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Abstract.

The oil sands in Alberta, Canada is a significant source of air pollution. Observations from the Ozone Monitoring Instrument

(OMI) on the NASA Aura satellite have been used to quantify NOx emissions from the surface mining region of the oil sands.

Two related emissions methods were utilized, one for point and one for area sources, where OMI vertical columns densities

of NO2 were combined with winds from a meteorological reanalysis and a two-dimensional exponentially-modified Gaussian5

(EMG) plume model. This work better connects the two (point and area) emissions methods, discusses the interpretation of fit

parameters, and the ability of OMI (and other sensors) to resolve emissions between neighbouring sources.

The two methods employed, in good agreement with each other, indicated an increase in emissions from about 55 to 80

kt[NO2]/yr between 2005–2011, and flat thereafter. Reported emissions were within 15% of reported emissions, consistent

to within uncertainties. In an extension of this methodology, OMI observations were combined with reported point source10

emissions to derive the more uncertain emissions component from the large off-road mining fleet. These were found to make

up about 60% of total NOx emissions, also consistent with reported emissions. The OMI-derived 0.9%/year increase in fleet

emissions and the 5.5%/year increase in bitumen mined, generally a good proxy for fleet emissions, can be reconciled by

considering the evolution of the mine fleet over this period. OMI is therefore able to track the transition from US EPA Tier 1

standards, through Tier 4 standards, to the present, and in so doing demonstrates the efficacy of this policy. Furthermore, this15

analysis shows that had the fleet remained at Tier 1 this source would currently be emitting an additional 40 kt[NO2]/yr.
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1 Introduction

The utilization of satellite observations of atmospheric composition for estimating or constraining emissions has expanded

significantly in the past two decades (Streets et al., 2013) following improvements in sensor spatial resolution and precision,

retrieval algorithms, and emissions methodologies. While satellite observations alone can often be used as proxies for emis-20

sions, at best they only contain information on the emitted mass of a pollutant, and not the rate of emission. To bridge this divide

additional information on the dispersion (via atmospheric transport) and removal (though physical and chemical processes, if

relevant) must be incorporated.

One common approach to obtaining "top-down" emissions estimates is through the use of 3D chemical transport or air

quality models that simulate all relevant physical and chemical processes. Model emissions are adjusted such that the model-25

simulated and satellite observed quantities match to within some tolerance. The specifics of the approach may depend on

several factors such as resolution of the model and lifetime of the pollutant, and vary from the straightforward mass balance

(e.g. Martin et al., 2003) to a more formal Bayesian approach in which a cost function is minimized (Streets et al., 2013).

An alternative class of top-down methods have become increasingly common over the past decade in which satellite obser-

vations are paired with wind information to directly estimate emissions of air pollutants such as NOx, SO2, NH3, CO, CH4,30

and CO2. This was done initially for point (or near-point) sources (Beirle et al., 2011; Pommier et al., 2013; Fioletov et al.,

2015; Nassar et al., 2017; Varon et al., 2018; Dammers et al., 2019) but more recently for area sources (Fioletov et al., 2017;

Beirle et al., 2019; McLinden et al., 2020; Fioletov et al., 2022; Liu et al., 2021; Wren et al., 2023; Fioletov et al., 2025). After

several years of development, testing, refining, and validating, these methods are now being applied to emissions detection,

verification and analysis (e.g. McLinden et al., 2016b; Ialongo et al., 2018; Goldberg et al., 2019a; McLinden et al., 2020).35

In this work, direct methodologies such as these have been applied to surface mining within the Athabasca Oil Sands Region

(AOSR), located just north of the community of Fort McMurray (57◦N, 111.6◦W) ), in the Canadian province of Alberta (see

Figure 1). The AOSR contains large deposits of bitumen, a viscous form of oil, which can be converted into a synthetic crude

oil. In total, the AOSR is estimated to contain the equivalent of 170 billion barrels of oil, making it the second-largest reserve

globally. In 2023, production from the AOSR was (the equivalent of) 3.4 million barrels of oil per day (mBPD) from bitumen,40

a number expected to rise to 4.0 mBPD by 2030 (Alberta Energy Regulator, 2023b).

Within the AOSR, about 20% of the proven reserves reside near the surface, at a depth of∼75 m or less, and can be extracted

through a process called surface mining. Surface mining first requires the removal of the overburden (muskeg and soil) in order

to expose the deposit, followed by the extraction and transport of the raw bitumen to another on-site location for further

processing to separate the bitumen from the sand and other impurities. For deeper deposits, in situ extraction methods must be45

employed in which steam is injected to reduce the bitumen viscosity so that it can be pumped to the surface. In either case,

the bitumen is then converted into a synthetic crude oil through a process known as upgrading. Some facilities have on-site

upgrading while others transport the bitumen elsewhere.

There are a number of environmental concerns associated with oil sands operations (e.g. Kelly et al., 2010), including water

usage, deforestation (Rosa et al., 2017), greenhouse gas emissions (Rosa et al., 2017; Liggio et al., 2019; Wren et al., 2023),50
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and various potential environment effects to air, water, land, biota, and human health arising from the emission of pollutants.

In particular, potential harmful effects on ecosystems from acidifying deposition (Makar et al., 2018), often referred to as

cumulative effects. This refers to the environmental impact of past, present, and potentially future deposition, to the land and

water. A comprehensive understanding of this impact, and how to mitigate it, requires an accurate knowledge of the emission

rates of atmospheric pollutants (Galarneau et al., 2014; Gordon et al., 2015; Liggio et al., 2016; Li et al., 2017). Cumulative55

effects encompasses many pollutants, but in this work the focus are nitrogen oxides, NOx (or the sum of NO and NO2) which

are emitted as a by-product of combustion.

The Ozone Monitoring Instrument (OMI) satellite sensor has been used previously to help understand the distributions of

NO2 and SO2 (McLinden et al., 2012, 2016a, 2020) in the AOSR. These studies showed that a "hot-spot", or local enhancement,

in NO2 can be readily observed over the surface mining. Likewise, OMI has been utilized to quantify NOx emissions with60

methods similar to that employed here from urban, industrial, and natural sources (Beirle et al., 2011; de Foy et al., 2014;

Adams et al., 2019; Fioletov et al., 2022). This study builds on these to quantify NOx emissions from AOSR surface mining

using the now 19 year time series from OMI with the specific aim of understanding how they have evolved given its continued

expansion and the changes in vehicle emissions standards over time.

2 Measurements and Methods65

2.1 Emissions Data

This study is focused on quantifying NOx emissions originating from a group of facilities withing a region in the northeast

corner of the AOSR dominated by surface mining, defined here by a box bounded by latitudes of 56.80◦ and 57.46◦N and

longitudes of 112.0◦ and 110.7◦W. This box (see Figures 1 and A1) contains all seven AOSR surface mining facilities, three

relatively small in-situ facilities, as well as other minor NOx emitters such as the community of Fort McKay (pop. <1,000).70

Bottom-up inventories (Zhang et al., 2018) suggest that oil sands surface mining facilities and activities are responsible for

roughly 95% of total NOx emissions within this area and so the term "surface mining region" is used here for convenience.

Just south of this area is the community of Fort McMurray (pop. 70,000, 15+ km South), and further south still are numerous

in-situ facilities (50+ km South).

Several sources of emissions information were used in this work. Annual emissions from point sources reported to the75

Canadian National Pollutant Release Inventory (NPRI) (Environment and Climate Change Canada, 2020) are available up to

2023. NPRI point source emissions are based on a variety of methods: some stacks employ continuous emissions monitoring

systems (CEMS) (Alberta Government, 1998), others are based on engineering estimates, and some use a combination of both.

The primary source of mine fleet emissions were created in accordance with the Environmental Protection and Enhancement

Act (EPEA) (Alberta Environment and Parks, 2025) spanning 2010–2023, while those from the Cumulative Environmental80

Management Association (CEMA) for 2010 (Zhang et al., 2018) are also used for comparison. Related industrial activity

data, including the total amount of oil sands mined on a monthly basis (Alberta Energy Regulator, 2023a), were helpful for

interpretation and sampling corrections.
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Figure 1. Left: Map of the Canada showing the Athabasca oil sands region (yellow) and the location of the surface mining area (red), which

also corresponds to the area outlined by the yellow box in the right panel. Right: Map of the oil sands surface mining region (spanning 134

km N–S and 79 km E–W). The yellow box indicates the region over which emissions are added and assumed to be surface mining, although

there are some minor emissions from in-situ facilities that also reside within the yellow box. The cyan boxes indicate surface mines, whereas

the red boxes are smaller in-situ facilities. The magenta triangle shows the location of the Bertha Ganter – Fort McKay monitoring site, and

the Fort Chipewyan site is 169 km due north of this. Map Data: Google, Image Landsat/Copernicius. © Google

Emissions of NOx from surface mining occur primarily from two source types. The first is the off-road vehicle fleet com-

posed of large, diesel shovels and trucks that operate 24/7. Three of the seven mining operations also have large point sources,85

stack emissions, from the upgraders that convert the bitumen into a synthetic crude oil. The in-situ facilities also have stack

emissions although these are quite modest (< 5%) in comparison. The databases indicate that, in 2010, within the surface

mining region, roughly 38 kt[NO2/yr] originated from the suface mining offroad fleet, 29 kt[NO2/yr] from surface mine point

sources, and about 1–2 kt[NO2/yr] from in situ point sources. All other sources are estimated to emit considerably less than 1

kt[NO2/yr] and are therefore ignored.90

2.2 OMI Observations

OMI is a Dutch–Finnish instrument launched in 2004 on the NASA Aura satellite (Levelt et al., 2006, 2018). OMI measures

back-scattered sunlight in the UV–visible using a two-dimensional detector that measures simultaneously at 60 across-track

positions. Its spatial resolution at nadir is 13×24 km2 but it gets progressively worse at larger off-nadir angles. A blockage

beginning in 2007 -– the so-called “row anomaly” -– has meant some track positions are no longer reliable (Levelt et al., 2018;95

van Geffen et al., 2019). As of 2023 more than half of the across-track positions are affected.
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Version 4.0 of the OMI NO2 standard product (Krotkov et al., 2018; Lamsal et al., 2021) is used here. It, like many UV-

visible NO2 retrievals, uses a three-step approach to determine tropospheric NO2 vertical column densities (VCDs) from

measured spectra, where the tropospheric VCD represents the vertically-integrated number density between the surface and

the tropopause.100

The first step in the retrieval is a determination of the total absorption by NO2, quantified in terms of a slant column density

