NASA /TM-20250002761

Simulation Framework for Tactical
Separation Assurance Service using
Deep Reinforcement Learning

Gautam Sai Yarramreddy
Universities Space Research Association, Moffett Field, California 94035, United States

José Ignacio de Alvear Cdrdenas
San José State University, Moffett Field, California 94035, United States

Priyank Pradeep
Analytical Mechanics Associates Inc, Moffett Field, California 94035, United States

Min Xue and Seungman Lee
NASA Ames Research Center, Moffett Field, California 94035, United States

Vincent H. Kuo
Metis Technology Solutions, Moffett Field, California 94035, United States

March 2025

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI Program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
Program provides access to the NASA
Aeronautics and Space Database and its public
interface, the NASA Technical Report Server,
thus providing one of the largest collections of
aeronautical and space science STI in the world.
Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of
peer-reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

e TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

e CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s
mission.

Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA STI
Program, see the following:

e Access the NASA STI program home page at
http://www.sti.nasa.gov

e E-mail your question to help@sti.nasa.gov

e Fax your question to the NASA STI
Information Desk at 443-757-5803

e Phone the NASA STT Information Desk at
443-757-5802

e Write to:
STI Information Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA /TM-20250002761

Simulation Framework for Tactical
Separation Assurance Service using
Deep Reinforcement Learning

Gautam Sai Yarramreddy
Universities Space Research Association, Moffett Field, California 94035, United States

José Ignacio de Alvear Cdrdenas
San José State University, Moffett Field, California 94035, United States

Priyank Pradeep
Analytical Mechanics Associates Inc, Moffett Field, California 94035, United States

Min Xue and Seungman Lee
NASA Ames Research Center, Moffett Field, California 94035, United States

Vincent H. Kuo
Metis Technology Solutions, Moffett Field, California 94035, United States

National Aeronautics and
Space Administration

Ames Research Center

Moffett Field, California 94035

March 2025

Acknowledgments

The material is based upon work supported in part by NASA under award number NNA16BD14C
and 80ARC024DA007 for NASA Academic Mission Services (NAMS-1 and NAMS-2) respectively.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information National Technical Information Service
7115 Standard Drive 5301 Shawnee Road
Hanover, MD 21076-1320 Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Simulation Framework for Tactical Separation Assurance Service
using Deep Reinforcement Learning

Summary

Deep Reinforcement Learning (DRL) is a revolutionary Artificial Intelligence (AI)
methodology that combines Reinforcement Learning and Deep Neural Networks. This report
proposes a simulation framework for training and evaluating DRL approaches for tactical
separation assurance services in the Unmanned Aircraft Systems (UAS) Traffic Management
(UTM) ecosystem for UAS-to-UAS conflict detection and resolution. The DRL agent is developed
in Python using PyTorch and TorchRL. NASA’s GPU-enabled Flexible engine for Fast-time
evaluation of Flight environments (Fe3) is chosen as the simulation environment for data
collection and policy evaluation. Fe? is responsible for i) simulating different scenario geometries,
ii) detecting UAS-to-UAS conflicts, and iii) computing the states and rewards given the actions
chosen by the DRL agent. The Fe3 and Python processes share data via NVIDIA’s CUDA
inter-process communication Application Programming Interface (API) and communicate using
named pipes. Named pipes are used to ensure proper data flow and avoid race conditions between
the Fe3 and Python processes. The Python process opens two pipes, one that it can only read to
and one that it can only write to.

Double Deep Q-Network with experience replay is the reinforcement learning algorithm
implemented to assess the functionality of the framework. It is a model-free approach that
updates a Q-value function and follows an e-greedy policy during training and a greedy policy at
inference. During the training stage, the data samples collected from the interactions with the
environment are stored in a replay buffer to improve data efficiency, prevent forgetting
experiences, and reduce training data correlation. Furthermore, the Q-value function is
represented by two neural networks: the Q-network for selecting the best action and the target
network for evaluating it, reducing the oscillatory behavior during training.

The agent dynamics were modeled in Fe3 based on the performance characteristics of DJI
Phantom 4.0 UAS, and its action space was constrained to heading changes. The state space used
as input for the decision-making process is based on selected UAS states, UAS-to-UAS conflict
states, and Fe3’s simulation states. The reward used to guide the learning process consisted of
intermediate and termination components that encouraged safety and efficiency, the former in
terms of the closest lateral distance and the latter in the form of energy consumption
minimization.

