
Multi-Agent Collective Construction of General Modular Structures

Irina Kostitsyna1, James Gloyd1, and Kenneth Cheung2

Abstract— We present an algorithmic framework for a multi-
robot modular assembly system. Motivated by the prospects
of in-space assembly, we focus on the NASA Automated Re-
configurable Mission Adaptive Digital Assembly Systems (AR-
MADAS) framework, in which multiple types of robots work
together in a team to build large structures. Unlike with other
multi-robot construction systems, the geometry of structures
that ARMADAS robots can build is not limited to the class of
histogram shapes. To address the intractability of path planning
for a robot system with the exponentially growing number of
dimensions, we present a decoupled planning approach, where
the assembly and path planning is performed iteratively by one
robot team at a time. We present a number of data structures
which help us avoid collisions and deadlocks in the resulting
robot schedule.

I. INTRODUCTION
In-space assembly is crucial for advancing human space

presence and in-space capabilities, as assembly allows for
the construction of large structures that would otherwise
be impractical or impossible to deploy due to size and
weight constraints. While human directed and performed
assembly is possible with extra-vehicular activity by as-
tronauts, a markedly more advantageous option is to use
autonomous robotic agents. We need not look far to see
benefits provided by robotic automation terrestrially, and
many of the same benefits to productivity and efficiency can
be achieved through automation in space as well. One key
benefit provided by robotic automation for in-space assembly
is scalability, specifically, being able to increase project size,
scope, and efficiency by simply supplying additional robotic
teams, which then work together in parallel. Alongside this
scalability comes an ability to distribute and redistribute
robotic agents and teams to multiple endeavors at a time,
adapting to changing requirements, goals, and conditions.

The NASA Automated Reconfigurable Mission Adaptive
Digital Assembly Systems (ARMADAS) project [1] has de-
veloped a highly modular and versatile multi-robot assembly
system. Structures produced by the ARMADAS system are
comprised of a class of ultra-light weight and strong materi-
als, which consist of unit-size building blocks called voxels.
These strut-based building blocks are assembled together into
discrete grid patterns by a crew of two types of robots (see
Fig. 1): the Scaling Omni-directional Lattice Locomoting
Explorer (SOLL-E) [2] and the Mobile Metamaterial Internal
Co-Integrator (MMIC-I) [3]. SOLL-E is a bipedal robot that
can walk along the surface of the structure and can carry

*This work was supported by NASA Game Changing Development
(GCD) Program, Space Technology Mission Directorate

1KBR, Inc., Coded Structures Lab, NASA Ames Research Center,
Moffett Field, CA irina.kostitsyna@nasa.gov

2Coded Structures Lab, NASA Ames Research Center, Moffett Field, CA

Fig. 1. Two types of ARMADAS robots on a row of voxels. A crane
SOLL-E (left) is picking up a voxel from the backpack of a cargo SOLL-E
(right). MMIC-I (inside the structure) is poised to crawl into the next voxel
placed by the crane SOLL-E and fasten the voxel to the structure.

voxels in its backpack. It grips to the external faces of the
voxels in the structure, and, unlike robots in other robotic
construction systems, is not constrained by gravity: it can
walk vertically on walls of the structure and even upside
down on the ceiling. MMIC-I is an internal robot that can
crawl through the structure and fasten voxels together using a
bolting mechanism installed adjacent to its grippers. Working
together in teams, these robots can assemble voxels into
various structures, depending on the instructions the robots
are given.

While the benefits are numerous, the task of autonomous
assembly of large and complex structures presents a non-
trivial algorithmic challenge. For structures consisting of
thousands of building blocks, it is impossible to optimize the
assembly plan by hand, and the level of sustained economic
and exploration activity envisioned for in-space and on lunar
presence by the government and commercial partners would
require structures on a much larger scale [4]. This shortfall in
current capabilities is the directive motivation for this work,
and in this paper, we present an algorithmic framework for
a multi-robot assembly system to address exactly that.

A. Algorithmic Approach to Assembly

Over the past decade, the topic of multi-robot construc-
tion has been gaining popularity in academic circles. The
approach of having a large number of small and agile

Fig. 2. Three examples of the 31 possible SOLL-E poses on the surface
of a structure.