(SCD). The SCD represents the NO2 number density integrated along the path of the sunlight through the atmosphere. Since

OMI measures scattered light the path is complex and includes one or more scattering events and/or surface reflections. SCDs

are derived through an analysis of the measured spectra by exploiting the difference in absorption at nearby wavelengths and

involves a spectral fit of reference spectra, one of which being the NO2 absorption cross-sections, to the measured spectra . The105

second step is the removal of the stratospheric component of the total SCD. This is accomplished using a complex high-pass

filtering approach. The final step is a conversion of the remaining tropospheric SCD into a tropospheric VCD via an air mass

factor (AMF) that accounts for the sensitivity of the instrument to NO2 for a particular scene, where VCD=SCD/AMF. In

practical terms, a multiple-scattering model is used to calculate AMFs (Palmer et al., 2001) to account for the complex path

of light through the atmosphere. AMFs depend on factors such as solar and viewing geometry, the presence of clouds, scene110

reflectivity, and the vertical distribution of NO2.

AMFs are one of the largest sources of uncertainty in NO2 VCDs (Lorente et al., 2017). In the OMI NO2 standard product

(SP, version 4.0), model profiles at 1◦ resolution are used for the vertical distribution. As these are coarser than the individual

OMI pixels, this acts to smooth the VCD distribution. To improve the effective spatial resolution, AMFs were recalculated using

higher resolution inputs and more recent oil sands emissions (McLinden et al., 2014). These inputs include NO2 profiles from115

the Global Environmental Multi-scale – Modelling Air quality and CHemistry (GEMMACH), discussed in section 2.3, and an

annually-varying monthly-mean MODIS clear-sky reflectivity at 0.05◦ (Schaaf et al., 2002) smoothed to 15 km. Furthermore,

snow pixels are identified using the Interactive Multisensor Snow and Ice Mapping System (Helfrich et al., 2007) which was

found to be the snow product best suited for distinguishing between snow-free and snow-covered scenes (Cooper et al., 2018).

When snow was detected, AMFs were then calculated using a MODIS-derived 15 km snow reflectivity as per McLinden et al.120

(2014).

OMI NO2 VCDs were filtered as follows: track positions affected by the row anomaly are not used, and the track positions at

the edge of the detector, 1–7 and 54–60 which correspond to the coarsest spatial resolution, are also removed. Note that pixels

affected by the row anomaly change over the course of the mission which impacts both the data density and, as discussed

below in Figure 3c, the effective spatial resolution. See Torres et al. (2018) for more information on the evolution of the row125

anomaly. Only observations made for solar zenith angles of 75◦ or less are retained. At a latitude of 57◦N this removes the

majority of data for the months of November to January. Note that a seasonal correction was developed to account for this in

the determination of annual emissions (see section 2.4.4, below).
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2.3 The GEM-MACH Air Quality Forecast Model

This study utilizes output from the Canadian Global Environmental Multi-scale - Modelling air quality and Chemistry (GEM-130

MACH) regional operational air quality forecast model (Moran et al., 2010; Pavlovic et al., 2016; Makar et al., 2017; Pendle-

bury et al., 2018) which covers most of North America. GEM-MACH is an on-line chemical transport module that is embedded

within the ECCC weather forecast model. GEM-MACH was utilized as described in McLinden et al. (2014) where monthly-

mean NO2 profiles at 15 km × 15 km were computed for use in the AMF calculations. As discussed below in section 2.4.3,

GEM-MACH was also used to better quantify the NO2/NOx ratio.135

2.4 Satellite-derived Emissions

Emissions are derived using a direct approach in which wind information is paired with individual OMI NO2 VCD observa-

tions. In this step, vertical profiles of the u− and v−components of wind speed are obtained from the ECMWF (European

Centre for Medium-Range Weather Forecasts) reanalyses, ERA-5 (Hersbach et al., 2020).

From here, two related emission algorithms are employed: one developed for isolated, near-point sources (Fioletov et al.,140

2015) and one for multiple or area sources (Fioletov et al., 2017). Both algorithms rely on a two-dimensional exponentially-

modified Gaussian (EMG) plume function which translates the emissions into a spatial distribution. The functional form for

the 2D EMG, provided in appendix B, is essentially a modified version of the traditional Gaussian plume with simple (e-fold)

chemistry (Stockie, 2011) but is integrated in the vertical dimension and accounts for the finite size of the source and spatial

resolution of the instrument. The EMG plume distribution varies with upwind/downwind and across-wind distance from a145

reference point that represents the location of the source, windspeed, and also depends on three parameters: pollutant mass,

m, its effective lifetime τ , and a plume width parameter, σ. The emission rate, assuming a mass balance, is simply E =m/τ .

Henceforth the EMG will be described as a function of (E, τ , σ) for simplicity.

The effective lifetime describes the rate of decay of the pollutant due to chemical (e.g., conversion into other species) or

physical (e.g., dry deposition) loss. It is well known that the lifetime of NOx depends on NOx-itself, and a recent study150

(Laughner and Cohen, 2019) elucidates this in the context of theoretical NOx-lifetime curves for various volatile organic

compound reactivity regimes. Previous studies using EMG-like functions found effective lifetimes of 2–5 hours by following

the downwind decay of NO2 VCDs (Beirle et al., 2011; de Foy et al., 2015; Lange et al., 2021).

The effective plume width (or spread) parameter, σ, is interpreted as a combination of a plume diffusion parameter, σdiff ,

the spatial resolution of the satellite instrument, σpixel, and the physical size or extent or size of the source itself, σsize. Given155

the Gaussian nature of the EMG, it is reasonable to assume that these are related through a functional form resembling,

σ2 = σ2
diff +σ2

pixel +σ2
size. (1)

Considering the physical extent of the oil sands, σsize is expected to be tens of km. Similarly, given the OMI spatial resolution,

σpixel should be on the order of 20 km. The remaining term, from equation (B4), is σ2
diff = α · yβ where y is the downwind

distance, and α= 1.5 km and β = 1 (Fioletov et al., 2015). Conventional Gaussian plume models use values more like α= 0.33160
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km and β = 0.86 (Stockie, 2011). The larger value for α accounts for additional uncertainty in the wind downwind of the

source. In the case of OMI, with its rather coarse resolution, decreasing α has virtually no impact on the fit.

The precise relationship between σ, σdiff , σsize, and σpixel was explored in appendix F using a simple model in which a

collection of true-Gaussian plume point sources were used to simulate a near point source (of some radius σsize) and smoothed

to a specified satellite resolution (for pixel size σpixel). Fitting this combined distribution to an EMG allowed a relationship165

between these various terms to be established. Figure F1 shows σ has a dependence reminiscent of σ2
size and σ2

pixel, and for

small values of both, values less than 1 km which suggests σdiff is small. Figure F1 will be used below to help interpret results.

This further suggests that only for instruments with substantially higher spatial resolution than OMI, and likely even TROPOMI

or TEMPO (Zoogman et al., 2017), would this σdiff term need to be refined.

The EMG plume function is used in two ways. The first is an inverse mode where combined OMI-wind data are fit in170

order to derive (E, τ , σ). The second way is in a forward mode to predict the spatial distribution of VCDs (at an OMI-like

spatial resolution) by prescribing winds and values for (E, τ , σ). The input emissions used for this forward mode can be those

derived from OMI (in the inverse mode), in which case the intent is to ’reconstruct’ the original OMI observations to test for

consistency. Alternatively, a modified or even completely independent source of emissions, E, can be used, with τ and σ as

derived from OMI, in order to examine the predicted spatial distribution of VCD (at OMI spatial resolution).175

2.4.1 Point Source Method

The first emissions approach considered is the point source method of Fioletov et al. (2015), used previously to derive emissions

of SO2 (Fioletov et al., 2016; McLinden et al., 2020), NH3 (Dammers et al., 2019), and NOx (Griffin et al., 2021). Observations

from many OMI overpasses are combined using a rotation procedure in which all observations are re-positioned about a

reference location according to their individual wind directions such that, after rotation, all observations share a common wind180

direction (Pommier et al., 2013). In other words, the upwind/downwind and cross-wind positions, relative to the reference

location, of each observation is preserved. In this way multiple overpasses can be analyzed as a single, average plume. In

this method values of (E, τ , σ) are determined that minimize the difference between the EMG plume function and the OMI

observations in the rotated plume. Since τ and σ are non-linear parameters, a non-linear solver is used. A variation of this

method is also used in which τ and σ are prescribed, thereby allowing E to be determined using a linear regression which is185

more stable and often means fewer observations are required. Details on the practical implementation of this method are given

in appendix C.

2.4.2 Multi-Source Method

The second method, developed for multiple or area sources (Fioletov et al., 2017, 2022), was also employed. This is a com-

plimentary approach to the point source method in that the same EMG plume function is used except here (τ , σ) are specified190

and emissions from multiple locations are solved for simultaneously. At each location an EMG basis function is generated for

all OMI observations being used in the fit. The OMI VCDs are modelled as the sum of all EMG functions which represent

the local sources, and a background term, which represent the NO2 that would be present in the absence of local sources. The
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background can be a simple constant offset, or allowed to vary linearly in latitude and longitude. A multi-linear regression

is then performed which provides a set of emissions that minimize the difference between the OMI and modelled (or recon-195

structed) VCDs. Unlike the point source method, this fit is performed in the original latitude-longitude frame (i.e., not in the

rotated frame) and a positive constraint is placed on the emissions.

