data that describes balance temperature effects.
The second option, on the other hand, generates regression models for the load prediction
from a single temperature–dependent balance calibration data set.

A variety of correction approaches for the Non–Iterative Method and the Iterative
Method exist that are discussed in detail in the next four sections.

14.3.2 Temperature–dependent Load Correction
A direct load correction for the temperature–dependent shift of the bridge sensitivity

can be developed that is applicable if either the Non–Iterative Method or the Iterative
Method are used for the load prediction. The derivation of this correction can best be un-
derstood if it is developed from the viewpoint of the Non–Iterative Method. This approach
directly fits tare corrected balance loads as a function of bridge output differences that are
computed relative to the natural zeros of the bridges (for more details see App. 9). The
regression model is typically obtained from a calibration data set that was recorded at a
constant reference temperature T◦. The resulting regression model of a balance load is
defined in Eq. (14.8) below where Fi is the balance load component, Di is the output

Regression Model of Load Component
(inverse of the bridge sensitivity = constant coefficient)

Fi(T◦) = ai,0 + . . . + ai,i(T◦) · Di + . . .︸ ︷︷ ︸
see also App. 9, Eq. (9.2a)

(14.8)

difference of the related bridge, and ai,i is the inverse of the bridge sensitivity. The regres-
sion model above is, strictly speaking, only applicable if the balance temperature during
the wind tunnel test matches the reference temperature T◦. Most regression coefficients in
Eq. (14.8) can be considered constants as long as the temperature changes of the balance
do not exceed the empirical limit of 30 Kelvin. The only exception is the coefficient ai,i
that is associated with the inverse of the bridge sensitivity. It is the first derivative of a
load Fi with respect to the output of the related primary balance bridge. This output is
described as either the raw output rFi or the output difference Di of the bridge because
the two output values only differ by a constant, i.e., the natural zero of the bridge. These
conclusions can be summarized by the following equation:

Inverse of the Bridge Sensitivity

ai,i =
d Fi
d Di

=
d Fi
d rFi

≡ change of primary bridge load

change of primary bridge output
(14.9)
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A numerical estimate of the coefficient ai,i, i.e., of the inverse of the bridge sensitivity
is obtained during the regression analysis of the balance calibration that was recorded
at a constant temperature. The coefficient is treated as a constant during the regression
analysis. However, it is known that the bridge sensitivity and its inverse change when-
ever a temperature change occurs. Therefore, the coefficient ai,i can be interpreted as a
temperature–dependent regression coefficient ai,i(T ).

The impact of the sensitivity change on the balance load prediction must be considered
if the regression model obtained from data at the reference temperature is used for the
load prediction during the wind tunnel test. The sensitivity change is associated with an
additional physical load. This load must be added to the load that is predicted from the
regression model given in Eq. (14.7) above. Fortunately, it is possible to obtain an equation
of the load correction for each load component if the temperature–dependent nature of the
regression coefficient ai,i(T ) is approximated by using a first order Taylor series. Then,
assuming that the Taylor series is developed near the reference temperature T◦ of the
balance, we get the following approximation of the temperature–dependent coefficient:

first order Taylor series =⇒ ai,i(T ) ≈ ai,i(T◦) +

[
d ai,i
d T

]
T◦

· ∆T (14.10)

Now, the coefficient ai,i(T◦) in Eq. (14.8) must be replaced by the temperature–
dependent coefficient ai,i(T ) so that the temperature–dependent nature of the sensitivity
is included during the load prediction. Then, Eq. (14.8) can be expressed as follows:

Fi(T ) = ai,0 + . . . +
{

ai,i(T )
}
· Di + . . .

= ai,0 + . . . +

{
ai,i(T◦) +

[
d ai,i
d T

]
T◦

· ∆T

}
· Di + . . .

=

{
ai,0 + . . . + ai,i(T◦) ·Di + . . .

}
︸ ︷︷ ︸

Fi(T◦)

+

{[
d ai,i
d T

]
T◦

· ∆T · Di

}
︸ ︷︷ ︸

∆Fi

(14.11)

It is assumed that the output difference Di was corrected for any temperature–
dependent natural zero shift using one of the methods that were described earlier. There-
fore, output difference Di is no longer a function of temperature. The right–hand side of
Eq. (14.11) can be examined in more detail. The terms between the first pair of curly brack-
ets equal the load Fi(T◦) that the original regression model predicts if the Non–Iterative
Method is applied (see Eq. (14.8)). These terms can also be interpreted as the load Fi(T◦)
that the Iterative Method would predict. This statement is true as long as the load iter-
ation equation was obtained from the same calibration data set that was processed using
the Non–Iterative Method. The terms between the second pair of curly brackets describe
the load correction ∆Fi that is caused by the sensitivity shift. Then, we get:
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Balance Load Prediction after Bridge Sensitivity Shift

Fi(T ) = Fi(T◦) + ∆Fi (14.12a)

where

Fi(T◦) ≡
{
load obtained from regression model using
either Non−Iterative or Iterative Method

}
(14.12b)

∆Fi ≡
{
temperature−dependent
balance load correction

}
=

[
d ai,i
d T

]
T◦

· ∆T ·Di (14.12c)

[
d ai,i
d T

]
T◦

=

[
d

d T

(
d Fi
d rFi

) ]
T◦

(14.12d)

Several important observations can be made after examining the equations above.
First, the bridge sensitivity shift can be related to a load correction ∆Fi for each load
component. It depends on (i) the temperature–dependent change of the inverse of the sen-
sitivity of the primary bridge of the load, (ii) the temperature change, and (iii) the bridge
output difference of the bridge. In addition, the equation for ∆Fi is independent of the
method that is used for the load prediction. In other words, it can be applied if either the
Non–Iterative Method or the Iterative Method is used for the balance load prediction as long
as the change of the inverse of the bridge sensitivity is known. This change can be computed
by using, for example, Eq. (14.13) below if it is assumed that (i) single–component loads

Change of the Inverse of the Bridge Sensitivity

[
d ai,i
d T

]
T◦

≈

[
dFi
drFi

]
Tξ

−
[

dFi
drFi

]
T◦

Tξ − T◦
(14.13)

are applied at two different temperatures T◦ and Tξ, (ii) the slope dFi/drFi is determined
separately for each of the two temperatures, and (iii) the temperature–dependent change
of the bi–directional characteristics of the bridge is negligible.

14.3.3 Extended Regression Model of a Load Component

It is also possible to develop a correction for the sensitivity shift after combining the
original calibration data recorded at reference temperature T◦ with the additional single–
component loads recorded at temperature Tξ in a single temperature–dependent calibration
data set. Then, a temperature–dependent regression model can directly be used to analyze
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this data set if the cross–product term Di ·∆T is included in the regression model of the
load that the Non–Iterative Method uses. The new term originates from the product of
the Taylor series approximation of coefficient ai,i(T ) with the bridge output difference Di

(see Eq. (14.11)). It describes the sensitivity shift of the primary bridge output of the
load component. It is also suggested to include the term ∆T in the expanded regression
model. Then, the temperature–dependent regression model will be hierarchical, i.e., the
regression model will not have any missing lower order terms. Its coefficient will be close
to zero if bridge output differences are already corrected for the temperature–dependent
natural zero shift. In summary, the temperature–dependent regression model of a balance
load component can be defined as follows:

Temperature–dependent Regression Model of Load Component

Fi = . . . + ai,i ·Di + . . . + ai,n+1 ·∆T + . . . + ai,µ ·Di ·∆T + . . . (14.14)

The regression coefficients are obtained after applying a global regression analysis
to the temperature–dependent balance calibration data set. Corresponding equations of
App. 9 can directly be applied if the temperature difference ∆T is simply treated like
another independent variable of the fit. Typical temperature–dependent global regression
analysis results for fitted balance load components are discussed in detail in Ref. [38].

Correction approaches for the temperature–dependent bridge sensitivity shift are dis-
cussed in the next two sections that take the regression models and load prediction equa-
tions of the Iterative Method into account.

14.3.4 Temperature–dependent Load Iteration Equations

Key elements of the Iterative Method need to be reviewed so that a correction for
the temperature–dependent shift of the bridge sensitivity can be developed. The Iterative
Method processes balance calibration data by first fitting output differences of a bridge as
a function of the tare corrected loads. Afterwards, a load iteration equation is constructed
from the regression coefficients of the outputs so that loads can be predicted from outputs
during a wind tunnel test (see App. 10 for more details). The regression model of an output
difference is typically obtained from a data set that was recorded at a constant reference
temperature T◦. The model is defined in Eq. (14.15) below where Di is the output

Regression Model of Bridge Output Difference
(primary bridge sensitivity = constant coefficient value)

Di = bi,0 + . . . + bi,i(T◦) · Fi + . . .︸ ︷︷ ︸
see also App. 10, Eq. (10.35)

(14.15)
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difference, Fi is the primary load of the bridge, and bi,i is the bridge sensitivity. The regres-
sion model above is, strictly speaking, only applicable if the balance temperature during
the wind tunnel test matches the reference temperature T◦. Most regression coefficients
in Eq. (14.15) above can be considered constants as long as the temperature changes of
the balance do not exceed the empirical limit of 30 Kelvin. The only exception is the
coefficient bi,i that is associated with the bridge sensitivity. It is the first derivative of an
output difference Di or raw output rFi with respect to the primary load of the bridge.
Either the output difference Di or the raw output rFi of the bridge can be used to define
the bridge sensitivity because the two values only differ by a constant, i.e., the natural
zero of the bridge. These conclusions can be summarized by the following equation:

Bridge Sensitivity

bi,i =
∂ Di

∂ Fi
=

∂ rFi
∂ Fi

≡ change of primary bridge output

change of primary bridge load
(14.16)

Coefficient bi,i in Eq. (14.16) above, i.e., the bridge sensitivity, is obtained during the
regression analysis of the balance calibration data set that was recorded at constant tem-
perature. It is treated as a constant during the regression analysis. However, it is known
that the bridge sensitivity changes whenever a temperature change occurs. Therefore, co-
efficient bi,i can be interpreted as a temperature–dependent coefficient bi,i(T ). Then, the
regression model of an output difference can be described by the following equation:

Regression Model of Bridge Output Difference
(primary bridge sensitivity = function of the balance temperature)

Di = bi,0 + . . . + bi,i(T ) · Fi + . . . (14.17)

The relationship describing the temperature–dependent value of the coefficient bi,i(T )
can be found experimentally if single–component loads of all load components are applied
to the balance at two or more temperatures. Afterwards, the temperature–dependent load
values of the balance can be found by updating all parts of the load iteration equation that
depend on the bridge sensitivities (i.e., on the coefficients b1,1, b2,2, . . . , bn,n).

Two types of load iteration equations are traditionally used in the aerospace testing
community if the Iterative Method is used for the balance load prediction during a wind
tunnel test. For example, it is known that the square matrix C1

−1 of the Primary Load
Iteration Equation depends on the bridge sensitivities (see App. 10, Eq. (10.27a)). There-
fore, two parts of the iteration equation, i.e., square matrix C1

−1 and rectangular matrix
C1
−1C2, need to be updated each time the balance temperature changes so that bridge

sensitivity shifts are included in the predicted loads. This result is summarized by the two
relationships that are given in Eqs. (14.18a) and (14.18b) below.
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Primary Load Iteration Equation

Fξ(T ) =
[

C1
−1(T )

]
· ∆rF −

[
C1
−1(T ) · C2

]
· H(Fξ−1) (14.18a)

. . . where C1
−1(T ) is the updated inverse of matrix . . .

C1(T ) = C1

{
b1,1(T ), b2,2(T ), . . . , bn,n(T )

}
(14.18b)

Similarly, the square matrix B1
−1 of the Alternate Load Iteration Equation depends

on the bridge sensitivities (see App. 10, Eq. (10.31a)). Therefore, three parts of the
iteration equation, i.e., square matrix B1

−1, square matrix B1
−1B2, and rectangular matrix

B1
−1C2, need to be updated each time the balance temperature changes so that bridge

sensitivity shifts are included in the predicted loads. This result is summarized by the two
relationships that are given in Eqs. (14.19a) and (14.19b) below.

Alternate Load Iteration Equation

Fξ(T ) =
[

B1
−1(T )

]
· ∆rF −

[
B1
−1(T ) · B2

]
· Fξ−1

−
[

B1
−1(T ) · C2

]
· H(Fξ−1)

(14.19a)

. . . where B1
−1(T ) is the updated inverse of matrix . . .

B1(T ) = B1

{
b1,1(T ), b2,2(T ), . . . , bn,n(T )

}
(14.19b)

The explicit update of the load iteration equation is just one way of including the
temperature–dependent nature of the bridge sensitivity in the balance load prediction. It
is also possible to define temperature–dependent regression models of the bridge output
differences and develop the corresponding load iteration equation from the fits of the
outputs. This alternate approach is discussed in the next section of the appendix.

14.3.5 Extended Regression Model of Bridge Output Difference

Bridge sensitivity shifts can also be included in the iterative balance load prediction
by defining a temperature–dependent regression model of the bridge output differences and
using results of the fits of a temperature–dependent balance calibration data set for the
definition of a load iteration equation. Again, temperature–dependent regression model
terms can be obtained from a first order Taylor series approximation of the temperature–
dependent coefficients b1,1(T ), b2,2(T ), . . . , bn,n(T ) that are used in Eq. (14.17). Then,
assuming that the Taylor series is developed near the reference temperature T◦ of the
balance, we get the following approximation of the temperature–dependent sensitivity:
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first order Taylor series =⇒ bi,i(T ) ≈ bi,i(T◦) +

[
d bi,i
d T

]
T◦

· ∆T (14.20)

Now, the coefficient bi,i(T ) in Eq. (14.17) above must be replaced by the temperature–
dependent coefficient bi,i(T ) so that the temperature–dependent nature of the sensitivity
is included in the regression model. Then, Eq. (14.17) can be expressed as follows:

Di = bi,0 + . . . +
{

bi,i(T )
}
· Fi + . . .

= bi,0 + . . . +

{
bi,i(T◦) +

[
d bi,i
d T

]
T◦

· ∆T

}
· Fi + . . .

= bi,0 + . . . + bi,i(T◦) · Fi +

[
d bi,i
d T

]
T◦︸ ︷︷ ︸

new coefficient

· Fi · ∆T︸ ︷︷ ︸
new term

+ . . .

(14.21)

It is concluded from Eq. (14.21) above that the cross–product term Fi · ∆T must
be added to the regression model of each output difference in order to describe the
temperature–dependent bridge sensitivity shift. In addition, similar to the temperature–
dependent regression model of a load component, it is suggested to include the term ∆T
itself in the expanded regression model of an output difference even though its coefficient
will be close to zero if bridge output differences are already corrected for the temperature–
dependent natural zero shift. Then, the temperature–dependent regression model will be
hierarchical, i.e., the regression model will not have any missing lower order terms. In
summary, the temperature–dependent regression model of a bridge output difference can
be defined as follows:

Temperature–dependent Regression Model of Bridge Output Difference

Di = . . . + bi,i · Fi + . . . + bi,n+1 ·∆T + . . . + bi,µ · Fi ·∆T + . . . (14.22)

The regression coefficients are obtained after applying global regression analysis to the
temperature–dependent balance calibration data set. Corresponding equations of App. 10
can directly be applied if the temperature difference ∆T is simply treated like another
independent variable of the fit. Typical temperature–dependent global regression analysis
results for fitted bridge outputs and resulting load predictions are discussed in great detail
in Ref. [38]. It must be mentioned that the definition of the load iteration equation must be
done carefully if the temperature is used as an independent variable for the load prediction.
In that case, the temperature has to be introduced as both an independent and dependent
variable so that a load iteration equation can be defined. This topic is discussed in more
detail in App. 21 of the current document.

Important recommendations related to calibration and analysis of a temperature–
dependent balance data set are summarized in the next section.
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14.3.6 Calibration and Analysis Recommendations

The use of the previously discussed correction methods requires that a temperature–
dependent balance calibration data set is obtained such that changes of the balance charac-
teristics can be quantified and, if applicable, coefficients of the most important regression
model terms can be computed with confidence. Therefore, the author recommends to
perform the calibration by using the following steps.

Step 1: Calibration data sets should be collected at a minimum of three different
temperatures. The data set at one of the temperatures, i.e., at the chosen reference tem-
perature, should be obtained by applying all desired load and load combinations that are
needed to describe the behavior of the balance. The data sets at the remaining tempera-
tures, on the other hand, only need to be obtained by applying single–component loads.
This simplification of the calibration load schedule can be justified by the fact that the
suggested regression model of either a load component or a bridge output difference can
only support the second order cross–product term Di · ∆T or Fi · ∆T (no temperature–
dependent third order cross–product terms are used).

Step 2: The natural zeros, i.e., the bridge outputs at zero absolute load, should be
determined separately for each one of the chosen temperatures. The natural zeros are
needed in order to obtain the tare corrected loads of the balance calibration data.

Step 3: The tare load iteration should be done for each one of the three temperature–
dependent data sets separately by using the natural zeros of the given temperature as
output datum. The result of this analysis step are the tare corrected loads of all three
temperature–dependent calibration data sets.

Step 4: The final temperature–dependent balance calibration data input file should be
assembled by combining the tare corrected load sets of Step 3 with bridge output differences
that are computed relative to the natural zero of the chosen global reference temperature
if the term ∆T is included in the regression models. Then, the temperature–dependent
shift of the natural zero is quantified by the coefficient of the term ∆T . Alternatively,
bridge output differences should be computed relative to the natural zero of the applicable
balance temperature of the output set if the term ∆T is omitted and a separate correction
process is used to account for the natural zero shift during the wind tunnel test.

Step 5: The regression analysis of the tare corrected calibration data should be per-
formed by using the chosen analysis method. Regression model term reduction should be
applied as needed.

14.4 Summary and Recommendations

Different methods were discussed that may be used to correct for the influence of
temperature–dependent natural zero shifts and bridge sensitivity shifts during the predic-
tion of balance loads. Two approaches were described that address the natural zero shift.
Five approaches were presented that address the temperature–dependent bridge sensitivity
shift. Table 14–1 below summarizes the application of the different correction approaches.
Each correction approach has advantages and disadvantages.

Correction methods A and B address the natural zero shift that may occur if the
balance experiences a temperature change. Both methods can be used with either the Non–
Iterative Method or the Iterative Method. The author believes that correction method B
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has an advantage over correction method A. It is the recommended approach because it
can directly be applied during an ongoing wind tunnel test.

Table 14–1: Corrections Methods for Balance Temperature Effects.

Correction Balance Correction Non–Iterative Iterative
Method Temperature Effect Equation Method Method

A natural zero shift (14.5b) × ×
B† natural zero shift (14.7) × ×

1† sensitivity shift (14.12c) × ×
2 sensitivity shift (14.14) ×
3 sensitivity shift (14.18a) ×
4 sensitivity shift (14.19a) ×
5 sensitivity shift (14.22)‡ ×
†recommended correction approach ‡load iteration equation is described in App. 21

Correction methods 1 to 5 address the unwanted sensitivity shift that may occur if
the balance experiences a temperature change. Method 1 defines a direct load correction
for each balance load component. Method 2 uses an extended regression model of the load
components in order to include the sensitivity shift in the load prediction. Methods 3 and
4 simply modify the load iteration equation if a bridge sensitivity shift occurs. Finally,
Method 5 uses an extended regression model of the bridge output difference in order to
include the sensitivity shift in the load prediction. The associated load iteration equation
can only be constructed if the temperature is used as both an independent and dependent
variable (see also discussion in App. 21). Method 1 is the recommended approach. It is
simple to apply and also independent of the load prediction method.

It is important to point out that the total number of required temperature–dependent
cross–product terms in a regression model of balance calibration data depends on the
chosen load and output format of the balance. The author recommends to always describe
balance loads and outputs in the design format of the balance (e.g., force balance data
should be described in force balance format). Then, the number of required temperature–
dependent regression model terms is at a minimum. Consequently, only a single cross–
product term of the type Di ·∆T is needed in the regression model of a load component in
order to describe the sensitivity shift if the Non–Iterative Method is applied (see correction
method 2, Eq. (14.14)). Similarly, only a single cross–product term of the type Fi · ∆T is
needed in the regression model of a bridge output difference in order to describe the bridge
sensitivity shift if the Iterative Method is applied (see correction method 5, Eq. (14.22)).
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Appendix 15

Basics of Three–Component Moment Balances

15.1 Introduction

Three–component moment balances are used to measure aerodynamic loads on a sub-
assembly that is attached to the fuselage or wing of a wind tunnel model. The subassembly
could be, for example, a control surface, a fin, or a canard. A three–component moment
balance can also be described as a gaged model part that allows for the measurement of
loads that act at or near its attachment point to the wind tunnel model.

A wind tunnel customer is often interested in knowing the normal force, the bending
moment, and the torsion moment that acts on the three–component moment balance so
that the material stress acting on the model’s subassembly can be monitored. These loads
are indirectly measured by using electrical outputs of two bending moment bridges and a
torsion moment bridge that are attached to the balance surface.

Fundamental differences between a three–component moment balance and a six–
component primary balance exist that must be taken into consideration during design,
calibration, and use of the balance. First, the metric part of a three–component moment
balance is flexible. It goes from the outer edge of the balance to the first bending moment
bridge, i.e., to the bridge that is closest to the outer edge of the balance. This definition of
the metric part results from the fact that the output of the first bending moment bridge
would remain constant and become unusable if (i) a hypothetical load is applied between
its location and the balance moment center and (ii) no temporary load fixture is attached
to the balance that allows for the application of loads between the first bending moment
bridge and the model attachment point.

The non–metric part of a three–component moment balance, on the other hand, con-
sists of (i) a flexible section with the bridges and (ii) a rigid section that is used to attach
the balance to the wind tunnel model. The author recommends to use the rigid section
of the non–metric part of the balance for the definition of the balance axis system. Then,
loads are described in a coordinate system that can easily be related to the body axis
system of the wind tunnel model. This choice also allows for a precise description of the
calibration loads as only the orientation of the rigid section of the non–metric part relative
to the gravitational acceleration must be quantified whenever dead weights are used for the
load application. Table 15–1 below summarizes key differences between a three–component
moment balance and a six–component primary balance.

Table 15–1: Differences between three– and six–component balances.

Three–Component Moment Balance Six–Component Primary Balance

Model rigid section of the non–metric part metric part attaches to

Attachment attaches to the wind tunnel model the wind tunnel model

Elastic Characteristics flexible, i.e., elastically deforms rigid, i.e., does not deform

of the Metric Part when balance loads act when balance loads act

Definition of the orientation of the rigid section of the orientation of the metric part

Balance Axis System non–metric part defines axis system in space defines axis system
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Dead weights are typically used in a calibration laboratory for the application of loads
to a three–component moment balance. This approach limits the type of loads that can
be applied unless a temporary fixture is attached to the metric part that makes it possible
to apply loads between the first bending moment bridge and the balance moment center.

Figure 15–1 below shows a situation that may be observed during the application of
a load to a three–component moment balance. The load is represented by a force that is
parallel to the gravitational acceleration and perpendicular to the x–y plane of the balance.
In addition, the y–axis is assumed to be the neutral axis for the definition of the torsion
moment. Its location equals the halfchord line of the balance whenever all chordwise cross–
sections of the balance and the model attachment are symmetric about the y–z plane. In
all other cases, the location of the neutral axis must be determined experimentally. Then,
three independent calibration variables, i.e., the applied force (F ), the bending moment
arm (a), and the torsion moment arm (b), can be varied during calibration. These variables
are indirectly connected to the three loads, i.e., the normal force, the bending moment,
and the torsion moment, that the balance experiences.

THREE DESCRIPTIONS OF THE “LOAD STATE” OF A FIN BALANCE

APPLIED
FORCE 
(+F)

a

x

y

z BALANCE
MOMENT 
CENTER
(BMC)

b

METRIC PART PLUS FLEXIBLE SECTION OF NON-METRIC PART

Fig. 15–1 Application of loads to a three–component moment balance; loads are des–
cribed by the applied force, the bending moment arm, and the torsion moment arm.

Design, calibration data quality, and load prediction accuracy of three–component
balances can vary substantially in a real–world test environment. These observations are
not a surprise because three–component balances are highly customized and one–of–a–
kind type sensors. Nevertheless, improvements to design, calibration, and use of three–
component moment balances are possible that reduce load prediction errors and make it
easier to apply them during a wind tunnel test.

A more detailed discussion of basic characteristics of a three–component moment
balance is given in the next section. This discussion focuses primarily on the normal force
and the bending moment. This choice was made because the prediction of these two load
components is more complex than the prediction of the torsion moment.

15.2 Balance Characteristics

15.2.1 Load State Descriptions
An analyst has different variable choices in order to uniquely describe the load state

of a three–component moment balance. For simplicity, it was decided to only focus on the
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normal force and bending moment characteristics as the load prediction accuracy of this
load pair is interrelated. Therefore, the torsion moment arm and, consequently, the torsion
moment itself is assumed to be zero. Then, the load state of the balance can be described
by using (i) the applied force and (ii) the bending moment arm. This situation is illustrated
in Fig. 15–2a below. It describes the load state of the balance from the viewpoint of the
technician who applies the loads. The balance moment center (BMC) was deliberately
placed at the junction between flexible and rigid sections of the non–metric part of the
balance. This choice makes the orientation of the three axes of the balance axis system in
space independent of the deformation that the balance experiences under load.

APPLIED FORCE 
(+F)

a

x

y

z
BRIDGE 1

BMC
d c

METRIC PART
(FLEXIBLE)

NON-METRIC PART
(FLEXIBLE SECTION)

NON-METRIC PART
(RIGID SECTION)

MODEL ATTACHMENT

BRIDGE 2

Fig. 15–2a Description of the load state of a three–component moment
balance by using the applied force (F ) and the bending moment arm (a).

Typical users of a three–component moment balance need a different variable set for
the description of the load state of the balance. They prefer to express loads in direct–read
format by using the normal force and the bending moment as independent variables. This
alternate description of the load state is illustrated in Fig. 15–2b below.

THREE DESCRIPTIONS OF THE “LOAD STATE” OF A FIN BALANCE

APPLIED FORCE 
(+F)

a

x

y

z

BRIDGE 1 BRIDGE 2

BALANCE
MOMENT 
CENTER
(BMC)

d c

+NF = +F

z

INDEPENDENT VARIABLE SET 2:
1. NORMAL FORCE AT BALANCE MOMENT CENTER (NF)
2. BENDING MOMENT AT BALANCE MOMENT CENTER (BM)

a

x

y
BMC

d c

+BM = +F a.

.BM1 = F (a-c-d) .BM2 = F (a-c)

INDEPENDENT VARIABLE SET 3:
1. BENDING MOMENT AT MOMENT GAGE 1 (BM1)
2. BENDING MOMENT AT MOMENT GAGE 2 (BM2)

a

x

y
BRIDGE 1 BRIDGE 2 BMC

d c

z
BM1      BM2

METRIC PART
(FLEXIBLE)

NON-METRIC PART
(FLEXIBLE)

NON-METRIC PART
(RIGID)

BRIDGE 1 BRIDGE 2

Fig. 15–2b Alternate description of the load state by using the normal
force (NF ) and the bending moment (BM) at the balance moment center.
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A connection between the equivalent load state descriptions depicted in Fig. 15–2a
and Fig. 15–2b exists that can be expressed by using the following equations:

NF = F (15.1a)

BM = F · a (15.1b)

For completeness, the torsion moment must be included in the description even though
it is not explicitly discussed in this section. It is defined as the product between the applied
force (F ) and, the torsion moment arm (b). Then, using the nomenclature defined in
Fig. 15–1, we get the following relationship:

TM = F · b (15.1c)

Balance data analysts often prefer to describe the load state of a moment balance
in moment balance format. Then, the first and second bending moment are used instead
of the normal force and the bending moment for the description of two of the three load
components. This approach has the advantage that (i) the sensitivities of all bridges can be
defined and (ii) each load component is more or less proportional to the electrical output
of the related bridge. This choice is illustrated in Fig. 15–2c below.

THREE DESCRIPTIONS OF THE “LOAD STATE” OF A FIN BALANCE

APPLIED FORCE 
(+F)
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x

y

z

BRIDGE 1 BRIDGE 2

BALANCE
MOMENT 
CENTER
(BMC)

d c

+NF = +F

z

INDEPENDENT VARIABLE SET 2:
1. NORMAL FORCE AT BALANCE MOMENT CENTER (NF)
2. BENDING MOMENT AT BALANCE MOMENT CENTER (BM)

a

x

y
BMC

d c

+BM = +F a.

.BM1 = F (a-c-d) .BM2 = F (a-c)

INDEPENDENT VARIABLE SET 3:
1. BENDING MOMENT AT MOMENT GAGE 1 (BM1)
2. BENDING MOMENT AT MOMENT GAGE 2 (BM2)

a

x

y
BRIDGE 1 BRIDGE 2 BMC

d c

z
BM1      BM2

METRIC PART
(FLEXIBLE)

NON-METRIC PART
(FLEXIBLE)

NON-METRIC PART
(RIGID)

BRIDGE 1 BRIDGE 2

Fig. 15–2c Alternate description of the load state by using the bending
moment at bridge 1 (BM1) and the bending moment at bridge 2 (BM2).

The first and second bending moments can be obtained by multiplying the applied
force with the distances to the centers of the first and second bending moment bridges.
Then, the two bending moments can be expressed by the following two relationships:

BM1 = F ·
[
a − c − d

]
(15.2a)

BM2 = F ·
[
a − c

]
(15.2b)

The torsion moment is not influenced by the new load format. It is still defined as
the product between the applied force (F ) and the torsion moment arm (b):

TM = F · b (15.2c)
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Load transformations can easily be derived that relate the normal force and bending
moment at the BMC to the bending moments at the two bending moment bridges. It
is only required to substitute the applied load (F ) and the bending moment arm (a) in
Eqs. (15.2a) and (15.2b) by using the relationships F = NF and a = BM/NF that can be
obtained from Eqs. (15.1a) and (15.1b). Then, after some algebra, we get transformation
equations that relate the load pair NF & BM to the alternate load pair BM1 & BM2:

NF = [ BM2 − BM1 ] / d (15.3a)

BM = BM2 + [ BM2 − BM1 ] · (c/d) (15.3b)

Improvements related to the calibration of a three–component moment balance are
presented in a later section. These improvements can better be understood if the combined
load diagrams of the normal force and the bending moments of the balance are discussed
(see App. 5 or Ref. [50] for more details about combined load diagrams). These graphical
representations of the balance load envelope are described in the next section.

15.2.2 Combined Load Diagrams
The combined load diagram of a pair of balance loads is a useful graphical aid. It

provides a visual description of relationships between calibration loads. Therefore, it was
decided to prepare the diagram for the load pairs that are related to the normal force
and bending moment measurements of a three–component moment balance. First, the
diagram is developed in direct–read format. In that case, the normal force and the
bending moment at the balance moment center describe the load state of the balance.
Figure 15–3a below depicts a typical load configuration in direct–read format. Loads can
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Fig. 15–3a Description of balance loads in direct–read format.

only be applied on the metric part of the balance between the outer edge of the balance
and the first bending moment bridge if no temporary load fixtures are attached to the
metric part of the balance. Related load points are located in Fig. 15–3a between point 1
and point 3. Then, after analyzing all possible load cases, the combined load diagram for
the normal force and bending moment is obtained. It is shown in Fig. 15–3b below.
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Fig. 15–3b Combined load diagram for loads given in direct–read format.

Loads can only appear in the dark green regions that are shown in Fig. 15–3b above
assuming that (i) a single dead weight is applied at the load point and (ii) no fixtures are
attached to the balance that allow for the application of loads between the first bending
moment bridge and the BMC.

It is also possible to develop the combined load diagram in moment balance format.
In that case, the first and second bending moment describe the load state of the balance.
Figure 15–4a below shows a typical load configuration in moment balance format. Again,
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Fig. 15–4a Description of the balance loads in moment balance format.

the diagram is obtained after analyzing all possible load cases while assuming that no
temporary fixtures are attached to the metric part of the balance. The resulting diagram
for the bending moment pair is shown in Fig. 15–4b. It is assumed that (i) a single dead
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Fig. 15–4b Combined load diagram for loads given in moment balance format.

weight is applied at the load point and (ii) no fixtures are attached to the balance that
allow for the application of loads between the first bending moment bridge and the BMC.
Then, loads can only appear in the dark green regions that are shown in Fig. 15–4b.