Fig. 3. The three poses of MMIC-I inside a structure, up to rotation.

mobile construction robots operating collaboratively makes
for an appealing alternative to traditional assembly lines
with their massive and expensive robotic arms. An already
classic example of such an assembly system is TERMES [5],
developed to perform construction by a fleet of car-like
robots in a decentralized fashion. TERMES robots place box-
shaped building blocks to form a modular structure on a grid.

Subsequent works have studied the combinatorial opti-
mization question of construction planning for similar sys-
tems [6]–[8]. These systems operate under the constraint of
gravity: robots must be supported by the building blocks
underneath them, and the building blocks themselves can be
placed only on top of other building blocks. Thus the gravity
constraint limits the feasible geometries of the structures to
the class of histogram shapes. With constraints on vertical
traversal capabilities in these systems’ robots (i.e., a robot
can climb or descend a limited number of blocks in a single
horizontal step, usually one or two), construction of some
geometries requires the robots to construct and deconstruct
ramp-like supports to access certain build regions. In some
instances, such ramps can be constructed by rearranging
existing building blocks, but in general, building the required
supporting structures necessitates additional building blocks
beyond those used in the final geometry.

A number of other systems feature two-legged robots
manipulating cubic building blocks [9]–[12], but these are
often similarly restricted by gravity.

In contrast, ARMADAS robots are not subject to the
same gravity-based restrictions. SOLL-E can walk on walls
and ceilings, and MMIC-I can crawl through a structure in
any direction. As a result, the geometry of the ARMADAS
structures is not limited to histogram structures, since the
voxels are directly bolted to one another. The only restriction
we make is that the structure must be face-connected.

All other systems mentioned above have one robot trans-
porting one building block from source to destination. The
ARMADAS system, however, separates the roles of transport
and placement between robotic entities. This separation of
robot roles was inspired by a desire to minimize the energy
usage, in particular, by minimizing the mass associated with
particular functionalities. For example, we avoid adding the
bolting mass to robots that are required to repeatedly traverse
long distances to and from the building block source [13].
Another potential benefit, although not considered in the
current paper, is that a single crane robot can place building

blocks while multiple other robots act as couriers to bring
material from the source. While separating the robot roles
increases build efficiency and versatility of the system, this
also increases the challenge and complexity of path planning
for the robots.

Closely related to the construction systems studied in this
paper are the abstract models of modular reconfigurable
robots explored in the algorithmic community [14]–[17].
These works explore questions of universal reconfiguration:
is it possible to reconfigure from any modular shape to any
other shape? Recent work [18] introduces a reconfiguration
model with realistic movement constraints motivated by the
ARMADAS system. The authors show that with the use
of additional voxels as a scaffold, a structure of any shape
can be assembled. In the case when no scaffold voxels are
allowed, i.e., voxels are only ever added to the structure
and never removed, there exist shapes that are impossible to
assemble. Nevertheless, a large class of shapes, specifically
shapes with the so called external-feature-size-2 property, can
always be assembled in a monotone additive fashion.

Multi-robot path planning: One of the major tasks in
multi-robot assembly planning is robot path planning. The
robots have to travel from the depot, where they pick up
new voxels, to the location of their placement, all while
avoiding collisions and deadlocks with other robots. Multi-
robot path planning is a vastly researched topic, with ap-
proaches ranging from exact solutions (e.g., A* planning in
highly-dimensional state spaces, conflict-based search [19]
and its variations) to heuristic solutions (e.g., decoupled
approaches [20], AI-based approaches [21]).

Particularly relevant to our setting is the lifelong multi-
robot path planning [22], where robots receive new tasks and
targets upon finishing previous ones. This setting renders the
exact approaches to planning impractical even for a small
number of robots due to the exploding complexity of the
problem state representation. The solution proposed in [22]
uses a decoupled approach, iteratively constructing robots
trajectories task by task and robot by robot. The authors
introduce the notion of endpoints, serving as safe spaces for
robots to park temporarily to avoid potential conflicts with
new targets and future actions of other robots.