In this multi-source method, the choice of emission locations is arbitrary. If the emission sources are well known then these

locations can be used. Likewise, a grid of locations can be used when their spatial distribution is uncertain or complex. One

aspect of this approach is that τ and σ must be specified. While the effective lifetime can be estimated from a model, there200

is a question as to how precisely to do this. An alternative approach, and the one adopted here, is to use the effective lifetime

derived from the point source method. The choice of σ is not necessarily obvious since it encompasses multiple parameters,

as indicated by equation 1. It should be chosen such that σsize represents the physical size of the emissions. For a collection of

point sources, then σsize = 0. For a grid representing an area source, σsize should be on par with the grid spacing. Of course,

this assumes σOMI, or at least σ2
diff +σ2

OMI, is known. One method to estimate these other terms is to fit σ for a true point205

source as is discussed below. Additional information is provided in appendix D.

2.4.3 Other Considerations

One important parameter that must be specified is the altitude of the winds, where the altitude is chosen to represent the average

height of the NO2 plumes. As emissions are roughly proportional to wind speed, and wind speeds typically increase rapidly

with height through the boundary layer, this also represents one of the larger sources of uncertainties. Previous studies used210

winds averaged over the lowest 500 m for urban, primarily vehicle (Goldberg et al., 2019a), emissions while another study

used winds over the lowest 1 km (Fioletov et al., 2015).

In this work, wind heights are based on the observations from aircraft campaigns conducted in 2013 and 2018 which studied

pollutant transformation downwind of the oil sands (Li et al., 2017; Liggio et al., 2019). These aircraft data indicated that NOx

within plumes were found to reside at altitudes between the lowest altitudes sampled by the aircraft (100–300 m above the215

surface) and 800 m. In these same plumes, SO2, which originates only from the upgrader stacks (e.g. McLinden et al., 2020),

was found at 400–800 m. This indicates that NOx from the upgrader stacks is best represented at 400–800 m, while emissions

from the fleet at 0–400 m. On this basis, and assuming roughly equal emissions from the stacks and the vehicles as suggested

by the bottom-up inventory, winds, averaged between the surface and 800 m will be used for the majority of the analysis herein.

Furthermore, an uncertainty of 100 m is assigned to the wind height, which translates into a difference in wind speed of roughly220

10% since, in the vicinity of the oil sands, wind speeds on average were found to roughly double between the surface and 1000

m. For situations where fleet and stack emissions are treated separately, winds averaged over 0–400 and 400–800 m are used,

respectively.

As OMI only observes NO2 a correction must be applied to account for the missing NO. Typically this is done by estimating

the NOx/NO2 concentration ratio and scaling the derived emissions by this. Previous studies often used more generic values of225

1.3–1.4 (Beirle et al., 2011; Goldberg et al., 2019a). Here, a site-specific value was determined from the GEM-MACH model.

The annual average surface mining concentration ratio for NOx/NO2, considering grid-boxes within a 40 km radius and using

8



Table 1. OMI NOx emissions uncertainty budget when considering three years of observations.

Error Category Source Uncertainty

Magnitude Type (R=Random,

(%) S=Systematic)

Air Mass Factor all systematic sources 14 S

Data Filtering Remove snow pixels 7 S

±3 track positions 1 S

cloud fraction ±0.1 3 S

EMG emissions fit Fitting errors 5–10 R

Fit downwind distance 3 S

Fit box Width 4 S

Different Methods 3 S

Winds Wind speed and direction 6 R

Wind height 10 S

NOx/NO2 NOx/NO2 ratio 8 S

TOTAL 20–25 %

the same monthly sampling pattern as OMI, is 1.50. The larger value is due in part to the inclusion of non-summertime

chemistry where the photolysis of NO2 is typically slower, particularly at higher latitudes.

However, using a single concentration ratio does not account for any spatial variability. Close to the actual site of the230

emissions this ratio can be larger as NOx is primarily emitted as NO (relatively less NOx is NO2) while further downwind the

opposite is true (relatively more NOx present as NO2). This acts to skew the shape of the (rotated) plume thereby impacting the

fit. Similar to Griffin et al. (2021), the GEM-MACH model is used to quantify the impact of this: VCDs of NO2 and NOx for a

year of simulations over the oil sands, along with model winds, are each fit to the EMG plume function using the point source

method. Taking the ratio of NOx to NO2 emissions derived in this way reveals a ratio of 1.63, which is roughly 10% higher235

than the simple concentration ratio. This 10% difference is a systematic effect that should be largely independent of location

provided emissions are from combustion. This value of 1.63 was used here. See appendix F for additional information.

2.4.4 Uncertainties

There are several sources of uncertainty that limit the accuracy and precision of these OMI-derived emissions. Table 1 shows a

breakdown, with each listed as a random or systematic sources of uncertainty, for the point source method. They are arranged240

under five categories – AMF, data filtering, the EMG fit, winds, and the NOx/NO2 ratio.

Only systematic errors in AMFs are considered since random errors should largely cancel as multiple years of data are

analyzed together. A previous study (McLinden et al., 2014) found systematic uncertainties to be 14% due to approximations
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with how aerosols are handled and the use of a Lambertian surface albedo. Data filtering refers to what OMI data are included or

excluded in the analysis for which different thresholds could be argued: exclusion of snow pixels, track position cut-off, which245

really denotes the maximum size of the pixels, and maximum cloud fraction. These are systematic effects that collectively

represent an 8% uncertainty.

The EMG fit contributes a random uncertainty to emissions related to the quality of the fit itself, which varies from 5–10%

depending on the amount of data used. Beyond that, there are small systematic effects when it comes to the spatial domain

used in the fit itself, specifically the cross-wind, upwind and downwind distances. There is also a small uncertainty included250

here that reflects how different variants of the algorithm produce slightly different emissions.

From Section 2.4.3, a systematic error of 10% from using an incorrect wind height is reasonable. Also, random errors in

wind speed and direction were estimated to be 6% from a previous study (McLinden et al., 2016b). The NOx/NO2 emission

ratio used here is 1.63 as discussed in section 2.4.3. An 8% systematic uncertainty is assigned to this category, arrived at by

considering the differences between the average of the aircraft measurements from Figure E3 and multiple years of GEM-255

MACH output.

There are also potential sources of bias due to the sampling of the OMI instrument: overpasses are only in the early afternoon,

and there is an unequal distribution of observations throughout the year. The first of these is only an issue if there is a diurnal

cycle in emissions. Hourly emissions of SO2, co-emitted with NOx, from the upgraders indicate no consistent difference in

time of day emissions. Likewise, the heavy hauler fleet of trucks are used 24/7 and it is assumed there is no systematic diurnal260

variation in these emissions. High-resolution GEM-MACH forecasts assume flat NOx emissions for both source types (Zhang

et al., 2018). In addition, the fitting algorithm itself smooths the diurnal cycle impact to some extent as NOx emitted before the

overpass time is sampled downwind.

Any potential seasonality bias is largely eliminated using OMI observations from all months. Nonetheless, the SZA cutoff

of 75◦ and the change in cloud cover with season means not all months contribute equally. The impact of this is assessed265

using monthly bitumen mining data (Alberta Energy Regulator, 2023a). Each OMI pixel is assigned a bitumen-mined value

equal to its corresponding monthly total. An annual average bitumen-mined value was then calculated averaging over all pixel

values, thereby capturing the OMI sampling, and these were then compared to the average assuming an equal weighting. The

resultant bias is typically about 1–2%, with one year reaching 5%. This correction was applied directly to the OMI emissions.

See appendix F for the time series and additional information.270

Constructing an error budget for the multi-source method is more challenging, but it is argued here that it would be very

similar since the largest contributors are systematic errors from the AMFs and winds, which would be common to both. As

discussed below, fitted parameters from the point source method are used as inputs to the multi-source which also speaks to

their connection. Given all this, and what was found to be a high degree of consistency in emissions as obtained from each

method, this uncertainty budget is used for both approaches.275

It is worth noting that the uncertainties derived here are smaller than that reported in other satellite-based NOx emission

studies. There are several reasons for this: (i) location-specific and temporally-resolved fitting parameters (τ and σ) , (ii) the
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use of multiple years of data to reduce fit uncertainties, (iii) aircraft observations of real plumes providing more confidence in

wind heights, and (iv) a location-specific and more detailed consideration of the NO2/NOx ratio.