Preliminary results from a dataset comprising 150 UAS pairwise (UAS-to-UAS) conflict
scenario geometries, run for 50 epochs, demonstrate that the agent is successfully learning. This
is evident from an increase in the percentage of deconflicted scenarios and the maximum reward
achieved per epoch. In addition, the safety performance of the policy has improved by
deconflicting earlier in the flight and at greater distances from the conflict area.

1 Introduction

HE FAA and NASA envision unmanned aircraft systems (UAS) traffic management (UTM)
having a multi-layer conflict management model to ensure the safe, efficient, and scalable
operations of UAS between each other. These layers are referred to as strategic deconfliction,
tactical deconfliction, and collision avoidance (Ref. 1, 2). At each layer, UAS-to-UAS conflicts are
resolved through a series of maneuvers compatible with the operational environment. The objective
of the first layer of the conflict management model, i.e., strategic deconfliction, is to i) minimize
the likelihood of airborne conflicts between UAS operations and ii) maximize the airspace usage by
adjusting the departure times of UAS (Ref. 2, 3). The tactical deconfliction layer consists of two
levels. The first level, i.e., tactical separation assurance, consists of executing one or more maneuvers
(speed, altitude, and heading changes) to avoid an UAS-to-UAS airborne conflict promptly when
strategic deconfliction was not completed or underperformed due to uncertainties (Ref. 4-7). It is
activated 3 minutes before the near midair collision (NMAC) between pairwise UAS. The second
level of tactical deconfliction, i.e., detect and avoid (DAA), handles UAS-to-UAS conflicts that are
not detected until < 1 min prior to the NMAC or, when successfully detected by the first level,
but could not be resolved successfully (Ref. 5, 7). Finally, the last layer of protection in the UTM
ecosystem is the onboard collision avoidance system (Ref. 3).

1.1 Background and Motivation

In the UTM ecosystem, there is a demand for an autonomous air traffic control system to enable
safe, efficient, and scalable UAS beyond visual line-of-sight (BVLOS) operations (Ref. 8-10). The
critical challenge is researching and building an autonomous air traffic control system to provide
real-time conflict detection and resolution solutions to UAS in UAS-to-UAS conflict. To this end,
the Next-Generation Airborne Collision Avoidance System (ACAS-X) (Ref. 11) was built upon
Traffic Alert and Collision Avoidance System (TCAS) (Ref. 12), introducing a partially observable
Markov decision process (POMDP) (Ref. 13) for the problem formulation. TCAS and ACAS-X are
designed to resolve pairwise conflicts between manned aircraft with vertical maneuvers (Ref. 14).
The difference is that TCAS uses fixed rules to resolve conflicts, whereas ACAS uses a probabilistic
model to represent future aircraft positions. A tailored version of this system for use onboard UAS,
ACAS Xu (Ref. 15), incorporates altitude and heading change maneuvers for collision avoidance
(Ref. 16).

Tactical separation assurance is an intermediate traffic management layer of the UTM ecosys-
tem for keeping UAS safe from conflict and collision hazards by an appropriate separation criterion,
namely the minimum deviation from the original flight path (Ref. 5). Therefore, tactical separation
assurance involves preventing an NMAC between UAS in-trail, at intersections, and metering fixes
by providing advisory maneuvers to UAS (Ref. 17). In addition to resolving conflicts, it also pro-
vides trajectory segments that return the UAS back to its original flight path after the resolution
segments of the trajectories have been completed (Ref. 5, 7).

Recently, reinforcement learning (RL) (Ref. 18) approaches have shown potential in conflict
detection and resolution problems. Reinforcement learning aims to allow an agent to learn an
optimal policy by directly interacting with the environment. Various deep reinforcement learning
(DRL) algorithms have been researched for collision avoidance (Ref. 19-22), tactical deconfliction
(Ref. 8, 17, 23), and strategic deconfliction (Ref. 24-26) in conventional air traffic, and urban air
mobility. However, in the UTM ecosystem, very little research has been performed in the tactical

separation assurance time scale, i.e., three to one minutes before the UAS-to-UAS conflict (Ref. 5).