Another technique we utilize was presented in the context
of the multi-labeled A* (MLA*) algorithm [23]. The state
of a robot is incorporated into the search graph. This can be
useful, for example, in the warehouse setting, where robots

already carrying a package have different state than the
robots moving to pick up a package. Since certain varieties
of our robots transport building blocks, it is easy to see how
this inclusion is appropriate.

B. Problem Statement

The robotic part of the ARMADAS system consists of
multiple teams of robots, each team working independent
of others. A team is composed of a cargo SOLL-E robot,
a crane SOLL-E robot and one MMIC-I robot. The cargo
SOLL-E is responsible for picking up a new voxel at the
depot location and bringing it in its backpack to the assembly
location, where the crane SOLL-E picks the voxel up from
the cargo’s backpack and places it on the structure. Then
MMIC-I enters the new voxel and fastens it to the structure
along every face adjacent to the existing structure.

Given a target structure S, and k teams of robots, our goal
is to find an efficient construction plan for the robots to build
S while avoiding collisions and deadlocks. We assume that
the initial state of the system includes a base structure with
a specified depot position, and a supply of voxels ready to
be served to cargo robots at the depot. The role of the base
structure is to support the robots’ initial positions, as well as
serving as a seed structure from which the target structure
will be assembled by attaching voxels one by one.

Deciding on the order in which S is to be constructed is a
non-trivial task in its own right. We present our approach to
this question in the accompanying article [24]. In this paper,
we assume that the coordinates of placement of each next
voxel can be queried during the course of assembly. The
coordinates can be taken from a predetermined sequence, or
they may be computed at each iteration based on the state
of the intermediate structure and the robots’ positions.

II. PATH PLANNING FRAMEWORK

In this section we present the path-planning approach
for the ARMADAS system. Many grid-based multi-robot
path planning approaches [6]–[8], [10] operate under the
simplifying assumption that each robot fits into one cell
of the grid. However, ARMADAS robots occupy multiple
grid cells, which makes system state representation more
complex, and both, collision detection and deadlock avoid-
ance, more challenging. To address these challenges, we
develop generalizations of several approaches to multi-robot
path planning and combine them into the path-planning
framework presented here. Despite our framework being
developed specifically for the ARMADAS system, the un-
derlying algorithms can be applied to other robotic assembly
systems that feature a robot / building block codesign.

One approach to multi-robot motion planning is to con-
sider the robots as one meta-agent, and represent their states
in a high-dimensional state space. This reduces the task to
shortest path planning in the graph encoding the states of
the meta-agent and transitions between them, and results
in an exact optimal solution to the problem. Unfortunately,
even for one team of ARMADAS robots and a very small
structure, the number of states in the meta-agent state space

can be on the order of billions. We therefore must sacrifice
optimality of the solution in favor of efficiency of computa-
tion. We decouple the state representation of the individual
robots, and take the approach of planning each next step in
the construction process for each robot individually. In order
to avoid collisions, we develop a data structure that tracks
robots’ paths and reserves the occupied grid cells during the
corresponding time intervals. To avoid deadlocks, we use
an approach similar to the one proposed in [22], where we
introduce a parking location reserved for each robot, which
the robots can use to avoid blocking others.

State Space: The positions of the robots on and inside a
structure form a discrete set of poses (see Figs. 2, 3 and the
Appendix). We represent the state of a MMIC-I robot with an
internal graph Gi, with nodes corresponding to all poses of
the robot inside the structure and with edges corresponding
to the basic elementary transitions between these poses (e.g.,
MMIC-I moving one of its sides to grip to a different voxel).
Similarly we introduce a surface graph Gs representing the
states and possible moves of a SOLL-E robot.

To distinguish between a cargo robot carrying a voxel and
one with an empty backpack, we use an approach presented
in [23]. We add a flag withVoxel to the nodes of the surface
graph, i.e., we make a second copy of the graph, with the flag
set to true in one copy and to false in the other. The tran-
sition from a node with withVoxel = false to withVoxel =
true happens only at the depot node. Thus, when planning
for a cargo robot to go to the depot, pick up a voxel, and
bring it to the construction site, we simply search for a path
in the surface graph from a node corresponding to the cargo’s
current position with withVoxel = false to the corresponding
node at the construction site with withVoxel = true . This
approach, as opposed to concatenating two paths to and from
the depot, avoids potential deadlocks at the depot location.