3 NOx Emissions from the Oil Sands280

3.1 Surface Mining as a Point Source

An initial assessment of NOx emissions for oil sands surface mining is made using the point source method. Here, a reference

location of 55.06◦N, 111.55◦W is used as it is the location of the maximum in the mean OMI NO2 VCD distribution, as shown

in Figure 2a. Winds are taken as the average between the surface and 800 m (see section 2.4.3). Figure 2 shows a summary

of the emissions procedure considering the entire OMI time series (2005–2024). These maps were created using a 2×2 km2285

grid and a 12 km oversampling radius (Fioletov et al., 2011). Panel (a) shows the mean NO2 VCD along with an outline of the

surface mines and the reference location. Panel (b) uses the same data as (a) but averaged in the rotated frame, as a function of

downwind and cross-wind distance from the reference location. In this frame the reference location corresponds to (0,0). There

is a clear plume-like feature that peaks just downwind of the reference location before it decays close to background some 100–

150 km downwind. The peak value in the rotated frame is roughly 10–15% larger as compared to the original frame as a result290

of a greater cohesion in the distribution. Panel (d) shows the map that results from the non-linear fit of the individual VCD

observations to the EMG plume function in the rotated frame, and it can be seem to capture the shape of the average plume

in (b). The fit parameters are E= 69.7± 2.2 kt[NO2]/yr, τ = 3.2± 0.1 hours, and σ = 20.6± 0.3 km, where the uncertainties

are statistical only, an indication of how well the EMG represents the OMI/wind observations. The overall uncertainty in the

emissions would be roughly ±20%, from section 2.4.4.295

The remaining panel, (c), shows the reconstructed VCD distribution as found by rotating the fitted values in panel (d) back

to the original latitude-longitude co-ordinates. This generally resembles the mean OMI VCD map in panel (a) but has a smaller

peak value and appears much more symmetric. This is a result of assuming all emissions originate from a single point, the

reference location given by the triangle. Of course in reality emissions are spread out (see Figure 1) over a 60 km (N–S) × 40

km (E–W) expanse, which motives the use of the area or multi-source approach, below. The only reason why the reconstruction300

from panel (c) departs from a symmetrical pattern is that there is a preferred wind direction, out of the W and SW.

This approach is repeated, but now considering successive three-year time periods, where three years are combined to help

ensure the stability of the non-linear, fitted parameters τ and σ, particularly in latter years when the row anomaly means less

than half of all pixels are usable. An example of the mean and fitted VCDs plots, analogous to Figure 2 but for 2005–2007, is

given in Figure C1. The fitted parameters are presented first, deferring any discussion of the emissions to section 2.4. Figure305

3a shows the time series of the mass of the NO2 enhancement. This represents the average mass of NO2 that is present as

a consequence of the surface mining NOx emissions discussed in section 2.4. It is seen to increase with time, peaking mid-

time-series (∼2013), and them decreasing slightly. The dip in 2016 is attributed to the large forest fire just south of the surface

mining in and around the community of Fort McMurray (Adams et al., 2019) that significantly impacted production throughout

the month of May. Note that NOx from the fires themselves originated 20 km south of the surface mines and two weeks later310
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Figure 2. Summary of the point source emissions procedure using 2005–2022 OMI NO2 VCDs. (a) Mean OMI VCD over the surface

mining region of the oil sands. The black lines denote the different mining operations; (b) mean OMI VCD after rotation showing plume-

like structure; (c) Reconstructed spatial distribution using EMG plume and fitted parameters; (d) Fit to rotated VCD using 2D EMG plume

function, with fitted parameters of E=69.7 kt[NO2]/yr, τ = 3.2 hours, and σ = 20.6 km. The black triangle in the panels (a) and (c) show the

reference location used in the emissions retrieval and corresponds to the (0, 0) point in panels (b) and (d).

approached the southernmost edge (MNP (Meyers Norris Penny), 2017). There are only one or two days where it is conceivable

that there could be some misidentification of fire-NOx for oil sands but given its proximity and wind direction, these data tended
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to be filtered due to higher cloud fraction. There is no obvious sign that COVID-19 public health restrictions affected emissions

in the most recent years, consistent with the 2020–2023 production data remaining roughly constant compared with previous

years (Alberta Energy Regulator, 2023b). The increase in the 1-sigma fitting error bars (in all panels, a–c) reflects the decrease315

in the number of OMI pixels due to the onset and expansion of the row anomaly.

For comparison, the three-year running average of in-situ NO2 volume mixing ratio (vmr) is also shown in Figure 3a. Here,

the average from the Bertha Ganter – Fort McKay monitoring station, located between the northern and southern cluster of

mines, is used but, subtracted from it, is the NO2 from a background station at Fort Chipewyan, roughly 170 km to the North.

This difference in station values is used as the mass reflects an enhancement in NO2 above background levels due to the local320

sources. While this simple comparison cannot be considered a validation, their general consistency provides confidence in the

approach.

From Figure 3b, the effective lifetime displays some variation with time, between 2.7–3.9 hours. It is well known than NO2

can impact the abundance of OH, and hence its own lifetime (Valin et al., 2013), and it is in this context that this is explored

further, below. Krol et al. (2024) also highlight the importance of not using a single lifetime for an accurate determinaton of325

emissions.

The variation of σ is shown in Figure 3c, where it is seen to increase from ∼ 18 km in the mid-2000s to ∼ 21 km by 2009

and with a smaller rate of increase to ∼ 24 km near the end of the OMI record. This is broadly consistent with an expansion

of the surface mining activities in the north, including new mining operations coming online, which effectively increase the

area of NOx emissions. Also shown is the average effective size of the OMI pixels used in the analysis, calculated here as the330

square-root of mean pixel area, and it is seen to increase slightly with time due to the expansion of the row anomaly, particularly

through 2008–2011. While similar to the increase in σ, the magnitude of the increase in pixel size is much smaller. The link

between pixel size and σ is discussed below. From Figure F1, 21 km pixels for a surface mining radius of 30 km, would predict

a value for σ of about 21 km, consistent with that derived here.

These results can be contrasted with a previous study (McLinden et al., 2012) in which, between 2005–2011, the mass was335

seen to increase at a similar rate over this period but was a factor of 2–3 smaller. This is due primarily to the differences in

AMF, where the former study used the VCDs as provided in the KNMI version 2 data product (Boersma et al., 2011). In that

data product, the model simulated NO2 profiles were for background conditions as it has no emissions in the AOSR (McLinden

et al., 2014). Other differences are due to the data version and the more sophisticated fitting in this work. It is this difference in

fitting that also complicates any quantitative comparison between the fitted width parameters in these two studies.340

In order to examine the variation in lifetime more thoroughly, an effective-VCD was derived using the mass from 3a (con-

verted to molecules) and divided by an area taken to be πσ2
eff , where σeff is the width parameter from 3c. This would peak mid-

and end-time-series and be a minimum towards the early years. Note that such a quantity is not the mean VCD, but simple one

that accounts for the changing spatial extent of the source with time. Plotting this effective lifetime vs effective VCD shows a

reasonably compact relationship, as shown in Figure 4, with a correlation coefficient of 0.78. For pure chemical loss of NOx345

via NO2+OH, [OH] = 1/(kOH+NO2
· τ) can be used to estimate [OH], giving values between 5–8×106 molecules/cm3, also

shown in Figure 4. For the 2013 flight campaign in the oil sands, summertime OH was estimated at 10×106 molecules/cm3
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Figure 3. OMI point source emissions and parameter time series: (a) mass of the NO2 enhancement and, for comparison, the difference in

surface volume mixing ratio (vmr) between a surface mining and background site (see text), (b) effective lifetime of plume, and (c) plume

width parameter and effective OMI pixel size, calculated as the square root of the mean of pixel area. All OMI-derived quantities are based

on three-years of observations, such that, e.g., 2006 considered observations from 2005–2007, with the exception of 2005 which is based on

two-years, 2005–2006.

(Liggio et al., 2016). The 2013 value from this OMI analysis, 6×106 molecules/cm3, is generally consistent since it considers

all seasons (albeit weighted towards spring and summer) and wintertime values would be considerably smaller. This analysis

suggests that at least some of the temporal variation of τ is real, and highlights the importance of using the period-specific τ350

when estimating emissions. Using the 2005–2023 mean τ (or some other constant value) could lead to a 10–15% additional

error and skew the trend.
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Figure 4. Relationship between effective VCD and lifetime and inferred OH concentration. Each point represents one three-year value from

Figure 3.

3.2 Surface Mining as a collection of Point Sources

When quantifying emissions from a location where the spatial scale of the emissions is larger than σ (as is the case here), the

multi-source method may be more appropriate than the point source method. If the locations of the emissions are well known,355

then these can simply be specified; alternatively, a grid of potential source locations can be used. In this work both options

were explored.

Initially, a grid of potential source locations covering the entire surface mining region is used. Initially an 8×8 km2 grid is

defined over an area of 250 km× 250 km centered on the surface mining. Each grid-box is treated as a (potential) point source,

analogous to the approach used in Fioletov et al. (2017). As discussed in section 2.4 and appendix D, emissions are derived360

for each grid-box such that their combined VCDs match the OMI observations. The positive constraint ensures most of these

fitted values, and hence emissions, are zero.

In this approach σ and τ must be specified. Here τ is taken from the point-source analysis in Figure 3(b) and used for all

individual sources. This is a simplification as it was already demonstrated in Figure 4 that τ depends on VCD, and hence local

emissions. It is argued here that this will be a secondary effect since (i) plumes from individual sources will frequently overlap365

due their proximity and the coarse spatial resolution of OMI, and (ii) significant cancellation of errors since the point-source
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lifetime used was for the combination of all local sources, small and large. In the future, when isolating individual sources is

the goal, it would be worthwhile to explore a parametrization which might account for this dependency.

Determining a value for σ is not as straightforward. The reason for this is because σ, as derived above, has embedded within

it the spatial scale of the entire surface mining source (that is, the σsize term in equation 1). Following the discussion in section370

2.4, additional insight into how OMI views a point-source was obtained by analysing a different location, one which is more

of a true point source. For this purpose, the Poplar River Power Station (NPRI ID 2079), a coal-burning power plant located

in southernmost Saskatchewan (49.05◦N, 105.49◦W), was considered. Average reported emissions over the 2005–2020 period

are 13.4 kt[NO2]/yr, where OMI finds 11.5 kt[NO2]/yr, suggesting a reliable fit. From this analysis a σ of 11 km was derived.

This can be compared with the value from Figure F1 which, for σpixel = 21 km and σsize = 0, yields a value of about 13 km,375

which is generally consistent. A value of σpixel = 11 km is used for the multi-source method.