The principal diagonal of the first and third quadrants of the diagram shown in Fig. 15–
4b above has an important characteristic: it is the location of load points where the two
bending moments are identical. This situation can be achieved by either making the
distance between the two bending moment bridges zero or by using a bending moment
arm of infinite length. Important consequences of these two conclusions will be discussed
in more detail in the next section.

15.3 Design and Calibration Recommendations

15.3.1 Bridge Placement and Sensitivity Selection
It was mentioned in the previous section that the first and second bending moments

are identical whenever the distance between the bridges approaches zero. Then, the out-
puts of the two bending moment bridges are no longer independent. Consequently, the
balance would only have two instead of the required three independent electrical output
measurements that are needed to predict the normal force, the bending moment, and the
torsion moment.

An estimate of the upper bound of the error of the normal force as a function of the
errors of the two bending moments can be used to illustrate this issue. A conservative
upper bound of the error of the normal force may be obtained by taking the absolute
values of both sides of Eq. (15.3a). Then, we get:

|∆NF | ≤
[
|∆BM2| + |∆BM1|

]
/ d (15.4)
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In addition, it is known that the bridge sensitivity may be used to connect a load
component to the related bending moment bridge output if balance loads are given in the
design format of the balance. Then, assuming that the electrical outputs rBM1 and rBM2

of the two bending moment bridges are described as differences relative to their natural
zeros N1 and N2, we get the following relationships between the two bending moments
BM1 and BM2 and the two output differences D1 and D2 of the bending moment bridges:

BM1 ≈ 1

∂ D1 / ∂ BM1︸ ︷︷ ︸
bridge sensitivity

· D1 (15.5a)

BM2 ≈ 1

∂ D2 / ∂ BM2︸ ︷︷ ︸
bridge sensitivity

· D2 (15.5b)

where D1 = rBM1 − N1 and D2 = rBM2 − N2. Bending moment bridges of three–
component moment balances are typically selected to have identical bridge sensitivities.
Therefore, the following simplification is valid:

SBM ≈ ∂ D1 / ∂ BM1 ≈ ∂ D2 / ∂ BM2 (15.6)

Then, after using Eqs. (15.5a) and (15.5b) in combination with Eq. (15.6), we get
the following approximations of the bending moment prediction errors assuming that the
errors are observed as variations of the electrical outputs of the bending moment bridges:

∆BM1 ≈ ∆D1

SBM
(15.7a)

∆BM2 ≈ ∆D2

SBM
(15.7b)

Finally, after using the right–hand sides of Eqs. (15.7a) and (15.7b) to replace the
bending moment errors in Eq. (15.4) above, we get the following conservative estimate of
the error of the normal force:

|∆NF | ≤ |∆D1| + |∆D2|
d · SBM

(15.8)

The product of (i) the distance between the bending moment bridges and (ii) the
sensitivity of the bending moment bridges is in the denominator of the right–hand side of
Eq. (15.8). Therefore, it is concluded that this product must be maximized within given
geometric constraints of the three–component moment balance in order to minimize the
error in the prediction of the normal force of the balance. This important conclusion can
be summarized as follows:
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Balance Design Recommendation

The product of (i) the distance between the two bending moment bridges
and (ii) the sensitivity of the bending moment bridges must be maximized
in order to minimize the overall error in the normal force prediction.

A connection between the sensitivities of the two bending moment bridges and the
sensitivity of the torsion moment bridge exists that influences the load prediction accuracy.
It is often observed that the range of the two bending moments is significantly larger than
the range of the torsion moment. In that case, it is an advantage to increase the sensitivity
of the torsion moment bridge within the design constraints of the balance so that the
electrical outputs of all three bridges at maximum load are of similar magnitude.

The distance between the bending moment bridges also indirectly influences the reli-
ability of the regression models of the loads. Small distances may create bending moment
bridge output sets with hidden linear or near–linear dependencies unless a significant num-
ber of calibration loadings is applied in the vicinity of the first bending moment bridge.
This calibration load schedule design issue is discussed in more detail in the next section.

15.3.2 Calibration Load Schedule Improvement
It was indicated in Fig. 15–4b that either an excessively large bending moment arm

or a very small distance between the bending moment bridges makes the two bending
moments and related bridge outputs almost identical. This characteristic can become a
serious data analysis problem if either a very large bending moment arm is used during the
calibration or a balance with a very small distance between the bending moment bridges
is calibrated. The ratio between the two bending moments can be used to illustrate this
problem. Then, after dividing both sides of Eq. (15.2a) by both sides of Eq. (15.2b), we
get the following equation for the ratio of the bending moments:

BM1

BM2
=

a − c − d

a − c
= 1 − 1

( a − c ) / d
(15.9)

It is also reasonable to assume that the bending moment arm (a) is significantly larger
than the distance between the second bending moment bridge and the BMC (c). Then,
using the assumption a� c in Eq. (15.9) above, we get the following approximation of the
ratio of the bending moments:

BM1

BM2
≈ 1 − 1

a / d
(15.10)

Consequently, the ratio BM1/BM2 between the two bending moments will be close
to the unwanted value of one whenever the ratio a/d between bending moment arm and
bending moment bridge distance is large. The same situation will be observed for the
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ratio D1/D2 of the electrical output differences of the bending moment bridges as D1 is
proportional to BM1 and D2 is proportional to BM2. This conclusion can be summarized
as follows:

a / d � 1 =⇒ BM1

BM2
≈ 1 =⇒ BM1 ≈ BM2 =⇒ D1 ≈ D2 (15.11)

The smallest value of ratio a/d is between four and six for many calibration load
schedules of real–world three–component moment balances. These data sets make it diffi-
cult during an analysis to define robust regression models of the loads as the two bending
moment bridge outputs appear to be almost linearly related. This issue can also be illus-
trated by assuming that bending moments are only applied over a narrow bending moment
arm range. This hypothetical case is illustrated in Fig. 15–5a below.

RANGE BALANCE
MOMENT
CENTER

RANGE

Fig. 15–5a Unwanted bending moment arm range.

It can be seen in the combined load diagram above that data points only appear in a
very narrow green region for the unwanted moment arm range. Consequently, it looks as
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if the second bending moment equals a constant times the first bending moment. In other
words, the applied bending moment combinations appear to be dependent.

The load schedule design issue depicted in Fig. 15–5a above can be corrected if the
bending moment arm range extends from the outer tip of the balance to the vicinity of the
first bending moment bridge. The resulting recommended bending moment arm range is
depicted in Fig. 15–5b below.

RANGE BALANCE
MOMENT
CENTER

RANGE

Fig. 15–5b Recommended bending moment arm range.

Now, calibration data points will appear in the enlarged green region that is shown
in the combined load diagram above. Consequently, the applied bending moment pairs
and related bending moment bridge outputs no longer appear to be dependent variables
during the development of a regression model of the balance data.

It is concluded that calibration load schedule design issues related to the ratio between
bending moment arm and bending moment bridge distance can easily be addressed by
taking a significant number of calibration points near the first bending moment bridge.
This load schedule design recommendation can be summarized as follows:
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Calibration Load Schedule Design Recommendation

Large ratios between bending moment arm and bending moment bridge distance
generate outputs of the bending moment bridges that are almost identical.
Therefore, it is important to include a significant number of calibration points
in the load schedule that are close to the first bending moment bridge so that
the electrical outputs of the calibration data do not appear linearly related.

It was mentioned in Table 15–1 above that both the metric and the bridged part of the
non–metric part of a three–component moment balance are subject to elastic deformation.
Therefore, depending on the degree of deformation, it may be necessary to apply a moment
arm correction when the bending moments are computed. This correction is discussed in
the next section of the appendix.

15.3.3 Bending Moment Arm Correction

The metric part and parts of the non–metric part of a three–component moment
balance elastically deform when the balance experiences a load. Then, the moment arm
of an applied force at a fixed load point is not constant. Consequently, a moment arm
correction was developed that takes the elastic deflection of the balance under load into
account. The deflection of the balance in a loaded state is shown in Fig. 15–6a below.

δ

����

���

���

δδ

�

��
MOMENT
BRIDGE 1

MOMENT
BRIDGE 2

Fig. 15–6a Moment arm correction for a three–component moment balance.

The moment arm correction can be computed if the deflection angle δ is measured
at the location where a calibration load is applied. In addition, the assumption is made
that the shape of the deflection curve between the balance moment center and the load
point is a circular arc. Figure 15–6a above shows the connection between basic geometric
parameters that results from this assumption. Now, knowing that the ratio between the
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arc (a) and the circumference of the circle (2πr) equals the ratio between the deflection
angle (δ) and 2π, and, solving the resulting equation for the radius of the circle, we get:

a

2 π r
=

|δ|
2 π

=⇒ r =
a

|δ|
(15.12a)

The absolute value of the deflection angle in radians is used in Eq. (15.12a) above as
the radius of the circular arc must be a positive quantity. In addition, triangle ABC in
Fig. 15–6a is a right triangle. Then, the sine of the deflection angle can be computed as
a function of the corrected moment arm (a′) and the radius (r). Now, after solving the
resulting equation again for the radius, we get:

sin |δ| =
a′

r
=⇒ r =

a′

sin |δ|
(15.12b)

Then, after using the right–hand side of Eq. (15.12a) to replace the radius (r) in
Eq. (15.12b) and solving the result for the corrected moment arm (a′), we get:

a′ = a · sin |δ|
|δ|

(15.13)

The scale factor sin|δ|/|δ| may cause numerical problems during evaluation because
the deflection angle is a small measured quantity that appears in the denominator of a
fraction. Therefore, it is better to replace the scale factor by a related second order Taylor
series approximation that is developed in the neighborhood of δ = 0. The development of
this approximation requires successive applications of L’Hôspital’s rule as the fraction 0/0
appears multiple times during the calculation of terms of the Taylor series. Finally, the
following second order Taylor series approximation is obtained:

sin |δ|
|δ|

≈ 1 − δ 2

6
(15.14)

The second order Taylor series approximation 1− δ 2/6 can easily be compared with
the exact value sin |δ|/|δ| in order to demonstrate that the approximation is sufficiently
accurate. For example, the following family of deflection angles may be chosen for the
comparison between exact value and approximation: 2 deg, 5 deg, and 10 deg. Results of
the comparison for these deflection angles are summarized in Table 15–2 below:

Table 15–2: Accuracy of scale factor approximation.

δ ≡ deflection angle sin |δ|/|δ| 1 − δ 2/ 6
exact value

approximation

0.03491 rad ≡ 2 deg 0.999797 0.999797 1.0

0.08727 rad ≡ 5 deg 0.998731 0.998731 1.0

0.17453 rad ≡ 10 deg 0.994931 0.994923 1.000008
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As expected, differences between exact value and approximation are very small within
the chosen deflection angle range as their ratios are very close to one. Finally, after replac-
ing the scale factor used in Eq. (15.13) with its second order Taylor series approximation,
the corrected moment arm can be expressed as follows:

a′ ≈ a ·
[

1 − δ 2

6

]
(15.15)

Now, the corrected applied loads in direct–read format can be described by the fol-
lowing equations assuming that (i) the sign convention introduced in Fig. 15–6a above is
used and (ii) the magnitude of the applied force at position 2 is represented by symbol |F |
(see also Eqs. (15.1a), (15.1b)). Then, the following two relationships are obtained:

Corrected Balance Loads (Version 1)

NF ′ = |F | (15.16a)

BM ′ = |F | · a ·
[

1 − δ 2

6

]
(15.16b)

The error of the computed bending moment can be obtained by taking the difference
of the bending moments for the two bending moment arm choices where BM is the un-
corrected bending moment and BM ′ is the corrected bending moment. Then, using the
bending moment definition given in Eq. (15.1b), we get:

∆BM = BM − BM ′ = |F | · a︸ ︷︷ ︸
uncorrected

− |F | · a · ( 1 − δ 2/ 6 )︸ ︷︷ ︸
corrected

(15.17a)

The right–hand side of Eq. (15.17a) can be simplified for improved clarity. Then, we get:

∆BM = |F | · a · (δ 2/ 6) = BM · (δ 2/ 6) (15.17b)

Consequently, after rearranging Eq. (15.17b) and multiplying the result by 100 %, the
relative error of the bending moment can be computed in units of percent as follows:{

∆BM

BM

}
%

= (δ 2/ 6) · 100 % (15.18)

It is useful to evaluate the error estimate given in Eq. (15.18) for the three small
deflection angles that are listed in Table 15–2. Table 15–3 below lists the result of the
error estimate of the bending moment for the three chosen deflection angles.
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Table 15–3: Estimates of the relative bending moment error.

δ ≡ deflection angle {∆BM/BM}%
0.03491 rad ≡ 2 deg 0.02 %

0.08727 rad ≡ 5 deg 0.13 %

0.17453 rad ≡ 10 deg 0.51 %

It is observed that the bending moment correction may not have to be applied if
the deflection angle is less equal 5 deg because the difference between uncorrected and
corrected bending moments is on the order of 0.1 % or less. The larger deflection angle of
10 deg, on the other hand, is causing differences that are on the order of 0.5 %. Therefore,
it is concluded that the bending moment correction may have to be applied if (i) the
deflection angle exceeds the threshold of 5 deg and (ii) the user of a three–component
moment balance has very high accuracy requirements.

Gravity weights are typically used to apply a load to a three–component moment bal-
ance. In addition, the load point instead of the attachment of the balance to a load stand
is often leveled so that the calibration hardware cannot accidentally move or slip relative to
the balance surface. Unfortunately, this calibration strategy means that the z–coordinate
of the balance axis system is no longer parallel to the direction of the gravitational acceler-
ation when a load is applied to the balance. Consequently, it becomes necessary to apply
deflection corrections to both the normal force and the bending moment. Figure 15–6b
below shows the connection between applied load, balance deflection, normal force, and
bending moment at the balance moment center in that situation.

MOMENT
BRIDGE 1

MOMENT
BRIDGE 2

Fig. 15–6b Alternate application of balance loads using gravity weights.

Now, the corrected load pair in direct–read format can be described by the following
equations assuming that (i) the sign convention introduced in Fig. 15–6b above is used
and (ii) the magnitude of the applied force at load point 2 is represented by symbol |F |:
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Corrected Balance Loads (Version 2)

NF ′ = (−1) · |F | · cos |δ| (15.19a)

BM ′ = (−1) · |F | · a ·
[

1 − δ 2

6

]
(15.19b)

A temporary load fixture may be attached to a three–component moment balance in
order to obtain load pairs that are located inside the second and fourth quadrants of the
combined load diagram. This option is discussed in the next section of the appendix.

15.4 Temporary Load Fixture

Some three–component moment balances allow for the attachment of a temporary
fixture between the metric outer edge of the balance and the first bending moment bridge
(moment bridge 1). Then, a force can be applied between the two bending moment bridges.
This situation is shown in Fig. 15–7a below. It is assumed that the attachment of the
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Fig. 15–7a Application of a bending moment pair using a temporary load fixture.

temporary fixture does not significantly change the elastic behavior of the balance. Then,
bending moment pairs can be obtained that are located inside the second and fourth
quadrant of the combined load diagram if a force is applied to the temporary load fixture.
This conclusion can be illustrated with load points 4, 5, and 6 that are shown in Fig. 15–
7a above. First, load point 5 is discussed. It allows for the application of a force that is
located halfway between the two bending moment bridges. Resulting bending moments at
the two bridges will be equal in magnitude but opposite in sign. Consequently, all bending
moment pairs associated with the application of a force at load point 5 must be located on
the principal diagonal of the second and fourth quadrant of the combined load diagram.
On the other hand, load points 4 and 6 allow for the application of a force directly over
a bending moment bridge. The first bending moment is zero if a force is applied at load
point 4. Similarly, the second bending moment is zero if a force is applied at load point 6.
Therefore, bending moment pairs associated with the application of a force at either load
point 4 or load point 6 must be located on a coordinate system axis of the combined load
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diagram. Locations of bending moment pairs are summarized in Fig. 15–7b below that may
result from the application of a force at load point 4, 5, or 6. Two important conclusions can
be drawn from the combined load diagram that is shown in Fig. 15–7b. A positive force

BM2

BM1

QUADRANT 1QUADRANT 2
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Fig. 15–7b Location of the bending moment pairs that result from
the application of a positive or negative force at load point 4, 5, or 6.

generates bending moment pairs inside the second quadrant of the combined load diagram
whenever it is applied between load points 4 and 6. Similarly, a negative force generates
bending moment pairs inside the fourth quadrant of the combined load diagram whenever it
is applied between load points 4 and 6. – Analysis of calibration data of a three–component
moment balance and the load prediction are discussed in the next section.

15.5 Data Analysis and Load Prediction

Two different methods are used in the aerospace testing community for the prediction
of strain–gage balance loads. Their load prediction equations are obtained from balance
calibration data. Some analysts prefer the Iterative Method (see App. 10). This approach
first fits the measured outputs as a function of the applied calibration loads. Afterwards,
a load iteration scheme is constructed from the regression coefficients of the outputs so
that loads can be predicted from outputs during a wind tunnel test. Alternatively, the
Non–Iterative Method may be used for the load prediction (see App. 9). This approach
directly fits the applied calibration loads as a function of the measured outputs. The
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overall accuracy of the two methods is the same for all practical purposes as long as linear
or near–linear dependencies between regression model terms of the calibration data are
avoided. Therefore, it was decided to recommend the less complex Non–Iterative Method
for the prediction of the loads of a three–component moment balance.

The application of the Non–Iterative Method to a three–component moment balance
needs to be explained in more detail. The method directly fits calibration loads as a func-
tion of output differences that are computed using either the natural zeros of the bridges or
the raw outputs of the zero load point of a load series as a datum (see App. 9). It is useful to
introduce the concepts of output space and load space during the discussion of the Non–
Iterative Method. In principle, the Non–Iterative Method generates a mapping function
between these two vector spaces that is used for the load prediction. The mapping is justi-
fied by the fact that one output combination can only correspond to one load combination
and vice versa. This idea is summarized in Fig. 15–8 below. Each point of the output

D F

Multivariate least squares
fit of loads as function of
bridge output differences

3-dimensional
“output space”

3-dimensional
“load space”

D1 

D2 

D3 

F1 

F2 

F3 

Fig. 15–8 Load and output space definition for a three–component balance.

space represents a specific load state of the balance. This load state is also described by
a point in the load space. Points in the output space are identified as three–dimensional
vectors. The components of each vector are the output differences D1 and D2 of the
two bending moment bridges and the output difference D3 of the torsion moment bridge.
The output vector is defined in Eq. (15.20) below. The output differences can be formatted

outputs =⇒ D =

D1

D2

D3

 (15.20)

as either Difference Type 1 or Difference Type 2 (see App. 6). Difference Type 1 is defined
as the difference between a raw output and the natural zero of the bridge. Alternatively,
Difference Type 2 is defined as the difference between a raw output and the raw output of
the first data point of the related load series.

The definition of a point in the load space depends on the chosen load format. For
example, the load vector has the following components if direct–read format is used:

direct−read format =⇒ F =

F1

F2

F3

 =

 NFBM
TM

 (15.21a)
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It is also possible to define the load vector in moment balance format. Then, the load
vector is described by the following equation:

moment balance format =⇒ F =

F1

F2

F3

 =

BM1
BM2
TM

 (15.21b)

The final load format choice depends on an analyst’s preferences or other constraints.
Now, regression models need to be developed so that the measured outputs of the three
bridges can be used to predict the balance loads. The selection of the terms for the
regression models of the three load components depends on characteristics of the calibration
load schedule. A typical load schedule for a three–component moment balance may support
a total of ten terms as the torsion moment and the bending moments are often applied
simultaneously. These terms are listed in Table 15–4 below.

Table 15–4: Term choices for the regression model of a load component.

Type List of Regression Model Terms

constant Intercept

linear (D1) , (D2) , (D3)

quadratic† (D1)2 , (D2)2 , (D3)2

cross–product (D1) · (D2) , (D1) · (D3) , (D2) · (D3)

†
The square of D3 is typically not supported as torsion moment arms are often too small.

First, it is assumed that loads are given in direct–read format. Then, the regression
models of normal force and bending moment can be defined by the following equations:

NF = η0 + η1 · (D1) + η2 · (D2) + η3 · (D3)︸ ︷︷ ︸
linear terms

+ η4 · (D1)2 + η5 · (D2)2 + η6 · (D3)2︸ ︷︷ ︸
quadratic terms

+ η7 · (D1) · (D2) + η8 · (D1) · (D3) + η9 · (D2) · (D3)︸ ︷︷ ︸
cross−product terms

(15.22a)

BM = λ0 + λ1 · (D1) + λ2 · (D2) + λ3 · (D3)︸ ︷︷ ︸
linear terms

+ λ4 · (D1)2 + λ5 · (D2)2 + λ6 · (D3)2︸ ︷︷ ︸
quadratic terms

+ λ7 · (D1) · (D2) + λ8 · (D1) · (D3) + λ9 · (D2) · (D3)︸ ︷︷ ︸
cross−product terms

(15.22b)
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Alternatively, loads may be expressed in moment balance format. This approach
has the advantage that the sensitivities of all balance bridges are defined. In addition,
troubleshooting is simplified because the bending moment bridge output differences are
directly proportional to the applied first and second bending moment. Then, the regression
models of the first and second bending moment can be defined as follows:

BM1 = ν0 + ν1 · (D1) + ν2 · (D2) + ν3 · (D3)︸ ︷︷ ︸
linear terms

+ ν4 · (D1)2 + ν5 · (D2)2 + ν6 · (D3)2︸ ︷︷ ︸
quadratic terms

+ ν7 · (D1) · (D2) + ν8 · (D1) · (D3) + ν9 · (D2) · (D3)︸ ︷︷ ︸
cross−product terms

(15.23a)

BM2 = ξ0 + ξ1 · (D1) + ξ2 · (D2) + ξ3 · (D3)︸ ︷︷ ︸
linear terms

+ ξ4 · (D1)2 + ξ5 · (D2)2 + ξ6 · (D3)2︸ ︷︷ ︸
quadratic terms

+ ξ7 · (D1) · (D2) + ξ8 · (D1) · (D3) + ξ9 · (D2) · (D3)︸ ︷︷ ︸
cross−product terms

(15.23b)

Finally, the regression model of the torsion moment is defined by the following equation:

TM = µ0 + µ1 · (D1) + µ2 · (D2) + µ3 · (D3)︸ ︷︷ ︸
linear terms

+ µ4 · (D1)2 + µ5 · (D2)2 + µ6 · (D3)2︸ ︷︷ ︸
quadratic terms

+ µ7 · (D1) · (D2) + µ8 · (D1) · (D3) + µ9 · (D2) · (D3)︸ ︷︷ ︸
cross−product terms

(15.24)

The given balance calibration data set may only support a subset of the regression
model terms of the load components that are defined in Eqs. (15.22a) to (15.24). Therefore,
it is critical to screen the chosen set of regression model terms for hidden linear or massive
near-linear dependencies by using the Variance Inflation Factor (see App. 18 for more
details). In particular, the outputs of the two bending moment bridges can easily appear
linearly dependent if none or too few calibration loads are applied near the first bending
moment bridge. In addition, a calibration data set may not support the square of D3 as
often only three closely spaced moment arm positions are available for the application of
the torsion moment.

The accuracy of the load prediction may improve if (i) all bridge outputs are formatted
as Difference Type 1 and (ii) a tare load iteration is performed during the application of
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the Non–Iterative Method. Then, all loads can be described relative to the load datum of
zero absolute load (see App. 12 for more details).

The regression coefficients are obtained after performing the least squares fit of the
calibration data. Afterwards, three explicit equations for the prediction of the balance
loads are known that can easily be implemented in the data system of a wind tunnel.

15.6 Summary and Recommendations

Fundamental characteristics of design, calibration, and use of a three–component mo-
ment balance were presented. First, basic features of this balance type were reviewed.
Then, different load format choices and the definition of the combined load diagram
were discussed. Afterwards, balance design and calibration recommendations were made.
Whenever possible, the sensitivities of the three balance bridges should be selected such
that their electrical outputs at maximum load are of similar magnitude. In addition, it is
suggested to maximize the product between (i) the bending moment bridge distance and
(ii) the bending moment bridge sensitivity in order to minimize the load prediction error
for the normal force. A balance user needs to work closely with the balance manufacturer
in order to achieve these goals if the load prediction accuracies are critical for a given test
objective. It is also recommended to apply a significant number of calibration loads in
the vicinity of the first bending moment bridge. Then, it is less likely that the electrical
outputs of the two bending moment bridges appear to be linearly related. A correction
formula for the bending moment arm was also developed that takes the elastic deformation
of the metric part of the balance under load into account. Finally, basic elements of the use
of the Non–Iterative Method for the prediction of the loads of a three–component moment
balance were discussed.
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Appendix 16

Percent Contribution of a Regression Model Term

16.1 Introduction
The Percent Contribution is a useful metric that can be computed for each regression

model term that either the Non–Iterative Method or the Iterative Method use for the analy-
sis of balance calibration data. In principle, the Percent Contribution assesses a regression
model term’s importance during the prediction of balance data whenever its magnitude is
compared with a set of recommended empirical thresholds.

The Percent Contribution has the advantage that it is easily understood and applied.
It is defined as a fraction that is multiplied by 100 %. The numerator of the fraction
equals the product of (i) the regression coefficient of the term and (ii) the term’s value
after being computed for the related capacities of the balance. Similarly, the denominator
of the fraction equals the product of (i) the regression coefficient of the most important
term and (ii) the term’s value after being computed for the related capacity of the balance.
Then, the absolute value of the Percent Contribution is compared with a family of empirical
thresholds in order to determine the regression model term’s importance.

It is helpful for a better understanding of the definition of the Percent Contribution if
the expressions primary load, primary output, and primary output difference are explained
in more detail. Therefore, a brief description of them is given in the box below.

Primary Load / Primary Output / Primary Output Difference

A primary load of a strain–gage balance is defined as a load component that is responsible for more

or less 90 % of the electrical signal of the related primary output or primary output difference when–

ever the load is exclusively applied to the balance. The axial force, for example, is a primary load

of a six–component balance. The axial bridge output is the related primary output because more

or less 90 % of its signal is caused by the axial force whenever this load component is exclusively

applied to the balance. Similarly, the difference between the electrical output of the axial bridge and

its natural zero is the related primary output difference because more or less 90 % of this difference

is caused by the axial force whenever this load component is exclusively applied to the balance.

The definition of the Percent Contribution for regression model terms of a load com-
ponent is discussed in the next section. This definition is needed whenever a balance
calibration data set is analyzed by using the Non–Iterative Method (see also App. 9 for a
detailed description of this analysis method).

16.2 Percent Contribution for Non–Iterative Method
The definition of the Percent Contribution for regression model terms is derived in

this section assuming that the Non–Iterative Method is applied during the balance load
prediction. In principle, the Percent Contribution of a term is obtained from the regression
model of a load component that is defined in Eq. (16.1a) below where Fµ is the fitted

Fµ = a0 + a1 ·D1 + . . . + aµ ·Dµ + . . . + an ·Dn + . . . + aξ · Sξ + . . . (16.1a)
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load component (see also App. 9). For simplicity, it is assumed that the regression model is
only defined by using differences between the raw outputs and natural zeros of the balance
bridges as independent variables. Then, the output differences for an n–component balance
are defined as follows in Eq. (16.1b) below where rFi equals the raw output of a bridge, the

Di = rFi − Ni ; 1 ≤ i ≤ n (16.1b)

symbol Ni describes the natural zero of a bridge, and i is the bridge index. The symbols
a0, a1, . . . in Eq. (16.1a) are the regression coefficients. Consequently, each regression
model term Sξ must be a function of the output differences D1, . . . , Dn that are used as
independent variables. This conclusion can be summarized by the following relationship:

Sξ = Sξ(D1, D2, . . . , Dn) (16.1c)

Now, the Percent Contribution of a regression model term of a balance load component
can verbally be described. The following definition is suggested:

Definition of Percent Contribution (Non–Iterative Method)

The Percent Contribution P {Sξ} of term Sξ of the regression model of load com–
ponent Fµ is a fraction that is multiplied by 100 %. The numerator of this fraction
equals the product of the term’s coefficient, i.e., aξ, with the capacities of
all variables, i.e., outputs and other independent variables, that define the
term. The denominator of the fraction equals the product of the coefficient aµ of
the primary output difference of load component Fµ and the related capacity. The
output capacity may be defined, for example, as the output at load capacity.

It is helpful to summarize the verbal description of the Percent Contribution above
by using the following simple mathematical relationship:

P {Sξ} =

aξ × Capacity
{
Sξ
}

aµ × Capacity
{
Dµ

} × 100 % (16.2)

where

Sξ ≡ term of the regression model of load component Fµ
Dµ ≡ primary output difference of load component Fµ
aξ ≡ regression coefficient of model term Sξ
aµ ≡ regression coefficient of primary output difference Dµ
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Analysis results from a balance calibration data set may be used to illustrate the
application of the Percent Contribution. A data set from a machine calibration of NASA’s
MK34B six–component force balance was chosen for that purpose. The data consisted
of 2082 data points that were distributed across 16 load series. The data set allowed
for the definition of six independent output differences of the balance. They are the
independent variables for the least squares fit of the balance loads. The output differences
are defined in Eqs. (16.3a) to (16.3f) below. Symbols rN1, rN2, . . ., rRM represent the

D1 = rN1 − N1 (16.3a)

D2 = rN2 − N2 (16.3b)

D3 = rS1 − N3 (16.3c)

D4 = rS2 − N4 (16.3d)

D5 = rAF − N5 (16.3e)

D6 = rRM − N6 (16.3f)

raw outputs of the bridges. Symbols N1, N2, . . ., N6 are the corresponding natural zeros,
i.e., the raw outputs of the bridges at zero absolute load. Table 16–1 below lists the
capacities of the six output differences in electrical units.

Table 16–1: Output capacities of the MK34A balance.

D1 D2 D3 D4 D5 D6

microV/V microV/V microV/V microV/V microV/V microV/V

1200 1200 1200 1200 1500 1200

A regression model for the prediction of the axial force as a function of the six in-
dependent output differences of the balance was developed. The regression model of the
axial force had the following general form . . .

AF = . . . + aξ ·

Sξ︷︸︸︷
D1 + . . . + aµ · Dµ + . . .︸ ︷︷ ︸

regression model of the axial force

(16.4a)

where

Dµ ≡ primary output difference associated with the axial force︸ ︷︷ ︸
see also the definition of the difference that is given in Eq. (16.3e)

(16.4b)

The regression model consisted of a total of 39 terms that were chosen using a re-
gression model search algorithm (see, e.g., App. 19 of the current document for a detailed
description of the search algorithm). Now, the primary output difference Dµ of the axial
force needs to be identified as it will be used as a reference during the calculation of the
Percent Contribution of the terms of the regression model of the axial force. This difference
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must include the raw output rAF of the axial force bridge of the balance. Therefore, the
output difference D5 defined in Eq. (16.3e) above must equal Dµ. Then, we get:

Dµ = D5 (16.5a)

It was decided to compute the Percent Contribution of the term D1 that is used in
Eq. (16.4a). Consequently, we get the following equality:

Sξ = D1 (16.5b)

Now, all inputs for the calculation of the Percent Contribution of term Sξ can be
identified. First, capacities of the reference term (Dµ) and the chosen term (Sξ) of the
regression model need to be obtained. Then, after using the contents of Table 16–1 as
input, we get the following relationships:

Capacity
{
Dµ = D5

}
= 1500 microV/V (16.6a)

Capacity
{
Sξ = D1

}
= 1200 microV/V (16.6b)

In addition, the two required regression coefficients need to be obtained from the least
squares fit of the axial force. The following coefficients of the reference term (Dµ) and the
chosen term (Sξ) were computed:

aµ = +2.688057 E−1 lbs/(microV/V ) (16.6c)

aξ = +3.694008 E−3 lbs/(microV/V ) (16.6d)

Finally, the Percent Contribution of the term Sξ = D1 can be computed by using the
values on the right–hand sides of Eqs. (16.6a) to (16.6d) as input on the right–hand side
of Eq. (16.2). Then, the following result is obtained:

P {Sξ = D1} = +1.10 % (16.7)

In the next section, the regression model of a raw electrical output or an output
difference and the resulting definition of the Percent Contribution of a regression model
term are discussed. This type of regression model is used whenever an analyst chooses to
apply the Iterative Method to strain–gage balance calibration data.