To enable the study of DRL strategies for tactical separation assurance services, the main
contribution of this research is a simulation framework that facilitates the interaction of a Python
DRL agent with a fast-time evaluation tool previously developed at NASA Ames Research Center.
To test its functionality, a DRL approach from literature — Double Deep Q-Network with experi-
ence replay — was implemented for UTM pairwise (UAS-to-UAS) deconfliction within the tactical
separation assurance time frame. The model balances safety and efficiency by applying heading
change maneuvers and incorporating a higher-fidelity 6-DOF physics-based energy consumption
model (Ref. 5, 27, 28) in the reward function. The rest of this report is organized as follows. Sec-
tion 2 describes the simulation framework, explains RL, and discusses the specific DRL algorithm
implemented. Section 3 presents preliminary results in terms of the percentage of deconflicted
scenarios, safety and efficiency. Finally, Section 4 provides conclusions, future research directions
and recommendations for future work.

2 Methodology

2.1 Simulation Framework

NASA’s Flexible engine for Fast-time evaluation of Flight environments (Fe?) (Ref. 29) is used
as the simulation environment modeling flight kinetics in the UTM context. The flight kinematics,
flight dynamics, power model, and quadrotor performance models (Ref. 30) have been incorporated
in Fe? to simulate various pairwise scenarios with conflicts where the agent performs heading change
tactical maneuvers and learns a policy that optimizes for both safety and efficiency. The training
and testing scenarios are randomly generated with a pair of UASs having conflicting 4D (3D space
and 1D time) trajectories. Fe? uses NVIDIA GPUs for accelerated computation performance and
parallelized simulations of scenarios (Ref. 31).

This research used the deep learning library PyTorch and the reinforcement learning framework
TorchRL to train the agent for tactical deconfliction using heading change maneuvers and execute
the policy (Ref. 32, 33). As shown in Figure 1, the Fe? process calculates simulator and UAS
states periodically at every time step, simulates and detects pairwise (UAS-to-UAS) scenarios with
conflicts, and executes heading change for the UAS. The Python process uses the simulated states
calculated by Fe? as input to the agent to calculate the optimal heading change maneuver to avoid a
conflict. Fe? then simulates the next time step given the heading change maneuver. This interaction
between Fe? and the RL agent in Python starts when a conflict has been detected and continues
back and forth until the conflict has been resolved. CUDA inter-process communication (IPC) and
IPC via Unix-named first-in-first-out pipes (FIFO) were used to share the state data between the
Fe? and Python process (Ref. 31).

Named pipes are used to ensure proper data flow and avoid race conditions between the Fe?
and Python processes. The Python process opens two pipes, one that it can only read to and one
that it can only write to. The Fe? process opens the same pipes in the opposite modes, opening
the Python read-only pipe in write-only mode and the Python write-only pipe in read-only mode.
A process is able to write to a pipe and the other process is able to read data from that pipe.
The writing function is non-blocking, whereas the reading function is blocking, meaning that if
the pipe is empty, the process waits until another process writes enough data to read. During the
main simulation loop, these pipes are used to relay status messages when a process is done using

Python 7 GPU Fed

PyTorch Memory

Simulator State

F Y

Simulator State Simulator State

A

UAS State

A

UAS State UAS State

A

Conflict State

-~

Conflict State Conflict State

A

h

Maneuver Info
Maneuver Info

Y

Maneuver Info

Other PyTorch | o Other PvTorch
Tensors A il er Fylore » Simulation Memaory
Tensors
Fe? Memory
Simulation Memaory 1
Read Pipe 3 Write Pipe
Write Pipe » Read Pipe

Figure 1.—Shared memory and Inter-Process Communication between Python and Fe? Processes.

the shared memory and allowing the other process to use it. For example when Fe? is finished
calculating the states it sends a message via the named pipes to the Python process letting it know
to calculate the best maneuver. In addition, when allocating GPU memory at the beginning of
the program, the pipes are also used to send information necessary for opening the shared GPU
memory (Ref. 34).