Initially all OMI observations spanning 2005–2024 are analyzed together and so a value of τ = 3.2 hours (see Figure 2)

is used. Performing the multi-linear fit provides a grid of retrieved NOx emissions. A comparison of the mean VCD map

with the reconstruction using these retrieved gridded emissions is given in Figure 5a–b. The multi-source reconstruction now

closely resembles the observations, and is much more realistic than the point source reconstruction from Figure 2d. The map of380

retrieved, gridded emissions used for Figure 5b is shown in Figure 6a. The emissions map shows large values over the surface

mines, as expected, with the largest corresponding to the upgrader at the Syncrude-Mildred Lake and Suncor facilities. Total

surface mining emissions, calculated by summing grid-boxes within the rectangle shown, are 62 kt[NO2]/yr. Outside of this

box, other small but non-zero emissions can be seen. Some of these correspond to known NOx sources such as the city of

Fort McMurray, in-situ mining operations, and other small non-oil and gas related sources. Some of the small but non-zero385

emissions retrieved are likely the result of systematic biases in the VCDs.

This retrieval grid is 31 × 31, totalling 961 grid-boxes. An important issue is the degree of independence of each box. One

would not expect OMI, with its ∼21 km pixels, to be able to resolve emissions on an 8×8 km2 grid. The multi-source method

is based on EMG plume functions which serve as the basis functions in the multi-linear regression, and the extent to which

they are correlated can be used to help determine the ability of OMI to spatially resolve emissions. At a distance of 8 km,390

neighbouring OMI NO2 plume functions have a correlation of 0.92. Given uncertainties in the data and approximations of the

method, this confirms that OMI is unable to disentangle them. A more reasonable correlation threshold is 0.5, below which

individual sources can be resolved. This is explored further in appendix F, where Figure F2 shows how achieving this 0.5

threshold separation distance, zmin, varies with σ, and to a lesser extent, τ . For OMI NO2, it was found that sources must be

separated by about 22 km.395

The minimum distance required to distinguish between neighbouring emissions concept is very important for satellite emis-

sions monitoring. An expression relating zmin directly to satellite resolution, σpixel, can be estimated by combining Figures

F1 and F2. The result is shown in Figure 7. Estimates for several satellite data products are shown. While longer-lived species

tend to require a slightly larger separation, the main driver is spatial resolution. This figure suggests TROPOMI and TEMPO

(Zoogman et al., 2017) are able to resolve NOx emissions sources that are ∼9 and 7 km apart, respectively. This approach400

does not account for real data characteristics, source strength (and relative strength of the two sources), and quantity of data
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Figure 5. Summary of the multi source emissions retrieval using 2005-2024 OMI NO2 VCDs. (a) Mean OMI VCD over the surface mining

region of the oil sands. The black lines denote the different mining operations (this panel is the same as Figure 2a); (b) Reconstructed spatial

distribution using the gridded emissions from Figure 6b. Panels (c) and (d) are the VCDs reconstructed using emissions from the NPRI point

source database and OMI-derived area fleet emissions, also from Figure 6b. Note that the background is omitted from panels (b) and (c).

used. One might also argue that a correlation coefficient threshold of 0.5 is too stringent, and that perhaps 0.7 might be more

appropriate.

The spatial scale of the individual surface mines is 5–20 km but they often are separated by little or no distance. It is on this

basis, albeit with one exception in appendix D where this is explored further, OMI emissions derived from the multi-source405

method were simply summed over the surface-mining box. It is noted that TROPOMI, with its superior spatial resolution,

should be able to separate out emissions for the majority of these mines.
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Figure 6. (a) OMI-derived NOx emissions retrieved on an 8×8 km2 grid using the multi-source method. These emissions represent the total

of point and area sources. (b) as (a) but when point source emissions from the NPRI database, totalling 30.6 kt[NO2]/yr, are specified. These

gridded emissions represent area emissions only. Gray boxes represent retrieved emissions between 0 and 0.5 kt[NO2]/yr. In (a) the total

emissions within the box are 63.5 kt[NO2]/yr; in (b) the total is 69.9 kt[NO2]/yr, where 30.4 kt[NO2]/yr were specified and the remaining

39.5 kt[NO2]/yr were derived from the multi-source method.

An alternative implementation of the multi source method was used to derive vehicle fleet emissions. Recall that NOx is

primarily emitted by point sources, or stacks, and the off-road vehicle fleet. Some of the stack emissions make use of CEMS,

and overall stack emissions are believed to be well known. Therefore, if the contribution to the OMI observations from the410

stacks can be removed, the remainder, from the fleet, can be fit using the same approach as above. This requires an initial

step in which VCDs are reconstructed for each OMI observation, assuming stack emissions from NPRI, with these then

subtracted from the actual OMI VCDs. This approach also allows an additional refinement as the height of the winds used for

the prescribed stack emissions (400–800 m) can be different from those used to derive the off-road fleet emissions (0–400 m).

In practice this was done by first taking the NPRI emissions in the region, averaged over 2005–2023, and using these415

to reconstruct VCDs as shown in Figure 5c. The peak over the southern mines reflects the larger emissions from the two

upgraders separated by about 10 km. These VCDs were then subtracted from the OMI observations, and the remainder used

in the multi-source retrieval. The reconstructed total VCDs, those from the multi-source added to the NPRI VCDs from Figure

5c, are virtually identical to the that from Figure 5b and so it is not shown. Figure 5d shows the VCD reconstructed considering

only the retrieved emissions which are attributed to the mine fleet. This VCD distribution are more homogeneous through the420

area, reflecting the more diffuse nature of this source.

The corresponding emissions map is shown in Figure 6b, where the small squares represent the prescribed NPRI point source

emissions, and the grid box values are the retrieved (fleet) emissions. Total (point+fleet) emissions for the two methods differ
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Figure 7. Minimum distance required to distinguish between two point sources as a function of satellite pixel resolution and effective lifetime.

Values for several satellite emissions data products are also denoted.

due primarily to how the wind height is handled. Had the same winds been used in both, then the totals would be the same

(to within 0.1–0.2 kt[NO2]/yr) and one could have obtained the same result by simply subtracting the NPRI total from that in425

Figure 5a.

Two more variants of this method are considered. Here, instead of a grid, potential source locations are limited to known

emissions sites, including industry and the city of Fort McMurray. The resultant emissions maps are shown in Figure 8. The

squares reflect the emissions retrieved from each location. No attempt was made to account for the spatial scale of the mining

operation; rather each was treated as a point source. As can be seen, the emissions maps are similar overall to the grid approach430

in both spatial distribution and surface mining total.

3.3 Emissions Time Series

As with the point source method, emissions using the multi-source approach were also derived considering three-year time

increments and using the effective lifetime time series from Figure 3b. Maps of average VCD maps and their reconstructions

are shown in Figures D2 and D3, respectively. The emissions time series is shown in Figure 9.435
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Figure 8. (a) OMI-derived NOx emissions retrieved using the multi-source method where emissions locations are assigned to the centre

of mining facilitues. These emissions represent the total of point and area sources. (b) as (a) but when point source emissions from the

NPRI database, totalling 30.6 kt[NO2]/yr, are specified. In (a) the total emissions within the box are 65.6 kt[NO2]/yr; in (b) the total is 66.3

kt[NO2]/yr, where 30.4 kt[NO2]/yr were specified and the remaining 35.9 kt[NO2]/yr were derived from the multi-source method.

Several variations of the multi-source were utilized, analogous to what was discussed in section 3.2. A summary of these

are given in Table E1. Considering these together with the point source results shows relatively little variation amongst them,

typically a few percent with the largest being 15% for a single 3–year periods. Based on this and the difficulty in determining

which method is ’best’ it was decided to take the mean of several methods, according to Table E1), as the final emissions value,

with their variability taken as a measure of uncertainty.440

Emissions are found to steadily increase over the OMI record from about 55 to 80 kt[NO2]/yr as seen in Figure 9a between

2005 and 2010, remain roughly flat thereafter. Comparing total NOx emissions, there is a good overall agreement between OMI

and the bottom-up estimates. The bottom-up values are consistently 0–15 kt[NO2]/yr smaller, but within the OMI uncertainties.

As the time period over which the NOx emissions were found to increase (2007-2011) generally corresponds to the main

expansion of the OMI row anomaly, emissions over the entire time series were recalculated but restricted only to track positions445

that were unaffected by the anomaly over the entirety of the mission to date. Considering the previous criteria of excluding

pixels near the edge of the detector due to their coarse spatial resolution, only track position between 8 and 23 were considered

for this sensitivity study. Emissions calculated in his way were found to be minimally impacted, reaching roughly 3 kt[NO2]/yr

in 2007, well below the calculated precision, and not changing the overall time series picture.

Fleet emissions, as derived by prescribing stack emissions, are shown in Figure 9b. These generally follow the total emissions450

since the stack emissions only display a modest increase with time. The magnitude of the fleet emissions uncertainties are

taken to be the same as that from the total emissions in Figure 9a. Fleet emissions were found to comprise about 60% of the
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Figure 9. Comparison of reported and OMI-derived NOx emissions for (a) total and (b) fleet in the oil sands surface mining region. Thick

error bars represent the random uncertainty and thin error bars represent total (random and systematic) uncertainty. The shading indicates the

variability among the various methods for deriving emissions (and is included in the total uncertainty).

total emissions. Neither reported nor satellite emissions show much variation over the 2010–2023 period for which both are

available.

4 Discussion455

As can be seen in Figure 10a, the average rate of increase in fleet emissions is 1.3%/year since 2005, with the bulk of the increase

occurring 2005–2011. Yet the rate of increase in the mass of oil sands mined, which is generally considered a reasonable proxy

for fleet emissions since they must transport the bitumen from the mine to the separation facility, is considerably larger.