16.3 Percent Contribution for Iterative Method
The definition of the Percent Contribution for the Iterative Method is discussed in this

section (see App. 10 for a description of this method). In this case, the Percent Contribution
is derived from the regression model of an output. First, it is assumed that the raw output
of a bridge is fitted as a function of the calibration loads. Then, the regression model of
the output may be defined by Eq. (16.8) below where rFµ represents the raw output of a

rFµ = b0 + b1 · F1 + . . . + bµ · Fµ + . . . + bn · Fn + . . . + bξ · Tξ + . . .︸ ︷︷ ︸
Option 1 =⇒ regression model of the raw output

(16.8)
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balance bridge, F1, . . . , Fn are the tare corrected balance loads, Fµ is the primary load
of output rFµ, Tξ represents a regression model term, and b0, b1, . . . are the regression
coefficients. Each individual regression model term is a function of the set of tare corrected
load components. This conclusion is summarized in Eq. (16.9) below.

Tξ = Tξ(F1, F2, . . . , Fn) (16.9)

It is also possible to develop a regression model of the difference between the raw
output and the natural zero of a balance bridge. This output difference of a bridge may
simply be defined by Eq. (16.10) below where Dµ equals the output difference, rFµ is the

Dµ = rFµ − Nµ (16.10)

raw output, and Nµ is the natural zero. Then, the regression model of the output difference
can be defined by Eq. (16.11) below. It must be mentioned at this point that the fitted

Dµ = b0 + b1 · F1 + . . . + bµ · Fµ + . . . + bn · Fn + . . . + bξ · Tξ + . . .︸ ︷︷ ︸
Option 2 =⇒ regression model of the output difference

(16.11)

coefficients of the two regression model options for an electrical output, i.e., the coefficients
listed in Eq. (16.8) and Eq. (16.11), are directly related if the same set of regression model
terms is used for the analysis. In that case, all coefficients of the two regression model
options will be identical with the exception of the intercept terms. This statement can be
understood if a physical interpretation is attached to the two intercept terms. For example,
the fitted intercept term b0 of the regression model of the raw output rFµ must be a least
squares approximation of the natural zero as the left–hand side of Eq. (16.8) equals the
natural zero whenever all tare corrected loads on the right–hand side of Eq. (16.8) are zero.
This first conclusion is summarized in Eq. (16.12a) below.

Option 1 =⇒ interpretation of intercept term =⇒ b0(rFµ) ≈ Nµ (16.12a)

Similarly, the fitted intercept term b0 of the regression model of the output difference
Dµ must be a least squares approximation of zero output as the left–hand side of Eq. (16.11)
equals zero output whenever all loads on the right–hand side of Eq. (16.11) are zero. This
second conclusion is summarized in Eq. (16.12b) below:

Option 2 =⇒ interpretation of intercept term =⇒ b0(Dµ) ≈ 0 (16.12b)

Now, the Percent Contribution of a regression model term of an output or an output
difference can verbally be described. The following definition is suggested:

Definition of Percent Contribution (Iterative Method)

The Percent Contribution Q {Tξ} of a term Tξ of the regression model of
either an output rFµ or an output difference Dµ is a fraction that is multiplied
by 100 %. The numerator of this fraction equals the product of the term’s coef–
ficient bξ and the capacities of all variables, i.e., loads and other variables,
that define the term. The denominator of the fraction equals the product of the
coefficient bµ of the primary load Fµ of the output or output difference with
the load capacity (capacity definition depends on the chosen load format).
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For clarity, the verbal description of the Percent Contribution of a regression model
term for the Iterative Method is summarized in Eq. (16.13) below.

Q {Tξ} =

bξ × Capacity
{
Tξ
}

bµ × Capacity
{
Fµ

} × 100 % (16.13)

where

Tξ ≡ term of the regression model of output rFµ or Dµ

Fµ ≡ primary load related to outputs rFµ and Dµ

bξ ≡ regression coefficient of model term Tξ
bµ ≡ regression coefficient of the primary load Fµ

Again, a data set from a machine calibration of NASA’s MK34B six–component force
balance may be used to illustrate the application of the Percent Contribution whenever the
Iterative Method is used for the balance calibration data analysis. Now, the load capacities
of the balance load components are needed for the calculation of the Percent Contribution.
Table 16–2 below lists the load capacities of the balance.

Table 16–2: Load capacities of the MK34A balance (lbs ≡ pounds of force).

N1, lbs N2, lbs S1, lbs S2, lbs AF, lbs RM, in−lbs

3500 3500 1800 1800 400 5000

It was decided to compute the Percent Contribution of a term of the regression model
of the output difference of the forward side force bridge. This regression model is described
in Eq. (16.14) below assuming that Eq. (16.3c) is used to define the output difference. The

D3 = rS1−N3 = . . . + bµ · S1 + . . . + bξ ·

Tξ︷ ︸︸ ︷
(N1 · S1) + . . .︸ ︷︷ ︸

regression model of the forward side force bridge output difference

(16.14)

cross–product term N1 · S1 was chosen for the calculation of the Percent Contribution.
In the next step, the inputs for the calculation of the Percent Contribution need to be
identified. The primary load of the forward side force bridge output of a force balance is
the forward side force itself. This conclusion is summarized in Eq. (16.15a) below.

Fµ = S1 (16.15a)

Similarly, the chosen regression model term needs to be related to the terminology
that is used in Eq. (16.13) above. Equation (16.15b) may be used to describe the term.

Tξ = N1 · S1 (16.15b)
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Now, capacities used on the right–hand side of Eq. (16.13) can be assigned. The
following values are obtained:

Capacity
{
Fµ = S1

}
= 1800 lbs (16.16a)

Capacity
{
Tξ = N1 · S1

}
= 3500 lbs · 1800 lbs (16.16b)

In addition, the coefficients of (i) the primary load and of (ii) the cross–product term
were obtained from the fitted calibration data. The following values were computed:

bµ = +6.024261 E−1 (microV/V )/lbs (16.16c)

bξ = −2.785648 E−6 (microV/V )/lbs2 (16.16d)

Finally, the Percent Contribution of the term Tξ = N1 ·S1 can be computed by using
the values on the right–hand sides of Eqs. (16.16a) to (16.16d) as input on the right–hand
side of Eq. (16.13). Then, the following result is obtained:

Q {Tξ = N1 · S1} = −1.62 % (16.17)

The Percent Contribution can only be used for an objective assessment of the impor-
tance of a regression model term if its magnitude is compared with empirical thresholds.
These thresholds are discussed in detail in the next section.

16.4 Interpretation of Percent Contribution Values
The magnitude of the Percent Contribution of a regression model term needs to be

compared with thresholds in order to decide if the term’s use is critical, important, or
insignificant as far as the description of the physical characteristics of the balance is con-
cerned. The thresholds themselves may vary from analyst to analyst as these values are
typically the result of empirical observations. Nevertheless, a table of threshold values can
be assembled that may be acceptable to most analysts. These suggested thresholds and
associated interpretations are listed in Table 16–3 below.

Table 16–3: Empirical interpretation of Percent Contribution values.

Percent Contribution Interpretation

{P or Q} = 100 % reference term =⇒ most important term

0.5 % ≤ {|P | or |Q|} < 100 % very important term =⇒ term is required

0.1 % ≤ {|P | or |Q|} < 0.5 % term of minor importance =⇒ term is optional

{|P | or |Q|} < 0.1 % term of no importance =⇒ term can be omitted

{|P | or |Q|} ≈ 100 %
value is observed for second linear term if data set is
not analyzed in the design format† of the balance

†design format⇐⇒ direct–read balance data set is analyzed in direct–read format, or, force balance data

set is analyzed in force balance format, or, moment balance data set is analyzed in moment balance format.
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The thresholds were chosen based on the assumptions that (i) the standard deviation
of the fitted dependent variable is on the order of 0.1 % and (ii) the balance data set
is analyzed in the design format of the balance (see also the footnote at the bottom of
Table 16–3). Then, the primary load, primary output, or primary output difference of the
regression model becomes, by design, the single most important term. By design, it has
a Percent Contribution of 100 %. Percent Contribution magnitudes above 0.5 % belong to
a term that makes a very important contribution. A term with a Percent Contribution
magnitude between 0.1 % and 0.5 % is located in a gray zone. It may or may not be
important. Then, engineering judgement must be used to decide if the term makes an
important contribution. Finally, a term with a Percent Contribution magnitude below
0.1 % is considered insignificant. It can be omitted without negatively influencing the
balance load prediction accuracy.

It must be mentioned for completeness that pairs of Percent Contribution magnitudes
in the neighborhood of 100 % may be observed among terms of the regression models of
the outputs or output differences whenever a balance data set is not analyzed in the design
format of the balance. This situation exists, for example, if an analyst uses the Iterative
Method for the balance data analysis and processes force balance data in direct–read format.

16.5 Relationship between Percent Contributions
It was observed after applying the Non–Iterative and Iterative Method to identical

balance calibration data sets that Percent Contribution values P{Sξ} and Q{Tξ} of related
regression model terms Sξ and Tξ are similar in magnitude but opposite in sign. This
characteristic can rigorously be proven for a subset of terms if the following five assumptions
are made: (a) the balance data set is analyzed in its design format (i.e., direct–read balance
data set is analyzed in direct–read format, or, force balance data set is analyzed in force
balance format, or, moment balance data set is analyzed in moment balance format);
(b) the electrical outputs of the balance are supplied as differences between the raw output
and the natural zero of a bridge; (c) the type and number of terms of the regression model
of a primary load matches the type and number of terms of the regression model of the
related primary output; (d) the capacity of an output is assigned to be the maximum
output at load capacity; (e) the absolute value of the percent contribution of a term is
less/equal 10 % if the term is not a primary output, output difference, or load.

The proof starts by comparing an approximation of the regression model of an output
difference with the corresponding regression model of a load. First, the regression model
of the output difference, i.e., Eq. (16.11), is simplified after taking assumptions (a) and (b)
into account. Then, it is reasonable to assume that the intercept term is negligible and only
the primary load and one additional regression model term make significant contributions
on the right–hand side of Eq. (16.11). Consequently, the following approximation of the
regression model of an output difference can be made:

Dµ ≈ bµ · Fµ + bξ · Tξ (16.18a)

Now, after dividing both sides of Eq. (16.18a) by the product bµ · Fµ, we get:

Dµ

bµ · Fµ
≈ 1 +

bξ · Tξ
bµ · Fµ

(16.18b)
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We also know that the regression model term bµ is the prime sensitivity, i.e., the
partial derivative of the primary output difference Dµ with respect to the primary load
Fµ. Then, we can write:

bµ =
∂ Dµ

∂ Fµ
(16.18c)

Then, after using (i) the right–hand side of Eq. (16.18c) to replace the coefficient bµ on
the left–hand side of Eq. (16.18b) and (ii) multiplying both sides of the resulting equation
with 100 %, we get:

Dµ

(∂Dµ/∂Fµ) · Fµ
· 100 % ≈ 100 % +

bξ · Tξ
bµ · Fµ

· 100 % (16.18d)

The fraction on the right–hand side of Eq. (16.18d) becomes the Percent Contribution
Q{Tξ} of the term Tξ(F1, F2, . . . , Fn) of the regression model of the output Dµ if the
capacities of all variables, i.e., F1

?, F2
?, . . . , Dµ

?, are used on both sides of the equation
(see also Eq. (16.13)). Therefore, Eq. (16.18d) can be written as follows:

Dµ
?

(∂Dµ/∂Fµ) · Fµ?
· 100 % ≈ 100 % + Q{Tξ} (16.18e)

Numerator and denominator of the fraction on the left–hand side of Eq. (16.18e) are
identical because the numerator can be replaced by the product of the prime sensitivity
∂Dµ/∂Fµ with the capacity Fµ

? of the primary load. Therefore, the fraction on the
left–hand side of Eq. (16.18e) equals one. Then, Eq. (16.18e) can be simplified. We get:

100 % ≈ 100 % + Q{Tξ} (16.18f)

Similarly, the regression model of a load, i.e., Eq. (16.1a), can be simplified. Again, it
is reasonable to assume that (i) the intercept term is negligible and (ii) only the primary
output and one additional regression model term make significant contributions on the
right–hand side of Eq. (16.1a) if assumptions (a) and (e) are taken into account. Then,
the following approximation of the regression model of a load is obtained:

Fµ ≈ aµ ·Dµ + aξ · Sξ (16.19a)

Now, after dividing both sides of Eq. (16.19a) by the product aµ ·Dµ, we get:

Fµ
aµ · Dµ

≈ 1 +
aξ · Sξ
aµ · Dµ

(16.19b)

We also know that the regression model term aµ is the partial derivative of the primary
load Fµ with respect to the primary output Dµ. Then, we can write:

aµ =
∂ Fµ
∂ Dµ

(16.19c)
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Now, after using (i) the right–hand side of Eq. (16.19c) to replace the coefficient aµ on
the left–hand side of Eq. (16.19b) and (ii) multiplying both sides of the resulting equation
with 100 %, we get:

Fµ
(∂Fµ /∂Dµ) · Dµ

· 100 % ≈ 100 % +
aξ · Sξ
aµ ·Dµ

· 100 % (16.19d)

The last term on the right–hand side of Eq. (16.19d) becomes the percent contribution
P{Sξ} of the term Sξ(D1, D2, . . . , Dn) of the regression model of Fµ if the capacities
of all variables, i.e., D1

?, D2
?, . . . , Fµ

?, are used on both sides of the equation (see also
Eq. (16.2)). Then, Eq. (16.19d) can be written as follows:

Fµ
?

(∂Fµ /∂Dµ) · Dµ
? · 100 % ≈ 100 % + P{Sξ} (16.19e)

We also know that
(∂Fµ /∂Dµ) = 1 / (∂Dµ /∂Fµ) (16.19f)

Then, after replacing the partial derivative on the left–hand side of Eq. (16.19e) with
the right–hand side of Eq. (16.19f), we get the following result for Eq. (16.19e):

(∂Dµ/∂Fµ) · Fµ?

Dµ
? · 100 % ≈ 100 % + P{Sξ} (16.19g)

Numerator and denominator of the fraction on the left–hand side of Eq. (16.19g) are
identical because the denominator can be replaced by the product of the prime sensitivity
∂Dµ/∂Fµ with the capacity Fµ

? of the primary load. Therefore, the fraction on the
left–hand side of Eq. (16.19g) equals one. Then, Eq. (16.19g) can be simplified. We get:

100 % ≈ 100 % + P{Sξ} (16.19h)

In the next step, after multiplying the left– and right–hand sides of Eq. (16.18f) with
the left– and right–hand sides of Eq. (16.19h), we get:

(100 %)2 ≈
[

100 % + Q{Tξ}
]
·
[

100 % + P{Sξ}
]

(16.20)

In addition, after expanding the brackets on the right–hand side of Eq. (16.20), we get:

(100 %)
2 ≈ (100 %)

2
+ 100 % · Q{Tξ} + 100 % · P{Sξ} + Q{Tξ} · P{Sξ} (16.21)

Equation (16.21) can be simplified further after (i) the square of 100 % is subtracted
from both sides of the equation and (ii) the result is divided by 100 %. Then, we get

0 ≈ Q{Tξ} + P{Sξ} +
Q{Tξ} · P{Sξ}

100 %
(16.22)
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Now, after subtracting Q{Tξ} from both sides of Eq. (16.22) and observing that P{Sξ}
is a common multiplier of the last two terms on the right–hand side of Eq. (16.22), we get:

−Q{Tξ} ≈ P{Sξ} ·
[

1 +
Q{Tξ}
100 %

]
(16.23)

It is known from experience that the magnitude of the Percent Contribution for the
majority of regression model terms of real–world balance data is ≤ 10 % if a balance has
highly linear behavior and the metric is not computed for the term that is defined by the
primary output or the primary load itself (see also assumption (e) that is listed in the first
paragraph of this section). This observation can be described by the following inequality:

| Q{Tξ} | ≤ 10 % (16.24)

The absolute value of the Percent Contribution must be used on the left–hand side
of the inequality above because the Percent Contribution is either a positive or negative
quantity. Then, after using the above inequality to simplify the contents of the bracket on
the right–hand side of Eq. (16.23), we get:[

1 +
Q{Tξ}
100 %

]
≈ 1 ± 10 %

100 %
≈ 1 ± 0.1 ≈ 1 (16.25)

Finally, after substituting the bracket on the right–hand side of Eq. (16.23) with the
value of 1, i.e., with the approximation derived in Eq. (16.25), we get a direct relationship
between the Percent Contribution of a term of the primary output difference and the
Percent Contribution of the related term of the primary load:

−Q{Tξ} ≈ P{Sξ} (16.26)

The final result given in Eq. (16.26) above confirms that the Percent Contributions
Q{Tξ} and P{Sξ} of related terms of the regression models of the output differences and
loads are similar in magnitude but opposite in sign. This result is valid for the Percent
Contributions of most regression model terms of balance data as long as the absolute value
of the Percent Contribution of a term is on the order of 10 % or less.

355



356



Appendix 17

Detection of Linear Dependencies

17.1 Introduction

It is critical that a multivariate regression model of strain–gage balance calibration
data does not have linear dependencies between the chosen set of regression model terms.
Only this characteristic guarantees the existence of a unique mapping between the given
loads and electrical outputs of the balance that is needed for a reliable load prediction
during a wind tunnel test.

A numerical technique called Singular Value Decomposition (SVD) may be used for
the detection of linear dependencies in a multivariate regression model of balance cali-
bration data (see also Ref. [66], pp. 51–63, Ref. [22], p. 5, and Ref. [23], p. 3). This
technique examines characteristics of the vector space that is defined by the chosen terms
of the regression model of the given balance calibration data. SVD determines a set of
singular values for the chosen regression model terms. The minimum of this set has to
be greater than a machine–precision–dependent threshold in order to guarantee that the
chosen regression model does not have linear dependencies. Results of the Singular Value
Decomposition of a regression model may also be used during a regression model search
process to identify the Permitted Math Model. It is the largest regression model for the
given balance calibration data set that will not lead to a singular solution of the related
global regression analysis problem. Therefore, it is often used as an upper bound of the
regression models that are tested during a regression model search process.

It is helpful for a better understanding of the benefits of the application of SVD if
general characteristics of a regression model of balance calibration data are first reviewed.
Afterwards, the calculation of the regression coefficients using global regression analysis is
summarized. Then, the specific application of SVD to balance calibration data is discussed
and the linear dependency test is defined. Finally, steps associated with the application of
SVD during the identification of the Permitted Math Model are summarized.

17.2 Regression Model of Balance Calibration Data

Both the Non–Iterative and the Iterative Method use multivariate regression models
of balance calibration data for the balance load prediction during a wind tunnel test.
The author recommends to use SVD to test these regression models for the existence of
unwanted linear dependencies before the global regression analysis itself is performed.

It is useful for both the discussion of SVD and the recommended linear dependency
test to clearly identify dependent and independent variables of the regression models of the
balance calibration data that the Non–Iterative Method and the Iterative Method apply.
For example, the Non–Iterative Method directly fits load components of the balance as
a function of the bridge outputs (App. 9). Consequently, the bridge outputs are the
independent variables X1, X2, . . . of the regression model and the fitted load component is
the dependent variable Y . The Iterative Method, on the other hand, fits the bridge outputs
of the balance as a function of the load components and constructs a load iteration scheme
from the results (App. 10). In that case, the load components are the independent variables
X1, X2, . . . of the regression model and the bridge output is the dependent variable Y .

357



General characteristics of the regression model of balance calibration data are summarized
in Eq. (17.1) below where symbols c0, c1, c2, . . . are the coefficients of the regression model

Regression Model of Balance Calibration Data

Y = c0 + c1 ·X1 + c2 ·X2 + . . . + cω ·X 2
1 + . . .︸ ︷︷ ︸

δ = number of chosen regression model terms

(17.1)

Non−Iterative Method =⇒ X1, X2, . . . ≡ bridge outputs ; Y ≡ load

Iterative Method =⇒ X1, X2, . . . ≡ loads ; Y ≡ bridge output

and parameter δ describes the total number of chosen terms for the regression model
of balance calibration data. The regression coefficients are obtained by applying global
regression analysis to the balance calibration data. They describe the physical behavior of
the balance within the limitations of the applied calibration load schedule.

It is helpful for the discussion of SVD and the linear dependency test to briefly review
steps that are associated with the application of global regression analysis to balance
calibration data. Therefore, a generic solution of the regression coefficients c0, c1, c2, . . .
of the dependent variable is developed in the next section.

17.3 Global Regression Analysis
The global regression analysis problem associated with the determination of the un-

known coefficients of the chosen regression model terms of a dependent variable Y can be
expressed in matrix format if row and column vectors are used to describe Eq. (17.1). An
analyst may choose the intercept term and a subset of both linear and non–linear terms
for the regression model of the dependent variable. Then, three vectors can be defined in
Eqs. (17.2a), (17.2b), and (17.2c) below that may be used to describe the regression model
of the dependent variable in matrix format.

A1×δ = [ 1 X1 X2 . . . X 2
1 . . . ]︸ ︷︷ ︸

δ = number of chosen regression model terms

(17.2a)

xδ×1 =



c0
c1
c2
...
cω
...


(17.2b)

R1×1 = Y (17.2c)
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Now, after interpreting the dependent variable Y as a vector with a single component,
the regression model given in Eq. (17.1) above can be described by the following equivalent
matrix equation where column vector x has the coefficients of the regression model of the

A1×δ · xδ×1 = R1×1 (17.3)

dependent variable. Furthermore, it is assumed that the given balance calibration data set
consists of a total of p data points. The information contained in each data point has to
be modeled in the least squares sense by using the chosen regression model that is defined
in Eq. (17.3) above. Consequently, matrix A and vector R have to be extended from a
single data point to all data points. Then, the following relationships are obtained that
describe the entire balance calibration data set in matrix format:

A1×δ =⇒ Ap×δ =



1 X1(1) X2(1) . . . X 2
1 (1) . . .

...
...

...
...

...
...

1 X1(ν) X2(ν) . . . X 2
1 (ν) . . .

...
...

...
...

...
...

1 X1(p) X2(p) . . . X 2
1 (p) . . .


(17.4a)

R1×1 =⇒ Rp×1 =


Y (1)

...
Y (ν)

...
Y (p)

 (17.4b)

The global regression analysis problem of the given balance calibration data can be
expressed in matrix format after introducing the two equations above as extensions of the
corresponding vectors in Eq. (17.3). Then, the following description of the global regression
analysis problem is obtained:

Global Regression Analysis Problem

Ap×δ · xδ×1 = Rp×1 (17.5)

The regression coefficient set contained in vector x above is determined by solving the
global regression analysis problem that Eq. (17.5) describes. This relationship can only
have a unique, i.e., non–singular solution if the column vectors of matrix A are linearly
independent. It will be shown in the next section how SVD is used to test if matrix A
fulfills the necessary condition that its column vectors are linearly independent. Only in
that case will it be possible to successfully compute the inverse of square matrix ATA
that is needed for the calculation of the regression coefficients.
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17.4 Singular Value Decomposition
The application of SVD to a regression model of balance calibration data can more

easily be understood if matrix A of Eq. (17.4a) is described with a set A0, A1, . . . of column
vectors. The resulting alternate description of matrix A is given in Eq. (17.6a) below

Ap×δ = A
{
X1(1) , . . . , Xn(p)

}
=

[
A0 A1 . . . Ak . . . Aδ−1

]
(17.6a)

where δ equals the number of chosen regression model terms and Ak is defined as follows:

Ak =


Ak(1)

...
Ak(ν)

...
Ak(p)

 ; 0 ≤ k ≤ δ − 1 (17.6b)

Then, the four column vectors shown in Eq. (17.4a) can be described as follows:

A0 =


1
...
1
...
1

 ; A1 =


X1(1)

...
X1(ν)

...
X1(p)

 ; A2 =


X2(1)

...
X2(ν)

...
X2(p)

 ; Aω =


X 2

1 (1)
...

X 2
1 (ν)
...

X 2
1 (p)

 (17.7)

In theory, linear dependencies between the regression model terms can be identified
if SVD is applied to matrix A (Ref. [66], p. 59–63). However, more reliable results can be

obtained with real–world data if SVD is applied to an auxiliary matrix A?. It is obtained
after transforming the independent variables that define matrix A. The transformation is
specified in Eq. (17.8a) below. It sets an independent variable Xi temporarily to zero if its
magnitude is below the threshold Υi.

† Two threshold choices are listed in Eq. (17.8b). Each
threshold is the product of an empirical constant‡ with the capacity Γi of the independent
variable. The more conservative threshold is the recommended default choice.

Transformation of Independent Variables

X?
i (ν) =

{
Xi(ν) if |Xi(ν) | > Υi

0 if |Xi(ν) | ≤ Υi
;

1 ≤ i ≤ n

1 ≤ ν ≤ p
(17.8a)

where

Υi =

{
0.1× Γi =⇒ less conservative
0.2× Γi =⇒ more conservative (recommended choice)

(17.8b)

†Threshold Υi is also called Math Model Selection Threshold. It is the first threshold that a regression
model search process needs. The second threshold is defined in Eq. (17.11e).
‡ Empirical constants 0.1 and 0.2 were chosen so that supported cross–product terms are reliably iden-

tified during the application of SVD.
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The transformed matrix A? is obtained by simply using the transformed variable
values X?

1 (1), . . ., X?
n (p) instead of the original variable values X1(1), . . ., Xn(p) for the

calculation of matrix A. Then, the transformation can be summarized as follows:

A
?

= A
{
X
?
1 (1) , . . . , X

?
n (p)

}
(17.9)

Finally, singular values of the transformed matrix A? may be computed by using any
standard SVD algorithm that is described in the literature (see, e.g., Ref. [66], pp. 51–63).
The resulting singular values s1 . . . sδ are summarized in Eq. (17.10) below.

A
?

=⇒ Singular Value
Decomposition

=⇒ s1 , s2 , . . . , sk , . . . , sδ︸ ︷︷ ︸
singular values of regression model

(17.10)

The minimum of the set of singular values of the transformed matrix A? above may
be used as input for a test that assesses linear dependencies. This test is described in detail
in the next section.

17.5 Linear Dependency Test
The temporary use of transformed instead of original independent variable values was

recommended in the previous section in order to make results of the application of SVD to
the chosen regression model term combination more reliable. The minimum of the resulting
singular value set may be used as a test metric for the definition of a linear dependency
test. The test itself is summarized in Eqs. (17.11a) to (17.11e) below.

Linear Dependency Test (Φ ≡ Test Metric)

Φ = MIN
[
s1 , s2 , . . . , sk , . . . , sδ︸ ︷︷ ︸
singular values of regression model

]
(17.11a)

Φ ≥ Λ =⇒ negligible linear dependencies exist (17.11b)

Φ < Λ =⇒ unwanted linear dependencies exist (17.11c)

Φ = 0 =⇒ column vectors are linear dependent (17.11d)

where

Λ = 100 · ε and ε ≡ relative machine precision† (17.11e)

†
Upper bound on the relative error due to rounding in floating point arithmetic (see also p. 265 f.).

The test compares the minimum of the singular values with a threshold Λ that is
machine–precision–dependent (see Eq. (17.11e)). It is two orders of magnitude above the
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relative machine precision. The relative machine precision may be determined by using
the Forsythe, Malcolm, Moler algorithm (see App. 11, p. 265f.). Three different results of
the linear dependency test are possible. They need to be discussed in more detail.

First, the test metric could exceed the threshold (see Eq. (17.11b)). This result indi-
cates that the chosen regression model has negligible linear dependencies. Consequently,
the solution of the global regression analysis problem is expected to be non–singular. It is
still possible that the regression model has unwanted near–linear dependencies. Therefore,
the regression model must also be screened for near–linear dependencies before it is applied
to balance calibration data (see App. 18 for the description of a near–linear dependency
test that may be applied to the chosen regression model).

It is also possible that the test metric is less than the threshold (see Eq. (17.11c)).
This result indicates that the chosen regression model has linear dependencies. It must
not be used for the analysis of the balance calibration data unless terms responsible for
the linear dependencies are removed.

Finally, the test metric could equal zero (see Eq. (17.11d)). This case is observed
whenever (i) independent variable values are explicitly set to zero after applying Eq. (17.8a)
and (ii) linear dependencies exist. Again, this result indicates that the regression model
has linear dependencies. It must not be used for the analysis of the balance calibration
data unless terms responsible for the linear dependencies are removed.

17.6 Regression Model Search Process
A regression model search process can be defined that uses the result of the linear

dependency test as the term selection criterion. The search process identifies the largest
regression model term combination that a given balance calibration data set supports
(see also App. 19). This regression model is called Permitted Math Model. The step–by–
step identification of terms of the Permitted Math Model requires the application of the
linear dependency test each time a new term is added to an existing linearly independent
term combination. This new term is only permanently included in the existing term
combination if the test metric, i.e., the minimum of the singular values, is above the
machine–precision–dependent threshold that is defined in Eq. (17.11e). Experience showed
that the search process should start from lower to higher order terms during the step–by–
step determination of terms of the Permitted Math Model. It may also be an advantage
to exclusively assess hierarchical term combinations during the regression model search
process (see related comments in Ref. [20]).
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Appendix 18

Detection of Near–Linear Dependencies

18.1 Introduction
It is important that a multivariate regression model of strain–gage balance calibra-

tion data does not have unwanted near–linear dependencies between the chosen regression
model terms. This characteristic guarantees the existence of a unique mapping between
loads and electrical outputs of the balance that results in a reliable load prediction during
a wind tunnel test.

Objective test metrics may be used to identify and avoid unwanted near–linear de-
pendencies in a multivariate regression model of balance calibration data. The author
recommends to use the maximum of the Variance Inflation Factor set of the regression
model as a test metric for the detection of near–linear dependencies (see, e.g., the descrip-
tion of Method 2 in Ref. [20]; Method 2 is identical with the approach that is recommended
in this appendix). This maximum is compared with empirical thresholds in order to assess
the level of near–linear dependencies. The application of the Variance Inflation Factor
(VIF) as a test metric has two major advantages: (i) the metric can easily be computed
for a regression model of balance calibration data; (ii) the metric may be used as input
for a regression model search process that needs to avoid regression models with unwanted
near–linear dependencies during the search.

Basic characteristics of a multivariate regression model of balance calibration data are
reviewed in the next section. Then, the application of global regression analysis to balance
calibration data is summarized. These explanations are needed for a better understand-
ing of the determination of the Variance Inflation Factor set of a regression model and
the proposed near–linear dependency test. Finally, it is indicated how the test could be
implemented in a regression model search process.

18.2 Regression Model of Balance Calibration Data
Both the Non–Iterative and the Iterative Method use multivariate regression models of

balance calibration data for the balance load prediction during a wind tunnel test. These
regression models should be tested for the existence of unwanted near–linear dependencies
so that a reliable balance load prediction can be guaranteed.

It is useful for the discussion of both the near–linear dependency test and the Vari-
ance Inflation Factor to identify independent and dependent variable sets of the balance
calibration data that the Non–Iterative Method and the Iterative Method use for the data
analysis. The Non–Iterative Method, for example, directly fits load components of the
balance as a function of the electrical outputs of the balance bridges (see App. 9). Con-
sequently, the load component is the dependent variable Y and the electrical outputs of
the bridges are the independent variables X1, X2, X3, . . . of the regression model. The
Iterative Method, on the other hand, first fits electrical outputs of the balance bridges as a
function of the load components. Afterwards, a load iteration equation is constructed from
the regression coefficients of the outputs so that balance loads can be predicted from the
outputs during a wind tunnel test (see App. 10). Therefore, the Iterative Method uses the
electrical output as the dependent variable Y and the load components as the independent
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variables X1, X2, X3, . . . of the regression model. These universal characteristics of the
regression models of balance calibration data are summarized in Eq. (18.1) below where

Regression Model of Balance Calibration Data

Y = c0 + c1 ·X1 + c2 ·X2 + . . . + cω ·X 2
1 + . . .︸ ︷︷ ︸

δ = number of chosen terms

(18.1)

Non−Iterative Method =⇒ X1, X2, . . . ≡ bridge outputs ; Y ≡ load

Iterative Method =⇒ X1, X2, . . . ≡ loads ; Y ≡ bridge output

symbols c0, c1, c2, . . . are the coefficients of the regression model and parameter δ
describes the total number of regression model terms. The regression coefficients are
obtained after applying global regression analysis to a balance calibration data set that is
assumed to describe the physical behavior of the balance.