For the decoupled robot path planning, we need to make
sure that the robots trajectories do not cross in space and
time. Rather than planning paths in the surface and internal
graphs presented above, we make timed versions of these
graphs. Let t ∈ 0, . . . , T for some large T . Let the timed
surface graph GT

s contain T copies of the nodes V (Gs), one
per time instance t. Denote a copy of a node v ∈ Gs at time
t as vt. For each edge e = (u, v) ∈ Gs, we connect ut to
vt+1 for all 0 ≤ t < T with a directed edge. Now, planning a
path for a SOLL-E from a location u at time τ to a location
v would correspond to searching for a path in GT

s from uτ

to any of the nodes {vt}. Similarly, we introduce a timed
internal graph GT

i for MMIC-I robots.
As the structure changes in time, the graphs GT

s and GT
i

must be updated correspondingly. When a new voxel b is
attached to the structure at time τ , it leads to a certain
number of nodes in GT

s being deleted. Specifically, all the
nodes corresponding to SOLL-E poses blocked by b must
be deleted from GT

s for all t ≥ τ . Similarly, attaching b
creates new nodes in both graphs. As the time of attaching
new voxels depends on the lengths of the robots trajectories,
updating GT

s and GT
i must occur during path planning.

Algorithm 1: Outline of the multi-robot assembly planning algorithm.
input : a base structure with a specified depot, initial robots positions, a target structure and its construction order

1 initialize global GT
s and GT

i // the timed surface and internal graph
2 initialize global R← {initial robots poses at t = 0} // the RESERVATIONS data structure
3 initialize global S ← {} // initialize schedule
4 initialize parking locations to the robots’ initial positions
5 while structure is incomplete do
6 next ← coordinates of the next voxel to be attached
7 team ← robot team with earliest available time
8 PlanOneTeamStep(team , next)
9 end

10 PlanOneTeamStep(team , next):
11 current pos ← last robots’ positions from S[team] // nodes of GT

s and GT
i

12 h← ChooseHandoffPoses(next) // accordingly selected tuple of handoff poses
13 π1 ← FindAndReservePath(current pos.cargo, h.cargoFeedPose)
14 π2 ← FindAndReservePath(current pos.crane , h.craneWaitPose)
15 πm ← FindAndReservePath(current pos.mmici , h.mmiciWaitPose)
16 synchronize the robots // some robots may need to wait for others to arrive
17 update S[team] with π1, π2, πm

18 update S[team] with handoff poses
19 reserve paths to robots’ parking locations // the schedule is not updated with these paths

Reservations Data Structure: For a robot to be in a
certain location on (or inside) the structure, its corresponding
pose must be valid. That is, the grid cells overlapping with
the body of the robot must be empty of other robots, and,
for SOLL-E robots, must be empty of voxels.

To avoid robot collisions, we use a data structure to keep
track of robots trajectories in time and the corresponding
cells occupied by the robots. Note, that the set of occupied
cells depends on the pose of a robot as well as on whether
the robot has a voxel present in its backpack. The RESER-
VATIONS data structure keeps track of the grid cells and the
time intervals when they are occupied by one of the robots.

Parking Locations: Consider the following scenario.
Two teams of robots are working on construction of a
structure. The first team has just placed and fastened a
new voxel. The second team needs to compute its robots’
trajectories to bring and attach the next voxel. If the two
voxels are placed in the neighboring locations, the first team
of robots needs to move away to give space to the second
team to work. We must be careful in deciding where to
move the first team, as their new positions must not block
the access of the second team. If there are multiple teams
working on the construction, the choreography between all
the teams becomes even more complicated. To resolve this
issue, we specify certain locations, called parking locations,
on the structure as each reserved for one specific robot.
Robots can always go and stay indefinitely in their assigned
parking location with the guarantee that they will not inter-
fere with other robots. Following the approach of [22], for
each robot r, we always maintain a trajectory for r from
its current location to r’s parking location reserved in the
RESERVATIONS data structure. This ensures that robots are
never blocked and can always move away. Note, that r would
never actually take the trajectory to go the parking location
in the middle of the construction process. The reserved

trajectory simply serves as a guarantee that r always has
a way out of its current location, no matter where the other
robots are.