This apparent discrepancy may be reconciled by considering the evolving standards as the Canadian vehicle NOx emissions

21



Figure 10. (a) Time series of mass of oil sands mined and fleet emissions from OMI. Dashed lines are linear trend lines, with the calculated

trends indicated. (b) Emission intensity (defined as the ratio of fleet emissions to oilsands mined) and an estimated mean emission factor (see

text). The shaded red bar show an estimate of the mean emission factor using reported fleet data.

transitioned from unregulated (Tier 0) to present-day standards (Tier 4i/4) (Environment Protection Agency, 2016). As part of460

an agreement with the US, Canada adopted the EPA Tier 1 standard for heavy-duty, non-road vehicles (9.2 g[NOx]/kWh) in

2000, the Tier 2 standard (6.4 g[NOx]/kWh) in 2006, and then the Tier 4 standard (3.5 g[NOx]/kWh) in 2012. There were no

Tier 3 standards for this class of vehicle. Lower tier trucks could still be used as these stricter regulations were phased in, but

any new or replacement engines were required to comply with the standard of the time. With a typical engine lifetime of 12

years, the benefits of Tier 4 regulations will not be fully realized until the late-2020s (M.J. Bradley & Associates, 2008).465

An emission intensity metric is defined here as the mass of NOx emitted from the mining fleet per unit mass of mined

oil sands, and this is shown in Figure 10b. It is seen to decrease at 3.8%/year. To contrast this with an expected decline, the

composition of the vehicle fleet is required. Unfortunately, it was only in 2018 as part of the new Alberta Emissions Inventory

Reporting Program (AEIR) that industry was required to report on fleet composition. While useful as a snapshot, this means

there is no direct information on fleet evolution over the study period.470
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Figure 11. Composition of mine fleet according to emissions tier, shown as a cumulative fraction. The time series shows projections from

the M.J. Bradley & Associates (2008) study for large (> 750 hp), diesel vehicles. The three on the right compare 2018 projected values with

the 2018 AEIR fleet report, total vehicles and fuel consumed.

One alternative is a study delivered to Environment and Climate Change Canada in 2006 projecting the make-up of the

mine fleet going forward (M.J. Bradley & Associates, 2008). Their projected mine fleet composition is shown in Figure 11.

This study predicted the largest growth between 2005 and 2010 where total vehicles increased from about 200 to 500, before

leveling off at 600. This is the reason for the rapid increase in Tier 2 fraction. For comparison the AEIR data indicate a fleet size

of 730 large (> 750 hp) trucks in 2018. A comparison with AEIR reported tier fractions is also shown in Figure 11, where the475

weighting was done using total vehicles as a function of tier as well as fuel consumed by tier. There is general agreement with

the projections, with tier 2 vehicles composing the majority. One difference is the fraction of tier 1 vs. tier 4, with there being

fewer tier 4 vehicles than projected. Note that one large facility in the AEIR did not report which tier their vehicles belonged

to and so these trucks were excluded from this analysis.

As a second alternative, a simple model was constructed beginning with 205 Tier 1 trucks in 2005. Trucks were increased480

at the same rate as total bitumen mined, with a fraction of existing trucks being replaced each year with ones at the current

tier. Assuming a 12 year lifetime (M.J. Bradley & Associates, 2008), where for simplicity lifetime is taken as an e-fold such

that 8.0% of trucks (or engines) were replaced each year. As suggested by the bitumen mined time series in Figure 10a, the

total trucks increased steadily and doubled over the timeframe considered. The largest difference between this approach and

the M.J. Bradley & Associates (2008) and AEIR data being the difference in Tier 2 truck fraction.485
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While the 730 large (> 750 hP) diesel trucks from the 2018 AEIR mine fleet report make up less than half of the 1610

total vehicles listed in the report, they accounted for 92% of the fuel consumed and so would also be responsible for the large

majority of NOx emissions. Overall, the AEIR total number of trucks, and the breakdown among the tiers, agree better with

the projections. Nonetheless, the model remains a useful sensitivity study.

Assuming each truck uses the same amount of fuel and emits according to its standard, the weighted average emission factor490

can be computed for the projected fleet compositions. This was done by weighting the Tier 1/2/4 emission standard (9.2/6.4/3.5

g[NOx]/kWh) with the fractions from Figure 11. Thus 2005 would have a value of 9.2 since it is entirely Tier 1, and 2006 would

be slightly smaller since it is about 85% Tier 1 and 15% Tier 2. This metric, from Figure 10b, changes at−4%/year, a decrease

that is essentially the same as that for the emissions intensity. In 2018, the emission intensity as defined above has declined by

about 31% since 2005, and the mean emission factor using the fleeted projections has declined by 46%. These can be compared495

with the change in AEIR mean emission factor, assuming an initial value of 9.2 g/kWh, the Tier 1 NOx standard. A decline of

21–31% is calculated, with the range depending on whether total vehicles or total fuel consumed was used to weight the mean.

Figure 10b suggests that the efficacy of the EPA emissions standards, at least in the case of the oil sands fleet, adopted

by Canada are effective at or close to the level expected. Considering Figure 10b further, had emission intensities remaining

constant at 2005 levels, with 2005 being the final year of Tier 1 standards, and increased with oil sands mined (5.6%/yr) instead500

of that observed (1.3%/yr), the fleet emissions reduction brought about from the adoption of Tier 2 and later Tier 4 standards,

relative to Tier 1 is roughly 40 kt[NO2]/yr in 2023. To put this into context, a value of 40 kt[NO2]/yr is comparable to that

emitted from an urban area (minus local industry) of 5M people using an approximate value for a per-capita rate of emissions

of 7 kt[NO2]/yr/(1M people) (Fioletov et al., 2022), or not quite half the roughly 100 kt[NO2]/yr emitted from the Greater

Toronto Area (Goldberg et al., 2019b) in the summer. Over the past 19 years, this amounts to roughly 400 kt[NO2] less NOx505

being emitted as a result.

The multi-source method can also be used to examine emission scenarios. For example, the impact on the average NO2 VCD

distribution due to a 20% reduction in fleet emissions or the opening of a new operation emitting 15 kt[NO2]/yr could readily

be evaluated. This is demonstrated in Figure 12 by comparing NO2 VCD maps calculated using 2022–2024 OMI-derived fleet

and NPRI emissions to VCDs derived using these fleet emissions increased by 50% as might be expected for Tier 1 vehicles.510

In order words, Figure 12b represents the scenario avoided by implementing Tier 2 and later Tier 4 standards.

5 Summary and Conclusions

OMI observations of NO2 tropospheric VCD were used to quantify NOx emissions from the surface mining region of the

Canadian oil sands between 2005 and 2024. Two different, though related, emissions algorithms were found to give very similar

results. One assumes all emissions emanate from a single (near) point source, whereas the other treats the area as multiple point515

sources, or an area sources. These methods both utilize wind speed and direction from a meteorological reanalysis and a two-

dimensional exponentially-modified Gaussian (EMG) plume model.
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Figure 12. (a) Reconstructed 2023 NO2 VCD map using OMI-derived fleet emissions and NPRI point source emissions. (b) As (a) but with

fleet emissions doubled to approximate expected VCD distribution assuming Tier 1 emission standards. Note the colourbar range here is

different as compared with previous figures.

OMI-derived emissions were found to increase from 55 to 80 kt[NO2]/yr between 2005–2011, and then remain roughly flat

afterwards. These were found to be within 15% of reported emissions, but given a 20% uncertainty in the OMI emissions, this

difference is not significant. In an additional variation of this methodology, OMI observations were combined with reported520

point source emissions to derive the more uncertain emissions component from the large off-road (heavy-hauler) mining fleet.

These were found to make up about 60% of total NOx emissions, consistent with about 55% from reported emissions. The

0.9%/year increase from this source and the 5.5%/year increase in bitumen mined, generally a good proxy for fleet emissions,

can be reconciled by considering the evolution of the mine fleet over this period. OMI is therefore able to track the transition

from US EPA Tier 2 standards (in 2006) through to Tier 4 (in 2012) to the present and in so doing demonstrate the efficacy of525

this policy. Furthermore, this analysis shows that had the fleet remained at Tier 1 (emission intensity) the surface mines would

currenty be emitting an additional 40 kt[NO2]/yr, or an additional 35% of the current total, an amount equivalent to that from

a city of ∼5M inhabitants (Fioletov et al., 2022).

Some improvements over other studies include a more consistent, emissions-based scaling to convert NO2 to NOx, which

was found to give a conversion factor about 10% larger than simple NOx/NO2 concentration ratio. Another improvement lay530

in the use of an evolving effective lifetime, reflecting the fact that NO2 impacts its own loss rate. In addition to emissions, this

work better connects the point source and area source emissions methods and discusses the interpretation of fitting parameters

and the ability to resolve emissions from sources in close proximity.
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Data availability. Original OMI Level 2, orbit-based NO2 data are available from the NASA Goddard Earth Sciences Data and Informa-

tion Services Center (https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMNO2.003/). ECMWF (European Centre for Medium-535

Range Weather Forecasts) reanalysis data (ERA5) are available here, https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets.

The North-America-wide OMI NO2 VCDs reprocessed using ECCC air mass factors used in this work are available at https://collaboration.

cmc.ec.gc.ca/cmc/arqi/OilSands_satellite_NO2data in netcdf format.

Code and data availability. The analysis code was written in Matlab, and is available from the authors upon request.

Appendix A: The Oil Sands Surface Mining Facilities540

The individual mining facilities are shown in Figure A1.