It is useful for both the discussion of the calculation of the Variance Inflation Factor
and the definition of the near–linear dependency test to briefly review steps that are
associated with the application of global regression analysis to balance calibration data.
Therefore, a generic solution of the regression coefficient set c0, c1, c2, . . . is developed in
the next section.

18.3 Global Regression Analysis
The global regression analysis problem associated with the determination of the coef-

ficients of the regression model terms of a dependent variable can be expressed in matrix
format if row and column vectors are used to describe Eq. (18.1) above. It is assumed,
for example, that an analyst chooses the intercept term and a subset of both linear and
non–linear terms for the regression model of the dependent variable. Then, the following
three vectors can be defined that may be used to obtain a description of the regression
model of the dependent variable in matrix format:

A1×δ = [ 1 X1 X2 . . . X 2
1 . . . ]︸ ︷︷ ︸

δ = number of chosen regression model terms

(18.2a)

xδ×1 =



c0
c1
c2
...
cω
...


(18.2b)

R1×1 = Y (18.2c)
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Now, after interpreting the dependent variable itself as a vector with a single compo-
nent, the regression model defined in Eq. (18.1) can be described by the following equivalent
matrix equation where column vector x has the coefficients of the regression model of the

A1×δ · xδ×1 = R1×1 (18.3)

dependent variable. Furthermore, it is assumed that the given balance calibration data
set consists of a total of p data points. The information contained in each data point is
modeled in the least squares sense by using the chosen regression model that is defined in
Eq. (18.3). Consequently, matrix A and vector R have to be extended from a single data
point to all data points in order to describe the entire balance calibration data set. Then,
we get the following relationships between the independent and dependent variables:

A1×δ =⇒ Ap×δ =



1 X1(1) X2(1) . . . X 2
1 (1) . . .

...
...

...
...

...
...

1 X1(ν) X2(ν) . . . X 2
1 (ν) . . .

...
...

...
...

...
...

1 X1(p) X2(p) . . . X 2
1 (p) . . .


(18.4a)

R1×1 =⇒ Rp×1 =



Y (1)
...

Y (ν)
...

Y (p)


(18.4b)

Finally, after introducing the two equations above as extensions in Eq. (18.3), the
global regression analysis problem of the given balance calibration data can be summarized
by the matrix equation that is defined Eq. (18.5) below. Column vector x has the regression

Global Regression Analysis Problem

Ap×δ · xδ×1 = Rp×1 (18.5)

coefficients. They are obtained after solving the regression analysis problem that Eq. (18.5)
defines. The solution is an application of the Moore–Penrose Inverse (see Ref. [64], pp. 35–
39, and Refs. [77], [78]). It is described by the following matrix equation:
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Solution of Global Regression Analysis Problem

xδ×1 =
[

AT · A
]−1
δ×δ ·

[
AT · R

]
δ×1 (18.6)

Now, the analytical relationship between the independent and dependent variables of
the given balance calibration data set is known as (i) the regression model of the dependent
variable is defined in Eq. (18.1) and (ii) the coefficients c0, c1, c2, . . . of the chosen terms
are given by the right–hand side of Eq. (18.6). However, it is still possible that the chosen
regression model has hidden near–linear dependencies that will negatively influence the
reliability of the load prediction during a wind tunnel test. They can be detected by using
the Variance Inflation Factor set of the chosen regression model. The determination of the
Variance Inflation Factor set is closely related to the description of the global regression
analysis problem of the balance calibration data. This connection is described in more
detail in the next section.

18.4 Variance Inflation Factor Set
The description of the calculation of the Variance Inflation Factor set closely follows

steps that are described in the literature (see, e.g., Ref. [68], pp. 331–335). In principle,
the Variance Inflation Factor set is derived from the original global regression analysis
problem. First, matrix A of the global regression analysis problem is expressed by using
a set of column vectors. Then, Eq. (18.4a) can be described by Eq. (18.7a) below

Ap×δ = [ A0 A1 A2 . . . Ak . . . Aδ−1 ]︸ ︷︷ ︸
intercept is assumed to be a chosen term

(18.7a)

where the individual column vectors are defined by the following relationship:

Ak =



Ak,1
...

Ak,ν
...

Ak,p

 ; 0 ≤ k ≤ δ−1 ; 1 ≤ ν ≤ p (18.7b)

The intercept term is a constant. It is not a function of the independent variable set
X1, X2, X3, . . . that is used to construct the regression model of the data. Therefore, the
intercept term is excluded from the determination of the Variance Inflation Factors. Then,
an alternate matrix J can be defined that omits the column vector A0 of the intercept
terms. This alternate matrix is used for the determination of the Variance Inflation Factors
of the chosen regression model. Matrix J can be described by the following relationship

Jp×η = [ J1 J2 . . . Jk . . . Jη ]︸ ︷︷ ︸
intercept is omitted (even if chosen)

(18.8a)
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where the number η of column vectors of J is defined in Eq. (18.8b) below. By design,

η =

{
δ − 1 . . . if intercept term is included in the regression model
δ . . . if intercept term is not used in the regression model

(18.8b)

vector Jk equals column vector Ak. Then, vector Jk can be described by Eq. (18.8c) below.

Jk = Ak =



Ak,1
...

Ak,ν
...

Ak,p

 ; 1 ≤ k ≤ η ; 1 ≤ ν ≤ p (18.8c)

In the next step, the numerical values of the column vectors Jk need to be centered
and scaled before the Variance Inflation Factor set can be computed. The centering of
the values is done by subtracting the arithmetic mean of each column vector from the
associated column vector values. Then, the centered column vectors J′k can be defined
by Eqs. (18.9a) & (18.9b) below. Now, unit scaling needs to be applied to the centered

Centered Column Vector

J′k =



J ′k,1
...

J ′k,ν
...

J ′k,p


; 1 ≤ k ≤ η (18.9a)

where

J ′k,ν = Ak,ν −
1

p

p∑
ξ=1

Ak,ξ ; 1 ≤ ν ≤ p (18.9b)

column vector values that are described in Eq. (18.9a). Therefore, each centered value is
divided by the square root of the sum of squares of the centered values of each column
vector. The resulting centered & scaled vectors are given in Eqs. (18.10a) & (18.10b) below.
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Centered & Scaled Column Vector

J′′k =



J ′′k,1
.
..

J ′′k,ν
...

J ′′k,p


; 1 ≤ k ≤ η (18.10a)

where

J ′′k,ν =
J ′k,ν√√√√ p∑

ξ=1

{
J ′k,ξ

}2

; 1 ≤ ν ≤ p (18.10b)

All centered & scaled column vectors J′′k are known at this point. These column vectors
can be assembled in an auxiliary rectangular matrix J′′ that is defined in Eq. (18.11) below.

J′′ p×η = [ J′′1 . . . J′′k . . . J′′η ]︸ ︷︷ ︸
centered & scaled column vectors

(18.11)

Now, the correlation matrix Ψ of the regression model terms of the dependent variable
can be computed. It is a square matrix that is defined as the product of the transpose of
rectangular matrix J′′ with itself. The resulting matrix is shown in Eq. (18.12) below.

Correlation Matrix of Regression Model Terms

Ψη×η = J′′
T · J′′ (18.12)

In the next step, the inverse of the correlation matrix Ψ needs to be computed in order
to obtain the Variance Inflation Factor set of the chosen regression model. This inverse
matrix and its coefficients are described in Eq. (18.13) below.
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Inverse of Correlation Matrix

Eη×η = { Ψ }−1 =



E1,1 E1,2 . . . E1,η

...
...

...
...

Ek,1 Ek,2 . . . Ek,η
...

...
...

...

Eη,1 Eη,2 . . . Eη,η

 (18.13)

Finally, the Variance Inflation Factors of the chosen regression model terms can be
identified. They are the coefficients E1,1 , E2,2 , . . . , Eη,η on the principal diagonal of the
inverse of the correlation matrix. This conclusion is summarized in Eq. (18.14) below.

Variance Inflation Factor Set

{V IF}k ≡ Ek,k ; 1 ≤ k ≤ η (18.14)

The maximum of the Variance Inflation Factor set of the chosen regression model may
be used as a test metric for the assessment of near–linear dependencies between regression
model terms. This metric is simply compared with either a literature recommended or an
empirical threshold. Details of the proposed test are described in the next section.

18.5 Near-Linear Dependency Test

The determination of the Variance Inflation Factor set of the regression model terms
was discussed in the previous section. The set’s maximum may be used to test if unwanted
near–linear dependencies exist in the regression model. The test is defined as follows:

Near–Linear Dependency Test (Φ ≡ Test Metric)

Φ = MAX
[
{V IF}1 , . . . , {V IF}η

]
(18.15a)

Φ < 10 =⇒ negligible dependencies (18.15b)

10 ≤ Φ ≤ 20 =⇒ moderate dependencies (18.15c)

20 < Φ ≤ 50 =⇒ moderate to severe dependencies (18.15d)

Φ > 50 =⇒ severe to massive dependencies (18.15e)
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In principle, the suggested near–linear dependency test compares the maximum of
the Variance Inflation Factor set with an empirical threshold. Four different cases are
distinguished in the test’s definition above.

The first case assumes that the observed test metric is below the threshold of 10
(threshold is taken from Ref. [68], p. 334). This test result means that near–linear depen-
dencies are negligible or nonexistent.

The second case assumes that the test metric is between the values of 10 and 20. This
situation is often observed for regression models of data sets that come from balances with
bi–directional output characteristics (see the discussion of this issue in App. 7). In this
case, near–linear dependencies can be described as moderate. They are not expected to
negatively influence the load prediction reliability during a wind tunnel test.

The third case assumes that the test metric is between the values of 20 and 50.
This result means that the regression model of the balance calibration data may have
moderate to severe near–linear dependencies. Now, an analyst’s subject–matter knowl-
edge must be applied in order to decide if the detected level of near–linear dependency can
be tolerated or if regression model terms need to be removed.

The fourth case assumes that the test metric exceeds the value of 50. In that case, the
regression model of the given balance calibration data has severe to massive near–linear
dependencies. The regression model must not be used for the load prediction. Instead,
regression model terms need to be removed in order to lower the test metric to a value that
is below the threshold of 50. Alternatively, it may be necessary to modify or extend the
original calibration load schedule of the balance until acceptable values of the test metric
can be obtained.

18.6 Regression Model Search Process
An analyst may be forced to remove terms from a regression model if the maximum

of its Variance Inflation Factor set exceeds the threshold of 50. Then, it is often observed
that several Variance Inflation Factors are above the threshold. Unfortunately, it is not
always obvious which term causes the unwanted near–linear dependencies. Consequently,
an analyst’s subject–matter knowledge in combination with a trial–and–error approach
may have to be used in order to identify the term that will lower the maximum of the
Variance Inflation Factor set after its removal from the regression model.

In theory, the near–linear dependency test defined in the previous section can be inte-
grated in an automated regression model search process that uses either forward addition
or backward elimination for the selection of regression model terms of balance calibration
data. Then, unwanted near–linear dependencies can directly be avoided during the model
building process if only models with negligible or moderate near–linear dependencies are
examined during the term selection. This approach was implemented in the two regression
model search algorithms that NASA’s BALFIT software tool supports (see, e.g., App. 19
and Refs. [20] and [21] for more details).

370



Appendix 19

Regression Model Search Algorithm

19.1 Introduction

The author concluded during the development of a software tool for the analysis of
strain–gage balance calibration data that it is an advantage to use an analyst’s subject–
matter knowledge in combination with objective metrics from linear algebra & statistics
for the selection of the regression model of balance calibration data. This approach makes
sure that the final regression model captures important hidden characteristics of the data
that result from both the design of the balance and the chosen calibration load schedule.
In addition, unwanted overfitting of calibration data is prevented. Consequently, highly
reliable balance load predictions can be obtained from the regression models that work
well within limitations of the given balance design and calibration load schedule.

In principle, an analyst’s subject–matter knowledge is needed for the selection of types
of regression model terms, i.e., function classes, that best model known characteristics of
the chosen balance. Linear terms, quadratic terms, and cross–product terms are typically
selected to model data of single–piece balances. Absolute value terms may have to be
included if a data set of a Task/Able balance is analyzed. This specific balance design
is known to have bi–directional outputs as the prime sensitivity of four of its six bridges
depends on the sign of the corresponding primary load component (see also App. 7).

An analyst’s knowledge may also be used to select individual regression model terms
that support known characteristics of the calibration load schedule itself. However, this
process can be very time consuming. In addition, its successful application highly depends
on an analyst’s ability to interpret loads and load combinations that were applied during the
calibration. Alternatively, it is possible to construct a regression model search algorithm
that uses metrics from linear algebra and statistics for the selection of individual regression
model terms. This approach has the advantage that the selection of individual terms no
longer depends on an analyst’s ability to interpret a given calibration load schedule.

The author developed two regression model search algorithms over the years that
are sometimes applied to multivariate strain–gage balance calibration data sets at the
NASA Ames Balance Calibration Laboratory. Key elements of the first search algorithm
are described in great detail in the literature (see, e.g., Ref. [20]). The second search
algorithm is less complex. It can more easily be implemented in a data analysis tool (see
Ref. [21]). Therefore, it was decided to include a description of the second search algorithm
in the current document. Then, the reader gets a better understanding of basic ideas that
make a term selection algorithm possible.

The second search algorithm was obtained after simplifying some parts of the first
search algorithm. Important elements of the second search algorithm are reviewed in the
next section.

19.2 Description of Second Search Algorithm

The second search algorithm was derived from the more complex first algorithm
that was originally developed for the NASA Ames Balance Calibration Laboratory (see
Refs. [20], [22], [23], [27] for details about the original algorithm). The second algorithm,
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like the first algorithm, can be used to assemble either a regression model of a load com-
ponent (Non–Iterative Method) or a regression model of an electrical output (Iterative
Method). The second algorithm also uses many of the statistical metrics and constraints
that the first algorithm applies (see Ref. [30] for a general discussion of metrics that may
be used to evaluate a regression model of experimental data). However, these metrics
and constraints are applied differently in order to reduce the total number of numerical
operations that have to be performed during the regression model search. In addition, the
second algorithm omits the search metric minimization that the first algorithm performs
(see Ref. [27] for a discussion of a search metric minimization).

The flowchart in Fig. 19–1 on p. 374 of the current document summarizes basic ele-
ments of the second search algorithm. The search starts by first selecting a combination
of math term groups (function classes) that help define a hypothetical upper limit of the
so–called Permitted Math Model (see Part 1 in Fig. 19–1). This math model is defined
as the largest regression model that leads to a non–singular solution of the least squares
fit of the data. In general, an analyst should select the math term group combination by
taking design characteristics of the given balance into account. The chosen combination
may consist, for example, of linear terms, cross–product terms, quadratic terms, and abso-
lute value terms if (i) a data set of a balance with bi–directional outputs is processed and
(ii) pairs of load components were loaded simultaneously during the balance calibration.
Math term group choices are listed in App. 9 (Table 9–1) for the Non–Iterative Method
and App. 10 (Table 10–1) for the Iterative Method that are suitable for the analysis of
strain–gage balance calibration data.

Not every term of the chosen term group combination may be supported by the given
balance calibration data set. Consequently, an upper bound of the Permitted Math Model
needs to be determined so that only non–singular least squares solutions of the tested
regression models are examined during the search (see Part 2 in Fig. 19–1). This require-
ment means that the chosen regression model terms must not result in linearly dependent
regressors. Therefore, a numerical technique called Singular Value Decomposition (SVD) is
applied whenever a new term is added to the Permitted Math Model (see App. 17 for more
details). Lower order terms should be added to the regression model before higher order
terms. In addition, a tested term should only be retained in the Permitted Math Model
if it is not resulting in linearly dependent regressors. The final Permitted Math Model is
known after the successful completion of the SVD process. It defines the upper bound of
all math models that the algorithm can evaluate during the regression model search.

In the next step, a search constraint is applied in order to avoid near–linear depen-
dencies in the final regression model (see Part 3 in Fig. 19–1). The constraint uses the
Variance Inflation Factor (VIF) as a test metric. The constraint expects the largest VIF
of the regression model terms to be less than an empirical threshold (see also the related
discussion in App. 18). A threshold value of 10 is recommended in the literature for the
test (see, e.g., Ref. [68], p. 111). In addition, experience showed that a threshold value
of 20 is acceptable for the evaluation of regression models of data from a balance with
bi–directional bridge outputs. Threshold values between 20 and 50 are in a gray zone and
should only be used with extreme caution. A threshold value beyond 50 must be avoided
because it would make the dependency test unreliable.

The search constraint is iteratively enforced. At first, VIFs of all terms of the Permit-
ted Math Model are computed (Step 1). Then, the term with the largest VIF is removed if
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its VIF exceeds the chosen empirical threshold (Step 2). Now, the VIFs of all terms of the
updated regression model are computed (Step 3). Step 2 and Step 3 are repeated until the
largest VIF of the remaining model is below the chosen threshold (Step 4). The remaining
model is the first estimate of the final regression model (Step 5). The author recommends
to make the first estimate hierarchical by adding missing lower order terms (see Part 4
in Fig. 19–1). The enforcement of the Hierarchy Rule guarantees that the final regression
model will correctly describe hidden offsets in the independent variables (see Ref. [20] for
a detailed discussion of the Hierarchy Rule).

Finally, the p–values of the t–statistic of all regression coefficients of the hierarchical
first estimate of the final regression model are computed (see Part 5 in Fig. 19–1). The
calculation of the p–values of the coefficients helps identify and remove statistically in-
significant terms. A term is removed from the first estimate of the final regression model
if its p–value exceeds the literature recommended threshold of 0.001 (taken from Ref. [68],
p. 85, first paragraph; some analysts prefer the more conservative threshold of 0.0001).
The p–values are processed by examining higher order terms before lower order terms. In
addition, a term is only removed if the remaining regression model remains hierarchical.
The resulting regression model is the final model that the second search algorithm suggests
to use for the regression analysis of the given balance calibration data.
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FINAL REGRESSION MODEL

PART 3: REMOVAL OF NEAR-LINEAR DEPENDENCIES (SEE ALSO APP. 18)

STEP 1: GET VARIANCE INFLATION FACTORS (VIFs) OF PERMITTED MATH MODEL;
STEP 2: REMOVE MATH TERM OF THE LARGEST VIF IF ITS VIF EXCEEDS THRESHOLD;
STEP 3: COMPUTE VIFs OF THE UPDATED MATH MODEL AFTER THE TERM IS REMOVED; 
STEP 4: REPEAT STEPS 2 & 3 UNTIL THE LARGEST VIF IS BELOW THE THRESHOLD;
STEP 5: USE REMAINING MATH MODEL AS FIRST ESTIMATE OF FINAL MATH MODEL.

PART 5: REMOVAL OF STATISTICALLY “INSIGNIFICANT” MATH TERMS

STEP 1: DETERMINE P-VALUES OF T-STATISTIC OF ALL REGRESSION MODEL TERMS
OF THE “HIERARCHICAL” FIRST ESTIMATE.

STEP 2: REMOVE TERMS FROM FIRST ESTIMATE THAT EXCEED P-VALUE THRESHOLD.
- REMOVAL IS PERFORMED FROM HIGHER ORDER TO LOWER ORDER TERMS 
- TERM IS ONLY REMOVED IF REGRESSION MODEL REMAINS “HIERARCHICAL”

PART 2: REMOVAL OF LINEAR DEPENDENCIES (SEE ALSO APP. 17)

USE SINGULAR VALUE DECOMPOSITION (SVD) TO GET THE PERMITTED MATH
MODEL, I.E., THE LARGEST MODEL OF THE DATA SET THAT LEADS TO A
NON-SINGULAR SOLUTION OF THE LEAST SQUARES FIT (PERMITTED MATH
MODEL DEFINES THE UPPER BOUND FOR THE REGRESSION MODEL SEARCH).

PART 1: APPLICATION OF SUBJECT-MATTER KNOWLEDGE

SELECT MATH TERM GROUP COMBINATION, I.E., FUNCTION CLASS SET, THAT
DEFINES THE HYPOTHETICAL UPPER LIMIT OF THE PERMITTED MATH MODEL.  

PART 4: APPLICATION OF THE “HIERARCHY” RULE

ADD MISSING LOWER ORDER TERMS TO FIRST ESTIMATE.

BALANCE CALIBRATION DATA SET

Fig. 19–1 Description of second regression model search algorithm.
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Appendix 20

Regression Model Term Group Simplification

20.1 Introduction

Different term groups may be used to construct a regression model of strain–gage
balance calibration data so that balance loads may be predicted from the electrical outputs
of the bridges during a wind tunnel test. For example, a user of the Non–Iterative Method
constructs term groups from the bridge outputs as this approach uses regression models
of the loads for the load prediction. Similarly, a user of the Iterative Method constructs
term groups from the balance loads as this alternate approach uses regression models of
the bridge outputs for the definition of a load iteration equation.

AIAA’s Internal Balance Technology Working Group (IBTWG) recommends a regres-
sion model term group combination for the Iterative Method that consists, superficially
viewed, of ten term groups (see Ref. [7], Eq. (3.1.3), or, App. 10, Table 10–1). However,
it can be proven that two of the ten groups, i.e., Fj · |Fk| and |Fj | · Fk, are related to each
other. They can be combined in a single group whose terms are defined as Fj · |Fk|. This
simplification is possible because the following equality is valid where Fj · |Fk| and |Fj | ·Fk
are regression model terms and αj,k, βj,k, and γj,k are regression coefficients:

n∑
j=1

n∑
k=1
k 6= j

αj,k · Fj |Fk| =
n−1∑
j=1

n∑
k=j+1

βj,k · Fj |Fk| +
n−1∑
j=1

n∑
k=j+1

γj,k · |Fj | Fk (20.1)

The relationship above simply describes the fact that the sum of all products of a
variable with the absolute value of another variable match on both sides of the equation.
In other words, it is always possible to identify a term αj,k ·Fj · |Fk| on the left–hand side
of Eq. (20.1) that matches either a term βj,k · Fj · |Fk| or a term γj,k · |Fj | · Fk on the
right–hand side. The validity of Eq. (20.1) above means that IBTWG’s regression model
of an electrical output of a balance has two groups, i.e., Fj · |Fk| and |Fj | · Fk, that are
related to each other. They must either be used together or not at all if a regression model
of an output is constructed.

20.2 Mathematical Proof

A proof of Eq. (20.1) can be developed after omitting the regression coefficients. The
coefficients can be dropped because it only needs to be shown that all combinations of
a variable with the absolute value of another variable on both sides of Eq. (20.1) match.
Consequently, we get the following alternate relationship that needs to be proven:

n∑
j=1

n∑
k=1
k 6= j

Fj · |Fk| =
n−1∑
j=1

n∑
k=j+1

Fj · |Fk| +
n−1∑
j=1

n∑
k=j+1

|Fj | · Fk (20.2)
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The rigorous proof of Eq. (20.2) above is possible with the help of simple algebraic
operations if the Kronecker delta is used to describe its left–hand side in a format that
avoids the summation constraint k 6= j. By inspection, the alternate format of the left–
hand side of Eq. (20.2) can be described by using the following relationship . . .

n∑
j=1

n∑
k=1
k 6= j

Fj · |Fk| =
n∑
j=1

n∑
k=1

( 1 − δjk ) · Fj · |Fk| (20.3a)

where

Kronecker delta =⇒ δjk =

{
0 if j 6= k
1 if j = k

(20.3b)

Then, after replacing the left–hand side of Eq. (20.2) with the right–hand side of
Eq. (20.3a), we get the following modified version of Eq. (20.2):

left−hand side︷ ︸︸ ︷
n∑
j=1

n∑
k=1

(1− δjk) · Fj · |Fk| =

right−hand side︷ ︸︸ ︷
n−1∑
j=1

n∑
k=j+1

Fj · |Fk| +
n−1∑
j=1

n∑
k=j+1

|Fj | · Fk (20.4)

The proof of Eq. (20.4) applies the following basic strategy: the left–hand side of
Eq. (20.4) is exclusively modified until all terms on the right–hand side of Eq. (20.4) are
obtained. The proof starts by first expanding the round brackets on the left–hand side of
Eq. (20.4). Then, we get the relationship shown in Eq. (20.5) below where symbol L is

left−hand side︷ ︸︸ ︷
n∑
j=1

n∑
k=1

(1− δjk) · Fj · |Fk| =

left−hand side︷ ︸︸ ︷
n∑
j=1

n∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 1

−
n∑
j=1

n∑
k=1

δjk · Fj · |Fk|︸ ︷︷ ︸
Summation 2

= L (20.5)

used to abbreviate the left–hand side of Eq. (20.4) for later use. Now, terms shown between
the two equal signs of Eq. (20.5) above need to be modified until the right–hand side of
Eq. (20.4) is obtained. Then, the proof will be completed.

Summation 1 of Eq. (20.5) above can be split into a double sum and a single sum after
treating terms associated with the condition j = n separately. Then, we get the following
alternate version of Summation 1 of Eq. (20.5):

n∑
j=1

n∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 1

=
n−1∑
j=1

n∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 3

+
n∑
k=1

Fn · |Fk| (20.6a)
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Summation 3 on the right–hand side of Eq. (20.6a) can be split into two parts. Then,
we get the following alternate version of Eq. (20.6a):

n∑
j=1

n∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 1

=
n−1∑
j=1

 j∑
k=1

Fj · |Fk| +
n∑

k=j+1

Fj · |Fk|


︸ ︷︷ ︸

Summation 3

+
n∑
k=1

Fn · |Fk| (20.6b)

Now, after expanding the brackets on the right–hand side of Eq. (20.6b), we get:

n∑
j=1

n∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 1

=

n−1∑
j=1

j∑
k=1

Fj · |Fk| +

n−1∑
j=1

n∑
k=j+1

Fj · |Fk| +

n∑
k=1

Fn · |Fk|︸ ︷︷ ︸
Summation 4

(20.6c)

The index of Summation 4 on the right–hand side of Eq. (20.6c) can be switched from
k to j without changing the result. Then, we get:

n∑
j=1

n∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 1

=
n−1∑
j=1

j∑
k=1

Fj · |Fk| +
n−1∑
j=1

n∑
k=j+1

Fj · |Fk| +
n∑
j=1

Fn · |Fj | (20.6d)

We also know from the Commutative Law that Fn · |Fj | equals |Fj | · Fn. Then, we get:

n∑
j=1

n∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 1

=
n−1∑
j=1

j∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 5

+
n−1∑
j=1

n∑
k=j+1

Fj · |Fk|︸ ︷︷ ︸
Summation 6

+
n∑
j=1

|Fj | · Fn (20.6e)

The order of the addition of the Summation 5 and Summation 6 on the right–hand
side of Eq. (20.6e) can be switched without changing the result. Then, we get:

n∑
j=1

n∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 1

=

n−1∑
j=1

n∑
k=j+1

Fj · |Fk|︸ ︷︷ ︸
Summation 6

+

n−1∑
j=1

j∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 5

+

n∑
j=1

|Fj | · Fn (20.6f)

It remains to simplify Summation 2 on the right–hand side of Eq. (20.5). This sum-
mation can be substituted by a single sum after realizing that the summation term of the
double sum only has a non–zero value if index j equals index k. Then, we get:

n∑
j=1

n∑
k=1

δjk · Fj · |Fk|︸ ︷︷ ︸
Summation 2

=
n∑
j=1

Fj · |Fj | (20.7a)
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The Commutative Law states that Fj · |Fj | equals |Fj | · Fj . Then, we get for Eq. (20.7a):

n∑
j=1

n∑
k=1

δjk · Fj · |Fk|︸ ︷︷ ︸
Summation 2

=
n∑
j=1

|Fj | · Fj (20.7b)

In the next step, after replacing the difference between Summation 1 and Summation 2
of Eq. (20.5) by the difference between the right–hand side of Eq. (20.6f) and the right–
hand side of Eq. (20.7b), we get the following alternate version of Eq. (20.5):

L =

n−1∑
j=1

n∑
k=j+1

Fj · |Fk| +

n−1∑
j=1

j∑
k=1

Fj · |Fk| +

Summation 7︷ ︸︸ ︷
n∑
j=1

|Fj | · Fn︸ ︷︷ ︸
Summation 1

−
n∑
j=1

|Fj | · Fj︸ ︷︷ ︸
Summation 2

(20.8)

The difference between Summation 7 and Summation 2 on the right–hand side of
Eq. (20.8) can be written in an alternate form without changing the result if the last term
of each sum is treated separately. Then, we get:

n∑
j=1

|Fj | · Fn −
n∑
j=1

|Fj | · Fj︸ ︷︷ ︸
Summation 7 − Summation 2

=


n−1∑
j=1

|Fj | · Fn + |Fn| · Fn



−


n−1∑
j=1

|Fj | · Fj + |Fn| · Fn


(20.9a)

The right–hand side of Eq. (20.9a) can be simplified. Then, we get the following equation:

n∑
j=1

|Fj | · Fn −
n∑
j=1

|Fj | · Fj︸ ︷︷ ︸
Summation 7 − Summation 2

=
n−1∑
j=1

|Fj | · Fn −
n−1∑
j=1

|Fj | · Fj (20.9b)

In the next step, after replacing the difference between Summation 7 and Summation 2
on the right–hand side of Eq. (20.8) with the right–hand side of Eq. (20.9b), we get the
following alternate version of Eq. (20.8):

L =

n−1∑
j=1

n∑
k=j+1

Fj · |Fk| +

n−1∑
j=1

j∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 8

+

n−1∑
j=1

|Fj | · Fn −
n−1∑
j=1

|Fj | · Fj︸ ︷︷ ︸
Summation 7 − Summation 2

(20.10)

Summation 8 on the right–hand side of Eq. (20.10) above can be rewritten by using a
universally applicable relationship that describes how dependent indices of a double sum
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are to be interchanged (see Ref. [72], Section 3.5.2, Fact 8). This relationship can be
expressed as follows after (i) both the sides of the original equation given in Ref. [72] are
switched, (ii) index i is replaced by index k, and (iii) the symbol of the upper limit n is
replaced by the alternate generic symbol ψ:

Ref. [72], Section 3.5.2, Fact 8 =⇒
ψ∑
j=1

j∑
k=1

ϕ(j, k) =

ψ∑
k=1

ψ∑
j=k

ϕ(j, k) (20.11a)

The symbol ϕ(j, k) above represents a summation term that depends on two indices.
Then, after (i) applying the generic relationship defined in Eq. (20.11a) to Summation 8
on the right–hand side of Eq. (20.10) and (ii) replacing the generic upper bound ψ of the
summations with n− 1, we get:

n−1∑
j=1

j∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 8

=

n−1∑
k=1

n−1∑
j=k

Fj · |Fk| (20.11b)

Indices used on the right–hand side of Eq. (20.11b) can be switched without changing
the result. Then, we get:

n−1∑
j=1

j∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 8

=
n−1∑
j=1

n−1∑
k=j

Fk · |Fj | (20.11c)

It is known from the Commutative Law that Fk · |Fj | equals |Fj | ·Fk on the right–hand
side of Eq. (20.11c). Then, we get the following alternate form of Eq. (20.11c):

n−1∑
j=1

j∑
k=1

Fj · |Fk|︸ ︷︷ ︸
Summation 8

=

n−1∑
j=1

n−1∑
k=j

|Fj | · Fk (20.11d)

Now, the right–hand side of Eq. (20.11d) can be used to replace Summation 8 on the
right–hand side of Eq. (20.10). Then, we get the following alternate form of Eq. (20.10):

L =
n−1∑
j=1

n∑
k=j+1

Fj · |Fk| +
n−1∑
j=1

n−1∑
k=j

|Fj | · Fk︸ ︷︷ ︸
Summation 8

+
n−1∑
j=1

|Fj | · Fn −
n−1∑
j=1

|Fj | · Fj (20.12)

The outer summation of the last three sums on the right–hand side of Eq. (20.12) is
identical. Therefore, the last three sums can be combined. Then, we get the following
alternate form of Eq. (20.12):

L =
n−1∑
j=1

n∑
k=j+1

Fj · |Fk| +
n−1∑
j=1


n−1∑
k=j

|Fj | · Fk︸ ︷︷ ︸
Summation 9

+ |Fj | · Fn − |Fj | · Fj

 (20.13)
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Summation 9 on the right–hand side of Eq. (20.13) above can be expressed in a
different form after both the lower and upper bounds of the summation are shifted by one.
Then, by inspection, the following relationship applies:

n−1∑
k=j

|Fj | · Fk︸ ︷︷ ︸
Summation 9

=
n∑

k=j+1

|Fj | · Fk︸ ︷︷ ︸
Summation 10

− |Fj | · Fn + |Fj | · Fj (20.14)

Now, after solving the above equation for Summation 10, we get:

n∑
k=j+1

|Fj | · Fk︸ ︷︷ ︸
Summation 10

=
n−1∑
k=j

|Fj | · Fk︸ ︷︷ ︸
Summation 9

+ |Fj | · Fn − |Fj | · Fj (20.15)

It is observed that the right–hand side of Eq. (20.15) matches all terms that are given
inside the square brackets on the right–hand side of Eq. (20.13). Therefore, Summation 10
can be used to replace the contents of the square brackets on the right–hand side of
Eq. (20.13). Then, Eq. (20.13) takes on the following form:

L =
n−1∑
j=1

n∑
k=j+1

Fj · |Fk| +
n−1∑
j=1

n∑
k=j+1

|Fj | · Fk (20.16)

It can be seen that the right–hand side of Eq. (20.16) matches the right–hand side
of Eq. (20.4). Therefore, the proof of Eq. (20.4) is completed. In addition, we know that
Eq. (20.4) equals Eq. (20.2). Therefore, the validity of Eq. (20.1) was proven as Eq. (20.1)
and Eq. (20.2) only differ by the fact that each summation term is multiplied by a constant.