Handoff Poses: When deciding on how the robots
are to place the next voxel, we need to consider various
combinations of the relative positions of the crane SOLL-E,
cargo SOLL-E, and MMIC-I. The crane must be able to
reach the voxel in the cargo’s backpack, pick it up, rotate
to align with the location of the voxel’s attachment, and put
the voxel in place (refer to Fig. 1). Afterwards, MMIC-I
enters the voxel and fastens each face of adjacency to the
structure. For each valid combination of handoff poses, we
define cargoFeedPose to be the pose in which the cargo
robot is serving the voxel to the crane, craneWaitPose to
be the pose in which the crane robot is waiting for the cargo
to get into position, and mmiciWaitPose to be the pose
in which MMIC-I is waiting to start the bolting procedure.
Additionally, we specify the transition poses for the crane
from the wait pose to the grab pose (the pose in which it
picks the voxel up from the cargo), and from the grab pose
to the build pose. Similarly, we specify the transition poses
for the internal robot between the bolting positions. For the
handoff tuple to be valid, all the poses in the choreography
of the three robots must be disjoint and the cells they overlap
with must not be reserved by other robots.

Construction Algorithm: We are now ready to put
together the above described components. An outline of the
algorithm is presented in Algorithm 1. After initializing all
the data structures, the algorithm iteratively constructs the
next portion of the schedule for a team with the currently
shortest plan, i.e., a team who least recently placed their
last voxel (see the PlanOneTeamStep procedure in the
algorithm description).

Consider an i-th iteration of the algorithm. For each
team , let τ(team) be the length of its current schedule
in S[team]. We maintain an invariant that before each call

to the PlanOneTeamStep procedure, the states of the
data structures are the following: (a) for each team , the
schedule S[team] has the sequence of nodes in GT

s and
GT

i corresponding to valid trajectories for the robots to
attach a sequence of voxels assigned to them; and (b) the
RESERVATIONS data structure has correct reservations for
each team from t = 0 to t = τ(team), and from t = τ(team)
some paths to the team’s parking locations are also reserved.

During the i-th iteration, the team being processed by
PlanOneTeamStep is given the coordinates of the next
voxel to be built; see the accompanying article [24] for
discussion of how this choice can be made. We choose a
tuple of handoff poses to build the next voxel. Note, that
for a handoff tuple to be valid, the placement of the voxel
should not interfere with the existing trajectories of other
robots during the voxel placement or anytime in the future.
Therefore, for each handoff tuple, we identify the earliest
time t′ such that the grid cells occupied by the handoff poses
and the voxel itself are not reserved for any t ≥ t′.

Among all valid combinations, we select the tuple with
the smallest t′, and among those the one with the shortest
distance between the depot to cargoFeedPose. Note, that this
may not be an optimal choice due to the current state of the
RESERVATIONS data structure, as we cannot guarantee that
the cargo robot would arrive to that particular cargoFeedPose
the fastest. Nevertheless, we find that in general this leads
to a good choice of a handoff tuple.

For each robot in the team, using A* algorithm we find
a shortest path in the appropriate graph (GT

s for SOLL-E
or GT

i for MMIC-I) from its current position to the corre-
sponding pose of the handoff tuple, such that the path is
disjoint from the current reservations made by other robots.
We add the robots’ poses along these trajectories to the
RESERVATIONS data structure, and update the team’s sched-
ule S[team]. Next, we add poses corresponding to the voxel’s
hand-off and fastening to the schedule and the RESERVA-
TIONS data structure. Finally, we find and reserve paths to
the robots’ parking locations, which must exist, as long as
we have selected a valid handoff tuple. Indeed, the robots of
other teams cannot block the paths to the parking locations,
as at time t = maxteam τ(team) all other robots are guaran-
teed to be at their respective parking locations. Therefore, if
there is no path to its parking for one of the current team’s
robots, it is due to the relative positions of its teammates
during the hand-off and voxel assembly procedure. As long
as we ensure that cargoFeedPose and craneBuildPose are
both reachable from their parking locations after the voxel
is attached to the structure, the robots will always be able
to find a path to their parking location. Thus, the invariant
is maintained after the PlanOneTeamStep as well. At the
end of the execution of the algorithm, the schedule structure
will contain trajectories for the teams of robots to assemble
the target structure.