Various states such as UAS, simulator, conflict, and maneuver information are stored on GPU
memory during the simulation. Transferring data between the GPU and CPU is costly and can
slow down the simulation drastically if conducted often and with large amounts of data. Instead,
the data is kept on the GPU, but both the Fe? and Python processes have access to the same block
of memory. This allows both processes to read and write to the same block of memory without little
to no overhead. Along with the shared GPU memory, the Python process stores other tensors on
the GPU including the weights for the neural network policy and the gradients. Fe? stores memory
on the GPU necessary for the simulation including the ordinary differential equation (ODE) state,
waypoint data, wind data, etc.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning, that involves an agent interacting
with an unknown deterministic or stochastic environment through sequential decision making (Ref.
18) to achieve a long-term goal. The components that make up a reinforcement learning problem
can be defined by the tuple (S, A, P, R, 7). At each time step, t, an agent observes the current
state (S € §) and selects an action (A; € A) based on its policy (7); function that maps each state
to a distribution in the action space. S and A represent the set of all possible states and actions in
the environment, namely the state and action space, which can be discrete or continuous. Based on
the state-action tuple (S¢, A¢), the state is then updated to S;y1 and the agent receives a reward
(R¢). How the state progresses from S; — Sii1 given action A; is determined by the dynamics
of the environment represented by the transition probability function P(S;41|S, At). The reward
function R(Ry4+1|St, A¢, Si4+1) assigns the reward to the agent for reaching state Sy from state Sy
given action A;.

After training, the optimal policy (7*) representing the agent’s strategy will take actions
that maximize the expected cumulative reward over time, also known as the expected return
(7*(t) = argmax,; E[>.7°) 7 Riyit1|m]). Correctly shaping the reward function is essential to align
the agent’s final strategy with its initial goal within the environment, since the reward tells the
agent what we want it to accomplish and not how to achieve it (Ref. 18). This task is particularly
challenging as the reward function must also be designed to prevent the agent from getting stuck in
local minima, which can impact convergence speed (Ref. 35). Finally, the discount factor v € (0, 1)
determines how much value do future rewards have in the present. As v — 0, immediate rewards
are emphasized, whereas, when v — 1, future rewards are also considered (Ref. 18). The end
product of applying the reinforcement learning paradigm to a problem is a policy that maximizes
the cumulative reward over time.

Two main approaches can be distinguished for training an agent to discover its optimal policy,
namely policy- and value-based methods. Policy-based methods (7(S;) = P(A¢|St)) teach the agent
directly what action to take at every time step by learning a policy function that maps each state to
the best possible action (deterministic) or by defining a probability distribution over the available
actions at that state (stochastic). In contrast, value-based methods teach the agent to learn which
state is more valuable by learning a value function that maps a state to the expected value or utility
of being at that state.

The value function can have two representations. The state value function Vi (S;) is the
expected discounted return the agent would obtain if it would start in state S; and then act
according to the policy (Ex[Rir1 + YRiro + V2 Rir3 + ...|Si]), whereas the action-value func-
tion Qr(St, Ay) reflects the expected discounted reward when starting in state Sy, taking action

A; and then following the policy (Ex[Rir1 + YRiso + v?Rirs + ...|St, A¢]). Both value func-
tions are related to each other by the following equality: Q,(St, A¢) = R(S, At, Se1) + YVa(Se),
where Siy1 ~ P(S:¢4+1]St, A¢). An optimal value function (V* or Q*) is reached when it meets
the Bellman optimality equation in Equation 1 (Ref. 18). Once the optimal value function has
been computed, a greedy policy that selects the action with the highest utility is usually chosen
(m* = argmaxa, Q"(St, A¢) = argmaxa, Rit1 +7V*(St)) (Ref. 19).

V(Sy) = max E[Rer1 + 7V (Sp+1)]
t

1
Q" (St Ar) = E[Rpy + ymax Q" (Ser1, Aprr)] M
41

jTacticaI Separation
Assurance Service
Agent 7(Q(S;, A; 6;))

T

Reinforcement Update agent
Learning Algorithm [>{after C; steps with
| (Deep Q-learning) Q(St, Ag;0:41)

A
; Y
Current State Immediate .
5 Re}v¥ard Current Action
t t
A A Aj
. Next Reward O\
T N
I Ry Reward Fe*UTM
: module
I J
1
1€ Next State Environment
1 S)
t+1

Figure 2.—Schematic diagram of state, action, and reward in reinforcement learning framework

in UTM context. Adapted from (Ref. 18).