It should be mentioned that individual terms on the left– and right–hand sides of
Eq. (20.1) match. However, the summation order differs. Therefore, users of the Iterative
Method must continue to use the two term groups Fj · |Fk| and |Fj | ·Fk on the right–hand
side of Eq. (20.1) for the regression model definition of an electrical output. This approach
guarantees that the chosen term order is compatible with the standard term order that
AIAA’s IBTWG first established in 2003 (Ref. [7], p. 12, Eq. (3.1.3)). However, any new
implementation of the Non–Iterative Method in the data system of a wind tunnel can
take advantage of the simplification that the left–hand side of Eq. (20.1) describes as no
industry–wide standard for implementation & use of the Non–Iterative Method exists.

380



Appendix 21

Load Iteration Equation for Extended Variable Sets

21.1 Introduction
It is demonstrated in the literature that the Iterative Method can be used in combina-

tion with an extended set of independent variables for the balance load prediction (see the
discussions in Ref. [13] and Ref. [38]). The extended variable set consists of (i) the balance
loads and (ii) additional independent variables that influence the electrical outputs of the
balance bridges. The balance temperature or the bellows pressure of an air balance may be
interpreted as an additional independent variable. The additional independent variables
have to be introduced as both independent and dependent variables in order to make the
load iteration equation work. Then, it is possible to fulfill the fundamental requirement
that the number of independent and dependent variables of a strain–gage balance data set
must match.

It is helpful to demonstrate the use of an extended variable set with the Iterative
Method by using an example. Therefore, the balance temperature is chosen as the addi-
tional independent variable for the load prediction. It is best to quantify the temperature
as the difference between the uniform balance temperature and a suitable reference tem-
perature. The new independent variable, i.e., the temperature difference, can be described
by Eq. (21.1) below where T is the balance temperature and T◦ is the chosen reference

∆T = T − T◦ (21.1)

temperature. The reference temperature often equals the calibration temperature of the
balance. Ideally, the reference temperature should be located within the range of all
temperatures that the balance is expected to experience during the wind tunnel test.

In principle, the extended variable set of the balance can be used with both load itera-
tion equation types that support the application of the Iterative Method. Definitions of the
two load iteration equation choices are given in App. 10 (see Eqs. (10.27a) and (10.31a)).
The use of the extended variable set with the Iterative Method becomes possible after
making a few changes to the data analysis software that (i) analyzes balance calibration
data and (ii) computes balance loads during a wind tunnel test. These changes are briefly
summarized in the following three paragraphs. More detailed explanations are provided
in a later section.

• The analysis software must be able to process a regression model of a bridge output
that is constructed from an extended set of independent variables. Existing software often
only supports a six–component balance. In that case, the software must be modified to
generate a data reduction matrix that uses 7 independent and dependent variables because
the temperature difference must be added to both the load and bridge output set.

• The analysis software must be able to automatically assign coefficients of the re-
gression model of the additional dependent variable. All numerical values of the additional
dependent variable must exactly match all numerical values of the additional independent
variable. The regression coefficient of this matching independent variable must be set to
one. The coefficients of all other terms of the regression model of the additional dependent
variable must be set to zero.
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• The analysis software must be able to read and interpret an extended data reduction
matrix format so that balance loads can be predicted during a wind tunnel test from (i) the
measured strain–gage outputs and (ii) the measured values of the additional independent
variable, i.e., of the temperature difference.

At this point, the extended variable set is defined. It remains to describe the imple-
mentation of some of the data analysis requirements in more detail.

21.2 Extended Variable Sets and Regression Models
The use of the temperature difference as both an independent and dependent variable

for the definition of the load iteration equation is supported by the interpretation of the
balance temperature as a state variable. This interpretation can be better understood if
the balance is placed inside of the control volume that is shown in Fig. 21–1 below (see
also pp. 10–14, Ref. [8], and Ref. [9] for more details). The inputs into the control volume

• UNIFORM BALANCE TEMPERATURE IS A “STATE” VARIABLE, I.E., IT IS 
NEITHER AN INPUT NOR AN OUTPUT VARIABLE OF THE CONTROL VOLUME.

• TEMPERATURE IS NEEDED TO DESCRIBE/SPECIFY BOTH THE APPLIED 
LOADS AND THE MEASURED ELECTRICAL OUTPUTS OF THE BALANCE.

WIRE
HARNESS 

“OUTPUTS” = ELECTRICAL OUTPUTS OF THE BALANCE BRIDGES

REACTION LOADS 
(EQUAL IN MAGNITUDE BUT OPPOSITE 
IN SIGN TO THE APPLIED LOADS)

CONTROL VOLUME BOUNDARY

TRANSITIONAL ZONE METRIC PART NON-METRIC
PART

“INPUTS” = APPLIED LOADS THAT ACT ON THE METRIC PART

Fig. 21–1 Input, output, and state variables of the control volume of a balance.

are the applied loads that act on the metric part of the balance. The outputs are the
measured electrical outputs at the balance bridges. The balance itself remains at a constant
uniform temperature as long as no temperature gradient exists across the control volume
boundary. Then, the temperature can be interpreted as a variable that describes the state
of the balance while (i) loads are applied to the metric part and (ii) electrical outputs are
measured at the balance bridges. In other words, the temperature, or, more precisely, the
temperature difference is a state variable that accompanies both the description of the
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applied loads and measured electrical outputs of the balance. The resulting extended set
of independent variables of an n–component balance can be defined as follows:

extended set of independent variables : F1, F2, . . . , Fn, Fn+1︸ ︷︷ ︸
n+1 independent variables

F1, F2, . . . , Fn =⇒ load components of n−component balance

Fn+1 = ∆T =⇒ temperature difference, defined in Eq. (21.1)

The extended variable set consists of (i) the total number of loads of the balance and
(ii) the temperature difference. It is possible to describe the extended set of independent
variables of the balance by using the following equation:

independent variable set =⇒ Fi =

{
Fi . . . for . . . i ≤ n
∆T . . . for . . . i = n + 1

(21.2)

Similarly, the extended set of dependent variables of an n–component balance can
be defined. It consists of (i) the electrical outputs of the balance bridges and (ii) the
temperature difference. This conclusion can be summarized as follows:

extended set of dependent variables : D1, D2, . . . , Dn, Dn+1︸ ︷︷ ︸
n+1 dependent variables

D1, D2, . . . , Dn =⇒ bridge output differences of n−component balance

Dn+1 = ∆T =⇒ temperature difference, defined in Eq. (21.1)

It is possible to describe the extended set of dependent variables of the balance by
using the following equation:

dependent variable set =⇒ Di =

{
rFi −Ni . . . for . . . i ≤ n

∆T . . . for . . . i = n + 1
(21.3)

The extended dependent variable set consists of the total number of bridge outputs
and the temperature difference. Each dependent variable is a function of the extended
independent variable set that consists of the balance loads and the temperature difference.
Then, the extended regression model of a bridge output difference with index i can be
defined by the following equation:
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Extended Regression Model of Bridge Output Difference

Di = bi,0 + . . . + bi,n · Fn + bi,n+1 ·∆T + . . . + bi,m · |∆T 3| (21.4a)

where

1 ≤ i ≤ n′ = n + 1 (21.4b)

m = 2 · n′ · ( n′ + 2 )︸ ︷︷ ︸
taken from App. 10

(21.4c)

The coefficients of the regression model of the bridge output difference are obtained
after applying global regression analysis to the temperature–dependent balance calibration
data set. It is important to mention that the regression model described in Eq. (21.4a)
above uses the same ten term groups that are defined in Table 10–1 of App. 10. The
temperature difference ∆T is simply treated as if it would be an additional load component
Fn+1 of the balance. Consequently, the maximum number of possible coefficients of the
regression model of a bridge output difference of a six–component balance is given by the
following equation (not counting the intercept term):

n′ = 6 + 1 = 7 =⇒ Eq. (21.4c) =⇒ m = 2 · n′ · (n′ + 2) = 126 (21.5)

The number of regression model terms of a temperature–dependent six–component
balance data set is substantially smaller than 126. Many terms are simply not supported
or, if used, may cause massive near–linear dependencies between regression model terms.
The square or the cube of the temperature difference can probably not be used because
calibration data may only exist at two or three different temperatures. In addition, it
makes no sense to use terms that have the absolute value of the temperature difference as
these terms model the bi–directional behavior of an output. Then, only two temperature–
dependent terms for each output difference remain. They are (i) the term defined by the
temperature difference ∆T itself and (ii) the cross–product term Fi ∆T that is constructed
from the primary load component Fi of the bridge and the temperature difference ∆T .
The first term models the output shift of the balance bridge near zero load. The second
term describes the bridge sensitivity shift. All these observations and conclusions result in
significant regression model simplifications that can be summarized as follows:

Regression Model Simplification

Coefficients of all but two temperature–dependent terms are explicitly set to zero.
Only the coefficient of ∆T and the coefficient of Fi · ∆T are fitted during the
regression analysis of bridge output difference Di. They model the output shift near
zero load and the sensitivity shift that influence the load prediction (see App. 14).
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Equation (21.4a) describes a set of n + 1 least squares problems of the temperature–
dependent balance calibration data set. Each problem needs to be solved individually by
using, for example, the global regression analysis approach (see also App. 10). One of
the least squares problems has a trivial–but–correct solution. It is the regression model
with index n + 1 that uses the temperature difference ∆T as the dependent variable. All
coefficients of this regression model are explicitly known as the temperature difference ∆T
also appears on the right–hand side of Eq. (21.4a). In this case, all but one coefficient on
the right–hand side of Eq. (21.4a) equals zero. Only the coefficient of the regression model
term ∆T equals one. This important result can be summarized as follows:

Regression Model of Temperature Difference (trivial–but–correct)

∆T︸ ︷︷ ︸
Dn+1

= 0 + 0 · F1 + 0 · F2 + . . . + 0 · Fn + 1 · ∆T︸ ︷︷ ︸
Fn+1

+ 0 · |F1| + 0 · |F2| + . . . + 0 · F1 ·∆T + . . .

(21.6a)

or

bn+1,ϑ =

{
1 . . . for . . . ϑ = n + 1
0 . . . for . . . ϑ 6= n + 1

(21.6b)

The simple addition of the trivial–but–correct relationship defined in Eq. (21.6a) above
to the set of least squares problems given by Eq. (21.4a) makes it ultimately possible to
construct a load iteration scheme that (i) uses temperature–dependent bridge outputs as
input and (ii) does not require a modification of the load iteration equations that support
the use of the Iterative Method.

21.3 Load Iteration Equations
The load iteration equations can be constructed as outlined in App. 10 after the re-

gression analysis of each output difference is completed. Then, the Primary Load Iteration
Equation of the extended variable set can be described by using Eq. (21.7a) below if it
is assumed that bridge output differences and the temperature difference are used as in-
put for the load prediction (nomenclature was copied from App. 10, Eq. (10.27a) and
Eq. (10.34b)). The size of a vector or a matrix of the load iteration equation is specified

Primary Load
Iteration Equation

=⇒ Fξ︸︷︷︸
n′×1

=
[

C1
−1 ]︸ ︷︷ ︸

n′×n′

· D︸︷︷︸
n′×1

−
[

C1
−1C2

]︸ ︷︷ ︸
n′×(m−n′)

· H{Fξ−1}︸ ︷︷ ︸
(m−n′)×1

(21.7a)

below its symbol for reference. Similarly, the Alternate Load Iteration Equation of the
extended variable set can be described by using Eq. (21.7b) below (nomenclature was copied
from App. 10, Eq. (10.31a) and Eq. (10.34b)). Vector F of the two iteration equations has

385



Alternate Load
Iteration Equation

=⇒ Fξ︸︷︷︸
n′×1

=
[

B1
−1 ]︸ ︷︷ ︸

n′×n′

· D︸︷︷︸
n′×1

−
[

B1
−1B2

]︸ ︷︷ ︸
n′×n′

· Fξ−1︸ ︷︷ ︸
n′×1

−
[

B1
−1C2

]︸ ︷︷ ︸
n′×(m−n′)

· H{Fξ−1}︸ ︷︷ ︸
(m−n′)×1

(21.7b)

the load values and the temperature difference. It is defined in Eq. (21.8a) below. Its values
are the result of the load iteration process that the Iterative Method performs. On the

F︸︷︷︸
n′×1

=


F1

F2
...

Fn
∆T

 (21.8a)

other hand, vector D of the two iteration equations has the output differences of the
balance bridges and the temperature difference. It is defined in Eq. (21.8b) below. Its

D︸︷︷︸
n′×1

=


D1

D2
...

Dn

Dn′

 =


rF1 −N1

rF2 −N2
...

rFn −Nn

∆T

 (21.8b)

values are the input of the load iteration process that the Iterative Method performs. Again,
it must be pointed out that the temperature difference ∆T appears as a state variable in
both the independent and dependent variable sets that vectors F and D describe. This
variable format makes it possible to use the temperature difference as an input variable
for the load iteration equations.
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Appendix 22

Weighted Least Squares Fit of Balance Calibration Data

22.1 Introduction
Equations of a weighted least squares fit of balance calibration data are developed in

this appendix. This analysis approach is sometimes needed in order to increase the weight
of data points whose bridge outputs describe a single–component load.† These data points
have a significant influence on the numerical estimates of the primary bridge sensitivities.
First, basic characteristics of regression models of balance calibration data are reviewed.
Afterwards, the application of a weighted least squares fit to the data is discussed.

22.2 Regression Models of Balance Calibration Data
The regression analysis of balance calibration data of an n–component balance needs

to describe both loads and electrical outputs of the balance in a suitable format. In
addition, the balance loads F1, F2, . . . , Fn should be corrected for the combined weight of
the metric part of the balance and the calibration equipment so that all loads are described
relative to the absolute load datum of zero load. It is also best to describe the electrical
outputs of an n–component balance as differences D1, D2, . . . , Dn between a raw output
of a bridge and the corresponding natural zero. This recommended bridge output format is
summarized by Eq. (22.1) below where Di is the output difference, rFi is the raw output

Di = rFi − Ni ; 1 ≤ i ≤ n (22.1)

of the bridge, and Ni is the natural zero. A balance experiences a series of finite load states
during its calibration. They can be described by using either the tare corrected loads or the
measured bridge output differences. These loads and output differences define the input
data set for the regression analysis that results in the load prediction equations. Then,
assuming that the given calibration data set has a total of p data points, i.e., individual
load states, the input data set for the regression analysis of an n–component balance can
be summarized by the following relationship (ϕ ≡ data point index):

calibration data =⇒ Di(ϕ), Fi(ϕ) where 1 ≤ i ≤ n and 1 ≤ ϕ ≤ p

Now, regression models have to be chosen that are used to process the balance cali-
bration data set. They also define the load prediction equations. An analyst can use either
the Non–Iterative Method or the Iterative Method for the regression analysis of the balance
calibration data (see App. 9 and App. 10 for more details). First, let us assume that an
analyst uses the Non–Iterative Method for the balance load prediction. Then, balance loads
are directly fitted as a function of bridge output differences. The corresponding regression
model of a balance load component is described by Eq. (22.2) below where the symbol

Non-Iterative Method =⇒ Regression Model of Balance Load

Fi = ai,0 + ai,1 · D1 + ai,2 · D2 + . . . (22.2)

†A data point has the electrical outputs of a single–component load whenever one load component is
applied to the balance while keeping all other load components close to zero absolute load.
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Fi represents the fitted balance load component, symbols D1, D2, . . . are the bridge output
differences, and ai,0, ai,1, ai,2, . . . are the regression coefficients. Alternatively, an analyst
may choose the Iterative Method for the analysis of balance calibration data. This approach
fits the bridge output differences as a function of the balance loads. The resulting regression
model of the output difference of a balance bridge is summarized by Eq. (22.3) below where

Iterative Method =⇒ Regression Model of Output Difference

Di = bi,0 + bi,1 · F1 + bi,2 · F2 + . . . (22.3)

the symbol Di represents the fitted output difference of the bridge, symbols F1, F2, . . . are
the balance load components, and bi,0, bi,1, bi,2, . . . are the regression coefficients.

At this point, the balance calibration data and possible regression model choices have
been specified. It remains to translate this information into equations of a multivariate
least squares fit. First, the least squares problem and the solution of an ordinary least
squares fit need to be reviewed. They are a special case of a weighted least squares fit as
a weight of one is assigned to all data points during an ordinary least squares fit.

22.3 Ordinary Least Squares Fit

It is convenient to describe an ordinary least squares fit in matrix format. This
approach assembles regression model term values in a rectangular matrix A. In our ap-
plication, the number of rows of matrix A equals the total number p of calibration data
points. The number of columns of matrix A, on the other hand, equals the total number
m of regression model terms. These terms depend on the independent variables of the fit.
Values of the dependent variable are also needed for the description of an ordinary least
squares problem of the calibration data. They are assembled in a column vector R. The
number of rows of vector R equals the total number p of calibration data points. Then, the
ordinary least squares problem of the calibration data can be described by the relationship
that is given in Eq. (22.4) below. Vector x describes a column vector with m rows. It has

Ordinary Least Squares Problem

Ap×m · xm×1 = Rp×1 (22.4)

the coefficients of the regression model of the balance calibration data.

Now, the coefficients of matrix A and the components of vector R and vector x need
to be related to the two regression model choices that are defined by Eqs. (22.2) and (22.3)
above. First, matrices and vectors are described for the regression model of a balance
load component that is defined in Eq. (22.2). In that case, the tare corrected load is
interpreted as the dependent variable and the bridge output differences are interpreted as
the independent variables. Consequently, the matrices and vectors of the resulting ordinary
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least squares problem can be summarized by Eqs. (22.5a) to (22.5c) below.

Non−Iterative
Method

=⇒ outputs =⇒ Ap×m =


1 D1(1) D2(1) · · ·
1 D1(2) D2(2) · · ·
...

...
...

...

1 D1(p) D2(p) · · ·


︸ ︷︷ ︸

coefficient columns ≡ m

(22.5a)

Non−Iterative
Method

=⇒ loads =⇒ Rp×1 =


Fi(1)
Fi(2)

...

Fi(p)

 (22.5b)

Non−Iterative
Method

=⇒ coefficients =⇒ xm×1 =


ai,0
ai,1
ai,2

...

 (22.5c)

Similarly, matrix A, vector R, and vector x can be described for the regression model
of a bridge output difference that is defined in Eq. (22.3) above. In this case, the tare
corrected loads are interpreted as the independent variables and the bridge output differ-
ence is interpreted as the dependent variable. Consequently, matrices and vectors of the
resulting ordinary least squares problem can be summarized as follows:

Iterative
Method

=⇒ loads =⇒ Ap×m =


1 F1(1) F2(1) · · ·
1 F1(2) F2(2) · · ·
...

...
...

...

1 F1(p) F2(p) · · ·


︸ ︷︷ ︸

coefficient columns ≡ m

(22.6a)

Iterative
Method

=⇒ outputs =⇒ Rp×1 =


Di(1)
Di(2)

...

Di(p)

 (22.6b)

Iterative
Method

=⇒ coefficients =⇒ xm×1 =


bi,0
bi,1
bi,2

...

 (22.6c)

The solution of the ordinary least squares problem, i.e., vector x of Eq. (22.4) above,
is a well–known application of the Moore–Penrose Inverse (see Ref. [64], pp. 35–39, and
Refs. [77], [78]). It is defined by the following matrix equation:
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Solution of Ordinary Least Squares Problem

xm×1 =
[

A
T · A

]−1
m×m

·
[

A
T · R

]
m×1

(22.7)

The solution above implicitly assumes that the weighting factor wϕ of each data point
equals one. This assumption can be expressed as follows:

ordinary least squares =⇒ w1 = w2 = . . . = wϕ = . . . = wp = 1.0 (22.8)

Now, it needs to be explained how equations of an ordinary least squares problem can
be converted to corresponding equations of a weighted least squares problem.

22.4 Weighted Least Squares Fit
An analyst may want to use subject–matter knowledge in order to increase the influ-

ence of certain groups of balance calibration data points during the regression analysis.
Then, a weighted least squares fit has to be applied that assigns an individual weighting
factor to each data point (basic elements of a weighted least squares fit are described in
Ref. [68], pp. 179–183). The matrix equation of a weighted least squares problem can
easily be obtained from the equation of an ordinary least squares problem if the auxiliary
matrix W is introduced. This matrix stores the chosen weighting factors of the individual
data points on its principal diagonal. The matrix W is defined as follows:

Wp×p =


w1 0 · · · 0 0
0 w2 · · · 0 0
...

...
...

...
...

0 0 · · · wp−1 0
0 0 · · · 0 wp

 (22.9)

Now, weighting factors are introduced into the equations of an ordinary least squares
fit by simply multiplying both sides of Eq. (22.4) with matrix W. Then, the matrix
equation of a weighted least squares problem can be expressed by Eq. (22.10) below where
vector x has the regression coefficients that result from the weighted least squares fit.

Weighted Least Squares Problem

Wp×p · Ap×m · xm×1 = Wp×p · Rp×1 (22.10)

The normal equations of the weighted least squares problem are obtained by simply
multiplying both sides of Eq. (22.10) with the transpose of matrix A (see Ref. [68] for
more details and explanations). Then, we get:

normal equations =⇒ A
T

m×p · Wp×p · Ap×m · xm×1 = A
T

m×p · Wp×p · Rp×1 (22.11)
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It is useful to transform the normal equations of the weighted least squares problem to
the normal equations of an ordinary least squares problem. Then, existing computer code
can be used to solve the weighted least squares problem as long as the code was originally
developed for an ordinary least squares problem. The transformation can be done with
the help of an auxiliary matrix W that is defined in Eq. (22.12a) below:

Wp×p =



√
w1 0 · · · 0 0
0

√
w2 · · · 0 0

...
...

...
...

...

0 0 · · · √
wp−1 0

0 0 · · · 0
√
wp

 (22.12a)

The following simple relationship between matrices W and W is also valid:

Wp×p = Wp×p · Wp×p (22.12b)

Then, after matrix W in Eq. (22.11) is replaced by the right–hand side of Eq. (22.12b),
we get the following transformed normal equations of the weighted least squares problem:

A
T

m×p · Wp×p · Wp×p · Ap×m · xm×1 = A
T

m×p · Wp×p · Wp×p · Rp×1 (22.13)

It is known from operator rules of matrix algebra that WT

= W because square
matrix W only has non–zero values on its principal diagonal. In addition, we know that

A
TW = [WA]

T

. Consequently, Eq. (22.13) can be expressed as follows:

[Wp×p ·Ap×m]
T

· [Wp×p ·Ap×m] · xm×1 = [Wp×p ·Ap×m]
T

· [Wp×p ·Rp×1] (22.14)

Now, auxiliary matrix U and auxiliary vector V are introduced so that Eq. (22.14)
can be expressed in the format of an ordinary least squares problem. We get:

Up×m = Wp×p · Ap×m (22.15a)

Vp×1 = Wp×p · Rp×1 (22.15b)

Then, after using the left–hand sides of Eqs. (22.15a) & (22.15b) to replace the brackets
in Eq. (22.14), we get the normal equations of the weighted least squares fit:

U
T

m×p · Up×m · xm×1 = U
T

m×p · Vp×1 (22.16)

Finally, the solution of the weighted least squares problem, i.e., the regression co-
efficients of either the fitted load component defined in Eq. (22.2) or the fitted output
difference defined in Eq. (22.3) can be described by the following equation:

Solution of Weighted Least Squares Problem

xm×1 =
[

U
T

U
]−1
m×m

·
[

U
T

V
]
m×1

(22.17)
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The weighting factor of each individual data point of a balance calibration data set
needs to be specified so that the weighted least squares fit can be performed. Two weighting
factor definitions were developed for that purpose that are described in the next sections.

22.5 First Weighting Factor Definition
A weighting factor definition was developed that can easily be used with data points of

a balance calibration data set if the subset of single–component load series† is known. The
weighting factor definition assigns the constants 1.0 and 0.2 as weights. The value of 1.0
is assigned to data points that belong to the subset of single–component load series. This
value is also used for the zero load points, i.e., the tare points of each single–component
load series. All other data points use 0.2 as weighting factor. Equations (22.18a) and
(22.18b) below summarize the first weighting factor definition (ϕ ≡ data point index).

First Weighting Factor Definition

wϕ = 1.0 ⇐⇒
{
assign 1.0 to all data points that belong to a single–
component load series (including zero load points)

}
(22.18a)

wϕ = 0.2 ⇐⇒
{
assign 0.2 to data points that do not
belong to a single–component load series

}
(22.18b)

In theory, an increase of the percentage of single–component loads in a calibration data
set improves the accuracy of the primary sensitivities that are derived from the regression
coefficients of a global fit. Therefore, the first weighting factor definition can lead to better
numerical estimates of the primary sensitivities because data points of single–component
load series have a five times greater weighting factor than all other points.

The first weighting factor definition works well with data from calibration load sched-
ules that have characteristics of NASA Langley’s 9–point design (the design is described,
e.g., in Ref. [41], Fig. 16). The definition is also suited for the processing of data sets that
support the application of Cook’s sequential analysis approach (see App. 28, section 28.3).
It is important during the application of the first weighting factor definition to these data
set types that the weighted least squares fit is performed in combination with a tare load
iteration. The tare load iteration must use the mean zero load outputs of each load series
as the electrical description of the tare loads (see also App. 12 and App. 13).

22.6 Second Weighting Factor Definition
A weighting factor definition can be based on a count of the number of intentionally

loaded bridges of a data point. The weighting factor is constructed such that an increase
of the number of intentionally loaded bridges decreases the influence of the data point
on the regression coefficient estimates. Consequently, the influence of data points with
single–component loads increases during the regression analysis of the data.

An individual balance bridge is considered intentionally loaded if the absolute value
of the difference between raw bridge output and natural zero of a data point exceeds the
empirical threshold of 20 % of the output capacity (see also section 22.7). This conservative

† A data point of a single–component load series is obtained by applying one load component to the
balance while keeping all other load components close to zero absolute load.
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threshold guarantees that data points with small to moderate load levels always get the
highest weighting factor if the weighting factor definition is applied.

It is convenient to map weighting factor values to the fixed interval between zero and
one. Then, the second weighting factor definition can be summarized by Eqs. (22.19a) to
(22.19d) below where wϕ is the weighting factor of the data point with index ϕ and nϕ is
the number of intentionally loaded bridges of the data point. The definition below uses an
exponent to control the strength of the weighting. Three choices are listed in Eq. (22.19d).
The exponent ψ = 0 describes Equal Weighting. It results in the constant weighting

Second Weighting Factor Definition

nϕ > 0 =⇒ wϕ =

[
λϕ

MAX { λ1 , . . . , λp }

]ψ
(22.19a)

or

nϕ = 0 =⇒ wϕ = 1.0 . . . special case (22.19b)

where

λϕ = MAX { n1 , . . . , np } / nϕ (22.19c)

ψ =


0 =⇒ wϕ = 1.0 . . . Equal Weighting
2 =⇒ wϕ ≤ 1.0 . . . Weighting Method A
3 =⇒ wϕ ≤ 1.0 . . . Weighting Method B

(22.19d)

factor of 1.0 for all data points. The exponent ψ = 2 suggested itself because the square
root of the weighting factors is needed to describe the weighted least squares problem in
terms of the normal equations of an ordinary least squares problem (see Eq. (22.12a)).
This choice is called Weighting Method A. By design, an increase of the number nϕ of
loaded balance bridges decreases a data point’s weight during the regression analysis if
Weighting Method A is chosen. The exponent ψ = 3 is the third choice. This choice is
called Weighting Method B. It is similar to Weighting Method A but stronger. The special
case must be considered when the number of loaded bridges of a data point is zero. Then,
the weighting factor of the data point is set to the default value of 1.0 (see Eq. (22.19b)).

It is useful to illustrate the calculation of the weighting factors that are defined in
Eqs. (22.19a) and (22.19b). It is assumed, for example, that a six–component balance is
calibrated in force balance format. It is also assumed that the final calibration data set
consists of 500 data points and that the maximum number of intentionally loaded bridges
equals four. These calibration load schedule characteristics can be summarized as follows:

total number of data points =⇒ p = 500

maximum number of intentionally loaded bridges =⇒ MAX{n1, . . . , nϕ, . . . , n500} = 4

possible number of intentionally loaded bridges =⇒ 0 ≤ nϕ ≤ 4
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Now, all possible weighting factors of the balance calibration data set can be computed
by applying the definitions given in Eqs. (22.19a) and (22.19b) and using the exponents
ψ = 2 and ψ = 3 as input. Table 22–1 below shows corresponding weights for each possible

Table 22–1: Possible weighting factors wϕ of the balance calibration data example.

nϕ λϕ λϕ/MAX{λϕ} wϕ(ψ = 2) wϕ(ψ = 3)

0 − − (22.19b) =⇒ 1.0 (22.19b) =⇒ 1.0

1 4/1 = 4.00 4.00/4.00 = 1.00 (1.00)2 = 1.0 (1.00)3 = 1.0

2 4/2 = 2.00 2.00/4.00 = 0.50 (0.50)2 = 0.25 (0.50)3 = 0.125

3 4/3 = 1.33 1.33/4.00 = 0.33 (0.33)2 = 0.1 (0.33)3 = 0.0370

4 4/4 = 1.00 1.00/4.00 = 0.25 (0.25)2 = 0.0625 (0.25)3 = 0.015625

number of intentionally loaded bridges of a data point. The successful application of the
two weighting factor definitions to calibration data depends on an analyst’s ability to
objectively count the number of intentionally loaded bridges of each data point. This task
and its relationship to the weighting factor definitions is discussed in the next section.

22.7 Determination of Intentionally Loaded Balance Bridges

Weighting factors could be read from the calibration data input file. In that case, the
analyst must first determine the number of intentionally loaded bridges of each data point
because this information is needed for the application of either the first or second weighting
factor definition. The determination of the load status of a bridge can become complex if a
calibration data set is large. Then, it is better to include an analytical test in the analysis
software that determines if a bridge is intentionally loaded. Afterwards, test results for all
bridges could be supplied to an algorithm that determines if the data points of a load series
belong to a single–component load series. This information is needed for the application
of the first weighting factor definition. Alternatively, test results could be supplied to
an algorithm that determines the number of loaded bridges nϕ of the data point. This
information is needed for the application of the second weighting factor definition.

The analytical test of the load status of a bridge can be defined if two conditions
are fulfilled: (i) each bridge output of a data point is described as the difference between
raw bridge output and natural zero; (ii) the analyst specifies an output capacity for each
bridge. The output capacity could be, for example, the product of a preliminary estimate
of the bridge sensitivity with the capacity of the related primary load component of the
bridge. Then, the following condition may be used to test if a bridge is intentionally
loaded: A balance bridge is considered “intentionally loaded” if the absolute value of the
output difference of the bridge exceeds the threshold of 20 % of output capacity. The test
is summarized in Eq. (22.20) below where rFi is the raw output of the bridge, Ni is the
natural zero of the bridge, and rCi is the output capacity of the bridge. The test uses the

|Di(ϕ)| = | rFi(ϕ) − Ni | ≥ 0.2 × rCi =⇒ bridge is intentionally loaded (22.20)

empirical threshold of 20 % of the output capacity for the assessment of the load status of
the bridge. This choice leads to meaningful test results for most data points.
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Appendix 23

Regression Model Definition Differences

23.1 Introduction

A comparison of the term groups for the regression model of a balance load component
(App. 9, Table 9–1) with the terms groups for the regression model of a bridge output
difference (App. 10, Table 10–1) shows that the total number of all possible terms is the
same for a given balance design. However, the total number and the order of the term
groups is different. Origins of these differences need to be understood in order to justify
the use of the alternate term group order that is described in Table 9–1.