Appendix B: The Two-dimensional Exponentially-Modified Gaussian Plume Function

The two-dimensional exponentially-modified Gaussian (EMG) is used to model the vertical column density, VCD, distribution

of the plume as seen from a satellite instrument. It is preferred over the traditional Gaussian plume (Stockie, 2011) as it

better accounts for the finite spatial extent of the source itself, and the relatively coarse spatial resolution of the satellite545

observations being utilized. Mathematically it is the convolution of a two dimensional Gaussian (i.e., integrated through the

vertical dimensional) and an exponential. It depends on the cross-wind distance, x, and the downwind distance, y, each in

km and relative to the location of the emission source, and the wind speed, s, in km/hr and where the wind is aligned in the

y-direction. Carrying out the convolution leads to the following functional form, described by equations B1-B5,

VCD(x,y,s) = EMG(x,y,s) = a · f(x,y) · g(y,s) (B1)550

where the function f and g are,

f(x,y) =
1

σ1

√
2π
· exp

(
− x2

2σ2
1

)
(B2)

g(y,s) =
λ1

2
· exp

(λ1(λ1σ
2− 2y)

2

)
· erfc

(λ1σ
2− y√
2σ

)
(B3)

and where555

σ1 =


√
σ2 +1.5y , y > 0

σ , y ≤ 0
(B4)

λ1 =
1

τ · s
. (B5)

26

https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMNO2.003/
https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets
https://collaboration.cmc.ec.gc.ca/cmc/arqi/OilSands_satellite_NO2data
https://collaboration.cmc.ec.gc.ca/cmc/arqi/OilSands_satellite_NO2data
https://collaboration.cmc.ec.gc.ca/cmc/arqi/OilSands_satellite_NO2data


Figure A1. Location and name of all mining facilities.

The a factor represents the concentration enhancement by the source and is directly proportional to the mass of the en-

hancement, m; σ is the parameter describing the width of the Gaussian [in km], τ is the effective lifetime (in hours) and560

erfc(x) = 2√
π

∫∞
x
e−t

2

dt. This formulation is the same as in Fioletov et al. (2015) except that y has been replaced by −y so

that distances downwind of the source are now positive. The emission rate is given byE =m/τ , and ultimately the distribution

is characterized by (E, τ , σ). See Fioletov et al. (2015) for additional information.

Equation B2 can be recognized as the standard Gaussian describing the cross-wind distribution, and is a function of the

downwind distance via the diffusion term embedded in σ1. In equation B3, g(y,s) is a convolution of a Gaussian and and565

exponential in the downwind direction, where the exponential accounts for first-order loss due to chemistry and deposition

(with decay rate τ , and thus the decay being ∼ exp[−y/(τ · s)], and λ1 = λ/s from equation B5).
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Figure B1. Sample of NO2 VCDs generated using the EMG plume function as defined in equations B1–B5. In this example E=50

kt[NO2]/yr, τ = 2.8 hours, σ = 18 km and a constant wind speed of 12 km/hr was specified. The upper box shows the domain used to

calculate the background, where the lower box shows the domain over with the EMG function is fit. The limits in x are ±50 km and

y =−80 to −40 km for the background, and y =−40 to 120 km for the fit. No background NO2 was added in this example.

Appendix C: Implementation of the Point Source Method

The point source method involves a non-linear fit of OMI VCDs to the EMG as detailed in appendix B. Here, the solution

is obtained using the non-linear least-squares solver "lsqnonlin.m" in Matlab. The non-linear terms are the lifetime and width570

parameters, whereas the mass is a linear scaling of the EMG.

It is important to note that the reference location must be specified as part of the point source method, where the reference

location is the location of the emission source. In the case of a somewhat extended, or pseudo-point source, the centre of the
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emission source(s) is used. Here, wind information comes from the ECMWF ERA-interim or ERA-5 reanalyses (Dee et al.,

2011) interpolated in space and time to the location of each OMI pixel.575

In order to combine many overpasses where wind direction is constantly changing, a wind rotation scheme is used (Pommier

et al., 2013) where the location of the OMI pixel (as denoted by the pixel centre) is rotated about the reference location so that

wind directions are aligned (see also Fioletov et al. (2015)).

Background levels of NO2 must be accounted for when deriving NOx emissions, where background in this context refers to

the NO2 that would be present if the source in question were removed. This can be done by additionally including a constant580

as part of the EMG fit, or, as here, an upwind average can be determined and subtracted from all VCDs before the fit. This is

illustrated in Figure B1, which shows a sample EMG plume and the two domains used for the fit. The average over the upwind

box (between x=±50 and y =−80 to −40 km) is used to calculate the background, which accounts for any NO2 not emitted

locally, as well as potential offsets due to an imperfect stratospheric removal. The larger box is the domain over which the

non-linear fit is performed (x=±40 km and y =−40 to 120 km).585

While the fitting is carried out in the rotated frame, the agreement with the orignal mean OMI VCD dsitribution can be

assessed by taking the fitted EMG and rotating it back to the original co-ordinates. This is called the reconstruction, and it

highlights one advantage of using this 2D approach where spatial information is not lost in an averaging.

Figure 2 shows the mean OMI VCD, OMI rotated VCD, fitted VCD, and reconstructed VCD plots considering all years of

OMI data. Analogous plots are shown here but considering only a single 3-year period, 2005–2007, in Figure C1. Each three590

year period considered, even those in later years with reduced data, are comparable in fit quality. This time period was chosen

as it predates much of the expansion of the northern mines, and thus better represents a point source as reflected by a smaller

width parameter, σ = 17.5 km vs 20.6 km, and smaller total emissions, E = 55 vs 70 kt[NO2)]yr, as compared to the all-year

analysis.

Appendix D: Implementation of the Multi-source Method595

To determine emissions from multiple sources, a related method has been developed (Fioletov et al., 2017; McLinden et al.,

2020) whereby each (potential) source location is treated as an EMG plume. The total VCD is therefore the sum over all

plumes, plus the background term(s),

VCD(x,y,s) = a0 +

N∑
i=1

ai ·R [EMG(x,y,s)] (D1)

where N is the total number of sources, and x, y, and s are as in A and are specific to each emissions. The downwind and600

cross-wind distances, y and x, will differ from location to location as these are distances, after rotation, between all pixels being

considered and source i. Furthermore, there will be some modest variation in windspeed, s, as these are also location specific

and derived from an interpolation of the ERA-5 (31 km, (Hersbach et al., 2020)) wind fields. The EMG function is also as

above but here theR denotes that EMG was transformed, or rotated, back into the original latitude and longitude co-ordinates.

These rotated EMG functions then serve as basis functions in a system of linear equations in latitude-longitude space. The605
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6

Figure C1. Summary of the point source emissions procedure using 2005–2007 OMI NO2 VCDs. (a) Mean OMI VCD over the surface

mining region of the oil sands. The black lines denote the different mining operations; (b) mean OMI VCD after rotation showing plume-

like structure; (c) Reconstructed spatial distribution using EMG plume and fitted parameters; (d) Fit to rotated VCD using 2D EMG plume

function, with fitted parameters of E = 55.3 kt[NO2]/yr, τ = 2.8 hours, and σ = 17.6 km. The black triangle in the panels (a) and (c) show

the reference location used in the emissions retrieval and corresponds to the (0, 0) point in panels (b) and (d).

non-linear coefficients in the EMG Gaussian terms, f and g, equations (B2) and (B3), are specified and not fit. The matlab

function lsqlin.m was used with a positive constraint placed on all values of the fitted ai coefficients, which are linearly related
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Figure D1. Examples of averaged OMI NO2 multi-source fit basis functions. The black polygons outline the boundaries of the NOx source,

and the white square are the locations where the emissions are allowed to emanate. For three locations, indicated by the filled squares, the

average plume shape is shown. An averaging radius of 12 km was used.

to the emission rate. Here a constant, a0, is also fitted and represents the background NO2 that would be present in absence of

these local sources. The constant can be replaced by a more complicated background term as has been done in other studies,

such as a plane or a series of polynomials (Fioletov et al., 2022; Wren et al., 2023). However, here a constant was found to be610

sufficient only a relatively small domain is being considered. In this work source locations were specified as either being on a

grid or at the centre of each known source.

The idea behind the multi-source method is better illustrated using Figure D1. In this example, emissions are allowed

to emanate (although the magnitude of the emissions may be zero) from 14 locations identified by the white squares, each

of which corresponds to a known source of NOx, either a surface mine, in-situ mine, or community, in the domain under615

consideration. For locations indicated by the filled squares, the average rotated EMG plume is shown. Here, only three of the

potential emissions locations are shown for clarity, but in the fitting procedure, each square (open or filled) would have a similar

looking distribution. The distribution associated with each location represents the average NO2 VCD spatial pattern expected

and are the basis function in the multi-linear fit. The slight elongation of the pattern reflects the fact that W and SW winds are

the preferred wind direction. By fitting the OMI VCDs to equation (D1), a coefficient or scaling for each of these is determined620
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that represents the emissions from that location. The sum over all sources, what is also called the reconstruction, should be in

good agreement with the OMI distribution. Figures D3 can be compared with D2 to confirm the general consistency for all

3-year periods analyzed.

Appendix E: Emissions Calculations

Over the course of the OMI mission, a blockage known as the row-anomaly has meant a (generally) expanding number of625

pixels become unreliable, leading to a reduction in data density. It is for this reason that data are analyzed in three-year periods

as opposed to 1 year. Figure E1a shows the impact of the row anomaly on observations within 80 km of the reference location

(57.1◦N, 111.6◦W). Due to variations in solar zenith angle and cloud cover OMI does not sample evenly through the year. This

variation is illustrated in Figure E1b, with each year generally following this same average pattern. There is uneven sampling

throughout the year with little data in November- January due to low sun angles, and a drop in the summer due to increased630

cloud cover.

As a result of this uneven sampling, intra-annual changes in emissions may not be totally captured. To estimate this effect,

monthly totals of bitumen mines (Alberta Energy Regulator, 2023a), which should be a good proxy for NOx emissions, were

examined. From Figure E2, monthly values fluctuate about the annual mean by roughly 10–15%.