Implementation details and A* heuristics: Next we pro-
vide a few comments on the specifics of our implementation
of the presented algorithm. In Section III we present an
experimental evaluation of the algorithm.

First, it is not feasible to store the graphs GT
s and

GT
i explicitly. Instead, we use their implicit representation,

where for each node, knowing the current state of the
structure, all valid neighboring nodes can be computed.
Thus, we maintain an auxiliary data structure that stores
the snapshots of the structure during the time interval
[minteam τ(team),maxteam τ(team)] and returns its state
for any given query time in this interval.

We have implemented two kinds of heuristic functions
for the A* algorithm, basic heuristics, used for the crane
SOLL-E and MMIC-I, and a heuristic with bookkeeping,
used for the cargo SOLL-E. The basic heuristic for the crane
SOLL-E is given by the following formula:

hs(x) =
3

4
(distL1

(x.footA, target .footA)+

distL1
(x.footB , target .footB)) ,

and MMIC-I:

hi(x) =
1

2
(distL1

(x.sideA, target .sideA)+

distL1
(x.sideB , target .sideB)) .

To make the path search more efficient, we have also intro-
duced a more sophisticated heuristic for the cargo SOLL-E:

hbk
s (x) = distGs

(x, depot) + distGs
(depot , target) ,

where distGs
(·, ·) is the exact distance between two nodes

in the a static surface graph Gs that is a slice of GT
s at t =

τ(team), i.e., the moment when the computation is taking
place. To be able to quickly evaluate distGs(·, ·), in addition
to the dynamic structure, we store the dynamic distances
from any node to the depot, which can be queried at any
time in the interval [minteam τ(team),maxteam τ(team)].
To maintain the dynamic distances data structure, we update
the distances (within the static graph Gs) from all nodes to
the depot at every event when a voxel is being attached.

III. ALGORITHM EVALUATION

We evaluate the performance of our algorithm on two
structures shown in Figure 4. The first structure is a block
of size 4 × 5 × 10 voxels, and the second structure is an

Fig. 4. Two test structures: a solid 4× 5× 10 block (left), and an Eiffel
tower consisting of 1324 voxels (right).

1 2 3 4
0

5000

10000

15000

20000

teams

steps
our algorithm

total number of steps

lower bound

Fig. 5. The number of synchronous steps to assemble the block structure
as a function of the number of teams: with our algorithm (blue), the lower
bound (green). The total number of steps taken by the robots (orange).

1 2 3 4 5 6 7 8
0

5 · 104

105

1.5 · 105

2 · 105

2.5 · 105

3 · 105

teams

steps
our algorithm

total number of steps

Fig. 6. The number of synchronous steps to assemble the Eiffel tower
structure with our algorithm (blue), as a function of the number of teams,
and the total number of steps taken by robot teams (orange).

Eiffel tower comprised of 1324 voxels. In the figure, voxels
of the base structure are shown in orange, the depot location
is shown in purple, the robot’s parking locations are shown in
yellow, and the structure itself is shown in blue. The chosen
structures exemplify two distinctly contrasting topologies: a
solid body and a sparse configuration. Other possible designs
serve as transitional forms between these extremes, thereby
allowing for a continuum of results to be deduced.

We first evaluate the performance of our algorithm on the
smaller block structure. To estimate how well the algorithm
performs compared to an optimal solution, we have imple-
mented a path planning algorithm for one team with a meta-
agent consisting of the two SOLL-E robots and a MMIC-I
robot. As described above, it is unfeasible to implement a
meta-agent approach that groups all three robots in one meta-
agent. Our approach of grouping two SOLL-E robots into a
meta-agent and having MMIC-I planning performed inde-
pendently is close to an optimal solution. Indeed, MMIC-I
trajectories rarely interfere with the SOLL-E trajectories,
and the choreography of the two SOLL-E robots is com-
puted to optimality when considering them as a one higher-
dimensional robot. For the given structure, one team with
a SOLL-E meta-agent and a MMIC-I took 7690 steps to
construct the block structure. This value serves as our lower
bound on the number of steps for one team of robots. For
the case of k robot teams with k > 1, we divide 7690 by
k to obtain a lower bound. Figure 5 shows the comparison
of our algorithm (in blue) to the described lower bound (in