23.2 Number of Term Groups

First, the difference in the total number of term groups is examined. Table 9–1 lists
nine term groups. Table 10–1, on the other hand, lists ten term groups. The difference of
one term group comes from the fact that Table 9–1 only has a single double summation
for the product of an independent variable with the absolute value of another independent
variable (Dj · |Dk|). On the other hand, Table 10–1 has two double summations for the
same type of regression model term (Fj · |Fk| and |Fj | · Fk). The simplification of the
cross–product term groups in Table 9–1, i.e., the use of a single group Dj · |Dk| instead
of two groups Dj · |Dk| and |Dj | ·Dk, is possible because (i) the commutative law can be
applied to the second group and (ii) the result can algebraically be described by a single
double summation (see also App. 20).

23.3 Term Group Hierarchy

It is also observed that group |Dj ·Dk| comes after group Dj · |Dk| if the term group
order of Table 9–1 is compared with the term group order of Table 10–1. This group
arrangement results in a hierarchical term group order in Table 9–1 that is better suited
for use with a regression model term selection algorithm.

The importance of using a hierarchical term group order as input for a term se-
lection algorithm can be illustrated by using the hypothetical calibration data set of a
two–component balance as an example. It is assumed that the chosen balance has two
independent load components (F1 and F2) and two independent bridge output difference
measurements (D1 and D2). An analyst decided to use the Iterative Method for the load
prediction of the two–component balance. Therefore, regression models of the two inde-
pendent bridge output differences are needed so that the required load iteration equation
can be constructed (see App. 10 for more details).

An initial examination of the balance calibration data led the analyst to the conclu-
sion that the given data set only supports terms from groups 1, 2, 5, 6, 7, and 8 of Ta-
ble 10–1. Therefore, the upper bound of all possible regression models of a bridge output
difference of the two–component balance can be constructed by using the eight regression
model terms that are listed below. The terms are not in hierarchical order as the term

group 1︷ ︸︸ ︷
F1 ; F2

group 2︷ ︸︸ ︷
|F1| ; |F2|

group 5︷ ︸︸ ︷
F1 · F2

GROUP 6︷ ︸︸ ︷
|F1 · F2|

group 7︷ ︸︸ ︷
F1 · |F2|

group 8︷ ︸︸ ︷
|F1| · F2︸ ︷︷ ︸

non−hierarchical group order
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of group 6 comes before the terms of groups 7 and 8. Now, a term selection algorithm is
applied to the calibration data of the two–component balance. The algorithm is assumed
to use Singular Value Decomposition (SVD) in combination with the hierarchy rule in order
to obtain a regression model that satisfies the following two requirements: (i) the regression
model is free of linear dependencies; (ii) the regression model is hierarchical, i.e, the model
has no missing lower order terms (see, e.g., App. 19 for the description of key elements of
a typical term selection algorithm). The algorithm applies SVD during the model building
process by sequentially adding and testing terms for linear dependencies. Terms are added
in exactly the original non–hierarchical term group order, i.e., F1, F2, |F1|, . . . , |F1| ·F2,
that is given above.

The SVD analysis determined that the terms F1, F2, and |F1| are supported because
(i) the load component F1 has both positive and negative values and (ii) the load component
F2 only has positive values. The SVD analysis also led to the conclusion that the first
cross–product term, i.e., F1 · F2, is supported.

In the next step, the SVD analysis was used to test if the three remaining cross–
product terms, i.e., |F1 · F2| (group 6), F1 · |F2| (group 7), and |F1| · F2 (group 8) can be
added to the regression model. Now, as a result of the non–hierarchical term group order
used in Table 10–1, |F1 · F2| was examined first and temporarily added to the regression
model because it is linearly independent of the cross–product term F1 · F2. However, the
alternate correct term |F1|·F2 could have been used instead of |F1 ·F2|. This term exchange
is possible because |F1 ·F2| = |F1| · |F2| and |F2| = F2, i.e., the calibration data set only has
positive values of F2. Unfortunately, SVD rejected the correct term |F1| ·F2 because (i) it
was examined after term |F1 · F2| and (ii) its numerical values are identical with |F1 · F2|.
Consequently, in order to satisfy the hierarchy rule, the incorrect term |F1 ·F2| = |F1| · |F2|
is also removed because |F2| is not in the list of supported lower order terms. In addition,
the earlier rejection of the correct term |F1| ·F2 means that it will no longer be considered
as the term selection algorithm progresses.

The removal of the incorrect term |F1 ·F2| and the omission of the correct term |F1|·F2

may cause data analysis problems if the term is statistically significant. The SVD analysis
would have retained the correct term, i.e., |F1| · F2 if a hierarchical term group order
would have been used to define the regression model of the bridge output difference. This
hierarchical term group order would look as follows:

group 1︷ ︸︸ ︷
F1 ; F2

group 2︷ ︸︸ ︷
|F1| ; |F2|

group 5︷ ︸︸ ︷
F1 · F2

group 7︷ ︸︸ ︷
F1 · |F2|

group 8︷ ︸︸ ︷
|F1| · F2

GROUP 6︷ ︸︸ ︷
|F1 · F2|︸ ︷︷ ︸

hierarchical group order

In that case, the term |F1| · F2 would not have been removed as (i) the SVD analysis
would examine the term |F1| ·F2 before the term |F1 ·F2| and (ii) the two associated lower
order terms, i.e., |F1| and F2 are supported by the given calibration data.

23.4 Term Group Order Requirement
It is important for the reader to realize that a hierarchical term group order must be

enforced at all times whenever a regression model term selection algorithm uses SVD to
test for linear dependencies and the hierarchy rule is applied. Table 9–1 uses a hierarchical
term group order to define all possible terms of the regression model of a balance load
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component. Unfortunately, Table 10–1 uses a non–hierarchical term group order to define
all possible terms of the regression model of a bridge output difference.

The non–hierarchical term group order of Table 10–1 is traditionally used for the
definition of the regression model of a bridge output difference that the Iterative Method
needs for the preparation of the load iteration equation. It was originally defined by
AIAA’s Internal Balance Technology Working Group. It is the de–facto standard of the
group order for anyone who wants to use the Iterative Method for the load prediction (see
Ref. [7], p. 12, Eq. (3.1.3)). Therefore, a term index mapping procedure must be added
to an algorithm that builds the regression model of an output difference. This procedure
must make sure that the terms of groups 7 and 8 of Table 10–1 are examined before the
terms of group 6 whenever the regression model of an output difference is built.

It must be mentioned for completeness that an earlier hierarchical version of the term
group order for the Iterative Method is described in the literature. In that case, term
groups Fj · |Fk| and |Fj | · Fk of Table 10–1 come before term group |Fj · Fk| (see Ref. [6],
p. 22, Eq. (50), cross–product vectors FCP2, FCP3, and FCP4). It is unknown why the
hierarchical term group order of Ref. [6] was not adopted when AIAA’s Internal Balance
Technology Working Group defined the regression model of an electrical output that the
Iterative Method needs.
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Appendix 24

Balance Interactions

24.1 Introduction
Interactions are complex electro–mechanical phenomena that connect the acting bal-

ance loads with the observed bridge outputs. They are caused by the fact that bridges are
attached to interconnected parts of the balance. These parts are elastically deformed as
soon as the load state of the balance changes. Consequently, significant output changes
may occur on more than one bridge even if only a single load component is applied.

Two types of interactions are always superimposed whenever calibration or check loads
are applied to a balance. The first type is caused by unwanted small load misalignments
(see also App. 26). These interactions can be reduced or avoided by (i) refining the load
application process, (ii) replacing worn–out load application hardware, and (iii) improving
laboratory staff training. The second type, on the other hand, is caused by physical
characteristics of the balance. These interactions are repeatable and cannot be eliminated.
They must be quantified with interaction terms in a regression model of balance calibration
data if the highest load prediction accuracy is to be achieved.

24.2 Linear Interaction Terms
The relationship between a balance load and its interactions is primarily described

with linear interaction terms in the regression models of balance calibration data. A linear
interaction term is either an electrical output difference or a load. For example, a subset of
the output differences D1, D2, D3, . . . of the balance bridges defines the linear interaction
terms that regression models of the Non–Iterative Method need (see App. 9, Table 9–1,
term group 1). Similarly, a subset of the load components F1, F2, F3, . . . represents the
linear interaction terms that regression models of the Iterative Method use (see App. 10,
Table 10–1, term group 1).

The identification of linear interaction terms can be demonstrated with two examples.
First, it is assumed that interactions have to be described in the regression model of the aft
normal force N2 of a balance. This regression model is needed whenever the Non–Iterative
Method is applied to force balance data. It is also assumed that all outputs are formatted
as Difference Type 1, i.e., as differences relative to the natural zeros of the bridges (see
App. 6 for a discussion of output formats). Then, output difference D2 of the aft normal
force bridge is the primary bridge output of N2. The remaining five output differences,
i.e., D1, D3, D4, D5 and D6 are the linear interaction terms in the regression model of N2.
Similarly, interactions may need to be quantified in a regression model that the Iterative
Method uses for the prediction of the output difference D2 of the aft normal force bridge
of a force balance. Now, the aft normal force N2 is the primary load component of the
output difference. Therefore, the remaining five load components, i.e., N1, S1, S2, AF
and RM are the linear interaction terms in the regression model of D2.

24.3 Description of Interactions
It is suggested to use data from a single–component load series for the graphical

description of balance interactions. This choice has the advantage that single–component
loads can easily be repeated at different sites. In addition, the description is independent
of the regression models of the balance data if manual loads are processed. It works with
force, moment, and single–piece balance designs as long as (i) single–component loads exist
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in the balance data and (ii) the primary sensitivities of all balance bridges are defined.
The suggested approach can be illustrated with data from a force balance. A data set

was chosen that fulfilled three requirements: (i) the aft normal force was applied during
a load series while keeping all other load components near zero load; (ii) the first data
point of the series had outputs that were exclusively caused by tare loads; (iii) tare loads
of the series were small. With these conditions met, loads & outputs of the first data
point of the series were subtracted from the loads & outputs of the remaining data points.
Consequently, the loads were transformed to load differences. Similarly, the outputs were
transformed to output format Difference Type 2 (see also the discussion in App. 6). Finally,
the interactions, i.e., the transformed outputs of all but the aft normal force bridge can be
plotted versus the transformed aft normal force. The plot on the left–hand side of Fig. 24–1
below shows the interactions that result from the application of the aft normal force as a
single–component load. Output difference symbols D ′1, D ′3, D ′4, D ′5 and D ′6 identify the
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Fig. 24–1 Interactions & primary bridge output differences of the aft normal force.

five interactions. The plot has a characteristic “star” pattern because interactions are,
by design, zero if no load is applied. The five interactions have values between −22 and
+23 microV/V. The omitted primary bridge output difference, i.e., output difference D ′2
of the aft normal force bridge is also shown in a separate plot on the right–hand side of
Fig. 24–1. Its values vary between −885 and +900 microV/V. Therefore, it is concluded
that the interactions of the aft normal force of the chosen force balance are small when
compared with the range of the corresponding primary bridge output.

Numerical estimates of the first derivatives of the interactions with respect to a pri-
mary load component, i.e., the slopes of the five lines shown in Fig. 24–1 above can be
obtained from the balance load prediction equations. The first derivatives are the off–
diagonal coefficients of inverse matrix L−1 of the linear part of the regression coefficient
matrix that the Non–Iterative Method needs for the load prediction (L−1 is defined in
App. 9, Section 9.6). Similarly, the first derivatives are the off–diagonal coefficients of
matrix C1 that the Iterative Method uses (C1 is defined in App. 10, Section 10.6). Matrix
C1 is the inverse of matrix C1

−1 that is part of the definition of the Primary Load Iteration
Equation (see App. 10, Section 10.6, Eq. (10.27a)). A more detailed discussion of the use
of matrices L−1 and C1 is given in a later part of this appendix.

Interaction plots of the other five load components, i.e., for N1, S1, S2, AF and RM
can be generated by using the same approach that is described above for the aft normal
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force. It must be emphasized that the suggested interaction plot becomes the description of
a repeatable physical characteristic if the alignment of the balance during the application
of a load is perfect. It is like a “fingerprint” of the balance that is independent of both
calibration process and load prediction method. Therefore, an analyst can use previously
obtained interaction plots for the assessment of the quality of new calibration or check
load data sets. Any significant change of the interaction plot may indicate a misalignment
of the applied load or a hidden load path change that should be investigated.

24.4 Discussion of Examples

24.4.1 Balance Description

Two calibration data sets of NASA’s MK40A balance were selected to illustrate
both the graphical and numerical description of balance interactions. The MK40A is
a six–component force balance of Task/Able design. It measures five forces and one
moment (N1, N2, S1, S2, AF , RM). Figure 24–2 below shows the balance in its storage

Fig. 24–2 NASA’s MK40A six–component force balance.

box. The MK40A has a diameter of 2.5 inches (63 mm) and a length of 17.3 inches
(439 mm). Table 24–1 below lists load capacities of the balance. A basic calibration of the

Table 24–1: Load capacities of the MK40A force balance (lbs ≡ pounds of force).

N1, lbs N2, lbs S1, lbs S2, lbs AF , lbs RM , in−lbs

3500 3500 2500 2500 400 8000

balance was completed in 2006 at the NASA Ames Balance Calibration Laboratory. In
addition, a machine calibration was performed at Calspan in 2015 using Calspan’s Auto-
matic Balance Calibration System. Results from the two calibrations are discussed in the
following sections to illustrate benefits of the suggested description of interactions.

24.4.2 Manual Calibration Data Set of 2006

Gravity weights and a pair of rolling moment arms were used for the load application
during the manual calibration at NASA Ames. Loads and outputs of 164 data points
were recorded. They were distributed across 16 load series. Single–component loads were
applied to all load components. In addition, weights were applied at the balance moment
center so that either a normal or side force pair could be applied to the balance.

The calibration data input file was formatted such that a tare load iteration could be
performed during the analysis. Bridge output format Difference Type 1 was used during
the calibration data analysis for the description of the electrical outputs. Therefore, the
natural zeros of the balance bridges were subtracted from the raw output measurements
that were recorded for each data point during the calibration.

Figure 24–3 below shows calibration data from load series 5 and 6 as an example. In
this case, the forward side force was applied as a single–component load directly over the
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forward side force bridge. The loads are described as differences relative to the loads of
the first data point of each load series. The outputs are formatted as Difference Type 1.
Blue color identifies the applied forward side force and the related output differences of
the forward side force bridge. Red color is used to highlight outputs of all other bridges.

D1 D2 D3 D4 D5 D6

Fig. 24–3 Load & output differences of load series 5 and 6 of the manual
calibration data of 2006 if electrical outputs are formatted as Difference Type 1
(blue ≡ primary load & output; black ≡ residual load; red ≡ output difference).

The format shown in Fig. 24–3 above was used during the analysis of the calibra-
tion data. Afterwards, all outputs of the balance bridges were transformed from output
format Difference Type 1 to output format Difference Type 2 so that interactions could
be plotted as described in the previous chapter. Figure 24–4 below shows data of load
series 5 and 6 after the outputs were transformed to Difference Type 2. The last six col–
umns of Fig. 24–4 were obtained from the outputs of Fig. 24–3 by subtracting the outputs of

D1 D2 D3 D4 D5 D6‘ ‘ ‘ ‘ ‘ ‘

Fig. 24–4 Load & output differences of load series 5 and 6 of the manual
calibration data of 2006 if electrical outputs are formatted as Difference Type 2
(blue ≡ primary load & output; black ≡ residual load; red ≡ interaction).

the zero load point of the load series from all other outputs of the series. Therefore, for
example, the outputs of point P–0050 of Fig. 24–4 were obtained by subtracting the outputs

402



of point P–0046 of Fig. 24–3, i.e., the outputs of the zero load point of series 6, from the
outputs of point P–0050 of Fig. 24–3. Again, color is used in Fig. 24–4 to identify loads
and outputs. Blue color marks the applied single–component loads and related output
differences of the primary bridge. Red color identifies interactions.

Finally, interactions of the forward side force can be plotted as described in the previ-
ous chapter. Figure 24–5 below shows the graphical representation of the interactions that
are given in Fig. 24–4. The plot has the expected star pattern. The aft side force bridge
shows the largest interactions of the five bridges. This result is no surprise because the
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Fig. 24–5 Interactions of the forward side force of the MK40A force
balance that were observed during the manual calibration of 2006.

forward & aft side force bridges are located in planes that are almost parallel to each other.
The remaining four bridges show much smaller interactions.

It is possible to quantify the slopes of the lines that are shown in Fig. 24–5 above.
The slopes are obtained after processing a subset of the coefficients of the load prediction
equations that the Non–Iterative and Iterative Method obtained from the calibration data.
First, the load prediction equations of the Non–Iterative Method are examined. In this case,
slopes can be reverse–engineered from the coefficients of the linear terms of the regression
models of the six load components. This subset of thirty–six coefficients is assembled
in an auxiliary matrix L that is shown in Fig. 24–6 below. By design, matrix L uses the six

Fig. 24–6 Coefficients of matrix L ; they are the coefficients of the linear
terms of the regression models of the loads that the Non–Iterative Method uses.
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loads as dependent variables. However, the slopes shown in Fig. 24–5 above interpret the
bridge outputs as dependent variables. Therefore, numerical estimates of the slopes are
obtained by simply computing the inverse of matrix L. The coefficients of this inverse
matrix are listed in Fig. 24–7 below. The estimates of the slopes of the five lines shown

Fig. 24–7 Coefficients of matrix L−1 ; the off–diagonal values shown in
“black” color are the numerical estimates of the slopes of the interactions.

in Fig. 24–5 can be found inside the red boxes that are visible in Fig. 24–7 above.

A similar approach may be used to obtain the slopes from the load prediction equation
of the Iterative Method. In this case, slopes must be reverse–engineered from the coeffi-
cients of the square matrix that is the “non–iterative” part of the Primary Load Iteration
Equation. This matrix is traditionally called matrix C1

−1 (see App. 10). Its thirty–six
coefficients are listed in Fig. 24–8 below. By design, matrix C1

−1 uses the six loads as de–

Fig. 24–8 Coefficients of matrix C1
−1 ; they describe the “non–iterative”

part of the load iteration equation that the Iterative Method uses.

pendent variables. However, the slopes shown in Fig. 24–5 above interpret the bridge out-
puts as dependent variables. Therefore, numerical estimates of the slopes can be obtained
by computing the inverse C1 of matrix C1

−1. The resulting coefficients of matrix C1 are
listed in Fig. 24–9 below. Again, estimates of the slopes of the five lines shown in Fig. 24–5

Fig. 24–9 Coefficients of matrix C1 ; the off–diagonal values shown in
“black” color are the numerical estimates of the slopes of the interactions.

can be found inside the red boxes that are visible in Fig. 24–9 above.

It is interesting to compare the slope estimates for the forward side force interactions
that were obtained from the coefficients of the two load prediction methods. Estimates are
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summarized in Table 24–2 below. Overall, the agreement between the estimates is very
good considering the fact that the slopes were reverse–engineered from subsets of the coef–

Table 24–2: Interaction slopes of the forward side force in units of (microV/V )/lbs.

Method ∂D ′
1 / ∂S1 ∂D ′

2 / ∂S1 ∂D ′
4 / ∂S1 ∂D ′

5 / ∂S1 ∂D ′
6 / ∂S1

Non−Iterative † +1.0380E−4 +3.4914E−3 −2.1676E−2 −2.4999E−3 +4.8744E−4

Iterative ‡ +1.1768E−4 +3.5200E−3 −2.1716E−2 −2.4336E−3 +4.7553E−4

†numerical values were copied from Fig. 24–7 ; ‡numerical values were copied from Fig. 24–9.

ficients of the load prediction equations. The connection between the estimated slopes
shown in Table 24–2 and the observed interactions listed in Fig. 24–4 can be illustrated
by directly computing the slope of the aft side force bridge output from the calibration
data subset that is shown in Fig. 24–4. This new slope estimate is obtained from the load
and output differences of data points P–0041 and P–0050. The corresponding result is
given in Eq. (24.1) below. The new slope estimate agrees almost to the third significant

∂ D ′4
∂ S1

≈
{

(−45.11) − (+50.43)
}
/
{

2 × 2200
}

= −2.17136 E−2 (24.1)

digit with the two original estimates that are listed in the fourth column of Table 24–2.

24.4.3 Machine Calibration Data Set of 2015
A machine calibration of the MK40A balance was also performed in 2015 in Calspan’s

Automatic Balance Calibration System. The calibration data set consisted of both single–
and multi–component loads. Therefore, it can be used for an alternate assessment of the
interactions of the forward side force of the MK40A balance.

A total of 2287 data points were recorded during the calibration that were distributed
across 23 load series. Single–component loads of the forward side force were applied during
load series 3. Figure 24–10 below shows data of load series 3 after the outputs were
formatted as Difference Type 2. The output differences were obtained by subtracting the

D1 D2 D3 D4 D5 D6‘ ‘ ‘ ‘ ‘ ‘

Fig. 24–10 Applied load & output differences of load series 3 of the machine
calibration data set of 2015 if the outputs are formatted as Difference Type 2
(blue≡ primary load & output; black≡ residual load; red≡ uncor. interaction).
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raw outputs of data point P–0130 from the raw outputs of all other data points of the
load series. Figure 24–11 below shows the uncorrected interactions, i.e., the red values of
Fig. 24–10 plotted versus the forward side force. It can be seen that the plot of the un–
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force bridge

‘
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Fig. 24–11 Uncorrected interactions of the forward side force of the MK40A
force balance that were observed during the machine calibration of 2015.

corrected interactions does not show the expected star pattern. It is also observed in
Fig. 24–10 that the calibration machine’s control logic applied small residual machine loads
to the balance. These residual loads are true physical loads. Black color is used in the load
columns of Fig. 24–10 for the identification of the residual loads. It is possible to remove
the effects of the small residual machine loads from the uncorrected interactions. The
resulting corrected values are the true interactions that are associated with the application
of the forward side force as a single–component load.

In theory, the true interactions, i.e., the corrected output differences of a data point
of a single–component load series are obtained after subtracting outputs associated with
the residual machine loads from the original output differences of a data point. Linear
approximations of these output corrections can be computed by using (i) the coefficients
of the linear terms of the regression models of the outputs and (ii) the residual machine
loads as input. The coefficients are contained in inverse matrix L−1 of the linear part of the
regression coefficient matrix that the Non–Iterative Method needs for the load prediction
(see App. 9, Eq. (9.15)). Similarly, the coefficients can be found in matrix C1 that the
Iterative Method uses. This matrix equals the inverse of matrix C1

−1 that is part of the
Primary Load Iteration Equation (see App. 10, Eq. (10.22a)). It is also known that matrices
L−1 and C1 are approximately equal to each other if (i) the same calibration data set is
processed, (ii) the same regression model term classes are used for the analysis, and (iii) a
tare load iteration is performed. Therefore, symbol P may be introduced to describe both
matrices. Coefficients of the linear terms of the regression models of the outputs are listed
in Eq. (24.2) below. Symbol Di represents an output difference of a bridge with index i
that is formatted as Difference Type 1. Symbol Fj is a load component with index j.
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P =



∂ D1

∂F1
. . .

∂ D1

∂Fj
. . .

∂ D1

∂F6

...
...

...
...

...

∂ Di

∂F1
. . .

∂ Di

∂Fj
. . .

∂ Di

∂F6

...
...

...
...

...

∂ D6

∂F1
. . .

∂ D6

∂Fj
. . .

∂ D6

∂F6


≈ L−1 ≈ C1 (24.2)

It is also helpful to describe the residual machine loads of a single–component load
series as the product of an auxiliary square matrix with a column vector that has the acting
machine loads of each data point. The column vector with the acting machine loads is
defined in Eq. (24.3) below. Symbol ν identifies the data point. Symbol ξ is the subscript
of the load component that is applied during the given load series.

F(ν) =



F1(ν)
...

Fξ(ν)
...

F6(ν)


(24.3)

Auxiliary square matrix Qξ is defined in Eq. (24.4) below. Its coefficients equal the
coefficients of the identity matrix with the exception of the coefficient on the principal

Qξ =



q1,1 . . . q1,j . . . q1,6
...

...
...

...
...

qi,1 . . . qi,j . . . qi,6
...

...
...

...
...

q6,1 . . . q6,j . . . q6,6

 where qi,j =

{
0 if i 6= j
0 if i = j & i = ξ
1 if i = j & i 6= ξ

(24.4)

diagonal that has the subscript ξ of the applied load component of the series. This coef-
ficient is set to zero. Now, the column vector Fres with the residual machine loads of the
data point can be described as the product of square matrix Qξ with column vector F.
Then, the following relationship is obtained:

Fres(ν) = Qξ · F(ν) (24.5)

Finally, the corrected output differences of a data point are obtained after (i) multiply-
ing matrix P with column vector Fres and (ii) subtracting the result from the uncorrected
output differences. The following relationship is obtained:
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D ′′(ν) = D ′(ν) −
linear corrections︷ ︸︸ ︷
P · Qξ · F(ν)︸ ︷︷ ︸

Fres(ν)

(24.6a)

where

D ′′(ν) =

D
′′
1 (ν)
...

D ′′6 (ν)


︸ ︷︷ ︸

corrected outputs

; D ′(ν) =

D
′
1(ν)
.
..

D ′6(ν)


︸ ︷︷ ︸
uncorrected outputs

(24.6b)

In theory, better estimates of the corrected output differences can be obtained if more
complex regression models of the outputs are used for the calculation of the corrections.
These types of regression models are generated, for example, if the Iterative Method is
applied to balance calibration data and outputs are formatted as Difference Type 1 (see
App. 10, Eq. (10.35)). However, experience showed that the linear corrections used in
Eq. (24.6a) above are sufficiently accurate for most machine calibration data sets.

The relationships described in Eqs. (24.2) to (24.6b) can easily be applied to the given
machine calibration data set. First, matrix P has to be determined from Calspan’s machine
calibration data of 2015. It was decided to apply the Non–Iterative Method to the data.
Therefore, matrix P equals the inverse of matrix L that is obtained during the analysis.
The coefficients of this matrix are listed in Fig. 24–12 below. It is observed that the most

Fig. 24–12 Coefficients of matrix P, i.e., of matrix L−1 that were obtained after
processing Calspan’s machine calibration data with the Non–Iterative Method.

important coefficients of matrix P are close to corresponding values that are given in
Fig. 24–7 for the matrix from the 2006 calibration data. Larger differences exist for the
off–diagonal values. They are expected as the calibration load schedule of 2015 had a large
number of combined loadings that were not applied during the calibration of 2006.

The forward side force is the acting single–component load of load series 3. It is the
third component of the load vector. Therefore, subscript ξ equals 3. Now, the residual
machine load vector of each data point of the load series can be assigned. The corrected
output differences are obtained after (i) multiplying matrix P with the residual machine
load vector of each data point and (ii) subtracting the resulting corrections from the
uncorrected outputs that are listed in Fig. 24–10. Figure 24–13 below shows final results
of these calculations. All residual loads of the series were set to zero because their influence
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D1 D2 D3 D4 D5 D6“ “ “ “ “ “

Fig. 24–13 Corrected load & output differences of load series 3 of the machine
calibration data set of 2015 if the outputs are formatted as Difference Type 2
(blue ≡ primary load & output; black ≡ residual load; red ≡ interaction).

on the outputs was removed. The corrected output differences, i.e., the values listed in red
color in Fig. 24–13 describe the true interactions. The output differences D ′′3 of the forward
side force bridge itself are listed in blue color. Their values also changed by a small amount
after effects of residual machine loads were removed from the original output differences.
These changes can be seen if the uncorrected outputs listed in column D ′3 of Fig. 24–10
are compared with the corrected outputs that are listed in column D ′′3 of Fig. 24–13.

Figure 24–14 below shows the true interactions of the forward side force, i.e., the red
values given in Fig. 24–13 plotted versus the forward side force. Now, the expected star
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Fig. 24–14 Interactions of the forward side force of the MK40A force
balance that were observed during the machine calibration of 2015.

pattern is observed. In addition, the interactions show excellent quantitative agreement
with interactions that are plotted in Fig. 24–5 for the manual calibration data of 2006.
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Several conclusions can be drawn. First, the interactions of the forward side force
are physical characteristics of the MK40A balance that can be repeated at different lab-
oratories as long as load alignment errors are negligible and effects of residual machine
loads are removed (if applicable). Furthermore, the excellent agreement between the two
independent sets of observed interactions confirms that the machine calibration data of
load series 3 is an accurate description of the physical behavior of the balance.

24.5 Quantification and Assessment of Interaction Differences
Differences between the interactions of the single–component loads of calibration and

check load data can be quantified and assessed if alignment errors of the calibration loads
are negligible. Then, the interactions of the calibration data become the point of reference
for the interaction assessment after they are fitted with simple second order polynomials
(for additional details see Ref. [83]). An absolute value term may be included in the simple
regression model if both positive and negative values of the load were applied. The simple
regression model of an interaction of a single–component load is defined in Eq. (24.7)
below. Each load component of a six–component balance has five interactions. Therefore,

Interaction ≡ b1 × Load + b2 × {Load }2 + b3 × |Load | (24.7)

a total number of thirty regression models are needed for the complete assessment of the
interactions of the single–component loads of the check load data.

The assessment of the interactions of check load data is done in several steps. First,
the single–component load values of the check load data are used as inputs for the simple
regression models of the interactions of the calibration data. The resulting values are the
“predicted” interactions of the check load data. Then, absolute values of the differences
between “predicted” and “observed” interactions of the check load data are computed. Fi-
nally, the largest difference for each load component is compared with empirical thresholds
to decide if the interactions meet data quality expectations. Experience showed that the
agreement between the interactions of the calibration and check load data sets is “excel-
lent” if the largest difference is less than 2.0 microV/V. The agreement is still considered
“acceptable” if the largest difference is less than 4.0 microV/V. In all other cases, a data
quality problem may exist in the check load data set that should be investigated.

The coefficients of the multivariate regression model of a bridge output are obtained
as intermediate results when the Iterative Method is used to analyze balance calibration
data. A subset of these coefficients can directly be compared with the coefficients b1, b2,
and b3 of the simple regression model of an interaction that is defined in Eq. (24.7). For
example, coefficient ∂D4 /∂S1 of the multivariate regression model of the aft side force
bridge output difference D4 of a machine calibration data set should be close to coefficient
b1 of the simple regression model of the interaction D ′′4 of the forward side force S1.
Similarly, coefficient ∂D4 /∂ (S12) of the multivariate regression model should be close to
coefficient b2 of the simple regression model of D ′′4 of the forward side force S1. The
agreement between corresponding coefficients of the two regression models is expected to
be good whenever the term from the multivariate regression model of the calibration data
is considered a “very important” term. This characteristic is fulfilled if the absolute value
of the term’s Percent Contribution exceeds 0.5 % (see also App. 16, Table 16–3, p. 351).
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Appendix 25

Universal Load Iteration Equation

25.1 Load Iteration Equation Types
The Iterative Method may be used to predict loads of an n–component strain–gage

balance during a wind tunnel test (see App. 10 for more details). This approach first fits the
electrical outputs of balance calibration data using regression models that are constructed
from the calibration loads. Afterwards, a load iteration equation is generated from the
regression models of the fitted outputs so that loads can be predicted from the measured
outputs of the balance bridges during a wind tunnel test.

