

NASA Icing Update – March 2025

Presentation for the SAE AC-9C Technical Committee Meeting March 31, 2025 Orlando, FL

Presenter

Peter Struk, Icing Branch Chief

Contributors: Andy Broeren, Christopher Porter, Ru-Ching Chen, Paul von Hardenberg

NASA Glenn Research Center, Cleveland, Ohio, USA

NASA's Mission in Icing

NASA

Outline

- Rotational Icing Scaling
- GlennICE Update
- Adaptive Icing Tunnel Update

Helps accelerate market entry for

Urban Air Mobility / Supersonics

Transonic Truss-Braced Wing Icing Update

for any analysis

Rotational Icing Scaling

- Evaluating scaling relationships for rotational systems
 - IRT tests planned later in FY25
 - 0.5m and 1.0m diameter propeller

- Established Space Act Agreement with the Rail Tec Arsenal (RTA)
 - Topic: Propeller Icing Scaling Research
- Joint Testing:
 - NACA 0012 testing in IRT and RTA to understand interfacility differences (late FY25)
 - Additional 2m propeller test at RTA*

Project Sponsors: AATT www.nasa.gov

^{*} RTA propeller testing contingent on Austrian funding availability

As of 2018, GlennICE is the foundational code through which NASA will develop and evaluate physical models associated with ice accretion

GlennICE Update

NASA

- CFD post processor
- Lagrangian droplet tracking with adaptive refinement
- Fully 3D icing simulation and particle tracking tool
- Predicts water impingement & resulting ice growth
- Fully parallelized trajectory scheme built for HPCs

Development Plan

External lcing
Rotational lcing
lce Crystal lcing

LEWICE3D
Surface

Project Sponsors: TTT www.nasa.gov

GlennICE Release

GlennICE

Glenn Icing Computational Environment

Software tool for addressing icing challenges on aircrafts and engines

FEATURES

- ADAPTIVE
 Use with your existing software
- STREAMLINED Intuitive user interface
- ECONOMICAL
 Leverages Lagrangian algorithms
 for more efficient computations
- ACCURATE
 Validated against NASA data
- UNIQUE
 Algorithms adaptively release particles to improve solutions
- PARALLEL COMPUTING Scalable optimization suited for any analysis

IMPACTS

SAFETY & SAVINGS

Integrates icing factors earlier in the design process to reduce costs and increase safety

NOVEL DESIGNS

Delivers data needed for novel vehicle and engine designs to address the icing conditions in new regulations

EMERGING MARKETS

Helps accelerate market entry for Urban Air Mobility / Supersonics

- URL:
 - https://software.nasa.gov/
- Date available:
 - Soon
- Restrictions:
 - US Persons Only (software)
 - Results are not export controlled
- Contact:
 - GlennICE-support@lists.nasa.gov
 - Send email to be added to distribution list
- Release: Version 5.1.0
 - Numbering
- Plan is to update software tri-annually, including
 - User's Manual [1]
 - Validation and Verification Report
- Webinar to be offered after release

Adaptive Icing Tunnel (AIT)

Capabilities

- Laboratory scale icing wind tunnel
- Closed loop, vertical
- Test section 1 x 1 ft (0.3 x 0.3 m)
- Airspeeds up to ~210 knots (~110 m/s)
- Temperatures as cold as -20°C
- Walk-in freezer around test section
- Supercooled Liquid and Ice Crystal

Features

- 1. Fan
- 2. Heat Exchanger
- 3. Spray Bars
- 4. Test Section
- 5. Walk-in Freezer

Project Sponsor: TTT www.nasa.gov

Adaptive Icing Tunnel - Progress

March 2024

- 1. Fan
- 3. Spray bars
- 2. Heat Exch. 4. Test Section

August 2024

5. Walk-in Freezer installed

March 2025

6. Access platform & stairs

www.nasa.gov Project Sponsor: TTT

Transonic Truss-Braced Wing Icing

Background

- NASA is collaborating with Boeing as a part of the Subsonic Ultra-Green Aircraft Research (SUGAR).
- Includes exploring the impacts of icing on the TTBW configuration.
- IRT testing of TTBW wing-truss junction region
- Background provided during October 2024 AC-9C meeting.

Project Sponsor: AATT www.nasa.gov

Transonic Truss-Braced Wing Icing

- Since Oct. 2024 AC-9C meeting, conducted two IRT tests:
 - Oct. 15 Nov. 4, 2024
 - Mar. 3 21, 2025
- Unprotected leading edge ice shapes.
- Collected ice shapes for:
 - Critical ice shapes based upon certification conditions
 - Parametric variations of air temperatures, exposure time and cloud MVD
 - Effect of strut/pylon
- Data to be used for GlennICE validation and to inform subsequent aerodynamic testing with artificial ice shapes.

Project Sponsor: AATT www.nasa.gov

Summary

Icing research in this briefing:

- Rotational Icing Scaling
- GlennICE Update
- Adaptive Icing Tunnel
- Transonic Truss-Braced Wing Icing Update

NASA

Thank You!