green). In orange is shown the total sum of the number of
steps performed by each team. The growth of this function
is explained by the amount of interference between the
multiple robot teams. This is due to the very limited amount
of space the robots have to operate within, in the case of
the block structure. The level of interference also explains
the divergence of the time span of our algorithm from the
lower bound. Nevertheless, the performance of our algorithm
is surprisingly close to the lower bound for one and two
teams, which indicates that for larger structures our algorithm
should perform well.

Next, we evaluate the performance of our algorithm on the
larger Eiffel tower structure. Figure 6 shows the comparison
of our algorithm (in orange) to the total number of step taken
by all the robot teams. Compared to the block structure
scenario, in this case our algorithm shows a more rapid
relative decrease in the time span with the increasing number
of teams. As expected, this is due to less interference
between the robots from different teams. The geometry of
the structure allows for parallel construction most of the time
without much interference, except for a bottleneck at the
depot location where cargo robots pick up voxels. Observe
that, consistently with the above, the orange function grows
relatively more slowly compared to the block scenario.

In conclusion, the presented framework for a multi-robot
assembly system can be successfully employed for construc-
tion of large modular structures, with sizes in the order of
tens of thousands of voxels. To achieve a system scalable
to much larger structures, however, one would be required
to consider distributed computing approaches rather than a
centralized approach, like the one presented in this paper,
which is an interesting direction for future research.

APPENDIX

All possible poses (up to rotation) of SOLL-E robot with
both feet gripping to a voxel face on the structure’s surface:

REFERENCES

[1] C. E. Gregg, D. Catanoso, O. I. B. Formoso, I. Kostitsyna, M. E.
Ochalek, T. J. Olatunde, I. W. Park, F. M. Sebastianelli, E. M.
Taylor, G. T. Trinh, and K. C. Cheung, “Ultralight, strong, and self-
reprogrammable mechanical metamaterials,” Science Robotics, vol. 9,
no. 86, 2024. doi: 10.1126/scirobotics.adi2746

[2] I.-W. Park, D. Catanoso, O. Formoso, C. Gregg, M. Ochalek,
T. Olatunde, F. Sebastianelli, P. Spino, E. Taylor, G. Trinh et al.,
“SOLL-E: A module transport and placement robot for autonomous
assembly of discrete lattice structures,” in 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2023, pp. 10 736–10 741.

[3] O. Formoso, G. Trinh, D. Catanoso, I.-W. Park, C. Gregg, and
K. Cheung, “MMIC-I: A robotic platform for assembly integration
and internal locomotion through mechanical meta-material structures,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 7303–7309.

[4] “Moon to Mars architecture.” [Online]. Available: https://www.nasa.
gov/moontomarsarchitecture/

[5] K. Petersen, R. Nagpal, J. Werfel et al., “TERMES: An autonomous
robotic system for three-dimensional collective construction.” in
Robotics: science and systems, vol. 7, 2011, pp. 257–264.

[6] E. Lam, P. J. Stuckey, S. Koenig, and T. S. Kumar, “Exact approaches
to the multi-agent collective construction problem,” in Principles and
Practice of Constraint Programming: 26th International Conference,
CP 2020, Louvain-la-Neuve, Belgium, September 7–11, 2020, Pro-
ceedings 26. Springer, 2020, pp. 743–758.

[7] A. K. Srinivasan, S. Singh, G. Gutow, H. Choset, and B. Vundurthy,
“Multi-agent collective construction using 3D decomposition,” in 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2023, pp. 9963–9969.

[8] M. Rameš and P. Surynek, “Action duration generalization for exact
multi-agent collective construction,” in 16th International Conference
on Agents and Artificial Intelligence (ICAART), 2024.

[9] Y. Terada and S. Murata, “Automatic assembly system for a large-scale
modular structure - hardware design of module and assembler robot,”
in 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), vol. 3, 2004. doi: 10.1109/IROS.2004.1389760 pp.
2349–2355.