Two types of load iteration equations are traditionally used in the aerospace testing
community whenever the Iterative Method is chosen for the balance load prediction. The
first type is called Primary Load Iteration Equation (see App. 10, Eq. (10.27a)). It is
defined in Eq. (25.1) below where Fξ is the load vector, ∆rF is the output difference vector,

Fξ =
[

C1
−1
]
·∆rF −

[
C1

−1 C2

]
· H(Fξ−1) (25.1)

H(Fξ−1) is a matrix that depends on the load vector Fξ−1 of the previous iteration step,

C1
−1 and C1

−1C2 are two auxiliary matrices that are obtained from the regression models
of the outputs, and ξ is the iteration step index. The second iteration equation type
is called Alternate Load Iteration Equation (see App. 10, Eq. (10.31a)). It is defined in
Eq. (25.2) below where Fξ is the load vector, ∆rF is the output difference vector, H(Fξ−1)

Fξ =
[

B1
−1
]
· ∆rF −

[
B1

−1B2

]
· Fξ−1 −

[
B1

−1C2

]
· H(Fξ−1) (25.2)

is a matrix that depends on the load vector Fξ−1 of the previous iteration step, B1
−1,

B1
−1B2, and B1

−1C2 are three auxiliary matrices that are derived from the regression
models of the outputs, and ξ is the iteration step index.

It is observed that the right–hand sides of Eq. (25.1) and Eq. (25.2) have many simi-
larities. In addition, it is known that the two equations converge to identical load vectors
as long as (i) the equations are obtained from the same regression coefficient set, (ii) the
primary sensitivities of all bridges are defined, (iii) the regression models of the outputs
do not have linear dependencies, and (iv) the influence of the higher order contributions
[ C1

−1C2 ] · H(Fξ−1) and [ B1
−1C2 ] · H(Fξ−1) is small. Therefore, it is possible to

describe the two equations with a single relationship that is derived in the next section.

25.2 Definition of a Universal Load Iteration Equation
The two load iteration equations of the Iterative Method may be combined in a single

iteration equation after the Primary Load Iteration Equation is described in a format that
is compatible with the format of the Alternate Load Iteration Equation. This goal can
be accomplished if an n × n square matrix K is introduced that is populated with zeros.
Matrix K may be described by the following equation:

K =

 0 · · · 0
...

...
...

0 · · · 0


n×n

(25.3)
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Load vector Fξ−1 has n components. Therefore, matrix K may be multiplied with
vector Fξ−1. The product equals a vector with n components that are zeros. This result is
summarized in Eq. (25.4) below. Consequently, the left–hand side of Eq. (25.4) may be

[ K ]n×n · [ Fξ−1 ]n×1 =

 0
...
0


n×1

(25.4)

subtracted from the right–hand side of Eq. (25.1) without changing the result. Then, the
Primary Load Iteration Equation can be expressed in the following format:

Fξ =
[

C1
−1
]
· ∆rF − [ K ] · Fξ−1 −

[
C1

−1C2

]
· H(Fξ−1) (25.5)

It is concluded after comparing Eq. (25.2) with Eq. (25.5) that the two load iteration
equations have three common multipliers: ∆rF, Fξ−1, and H(Fξ−1). Therefore, a sin-
gle relationship can be used to describe the two load iteration equations. The resulting
Universal Load Iteration Equation is defined in Eq. (25.6a) below. This equation was first

Universal Load Iteration Equation

Fξ = [ D0 ] · ∆rF − [ D1 ] · Fξ−1 − [ D2 ] · H(Fξ−1) (25.6a)

where

D0 =

 C1
−1 =⇒ Primary Load Iteration Equation

B1
−1 =⇒ Alternate Load Iteration Equation

(25.6b)

D1 =

 K =⇒ Primary Load Iteration Equation

B1
−1 B2 =⇒ Alternate Load Iteration Equation

(25.6c)

D2 =

 C1
−1 C2 =⇒ Primary Load Iteration Equation

B1
−1 C2 =⇒ Alternate Load Iteration Equation

(25.6d)

suggested by Thomas Bridge of Jacobs Technology. It simplifies the implementation of the
Iterative Method in the data system of a wind tunnel whenever a facility operator needs to
support both types of load iteration equations.
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Appendix 26

Assessment of an Axial Force Error

26.1 General Remarks

A misalignment of the normal or side force of a six–component strain–gage balance
during either calibration or check loading results in an unwanted force that acts in the
axial force direction. This hidden axial force changes the electrical output of the axial force
bridge. The output change could be interpreted as an interaction that is associated with
the application of the normal or side force to the balance (see also discussions in App. 24).
This type of interaction is avoidable or can be controlled as long as load alignment errors
are minimized during the application of a normal or side force.

No alignment of an applied balance force is perfect. Therefore, it is useful to estimate
the upper bound of the axial force error that results from a misaligned normal or side force.
This estimate may help an analyst to understand if an observed interaction of an axial force
bridge is a physical characteristic of the balance or if it is caused by an alignment error.
The axial force error resulting from the misalignment of the normal force of a direct–read
balance is derived in the next section as an example. Corresponding equations of the axial
force error for the side force of a direct–read balance, the two normal forces of a force
balance, or the two side forces of a force balance can be obtained by simply replacing the
normal force with the corresponding applied side or normal force component.

26.2 Axial Force Error

It is assumed that the normal force NF is applied to a balance using gravity weights.
A small misalignment occurred during the load application that is shown in Fig. 26–1
below. This misalignment is described by angle ξ that is measured relative to the z–axis of
the balance axis system. The alignment error resulted in a small axial force component δAF

Fig. 26–1 Connection between a misaligned normal force and the axial force error.
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that acted in the direction of the x–axis of the balance axis system. The absolute value of
the unwanted axial force can be described by the following relationship:

|δAF | = |NF | · sin(ξ) where ξ ≥ 0 (26.1)

A small angle approximation of sin(ξ) may be applied that simplifies the analysis
without significantly changing the error estimate. This simplification is defined as follows:

|ξ | � 1 =⇒ sin(ξ) ≈ ξrad ≈ π

180
· ξdeg (26.2)

Now, after using the right–hand side of Eq. (26.2) to replace sin(ξ) in Eq. (26.1), we get:

|δAF | ≈ |NF | · π

180
· ξdeg (26.3)

Finally, the axial force error in dimensionless form is obtained after (i) dividing both
sides of Eq. (26.3) by the capacity AFmax of the axial force and (ii) multiplying the result
by 100 %. Then, the following relationship is obtained:

Axial Force Error

|δAF |
AFmax

· 100 % ≈
{

100 % · π

180
· ξdeg

}
· |NF |
AFmax

(26.4)

Equation (26.4) above can be interpreted as a straight line with a slope that is pro-
portional to the misalignment angle. Therefore, it is possible to develop a nomograph that
may be used to quickly estimate the axial force error. The inputs of the nomograph are the
force ratio |NF |/AFmax and the alignment angle error ξdeg. The output of the nomograph
is the axial force error that is described as a percentage of the axial force capacity.

26.3 Nomograph
A nomograph for the assessment of the axial force error can be developed from

Eq. (26.4). It is only required to interpret the angle ξdeg as a constant and plot the
dimensionless axial force error versus the ratio between the absolute value of the normal
force and the axial force capacity. The resulting nomograph is shown in Fig. 26–2 below.
The nomograph illustrates the fact that the axial force error increases as the ratio between
the absolute value of an applied normal force and the axial force capacity increases. There-
fore, it is often a challenge to keep the axial force error below the accepted limit of 0.1 %
if (i) the “built–in” ratio between the normal and axial force capacities of a given balance
exceeds 10 and (ii) the normal force is applied to capacity.

An example is shown in Fig. 26–2 that demonstrates the use of the nomograph. The
example assumes that the absolute value of an applied normal force is 3680 lbs, the axial
force capacity of the balance equals 400 lbs, and the alignment angle error equals 0.014◦ .
Then, the ratio |NF |/AFmax between the absolute value of the applied normal force and
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the axial force capacity equals 9.2 . Now, the estimated axial force error of the example
can be obtained from the nomograph. It is 0.225 % of the axial force capacity.

Fig. 26–2 Nomograph for the assessment of the axial force error
that is caused by the misalignment of an applied normal force.

It has to be mentioned for completeness that the nomograph can also be used for
the assessment of the axial force error if the applied force is a side force of a direct–read
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balance, a forward/aft normal force component of a force balance, or a forward/aft side
force component of a force balance. It is only required to interpret the force ratio on the
abscissa of the nomograph as the ratio between the chosen force component and the axial
force capacity.
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Appendix 27

Load Cell Example

27.1 General Remarks
A new analysis of a simple balance calibration data example from the open literature

can be used to demonstrate connections between the load prediction equations that the
Iterative Method and Non–Iterative Method use. The example describes calibration data
of a one–component load cell (load & output values are listed in Ref. [81], p. 150). First,
analysis results are discussed that were obtained after applying the Iterative Method to the
load cell data. Afterwards, alternate results for the Non–Iterative Method are presented so
that they can be compared with corresponding results for the Iterative Method.

27.2 Iterative Method
The Iterative Method is an approach that can be used to generate the load prediction

equation of a load cell. The method first fits the electrical outputs of the load cell as
a function of the applied force. Then, a load iteration equation is constructed from the
regression model of the output so that the load cell’s force can be predicted from the
measured outputs. Equation (27.1) below defines the second order regression model of the

Regression Model of the Electrical Output

rF = c0 + c1 · F + c2 · F 2 (27.1)

electrical output of the load cell that was chosen for the application of the Iterative Method
to the calibration data example. Symbol rF describes the measured electrical output of
the load cell given in units of [mV ], symbol F describes the load cell’s force given in units
of [lbf ], and c0, c1, c2 are the regression coefficients.

Only the first eleven data points of the example were used for the new analysis of the
load cell data because this subset was chosen when the data was originally processed in
1992. The eleven data points were recorded while the load cell was in tension. In addition,
loads and outputs were increasing from one data point to the next (see Ref. [81], p. 150).
Therefore, the resulting regression model is, to some degree, load–direction–dependent.†

It works best if the force is increasing while the load cell is in tension. Equations (27.2a)
to (27.2c) below list coefficients that were computed during the regression analysis of the

intercept =⇒ c0 = −1.1888E−04 [mV ] (27.2a)

sensitivity =⇒ c1 = +3.8715E−01 [mV /lbf ] (27.2b)

coefficient of higher order term =⇒ c2 = +1.8648E−06 [mV /lbf 2 ] (27.2c)

eleven–point data subset. As expected, the computed coefficients show excellent agreement
with values that are listed in the literature (see Ref. [81], p. 150). In theory, a load iteration

†An alternate load–direction–independent description of the physical behavior of the load cell can be
obtained if all twenty–one calibration points of the data example are used for the analysis.
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equation can be constructed from Eq. (27.1) if the influence of the higher order term F 2

is small. This requirement can be tested if the term’s Percent Contribution is computed
using an equation that is given in App. 16. The load cell’s capacity Fmax is 50[lbf ]. Then,
after applying Eq. (16.13), the Percent Contribution of term F 2 is obtained. We get:

Q(F 2) =
c2 · {Fmax}2

c1 · Fmax
× 100 % =

1.8648E−06 · 502

3.8715E−01 · 50
× 100 % ≈ 0.024 % (27.3)

The Percent Contribution is very small. It is well below the threshold of 0.1% that
identifies terms of no importance (threshold is taken from Table 16–3 on p. 351). A load
iteration equation can still be derived from Eq. (27.1) even though term F 2 is not needed
for an accurate load prediction. This iteration equation may be used to illustrate basic
characteristics of the Iterative Method with simple scalar relationships.

The iteration equation of the load cell data is defined in Eq. (27.4) below. It is obtained
after subtracting c2 · F 2 from both sides of Eq. (27.1), solving the right–hand side of the
resulting equation for F , and adding iteration step indices ξ and ξ+ 1 as subscripts to the

Load Iteration Equation

Fξ+1 = (1/c1) · [ rF − c0 ] − (c2/c1) · Fξ2 (27.4)

two force symbols. Equation (27.4) has an interesting interpretation if it is compared with
the multivariate load iteration equation that Eq. (10.27a) in App. 10 defines. First, mul-
tiplier 1/c1 of Eq. (27.4) is the scalar equivalent of inverse matrix C1

−1 of Eq. (10.27a).
Similarly, multiplier c2/c1 of Eq. (27.4) is the scalar equivalent of matrix C1

−1C2 of
Eq. (10.27a). Therefore, Eq. (27.4) becomes the scalar representation of Eq. (10.27a) if a
second order polynomial is used for the analysis of the bridge outputs of a one–component
balance. Equations (27.5a) and (27.5b) below list coefficients of the load iteration equation
that were obtained from the right–hand sides of Eqs. (27.2b) & (27.2c). Tests showed that

(1 / c1) = +2.5830 E+00 [ lbf /mV ] . . . . . . . . . . . inverse of the sensitivity (27.5a)

(c2 / c1) = +4.8167 E−06 [1/lbf ] . . . scaled coefficient of higher order term (27.5b)

the convergence tolerance of 0.0001% of load capacity is met after two iterations. The
rapid convergence is expected because the term F 2 has a very small Percent Contribution.
The initial guess F0 of the force is zero. This choice can be expressed as follows:

initial guess =⇒ F0 = 0 (27.6)

Now, the first two force estimates are obtained after using Eq. (27.4) twice. Then, we get:

first estimate =⇒ F1 = (1/c1) · [ rF − c0 ] (27.7a)

second estimate =⇒ F2 = (1/c1) · [ rF − c0 ] − (c2/c1 ) · F1
2 (27.7b)
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An alternate description of the second estimate can be derived from Eq. (27.7b) after
replacing F1

2 on the right–hand side of Eq. (27.7b) with the square of the right–hand side
of Eq. (27.7a) and simplifying the result. Then, the following relationship is obtained:

Second Estimate of the Force

F2 = (1/c1) · [ rF − c0 ] − (c2/c
3
1 ) · [ rF − c0 ]2 (27.8)

By inspection, it is concluded that the second estimate of the force is a second order
polynomial of the electrical output rF of the load cell.

27.3 Non–Iterative Method
The load cell data example was also processed with the Non–Iterative Method to

demonstrate hidden connections between its load prediction equation and the iteration
equation that the Iterative Method uses for the load prediction. The application of the Non–
Iterative Method to the example was possible because the load cell’s electrical outputs are
given as differences relative to an output datum that describes zero load (see also App. 9).
Equation (27.9) below shows the second order regression model of the force that was chosen

Regression Model of the Force

F = a0 + a1 · rF + a2 · rF 2 (27.9)

for the application of the Non–Iterative Method to the load cell data. Equations (27.10a) to
(27.10c) below list coefficients that were computed during the regression analysis. Again,

intercept =⇒ a0 = +3.0772E−04 [ lbf ] (27.10a)

inverse of the sensitivity =⇒ a1 = +2.5830E+00 [ lbf /mV ] (27.10b)

coefficient of higher order term =⇒ a2 = −3.2120 E−05 [lbf /mV 2 ] (27.10c)

only the first eleven data points were used for the analysis so that the coefficients can be
compared with the coefficients of the load iteration equation.

27.4 Regression Coefficient Comparison
It is observed that the second estimate of the force from the load iterations, i.e.,

Eq. (27.8) and the regression model of the force, i.e., Eq. (27.9) are second order poly-
nomials of the electrical output rF of the load cell. Therefore, a connection must exist
between their coefficients. The intercept c0 is given in Eq. (27.2a) as −1.1888E−04[mV ].
It is −0.00059% of the load cell’s output range of 20[mV ] (range estimate was taken from
Ref. [81], p. 150). Similarly, intercept a0 is listed in Eq. (27.10a) as +3.0772E−04[ lbf ]. It
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is 0.00062% of the load cell’s capacity of 50[lbf ]. It is concluded that both intercepts are
very small. Therefore, they can be omitted. Then, after replacing c0 in Eq. (27.8) with
zero and dropping the iteration step index, we get:

Eq. (27.8) =⇒ F ≈ (1/c1) · rF − (c2/c
3
1 ) · rF 2 (27.11)

Similarly, after replacing a0 in Eq. (27.9) with zero, we get:

Eq. (27.9) =⇒ F ≈ a1 · rF + a2 · rF 2 (27.12)

Finally, after comparing the coefficients on the right–hand side of Eq. (27.11) with
corresponding coefficients on the right–hand side of Eq. (27.12), we get:

a1 ≡ (1/c1) = +2.5830E+00 [ lbf /mV ] (27.13)

a2 ≡ −(c2/c
3
1 ) = −3.2136E−05 [ lbf /mV 2 ] (27.14)

Numerical values shown on the right–hand sides of Eqs. (27.13) and (27.14) were
computed with the values of the coefficients c1 and c2 that are listed on the right–hand
sides of Eqs. (27.2b) and (27.2c). The inverse (1/c1) of the sensitivity agrees within five
digits with coefficient a1 that is shown in Eq. (27.10b). Similarly, the coefficient −(c2/c

3
1 )

of the higher order term agrees within three digits with coefficient a2 that is shown in
Eq. (27.10c). These observations indicate that the load iteration equation, i.e., Eq. (27.4)
and the alternate regression model of the force, i.e., Eq. (27.9) will lead to load values of
compatible accuracy. It is important to remind the reader that Eq. (27.8) describes the
intermediate second estimate of the force from the load iteration process that the Iterative
Method uses. On the other hand, the force defined in Eq. (27.9) is the final value that the
Non–Iterative Method computes.
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Appendix 28

Cook’s Sequential Analysis Method

28.1 Introduction
Cook’s sequential analysis method was often used in the 1960s and 1970s for the devel-

opment of the load iteration equation of a six–component balance (Ref. [5]). Basic elements
of Cook’s method can still be found in modern balance calibration designs that support
a sequential analysis approach (see, e.g., Ref. [52]). Cook’s method is an early version of
the Iterative Method (see also App. 10). It uses sequential graphical analysis instead of
global regression for the determination of the coefficients of the math models of the bridge
outputs (Ref. [5], pp. 4–5). This approach was possible because Cook’s calibration design
consists of twenty–one carefully selected data subsets. Table 28–1 below describes the data
subsets that Cook’s method uses as input for the analysis. A maximum number of two

Table 28–1: Twenty–one data subsets of Cook’s sequential analysis method.

SET 1 SET 2 SET 3 SET 4 SET 5    SET 6
   AF     SF     NF     RM     PM   YM

SET 7 SET 8 SET 9 SET 10 SET 11
AF, SF SF, NF         NF, RM RM, PM PM, YM

SET 12 SET 13 SET 14 SET 15
AF, NF SF, RM NF, PM RM, YM

SET 16 SET 17 SET 18
AF, RM SF, PM NF, YM

SET 19 SET 20
AF, PM SF, YM

SET 21
AF, YM

DATA SET NUMBER
(SINGLE-COMPONENT LOAD)

DATA SET NUMBER
(TWO-COMPONENT LOAD PAIR)

DATA SET NUMBER
(TWO-COMPONENT LOAD PAIR)

DATA SET NUMBER
(TWO-COMPONENT LOAD PAIR)

DATA SET NUMBER
(TWO-COMPONENT LOAD PAIR)

DATA SET NUMBER
(TWO-COMPONENT LOAD PAIR)

load components are simultaneously applied within a data subset. The twenty–one subsets
were intentionally designed to support a multivariate 27–term math model. This math
model was the default choice for the analysis of six–component balance data before absolute
value terms were introduced in the 1970s. Cook’s math model consists of six linear terms,
six quadratic terms, and fifteen cross–product terms. He implicitly assumed that bridge
outputs are formatted as differences relative to the outputs at the beginning of each load
series (see also bridge output format Difference Type 2 in App. 6). Therefore, no intercept
is needed. Cook’s bridge output format choice also means that the impact of the weight of
the calibration equipment on the bridge outputs is neglected. Equation (28.1) below shows,
for example, the 27–term math model of the axial force bridge output of a six–component
balance that Cook’s twenty–one data subsets support.

rAF = b1 · AF + b2 · SF + b3 · NF + . . . + b6 · YM

+ b7 · AF 2 + b8 · SF 2 + b9 · NF 2 + . . . + b12 · YM 2

+ b13 · {AF · SF} + b14 · {AF ·NF} + . . . + b27 · {PM · YM}
(28.1)

The same term combination is used for the definition of the math models of the
outputs of the remaining five bridges. Therefore, a total of 6 × 27 coefficients need to be
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obtained from the twenty–one data subsets that Cook’s sequential analysis method uses
for the development of the load iteration equation of a six–component balance.

The coefficients b1, b2, . . . , b27 of the math model of the axial force bridge output
example are the unknowns in Eq. (28.1). In theory, they could be obtained by applying
global regression in combination with a weighted least squares fit to Cook’s twenty–one
data subsets (see also section 28.3). However, numerical methods and computer resources
were limited when Cook defined his method in 1959. Therefore, he developed an analysis
approach that uses combinations of data subsets for the coefficient determination.

28.2 Discussion of Example
Cook’s method can be illustrated by reviewing the determination of the five coefficients

b1, b3, b7, b9, and b14 of the axial force bridge output that are defined in Eq. (28.1). First,
data of Set 1 is used to obtain the coefficients b1 and b7. The axial force is applied as a
single–component load during Set 1. Therefore, data of Set 1 only supports a simplified
version of Eq. (28.1) that is defined in Eq. (28.2) below.

Set 1 =⇒ rAF = b1 · AF + b7 · AF 2 (28.2)

Now, the axial force bridge output is plotted versus the axial force (see Fig. 28–1 below).

plotted line

D rAF

D AF

AF

rAF

data point of Set 1

Fig. 28–1 Graphical determination of coefficient
b1 of term AF (blue dot = data point of Set 1).

Coefficient b1 describes the slope of the plotted line. It remains to determine coefficient
b7 of the quadratic term from the data of Set 1. Therefore, both sides of Eq. (28.2) are
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divided by the axial force. Equation (28.3) below shows the resulting equation. It can be
interpreted as a straight line. Coefficient b1 is the intercept. Coefficient b7 is the slope. It

Set 1 =⇒ rAF /AF = b1 + b7 · AF (28.3)

can be computed using a graphical approach after the left–hand side of Eq. (28.3), i.e.,
rAF/AF , is plotted versus the axial force (see Fig. 28–2 below).

b1

rAF / AF

D (rAF/AF)

D AF

plotted line

data point
of Set 1

AF

Fig. 28–2 Graphical determination of coefficient
b7 of term AF 2 (blue dot = data point of Set 1).

It is also known that the normal force is applied as a single–component load in Set 3.
Therefore, data of Set 3 supports a simplified version of Eq. (28.1) that is defined in
Eq. (28.4) below. Coefficient b3 can directly be obtained using graphical analysis after

Set 3 =⇒ rAF = b3 · NF + b9 · NF 2 (28.4)

plotting the axial force bridge output versus the normal force. In addition, similar to the
determination of coefficient b7, coefficient b9 can be obtained after dividing both sides of
Eq. (28.4) by the normal force. The result is shown in Eq. (28.5) below. It can be inter–

Set 3 =⇒ rAF /NF = b3 + b9 · NF (28.5)

preted as a straight line where coefficient b9 represents the slope. Again, the slope is
obtained using graphical analysis after plotting rAF/NF versus the normal force.

Coefficient b14 of cross–product term AF · NF still needs to be determined. It is
obtained after applying Cook’s method to data of Set 12. This data subset supports terms
that both AF and NF define. Therefore, a five–term math model subset of Eq. (28.1) can
be used to process the data (coefficients b1, b3, b7, b9 ≡ known; coefficient b14 ≡ unknown):

Set 12 =⇒ rAF = b1 ·AF + b3 ·NF + b7 ·AF 2 + b9 ·NF 2 + b14 · {AF ·NF} (28.6)
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Set 12 has data that was recorded by varying the axial force while keeping the normal
force at a constant non–zero value. Outputs of the axial force bridge of Set 12 can be
plotted versus the axial force for constant normal force. In addition, the partial derivative
of the axial force bridge output with respect to the axial force can be obtained by treating
the normal force as a constant. Then, the following value is obtained:

{NF = const. } =⇒ ∂ rAF /∂AF = b1 + 2 · b7 · AF + b14 · NF (28.7)

Consequently, the partial derivative at zero axial force is given by the following relationship:{
NF = const.
AF = 0

}
=⇒ ∂ rAF /∂AF = b1 + b14 · NF (28.8)

Furthermore, it is assumed that data of Set 12 is recorded for the required minimum of
two constant values NF ′ and NF ′′ of the normal force. The first normal force is positive
(NF ′ > 0). The second normal force is negative (NF ′′ < 0). Now, the axial force bridge
output observed for NF ′ and NF ′′ can separately be plotted versus the axial force so
that the slope ∂ rAF /∂ AF for each of the two lines can be obtained. The data points of
Set 12 are plotted as red dots in Fig. 28–3 below. It is also known from the earlier analysis

D rAF

D AF

AF

rAF

data point of Set 12

data point of Set 1

data point of Set 12

Fig. 28–3 Graphical determination of the slope ∂ rAF /∂AF for a constant
normal force (red dot = data point of Set 12; blue dot = data point of Set 1).
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of Set 1 that the slope ∂ rAF /∂ AF equals coefficient b1 if the normal force is zero (see
blue dots in Fig. 28–3). Finally, the three slopes ∂ rAF /∂ AF can be plotted versus the
related three normal force values NF = 0, NF = NF ′, and NF = NF ′′. The slope of
the resulting straight line is shown in Fig. 28–4 below. It is the graphical estimate of coef–

D

D NF
plotted
line

NF

b1

NF = NF  ’NF = NF  ”

NF = 0  

Fig. 28–4 Graphical determination of coefficient b14 of term {AF ·NF}.

ficient b14 of the cross–product term {AF ·NF}. – The determination of (i) the remaining
22 coefficients of the math model of the axial force bridge output and (ii) the 5 × 27
coefficients of the 27–term math models of the other five bridge outputs follows Cook’s
process steps that are described in this example.

The discussion of the example illustrates both complexity and bookkeeping challenges
of Cook’s method. It also reminds the reader why Galway’s introduction of global regression
to balance calibration data analysis represents a significant milestone in the development
of load prediction methods (see Ref. [6]). First, global regression simplifies the analysis
task because the given calibration data is processed with a single least squares fit for
each dependent variable. Global regression also allows for the assessment of the regression
models of the balance data with metrics like the p–value, the t–statistic, the standard
error, and the Variance Inflation Factor. Therefore, the models can more easily be justified
from a statistical viewpoint. Finally, global regression makes it possible to systematically
include absolute value terms in regression models of calibration data from balances with
bi–directional bridge outputs.

28.3 Application of Global Regression

Sometimes, Cook’s twenty–one data subsets cannot be processed successfully with
global regression unless a weighted least squares fit is performed during the analysis. The
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weighted fit must assign greater weight to the data points of the first six data subsets
that are defined in Table 28–1. A detailed description of the application of a weighted
least squares fit to balance calibration data can be found in App. 22. Two weighting
factor definitions are listed in App. 22. Experience showed that the first definition works
best with data from Cook’s calibration design (see also App. 22, Section 22.5). Finally,
assuming that the natural zeros and the raw bridge outputs of the calibration data points
are known, a tare load iteration should be performed during the global regression analysis
of data from Cook’s design. This tare load iteration must use the mean zero load outputs
of each load series as the electrical description of the tare loads.
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Appendix 29

History of Load Prediction Methods

The development of balance load prediction methods started in the 1950s when in-
ternal strain–gage balances became widely available for aerospace testing applications
(Fig. 29–1). Mathematical relationships between loads and bridge outputs had to be found
so that loads could be predicted from measured bridge outputs during a wind tunnel test.

Strain–gage balances are unique sensors. They are used to simultaneously predict up
to six loads from the measured bridge outputs. This characteristic has greatly influenced
the development of balance load prediction methods. It is also not a good fit for a tradi-
tional metrology organization whose mission may be the calibration of sensors that predict
a single physical quantity. Therefore, highly specialized laboratories have been established
at many aerospace testing centers that exclusively calibrate strain–gage balances.

The geometric complexity of a strain–gage balance also had a significant impact on the
development of load prediction methods. Balance bridges of most multicomponent balance
designs are attached to interconnected structures that are located inside a small cylindrical
volume. This space constraint is responsible for interactions between the loads and the
bridge outputs. They are repeatable if alignment errors during the application of loads are
kept to a minimum. Interactions cannot be neglected if typical load prediction accuracies
for aerospace testing applications are to be met. Therefore, multivariate regression models
must be used for the description of balance characteristics that correctly represent the
influence of interactions on the predicted loads.

Different justifications for the assignment of the independent & dependent variables
of balance calibration data exist. They are directly linked to the evolution of balance load
prediction methods. In theory, a reversible mapping between loads and bridge outputs must
exist. Then, an analyst can interpret the loads as either the dependent or independent
variables during the calibration data analysis (see also comments on p. 12 and p. 19). On
the other hand, the Iterative Method uses loads as independent variables and bridge outputs
as dependent variables. This choice can be traced back to Cook’s Technical Note of 1959
where he makes the following statement (taken from Ref. [1], p. 3): “Each bridge indicator
reading, as a consequence of interactions, is a function of all six load components.” Many
users of the Iterative Method also believe that it is logical to use bridge outputs as dependent
variables because bridge outputs are “measured” while loads are “applied” during the
calibration. This belief and Cook’s statement come from the traditional approach† that
many metrology organizations use for the reporting of a sensor’s calibration data. The
primary mission of a metrology organization is the calibration of sensors that measure a
single physical quantity. In addition, a sensor’s electrical output may have highly linear
characteristics. Then, the following information is provided in a metrology organization’s
calibration report: (i) raw calibration data, (ii) the sensitivity, i.e., the first derivative of the
sensor’s electrical output with respect to the physical quantity, and (iii) a regression model
of the electrical output. Consequently, the end user needs to figure out how this information
should be used so that the predicted quantity meets given accuracy requirements.

Cook’s technical note of 1959 defines both the math model of the bridge outputs and
the load iteration scheme that was initially used for the prediction of balance loads (see

†Wright illustrates the traditional approach with the calibration report of a load cell (Ref. [81], p. 150).

427



Ref. [5]). Cook’s Method is an early version of the Iterative Method that is still in use today
(see Fig. 29–1). In some sense, Cook’s Method is a multivariate extension of processes that
were originally developed for sensors that predict a single physical quantity. The primary
difference between Cook’s Method and the Iterative Method is the fact that the Iterative
Method uses global regression† for the determination of the math model coefficients of the
bridge outputs. Cook’s Method, on the other hand, determines coefficients by performing a
sequential graphical analysis of balance calibration data (Ref. [5], pp. 4–5). This approach
was possible because Cook’s calibration data consisted of twenty–one data subsets that
were designed to support specific math model terms (see App. 28 for details). Finally,
Cook’s Method constructs a load iteration scheme from the math models of the outputs
so that loads can be predicted from outputs during a wind tunnel test (Ref. [5], pp. 5–7).
Global regression was not considered for the processing of balance data in the late 1950s
and 1960s because (i) the matrix solution ‡ of a multivariate least squares problem was not
yet widely known and (ii) computer resources were limited.

Researchers also started using the Non–Iterative Method for the load prediction in
the 1960s. This alternate approach directly fits the loads as a function of the measured
bridge outputs. Therefore, no load iterations are required. However, hidden dependencies
between math model terms were not rigorously investigated before the 2000s. Therefore,
incorrect load predictions were occasionally obtained when the regression model of a load
was applied. These observations are one of the reasons why the Iterative Method became
the preferred balance load prediction method in North American wind tunnels.

Significant advances were made in the 1970s that greatly benefited the generation of
the load prediction equations (see Fig. 29–1). First, Galway recognized the advantage of
applying global regression, i.e., the matrix solution of the least squares problem to balance
calibration data (Ref. [6], p. 13, Eq. (36)). He also understood benefits of the use of the
absolute value function ? in regression models of data from balances with bi–directional
outputs and extended the idea to higher–order terms (Ref. [6], pp. 21–23; Ref. [79], p. 5).
Furthermore, he recommended the use of the natural zero as the global datum for the
electrical output of a balance bridge (Ref. [6], p. 27; Galway uses the synonym buoyant
component offset in that context). Finally, Galway developed a tare load iteration process.
His algorithm was first published in 1999 (Ref. [80]). AIAA’s Internal Balance Technology
Working Group (IBTWG) adopted Galway’s algorithm for use with the Iterative Method
(see Ref. [7]). Galway’s four ideas were first implemented with the Iterative Method be-
cause (i) the Iterative Method was Galway’s preferred load prediction method and (ii) the
reliability problem of the load prediction equations of the Non–Iterative Method had not
yet been resolved. Finally, the development of minicomputers (PDP, VAX) in the 1970s
made computational resources more accessible. Consequently, global regression could more
easily be used to derive the load prediction equations from balance calibration data.