A correction factor to account for this unequal sampling throughout the year was used. A monthly total bitumen-mined value635

was assigned to each OMI pixel (used in the emissions calculations), according to its month and year. For each year, the ratio

of the mean monthly bitumen-mined to the average (over all OMI pixels) of the OMI-sampled bitumen-mined was computed.

This ratio was found to vary from 1.00 to 1.05. It was then used to scale the retrieved emissions in Figures 9 and 10, and

Table E1, below. These values are smaller than those derived for OMI SO2 (McLinden et al., 2020) as coverage for NO2 is less

seasonally-dependent.640

As discussed in section 2.4.3, the missing component of NOx, NO, is accounted for using an externally-derived NO2/NOx

ratio. Figure E3 shows a comparison of observed ratios made during the 2018 aircraft campaign in which plumes were tracked

downwind of the surface mines. An evolution is observed from values around 0.6 to 0.75 due to photochemical processing.

These observations can be compared to the emissions-based method of estimating NO2/NOx, which accounts for downwind

effect, appropriate for annual and June-July time periods, with the latter done to be more consistent with the observations time645

period. The good overall consistency suggests the emissions-based approach is reasonable. Further, an estimate of uncertainty

is derived by looking at the variability.

Emissions calculations were carried out using the point source and several different variants of the multi source methods.

The purpose was to test different assumptions as well as to conduct a sensitivity study that could be used to help quantify

uncertainties. A summary is of the various emission runs is provided in Table E1.650

Seven runs were used: the point source method, and six multi-source variants. Variables changed for the multi-source runs

included: fitting all emissions using the gridded and mine-specific approach, fitting only fleet emissions (with point source

emissions specified) using the gridded and mine-specific approach, and fitting only fleet emissions using the gridded and mine-
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Table E1. Summary of emissions calculations employing algorithm variants. Emissions given here are averages over the entire 2005–

2024 OMI period. Average NPRI stack emissions (2005–2023) are 30.5 kt[NO2/yr]. The mean over all methods, and the variability among

methods, is given in the bottom row.

Emission run Algorithm (τ,σ) Gridded Point Sources Wind height OMI Emissions kt[NO2/yr]

Emissions Specified adjustment Fleet Total

TOTAL1 Point Fitted N/A N/A No N/A 78.0

TOTAL2 Multi Specified Yes No No N/A 74.0

TOTAL3 Multi Specified No No No N/A 72.4

FLEET1 Multi Specified Yes Yes No 43.6 74.7

FLEET2 Multi Specified No Yes No 43.6 74.7

FLEET3 Multi Specified Yes Yes Yes 47.2 78.3

FLEET4 Multi Specified No Yes Yes 42.2 73.3

Mean ± Standard Deviation 44.1 ± 2.1 75.1 ± 2.3

specific approach but using higher altitude winds for the stack emissions and lower altitude winds for the fleet. As can be seen

from Table E1 there is little difference among them.655

Appendix F: Resolution and the width parameter, σ

The relationship between σ, σdiff , σsize, and σpixel was explored in appendix F using a simple model in which a collection of

true-Gaussian plume point sources were used to simulate a near point source (of some radius σsize) and smoothed to satellite

resolution (for pixel size σpixel). Fitting the combined distribution to an EMG allowed a relationship between these various

terms to be established. Figure F1 shows σ has has a behaviour reminiscent of σ2
size and σ2

pixel, and for small values of both,660

values less than 1 km which suggests σdiff is small. Figure F1 will be used below to help interpret results.

The behaviour of the fitted width parameter, σ, is further examined here in an attempt to understand how it varies with the

spatial size or extent of the source, σsize, satellite pixel size, σpixel, and the plume diffusion term, σdiff . To do this, a set of

numerical experiments were performed in which a collection of true-Gaussian plume point sources were used to simulate a

near point source (of some radius σsize) and smoothed to satellite resolution (for pixel size σpixel). The Gaussian plume is of665

the form given in Stockie (2011) (with α= 0.33 km, β = 0.86) but integrated in the vertical to simulate VCDs. Each Gaussian

was sampled at high spatial resolution, 0.1 km, and the composite distribution was calculated by summing over all Gaussian

plumes. This was smoothed to coarser resolutions in order to simulate observations from satellite instruments.

An EMG was then fit to the resultant distribution in order to derive σ. By varying σsize and σpixel, Figure F1 is derived,

which shows a behaviour consistent with equation 1. For the smallest case explored, σsize = 0.1 km and σpixel = 0.4 km, a σ of670

0.35 km was found. This can be interpreted as representing the diffusion term and confirms, at least for the EMG formulation,
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that it is small on this scale. Given this, the form,

σ2 = a+ b ·σ2
pixel + c ·σ2

size, (F1)

with a= 0.33 km2, b= 0.41, and c= 0.28, is a good representation for the domain considered here. Interestingly, as σpixel

was defined as a length of a square and σsize as a radius, their weights are roughly equal when area is considered.675

According to Figure F1 and with the effective pixel size of OMI (as defined as the square root of the average pixel area)

being about 20 km, a σ of 15 km is expected. From section 3.2, OMI views a point source with σ = 11 km, a value close but

slightly smaller than the 13 km from this numerical experiment. The difference could be related to the fact OMI pixels are not

square (as assumed here) and also there is a considerable amount of oversampling by using multiple years of observations.

In the context of this multi-source method, an estimate of the minimum separation distance required to resolve between680

neighbouring emissions can be estimated by considering their basis functions. The criteria adopted here is that emissions from

neighbouring sources can found as long as the correlation between their basis functions does not exceed 0.5. Using this, the

minimum distance between sources as a function of lifetime, τ , and width parameter, σ, is shown in Figure F2. For OMI, this

suggests sources∼22 km apart can be resolved. If a more relaxed threshold of 0.7 is used then this decreases to about 15.5 km.

Wind is also important: if the winds are halved there is less overlap of the plumes, and 20 km is required; likewise, doubling685

the wind speed increases this to 24 km. Note that while this suggests low wind speeds are advantageous, in reality this also

means the plumes are not as evident making an accurate emissions calculation more difficult.

TROPOMI, with its significantly improved spatial resolution relative to OMI (a 12-fold improvement in area, or 3–4 fold

improvement in distance), will mean much smaller values for σ, and hence an improved ability to resolve emissions.

Even though emissions from the multi-source method were simply summed to a total over all surface mining based on a690

minimum separation distance of OMI of about 22 km, it is nonetheless worth attempt to resolve them. Here we consider the

approach in which one source is assigned to each mine (e.g., see Figure 8) and consider the period 2010–2023 where reported

emissions are available for both stack and fleet sources. A scatterplot of the facility-specific emissions is shown in Figure F3

For distances between mines of less than about 12 km, with one exception, OMI has difficulty distinguishing between

neighbouring sources and can misassign emissions. The two larger emission sources, Syncrude-Mildred Lake and Suncor,695

each with reported emissions of about 20 kt[NO2]/yr, are resolved fairly well. Even though Suncor is only about 7 km from

its nearest neighbour, it also emits an order of magnitude more NOx. Overall OMI does show some limited ability to resolve

emissions between neighbouring mines. This may suggest that a correlation threshold of 0.5 is too stringent, and that perhaps

a value of 0.7, which leads to a minimum separation distance of 17 km, is more reasonable.
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Figure D2. Three year mean OMI NO2 vertical column density (VCD) distributions over the surface mining. An averaging radius of 12 km

was used.
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Figure D3. Three year OMI NO2 vertical column density (VCD) fit reconstructions over the surface mining, corresponding to the maps in

Figure D2. An averaging radius of 12 km was used. The OMI-derived total NOx emissions are indicated.

44



2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

Year

0

1000

2000

3000

4000

5000

O
b
s
e
rv

a
ti
o
n
s
 p

e
r 

y
e
a
r

a

1 2 3 4 5 6 7 8 9 10 11 12

Month

0

100

200

300

400

O
b
s
e
rv

a
ti
o
n
s
 p

e
r 

m
o
n
th

b

Figure E1. OMI pixels within 80 km of the reference location used in the emissions calculations: (a) Total number of per year, (b) Average

number of OMI pixels (per month).
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Figure E2. Total monthly and annual bitumen mined from the the surface mining region, and total production of synthetic crude from the

surface mines. (The monthly bitumen mined has been converted to annual rates.) The panel at the top shows the correction factor applied to

the annual emissions to account for the monthly sampling.
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Figure E3. Comparison of NO2–NOx ratios. Data from 8 flights in June and July 2018 taken during the oil sands aircraft campaign as a

function of time downwind of the source, along with a fit. For comparisons, the red lines show the values using the emissions-based approach

(see section 2.4.3) based on GEM-MACH model simulated OMI data. The standard deviation of the aircraft data about the line of best fit is

0.07, or 11%.

47



0 5 10 15 20 25 30

Pixel Size, square pixels length d [km]

0

5

10

15

20

25

30

P
h
y
s
ic

a
l 
s
iz

e
 o

f 
s
o
u
rc

e
, 
ra

d
iu

s
 R

 [
k
m

]

0

5

10

15

20

25

F
itte

d
 W

id
th

 P
a
ra

m
e
te

r, 
 [k

m
]

Figure F1. The relationship between the EMG width parameter, σ, and the physical extent of the emissions source and the satellite spatial

resolution. See text for information on how this figure was derived. The vertical lines correspond to effective pixel sizes for the OMI and

TROPOMI instruments, at 21 and 5.5 km, respectively.
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Figure F2. Minimum distance required to distinguish between two point sources as a function of plume width and effective lifetime. The

line plots to the left and below show this quantity for σ = 11 km and τ = 3 hours, respectively, and are cross-sections indicated by the white

dashed line.
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Figure F3. Comparison of reported and OMI-derived NOx emissions derived for individual mining operations considering the years 2010–

2023, colour-coded according to proximity the their nearest neighbour.
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