[10] ——, “Automatic assembly system for modular structure,” in Proc.
22nd International Symposium on Automation and Robotics in Con-
struction (ISARC), 2005. doi: 10.22260/ISARC2005/0028

[11] B. Jenett, A. Abdel-Rahman, K. Cheung, and N. Gershenfeld, “Ma-
terial–Robot System for Assembly of Discrete Cellular Structures,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4019–4026,
2019. doi: 10.1109/LRA.2019.2930486

[12] B. Jenett and K. Cheung, “BILL-E: Robotic platform for locomotion
and manipulation of lightweight space structures,” in 25th AIAA/AHS
Adaptive Structures Conference, 2017, p. 1876.

[13] B. Bernus, G. Trinh, C. Gregg, O. Formoso, and K. Che-
ung, “Robotic specialization in autonomous robotic structural
assembly,” in 2020 IEEE Aerospace Conference, 2020. doi:
10.1109/AERO47225.2020.9172620 pp. 1–10.

[14] Z. Abel, H. A. Akitaya, S. D. Kominers, M. Korman, and F. Stock,
“A universal in-place reconfiguration algorithm for sliding cube-
shaped robots in a quadratic number of moves,” in 40th International
Symposium on Computational Geometry (SoCG 2024), ser. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 293, 2024. doi:
10.4230/LIPIcs.SoCG.2024.1. ISBN 978-3-95977-316-4. ISSN 1868-
8969 pp. 1:1–1:14.

[15] I. Kostitsyna, T. Ophelders, I. Parada, T. Peters, W. Sonke, and
B. Speckmann, “Optimal in-place compaction of sliding cubes,” in
19th Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT 2024), ser. Leibniz International Proceedings in Informatics
(LIPIcs), vol. 294, 2024. doi: 10.4230/LIPIcs.SWAT.2024.31. ISBN
978-3-95977-318-8. ISSN 1868-8969 pp. 31:1–31:14.

[16] C. Sung, J. Bern, J. Romanishin, and D. Rus, “Reconfiguration plan-
ning for pivoting cube modular robots,” in 2015 IEEE international
conference on robotics and automation (ICRA). IEEE, 2015, pp.
1933–1940.

[17] D. Feshbach and C. Sung, “Reconfiguring non-convex holes in piv-
oting modular cube robots,” IEEE Robotics and Automation Letters,
vol. 6, no. 4, pp. 6701–6708, 2021. doi: 10.1109/LRA.2021.3095030

[18] J. Brunner, K. Cheung, E. Demaine, J. Diomidova, H. D. Chris-
tine Gregg, and I. Kostitsyna, “Reconfiguration algorithms for cu-
bic modular robots with realistic movement constraints,” in Proc.
19th Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT), 2024, pp. 34:1–34:18.

[19] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015. doi: https://doi.org/10.1016/j.artint.2014.11.006

[20] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[21] J.-M. Alkazzi and K. Okumura, “A comprehensive review on
leveraging machine learning for multi-agent path finding,” IEEE
Access, vol. 12, pp. 57 390–57 409, 2024. doi: 10.1109/AC-
CESS.2024.3392305

[22] H. Ma, J. Li, T. S. Kumar, and S. Koenig, “Lifelong multi-agent path
finding for online pickup and delivery tasks,” in Proc. 16th Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), 2017. doi:
10.5555/3091125.3091243 pp. 837–845.

[23] F. Grenouilleau, W.-J. Van Hoeve, and J. N. Hooker, “A multi-label
A* algorithm for multi-agent pathfinding,” in Proc. International
Conference on Automated Planning and Scheduling (ICAPS), vol. 29,
no. 1, 2019. doi: 10.1609/icaps.v29i1.3474 pp. 181–185.

[24] T. Peters, K. Cheung, and I. Kostitsyna, “Assembly order planning for
modular structures by autonomous multi-robot systems,” to appear at
ICRA 2025, 2025.

https://www.nasa.gov/moontomarsarchitecture/
https://www.nasa.gov/moontomarsarchitecture/

	INTRODUCTION
	Algorithmic Approach to Assembly
	Problem Statement

	PATH PLANNING FRAMEWORK
	ALGORITHM EVALUATION
	References