No significant improvements of balance load prediction methods appear to have been
made in the 1980s. However, the personal computer and FORTRAN & BASIC compilers

† The term global regression indicates that a single least squares fit is used to calculate the coefficients
of a multivariate regression model of balance calibration data.

‡ The matrix solution of the least squares problem is an application of the Moore -Penrose pseudo
inverse that British physicist and Nobel Prize laureate R. Penrose first proposed in 1956 (Ref. [77]).

? The idea of using the absolute value function for the description of bi–directional bridge output
characteristics appears to have originated in Europe (Ref. [79], p. 5).
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became widely available. Now, analysts could more easily implement the more complex
data analysis algorithms that emerged in the 1970s.

It became obvious in the 1990s that the application of the Iterative Method had to
be standardized so that a given set of balance load prediction equations could be used at
multiple wind tunnel facilities. This conclusion was one of the reasons why AIAA’s IBTWG
was established (see Ref. [82], p. 85, p. 88). A major accomplishment of this working group
was the development of a standard description of the Iterative Method. This description
was published in 2003 in the first edition of AIAA’s Recommended Practice document that
discusses the calibration and use of internal strain–gage balances (Ref. [7]).

Again, advances were made during the 2000s after many analysts adopted IBTWG’s
description of the Iterative Method and more powerful programming languages & software
tools became available. For example, Parker et al. started to use the principles of Design
of Experiments during both preparation and execution of balance calibration experiments
(Ref. [42]). The primary goal of these efforts was the reduction of the total number of data
points needed for a manual calibration of a balance. In addition, Ulbrich applied Singular
Value Decomposition (SVD) during the analysis to analytically determine regression model
terms that a given balance calibration data set supports (Ref. [23]). He recognized that
SVD needs to be applied to a transformed set of independent variables of the calibration
data to be effective (App. 17, p. 360). Furthermore, it was discovered that unsupported
regression model terms associated with the use of the Iterative Method can be identified by
using the Variance Inflation Factor (VIF) as a test metric (Ref. [27], p. 4). This discovery
also meant that VIFs could be used to assess the reliability of regression models of the loads
that the Non–Iterative Method uses (see App. 18). Then, load predictions resulting from
the application of the Non–Iterative Method could be made as reliable as load predictions
resulting from the application of the Iterative Method.

It was observed in 2010 that a convergence instability sometimes appeared when
Galway’s tare load iteration algorithm was used in combination with the Non–Iterative
Method. Therefore, an improved version of Galway’s algorithm was developed that avoids
the instability. It was first published in 2011 (see Ref. [11] and App. 12).

The second edition of AIAA’s Recommended Practice document on calibration and
use of strain–gage balances was published in 2020 (Ref. [7]). In addition, a new imple-
mentation of the Non–Iterative Method was completed in the same year at NASA Ames
Research Center. This new implementation made it possible to systematically compare
load prediction accuracies of the Non–Iterative and Iterative Method. Since 2020, accuracy
comparisons were performed for many types of balances and calibration load schedule de-
signs. They showed beyond doubt that the load prediction accuracies of both methods are
the same if four conditions are met: (i) bridge outputs are formatted as differences relative
to the natural zeros, (ii) loads are tare corrected, i.e., described as differences relative to
the datum of zero absolute load, (iii) the same function classes are used to define regres-
sion models of the dependent variables, and (iv) the selected regression models are free of
unwanted linear or near–linear dependencies. A NASA contractor report was published
in 2022 (NASA/CR–20210026455). It is the first publication that presents highly detailed
side–by–side descriptions of the Non–Iterative and Iterative Method in a single document.
The current document is the revised and enlarged third edition of the report.

429



IT
ER
AT
IV
E 
ME
TH
OD

CO
OK

’s
 M

ET
HO

D 
(1

95
9,

 R
ef

. 
[5

])

MA
TH

 M
OD

EL
 O

F 
BR

ID
GE

 O
UT

PU
T

GR
AP
HI

CA
L 

ME
TH

OD
 I

NS
TE
AD

OF
 R
EG

RE
SS

IO
N 

AN
AL
YS

IS
 I
S

US
ED
 F

OR
 T

HE
 D
ET

ER
MI
NA
TI

ON
OF

 M
AT

H 
MO

DE
L 
CO

EF
FI
CI
EN

TS

NA
TU
RA

L 
ZE

RO
 =

 O
UT
PU

T 
DA
TU

M
TA

RE
 L

OA
D 

IT
ER

AT
IO
N

AB
SO
LU

TE
 V

AL
UE
 T

ER
MS

GL
OB
AL

 R
EG

RE
SS
IO

N

AI
AA
’s

 I
NT

ER
NA

L 
BA
LA

NC
E

TE
CH
NO

LO
GY

 W
OR

KI
NG
 G

RO
UP

DE
SI
GN

 O
F 

EX
PE

RI
ME
NT

S

AI
AA
 R

EC
OM

ME
ND

ED
 P
RA

CT
IC
E

(1
st
 e
d.
, 
R-
09
1-
20
03
, 
Re
f.
 [
7]
)

AP
PL
IC

AT
IO

N 
OF

 S
IM
PL

IF
IE
D

SV
D 
TO

 R
EG

RE
SS

IO
N 
MO

DE
LS
 O

F
BA

LA
NC

E 
DA

TA
 (

Re
f.
 [

23
])

LO
AD
 I

TE
RA

TI
ON

 D
IV
ER

GE
NC
E

IS
 R
EL

AT
ED

 T
O 

PR
ES
EN

CE
 O
F

LA
RG
E 

VI
Fs

 I
N 

MA
TH
 M

OD
EL

AI
AA
 R

EC
OM

ME
ND

ED
 P
RA

CT
IC
E

(2
nd
 e
d.
, 
R-
09
1A
-2
02
0,
 R
ef
. 
[7
])

CO
MP
UT
ER

HA
RD
WA
RE

PR
OG
RA
MM
IN
G

LA
NG
UA
GE
S

DA
TE

19
50
s

19
60
s

19
70
s

19
80
s

19
90
s

20
00

20
03

20
06

20
07

20
11

20
20

20
22

MA
TH
EM
AT
IC
S

MA
TR

IX
 S
OL
UT

IO
N

OF
 L

EA
ST
 S
QU

AR
ES

PR
OB

LE
M 
(1
95

6)

VI
F 

AP
PE
AR
S 

IN
TH
E 

LI
TE
RA
TU

RE
(E
AR

LY
 1
97
0s

)

Fi
g.

 2
9-

1 
Th

e 
hi

sto
ric

al
 e

vo
lu

tio
n 

of
 st

ra
in

-g
ag

e 
ba

la
nc

e 
lo

ad
 p

re
di

ct
io

n 
m

et
ho

ds
.

C+
+

ID
L

MA
TL

AB

EX
CE

L

DE
SI

GN
EX

PE
RT

PY
TH

ON

PE
RS
ON
AL

CO
MP
UT
ER

NO
N-
IT
ER
AT
IV
E 
ME
TH
OD

MA
TH

 M
OD
EL
 O

F 
LO
AD

ME
TH

OD
 I

S 
AP

PL
IE

D 
TO

DA
TA

 O
F 

PR
IM

AR
Y 

AN
D

AU
XI

LI
AR

Y 
BA

LA
NC

ES
.

HO
WE

VE
R,

 L
IN

EA
R

DE
PE

ND
EN

CI
ES

 B
ET

WE
EN

MA
TH

 M
OD

EL
 T

ER
MS

 A
RE

NO
T 

SY
ST

EM
AT

IC
AL

LY
EX

AM
IN

ED
. 

TH
ER

EF
OR

E,
 

UN
RE

LI
AB

LE
 L

OA
D 

PR
ED

IC
TI

ON
S 

AR
E

SO
ME

TI
ME

S 
OB

SE
RV

ED
DU

RI
NG

 A
PP

LI
CA

TI
ON

.

VI
Fs

 C
AN

 B
E 
US

ED
 T
O 

ID
EN
TI
FY

AN
D 

RE
MO
VE
 M

OD
EL
 T
ER
MS

 T
HA

T
CA
US

E 
UN
WA
NT

ED
 D
EP
EN
DE

NC
IE

S

DE
VE

LO
PM
EN
T 

OF
 R
EL
IA

BL
E 

TA
RE

 L
OA
D

IT
ER

AT
IO
N 
FO

R 
NO
N-

IT
ER

AT
IV
E 
ME

TH
OD

NA
SA

’s
 I
MP
LE

ME
NT
AT
IO

N 
BE
CO

ME
S

SU
IT

AB
LE
 F
OR

 P
RO
DU
CT

IO
N 
TE

ST
IN

G

NA
SA
 C

ON
TR

AC
TO
R 

RE
PO
RT

(1
st
 e
d.
, 
NA
SA
/C
R-
20
21
00
26
45
5;
 3

rd
 e
nl
ar
ge
d 
ed
it
io
n 
wa
s 
pu
bl
is
he
d 
in
 2
02
5)

CO
MM
EN
TS

MU
LT
IV
AR

IA
TE
 M
AT
H 
MO
DE
L 

OF
 B
RI
DG

E 
OU
TP

UT
IS
 D
EF
IN

ED
 (
se
e,
 e
.g
.,
 R

ef
. 
[5
])

CA
LI
BR
AT

IO
N 
EX
PE
RI
ME
NT
 I

S 
DE
SI
GN

ED
TO
 S
UP
PO

RT
 S
PE
CI
FI
C 
TE
RM

S 
SO
 T
HA

T
GR
AP
HI
CA

L 
DE
TE
RM
IN
AT
IO
N 

OF
 M
AT
H

MO
DE
L 
CO

EF
FI
CI
EN
TS
 I
S 
PO

SS
IB
LE

(s
ee
, 
e.

g.
, 
Re
fs
. 
[5
],
 [

51
])

AN
AY
SI
S 

RE
SU
LT
S 
OF
 B
AL
AN

CE
 C
AL
IB

RA
TI
ON

DA
TA
 A
RE

 S
IG
NI
FI
CA
NT
LY

 I
MP
RO
VE
D

(s
ee
, 
e.

g.
, 
Re
fs
. 
[6
],
 [

79
],
 [
80

])

NO
 S
IG
NI

FI
CA
NT
 I
MP
RO
VE
ME

NT
S

DE
VE
LO
PM

EN
T 
OF
 “
ST
AN
DA
RD

” 
FO
R 
TH

E
AP
PL
IC
AT

IO
N 
OF
 I
TE
RA
TI
VE

 M
ET
HO
D

CA
LI

BR
AT

IO
N 

DE
SI

GN
 I

MP
RO

VE
ME

NT
S 

(R
ef

. 
[4

2]
)

“S
TA
ND
AR

D”
 F
OR
 T
HE
 A
PP
LI

CA
TI
ON
 O

F
IT
ER
AT
IV

E 
ME
TH
OD
 I
S 
PU
BL

IS
HE
D

SI
MP
LI
FI

ED
 S
VD
 M
AK
ES
 I
T 

PO
SS
IB
LE

 T
O

ID
EN
TI
FY

 S
UP
PO
RT
ED
 M
AT
H 

MO
DE
L 
TE

RM
S

“D
IS
CO
VE

RY
” 
SO
LV
ES
 R
EL
IA

BI
LI
TY

PR
OB
LE
M 

OF
 N
ON
-I

TE
RA
TI
VE
 M
ET
HO
D

(s
ee
 R
ef

. 
[2
7]
)

TA
RE
 L
OA

D 
IT
ER
AT
IO
N 
IN
ST

AB
IL
IT
Y

IS
 R
EM
OV

ED
 (
se
e 
Re
f.
 [
11

])

RI
GO
RO
US
 S
ID
E-
BY
-S
ID
E 
IM
PL
EM
EN
TA
TI
ON
 O
F

TH
E 
IT
ER
AT
IV
E 
& 
NO
N-
IT
ER
AT
IV
E 
ME
TH
OD

AT
 N
AS
A 
AM
ES
 W
IN
D 
TU
NN
EL
S

FI
RS

T 
SI

DE
-B

Y-
SI

DE
 D

ES
CR

IP
TI

ON
 O

F
IT

ER
AT

IV
E 

& 
NO

N-
IT

ER
AT

IV
E 

ME
TH

OD

FO
RT

RA
N

BA
SI

C

FO
RT

RA
N

MI
NI
CO
MP

UT
ER

(P
DP
,V
AX

)

MA
IN
FR
AM

E
CO
MP
UT
ER

430



Subject Index

Absolute load datum, 6, 16, 18 f., 21ff., 50, 55, 68,

77, 88, 95, 112, 132, 147, 217 f., 387

Absolute voltage measurement, 147, 154, 187ff.,

233, 241, 270, 283, 288, 306

Accuracy:

[of applied force or moment] 39ff.

[of load prediction] 3, 7, 12, 17 f., 21, 37 f., 46, 51,

53ff., 58 f., 77, 102, 120, 122, 124 f., 130, 132, 309,

324, 339, 342 f., 352

Aerodynamic load, 132, 147

Balance:

[component weight] 55ff., 229ff.

[design format] 26 f., 31, 49, 129, 147, 149, 153, 163,

201, 214, 252, 313, 322, 330, 351 f.

[design requirement] 11

[flow–through or air] 5, 13, 59

[moment center] 7ff., 16, 21, 24, 29ff., 40, 42, 54, 60,

79ff., 123ff., 132, 148, 163 f., 166, 173ff., 179ff.,

183, 193, 217 f., 225, 323ff., 327, 332ff., 337ff.

[orientation] 30ff., 55, 65, 78, 80, 83, 105ff., 130,

147 f., 153, 193 f., 218ff., 323, 325

[six–component] 1ff., 7ff., 12, 14, 21ff., 29ff., 63ff.,

77ff., 132, 147ff., 152 f., 161ff., 163ff., 187ff.,

208ff., 211ff., 214, 217 f., 223, 235, 243, 282ff.,

305ff., 323, 345ff., 381, 384, 393

[support system] 30, 33ff., 56 f., 107, 148, 153, 193,

210, 217, 221ff., 226ff., 231

[terminology] 147ff.

Balance axis system:

[alignment] 78, 130

[definition & use] 7ff., 21, 60, 147 f., 151ff., 161ff.,

218, 225, 323, 325, 337

[North American] 162

[right–handed] 161

Bending moment, 324ff.

Bi–directional:

[description] 5, 8ff., 44, 49, 63, 68,72,77,103,131,148,

152, 154, 159, 187ff.,197ff.,235,243,316,370ff.,384

[more complex characteristics] 86, 89, 95, 97, 214

[part at load capacity; iterative method] 205 f.

[part at load capacity; non–iterative method] 203 f.

[semi–span balance; example] 109ff.

[single–piece balance; example] 65ff., 109ff.

[force balance; examples] 84ff., 208ff., 282, 305

[test description] 201ff., 207

Body axis system, 1, 7, 21, 60, 147, 148, 161, 323

Bridge:

[output at load capacity] 201 f., 206 f., 212, 214

[output datum] 55, 65, 127, 150, 152, 233, 292, 321

[output residual] 5, 150

[sensitivity] 4, 6, 17, 21, 25ff., 32, 34,39,49,53,58ff.,

71 f., 75 f., 81, 93 f., 101, 115 f., 121, 128, 130, 132,

148, 153 f., 197, 229, 231 f., 252, 309 f., 313ff., 326,

329ff., 342 f., 353 f., 371, 384, 387, 394

[unloaded] 106, 187, 193ff.

Bridge output format:

[difference type 1] 23ff., 47f., 188ff., 192, 195, 198ff.,

233, 248, 252 f., 257 f., 270, 272 f., 283ff., 289ff.

[difference type 2] 189 f., 192, 195, 270,285,288,304

[raw output] 18 f., 22ff., 43, 45, 47 f., 50, 55, 65, 106,

117, 127ff., 147, 150ff., 187ff., 193ff., 198ff., 202,

204, 207, 219, 226, 233, 239, 241, 244ff., 252ff.,

259, 270 f., 273, 283, 288ff., 296 f., 300 f., 304ff.,

311, 314, 318, 340, 346ff., 352, 387, 392, 394

Buoyant zero, 148

Calibration:

[body] 7, 11, 16, 30ff., 41 f., 56 f., 78ff., 130, 147 f.,

151 f., 155, 161, 189, 193, 221ff., 269, 287

[load schedule] 4, 12, 17ff., 29ff., 39, 45, 64 f., 77ff.,

103, 105, 109, 130, 208, 212, 215, 259, 269, 287,

321, 331ff., 341, 358, 371, 393

Capacity:

[of load] 3, 38 f., 46, 50 f., 53 f., 64ff., 69ff., 74ff.,

83ff., 91ff., 98ff., 104 f., 109ff., 114ff., 119, 121,

128 f., 132, 148, 151, 185, 189ff., 197, 201ff., 209,

211 f., 232, 261, 266, 279, 282, 284 f., 303, 305,

308, 313, 345 f., 349ff., 360, 394

[of output] 148, 346, 352ff., 392, 394

Check load, 18 f., 53ff., 132, 148, 151

Combined load diagram, 173ff., 327ff.

Combined load plot, 148, 151, 173, 185 f.

Control volume model, 9ff., 13, 15, 382

Cook’s method, 392, 421ff., 427

Dependent variable, 4, 19, 39, 87, 149, 154, 157 f.,

198 f., 202, 205 f., 253, 274, 320, 322, 333, 352, 357ff.,

363ff., 368, 381ff.

Direct–read balance, 7, 26, 29, 150, 201, 313, 351 f.

Direct–read format, 2, 24ff., 29, 31ff., 38, 55, 58, 77,
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129, 150, 153 f., 163 f., 173ff., 181, 201, 252, 313, 325,

327 f., 336 f., 340, 351 f.

Electrical output threshold, 128, 207, 209

Electrical units, 25 f., 128, 155, 394

Excitation voltage, 25 f., 128, 147, 150

Force:

[aft normal] 2, 25, 27, 30, 77ff., 150, 163, 169, 185,

191, 193, 210, 213, 218, 228, 413ff.

[aft side] 2,25,27,77ff.,150,163,169,210,218,228,413ff.

[alignment error] 399, 413ff.

[axial] 2, 11, 24 f., 29, 33ff., 55, 64ff., 74, 77ff., 101ff.,

150ff., 162ff., 195, 202, 219, 224ff., 345ff., 413ff.

[forward normal] 25, 30, 80, 89, 93, 95 f., 101, 194ff.,

209, 212, 282ff., 306, 308, 413ff.

[forward side] 25, 80, 85ff., 90, 92, 97ff., 194, 197,

209 f., 350, 413ff.

[normal] 2, 11, 24, 29ff., 55ff., 60, 64 f., 67ff., 75 f.,

103ff.,150 f., 162ff.,218, 224, 230ff., 323ff., 413ff.

[side] 2, 24, 31f., 55, 65, 70, 73, 104, 106, 150, 163ff.,

218, 224 f., 413ff.

Force balance, 1 f., 7, 25ff., 29, 31 f., 77ff., 128 f., 131,

150, 153 f., 163ff., 173ff., 190ff., 201, 208ff., 217ff.,

282ff., 305ff., 313, 322, 347ff., 393, 401ff.

Force balance format, 2, 24ff., 149, 150, 153, 163,

176ff., 184ff., 201, 208, 212, 313, 322, 351ff., 393

Forsythe, Malcolm & Moler algorithm, 265 f., 362

Four–wire balance, 150

Gage, 150

Hegland’s mnemonic, 162

Historical comments, 427ff.

Independent variable, 4, 11, 14, 19, 29, 49, 58 f., 131,

150, 158, 202, 205 f., 233, 270, 310, 317, 320ff., 346 f.,

357, 360ff., 363, 366, 373, 381ff., 386, 388 f., 395

Interaction, 32 f., 53 f., 69ff., 73, 81 f., 87, 90, 92 f., 96,

113, 130, 132ff., 150 f., 240, 258, 399ff., 413, 427

Intercept, 47 f., 68, 73, 88, 95, 109, 112, 117, 151, 157,

187ff., 195, 198ff., 202, 204,206 f., 233ff.,239 f., 241ff.,

247ff., 253ff., 270, 272 f., 276, 279ff., 288, 290, 292ff.,

300, 304 f., 341, 349, 352 f., 358, 364, 366 f., 384

Iterative method:

[alternate load iteration equation] 49, 147, 251 f.,

260, 263 f., 268, 297 f., 301, 319, 385 f., 411 f.

[convergence test] 4, 49 f., 259ff.

[delta bridge output vector] 257

[description] 47ff., 151, 241ff.

[example of application] 72ff., 95ff., 117ff.

[extended variable sets] 310, 319ff., 381ff.

[load calculation; output difference] 257ff.

[load calculation; raw output] 255ff.

[output difference vector] 247ff.

[primary load iteration equation] 49, 102, 122, 154,

249ff., 259 f., 263 f., 268, 297 f., 301, 318 f., 385, 411 f.

[regressionanalysis] 4 f., 12, 19, 47ff., 72ff., 87, 95ff.,

117ff., 241ff., 287ff., 317ff., 358 f., 364ff., 382ff.

[regression model; output difference] 48, 73, 76, 95,

101, 117, 121, 204, 252ff., 290, 296, 300, 305,

317ff., 349, 358, 364, 384, 388

[regression model; raw output] 241 f., 290, 296, 300,

305, 348, 358, 364

[reliability of load predictions] 51 f.

[universal load iteration equation] 252, 411 f.

Lipschitz condition & constant, 50 f., 259ff.

Linear dependency, 4, 12, 15, 19, 44 f., 48ff., 131,

244, 252, 331, 342, 357ff., 372, 374, 396

Linear interaction term, 151, 399ff.

Load:

[applied] 7, 10 f., 13, 15 f., 18, 30ff., 53 f., 79, 81, 147,

154 f., 191, 217, 297, 309, 324, 327, 336 f., 382 f.

[auxiliary] 54, 63, 82, 128, 147

[format] 2ff., 21, 24 f., 26, 31, 55, 63, 77 f., 103, 129,

163, 173, 186, 326, 340 f., 343, 349

[prediction accuracy] 3, 7, 12, 17, 38, 58 f., 77, 102,

120, 122, 124 f., 130, 132, 232, 324, 352

[prediction process] 1, 3, 6, 10, 13, 16ff., 43, 45ff., 50,

58 f., 131, 149

[residual] 3, 39, 46, 51, 53 f., 70, 74ff., 86, 91 f., 99 f.,

102, 114, 119 f., 128, 132 f., 151

[schedule] 4 f., 12, 17ff., 29ff., 45, 63ff., 77ff.,

103ff., 129 f., 208, 212, 215, 259, 269, 287, 321,

331ff., 341, 358, 371, 393

[series]16,18, 29, 31ff., 35, 37ff., 45, 51, 54, 64, 70, 74,

79ff., 87ff., 91 f., 98, 100, 105, 113 f., 119, 132, 151,

154 f., 185, 187ff., 208, 212, 269, 271 f., 275 f., 278 f.,

283 f., 287, 292 f., 295, 298 f., 301 f., 304, 306 f., 347

[sign] 21, 78, 105, 129, 161 f.

[spacing] 38 f., 83

[tare corrected] 4, 19, 43ff., 47ff., 51, 59, 70, 72ff.,

91, 99, 114, 119, 127, 129 f., 132 f., 151, 155,

202ff., 211, 237, 254, 262, 277, 279 f., 300 f., 303 f.,

314, 317, 321, 349, 387ff.

[transformations] 163ff.

Load cell example, 417ff.
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Load space, 1ff., 7,12,14ff.,22ff.,32,147,151,155,340

Load state, 1 f., 11 f., 16,19,22,24,29,32,55, 127 f., 152,

163,173,193,217,236,244,269 f., 287ff.,324ff.,340,387

Math model selection threshold, 360

Maximum output at load capacity, 71 f., 75 f., 94,

101 f., 115 f., 121 f., 128 f., 352

Metric:

[assembly] 107, 152, 154, 222 f., 227

[flange] 103, 152, 224

[part] 7ff., 13, 16, 18,21 f., 30,34ff.,44,49,55ff.,59 f.,

70, 74, 78, 82, 90, 98, 105ff., 113, 119, 129 f., 132,

147 f., 150ff., 155, 161, 189, 193, 217ff., 237, 269,

271, 287, 323ff., 327 f., 334, 338, 343, 382, 387

Moment:

[aft pitching] 25, 30, 152, 163ff.

[aft yawing] 25, 152, 163ff.

[arm/distance]37 f., 40ff.,53 f., 60, 123ff., 165, 173ff.,

324ff., 329, 331ff., 341ff.

[arm/hardware] 16,32 f., 37,78,81ff.,105,130,148,186

[forward pitching] 25, 30, 163ff.

[forward yawing] 25, 30, 163ff.

[pitching] 2, 11, 24, 29ff., 37 f., 41 f., 64, 103, 105,

110, 113, 119, 148, 150, 163ff., 224, 230

[rolling] 2, 24 f., 32 f., 64, 67, 69ff., 77ff., 81 f., 86 f.,

88, 90, 92 f., 97ff., 103, 105, 123ff., 148, 150, 152,

163, 193ff., 224, 228, 230

[yawing] 2, 24, 31 f., 70, 73, 103, 105, 113, 118, 123ff.,

148, 150, 163ff., 224, 230

Moment balance:

[three–component] 60, 147, 152 f., 161, 323ff.

[six–component] 7, 25 f., 29ff., 129, 152ff., 163ff., 173,

176, 180ff., 252, 351ff.

Moment balance format, 24ff., 29, 129, 149, 152ff.,

163ff., 180ff., 326, 328 f., 341 f., 351 f.

Moore–Penrose Inverse, 237,245,275, 278, 365, 389

Multi–piece balance, 8 f., 77, 148, 152, 201, 208, 211,

217, 223, 401ff.

NASA Langley 9–point design, 392

Natural zero:

[description&use] 18 f.,22ff.,35,43,45,47 f.,50 f.,53ff.,

63,65,70,74,76ff.,83 f.,91,99,103,105ff., 114 f., 117,

119, 127ff., 132,147,151ff.,155,187ff., 198ff., 202ff.,

217ff., 233, 239, 241, 248, 252 f., 255 f., 258, 269ff.,

283 f., 287ff., 293, 296, 300, 304ff., 309ff., 317 f.,

320ff., 330, 340, 345ff., 349, 352, 387, 392, 394, 427

[semi–span balance] 105ff., 224ff.

[six–component balance] 65, 83 f., 217ff., 227ff.

Near–linear dependency, 4, 12, 15, 19, 44 f., 48ff.,

68, 73, 89, 96, 113, 118, 131, 158, 236, 244, 331, 339,

342, 363ff., 372, 374, 384

Neutral axis, 324

Non–iterative method:

[description & use] 3 f., 12, 19, 25, 29, 43ff., 47, 50,

55, 58 f., 127 f., 130, 132, 149 f., 152, 154, 187ff., 195,

198 f., 201ff., 208ff., 233ff., 269ff., 288, 308, 310,

313ff., 321 f., 339ff., 345ff., 352ff., 357ff., 363ff.,

372, 375ff., 387ff., 427ff.

[example] 63ff., 77ff., 103ff.

[load calculation] 237ff., 339ff.

[regression analysis] 236ff.

[regression model] 43, 68, 88 f., 112, 202, 233ff., 273,

276, 314ff., 341 f., 345, 353, 358, 364, 387

[reliability of load predictions] 51 f.

Non–metric:

[flange] 103, 153, 224

[part] 7ff., 13, 21 f., 30, 34ff., 55ff., 59 f., 78, 106 f.,

124, 147ff., 153, 161, 193, 217ff., 323ff., 382

Output space, 1ff., 7, 12ff., 22ff., 153, 155, 189 f.,

271, 340

p–value, 66, 85, 89, 96, 110, 112, 118, 157, 201, 207 f.,

212, 373 f.

Percent contribution:

[definition; iterative method] 348ff.

[definition; non–iterative method] 345ff.

[interpretation] 351 f.

[use & example] 19, 46, 51, 68 f., 73 f., 76, 86, 89 f.,

93, 96ff., 102, 113, 118 f., 130 f., 214 f., 348, 351

[relationship between values] 352ff.

Primary bridge:

[load] 8, 17, 26, 71, 84, 87, 93, 115, 151, 153, 197ff.,

232, 314, 318

[output] 17, 26, 66, 85, 110, 153, 197 f., 202, 207,

313 f., 317 f.

[sensitivity] = Bridge: [sensitivity]

Raw output = Bridge output format: [raw output]

Reaction load, 8ff., 56 f., 148, 153, 382

Regression model:

[of load] 3, 43ff., 58, 66, 68 f., 72, 88ff., 93, 98,

112 f., 115, 128, 154, 202, 233ff., 270, 273, 276,

314ff., 341 f., 345, 347, 358, 364, 387

[of raw output] 47, 154, 187 f., 200, 241ff., 290, 296,

300, 348, 358, 364
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[of output difference] 47ff., 58, 72ff., 95ff., 101,

117ff., 121, 154, 200, 204, 252ff., 290, 296, 300,

317ff., 349, 358, 364, 384, 388

[search algorithm] 19, 362, 370ff.

Regression model term:

[groups; iterative method] 242

[groups; non–iterative method] 234

[group simplification] 375ff.

[hierarchy] 131, 373 f., 395ff.

Reporting of results, 45 f., 50 f.

Semi–span balance, 4, 13, 58, 103ff., 131, 147,

224ff., 230ff.

Sequential regression, 5, 63

Single component load, 25, 29, 33, 39, 53, 59, 63,

68, 73, 79, 81, 105, 109, 113, 129ff., 154, 191, 316,

318, 321, 387, 392

Single–piece balance, 2, 7 f., 24, 30, 44, 48 f., 63ff.,

103ff., 128, 131, 152ff., 215, 217, 220, 223 f., 230,

235, 243, 371, 409

Singular value decomposition (SVD), 44, 49, 357,

360 f., 372, 374, 396, 428

Six–wire balance, 154

Standard deviation of load residuals, 3, 39, 46, 51,

70, 74 f., 91, 99, 114, 119 f., 128, 132

Standard error, 89, 95 f., 112, 117 f., 158

State variable, 2, 10ff., 22, 24, 382, 386

Statistical terminology, 157ff.

t–statistic, 46, 51, 85, 89, 95 f., 110, 112, 117 f., 157 f.

Tare load, 5, 16, 18, 37, 44 f., 49, 51, 53ff., 63ff., 70,

74, 76 f., 82, 91, 98 f., 102 f., 113 f., 119, 128 f., 147,

154 f., 188ff., 195, 217, 269ff., 287ff.

Tare load iteration (iterative method):

[algorithm] 5, 287ff.

[convergence test] 303

[example] 74, 98, 119, 305ff.

[first estimate] 296ff.

Tare load iteration (non–iterative method):

[algorithm] 269ff., 428

[convergence test] 280

[example] 70, 91, 114, 282ff.

[first estimate] 273ff.

Temperature effects:

[calibration & analysis recommendations] 321

[miscellaneous] 2ff., 9ff., 13 f., 17, 58 f., 127, 131 f.,

147, 155, 309ff., 381ff.

[natural zero shift] 310ff.

[regression model; iterative method] 317ff., 381ff.

[regression model; non–iterative method] 316 f.

[sensitivity shift; description] 313ff.

[sensitivity shift; explicit load correction] 316

Torsion moment, 324, 326, 340, 342

Transitional zone, 7ff., 382

Variance inflation factor (VIF):

[definition & use] 14 f., 44ff., 49, 51, 131, 158 f., 236,

244, 343, 363ff., 372ff., 428

[examples] 89, 95 f., 112 f., 117 f.

[threshold] 15, 131, 158 f., 236, 244, 369 f.

Weighted least squares fit, 4, 130, 387ff., 425 f.

Weighting factor definition, 392ff.

Wheatstone bridge, 148, 155

Wind–off/on condition, 104, 132

Wind–off load, 132, 155

Wind–on load, 104, 155

Zero absolute load, 3, 16, 18, 22, 25, 45, 50, 53, 55,

127 f., 152ff., 187ff., 199, 206, 217 f., 233, 253, 255,

257, 269 f., 272, 278, 283, 287, 289, 292, 294 f., 298,

301, 304, 311, 321, 342, 347

Zero load output, 152, 155, 270 f., 292 f., 309

Zero load point, 18, 54, 64, 82, 105, 155, 189ff.,

193ff., 269, 287, 306
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