2.2.1 Double Deep Q-Network

Q-learning is a model-free reinforcement learning algorithm for estimating action-value func-
tions which falls under the category of temporal difference (TD) value-based learning techniques
(Ref. 18, 36, 37). In contrast with Monte Carlo based methods that wait until the end of an
episode for computing the return and updating the value function (complete episode environment
interactions are required), TD learning techniques only wait for one time step in order to compute
an update. Here, an episode refers to a single sequence of interactions between an agent and its
environment, starting from an initial state and ending at a terminal state. Since TD methods have

not experienced an entire episode, the expected return is estimated using the immediate reward
(R:) and the discounted value of the next state. Hence, in the case of Q-learning, the Q-values are
iteratively updated as follows:

Q(St, At) < Q(St, Ar) + a[Ry1 + ’YgltfgiQ(StH, A1) — Q(St, Ay, (2)

where « is the learning rate, 7 is the discount factor and max4,,, is the maximum Q-value for the
next state given all possible next state actions (Ref. 18).

To balance the exploration vs exploitation trade-off during training, the action A; is chosen
by an e-greedy policy that selects a random action with probability € and the action with highest
value according to the current Q-value function with probability 1-e. The update to the action-
value function in Equation 2 following the learning rate is called the TD error or Q-loss (Ref. 18)
and its first two terms within brackets are known together as the TD target because they are the
value the output of the Q-value function (third term of the TD error) should aim for to achieve
optimality, as seen in Equation 1.

In this research, the Double Deep Q-Network (Double DQN) algorithm variant with experience
replay is implemented where the Q-value function is approximated using a neural-network model
(NN) (Ref. 38). Experience replay consists of populating a replay buffer (D) at every simulated
time step with transition tuples of the form (S, A:, Rit1, Si+1) (Ref. 39) and, periodically,
sampling from it a mini-batch of transitions for training the NN. Mini-batch refers to a small,
randomly selected subset of experiences or transitions of size B that are sampled from a larger
dataset of experiences (D) accumulated during the training process. It improves data efficiency
by reusing each data sample multiple times during training, prevents catastrophic forgetting of
previous experiences, and reduces sequential training data correlation by enabling data batches of
diverse past experiences (Ref. 40, 41).

A double NN approach was taken for representing the Q-value function (Ref. 38, 39, 42); one for
selecting the best action at the current and next state (Q-network with parameters § — NN weights
and biases) and another for evaluating the best action (target network with parameters 6~). The
role of each network can be seen from the loss (£) for training the Q-network in Equation 3. The
Q-network is updated with frequency C7, every time a mini-batch of transitions is sampled from
the replay buffer for training, whereas the target network is kept constant and only updated with
the parameters of the Q-network after multiple Q-network updates with frequency C5. The target
network was introduced to reduce the emergent oscillatory behavior during training due to the
correlation between the TD target and the output of the Q-network, which would otherwise share
the same parameters (Ref. 39). Including the Q-network within the target network for selecting
the action at the next state counteracts the positive bias previously observed in Q-learning (Ref.
42). Both the data collection and training phases of Double DQN can be seen in Figure 3.

1 2
£6) = 5 (Rt +9Q(Si.argmax Q(Seen, Arsni 0):67) — Q(S:, 4030)) 3)

@® Update target-
network with

Double Deep Q-learning

@ Update agent with Q(S;, A;;0:41)
Q-network P) Agent
” 5,40 2 gen
QS 4:6:) l @) © Perform gradient descent on Q-network m(Q(st, at;0;))
v bus =6~ oty “@S
t
Target-network (B.£) T
Q(S5.,4; 9;) ” Compute the TD error and the loss function
(B,Si, Ar) _ 1

> erp =y — Q(S, 4r;0) L= 5 €D

(B,y) 1
> @ Compute TD target
(B, Ret1, Se+1) .

> Y= Rit1 +7Q(Stt1, Aes1;07)

8,4}
B.S > @ Compute next step action
(B, Sti1) > Ap1 = argmax Q(Sp+1, Ar1150)
Ay @4 @4
| 4 @S
\ t s
©(B, 81, Ar, Riva, S41) @ (51, A¢, Rys1, St1) <
Mini-batch sampler [« Replay |« Mini-batch collector | (3)s,,, Environment
buffer < s
D
®Ri
D-@ Every time step O-@ Every C; steps @ Every C, steps 7

Figure 3.—Data collection and training in Double DQN.

2.3 Reinforcement Learning Framework
2.3.1 Environment: Conflict Scenarios

Scenarios are randomly generated so the agent can learn from diverse experiences. The pair of
UAS have routes that intersect in 4D. The ownship UAS always starts with an initial heading of
true north, while the intruder UAS approaches from varying bearing angles in each scenario. The
relative heading between the two UAS ranges from 20° to 160°, and both UAS operate at the same
altitude. Each UAS starts 4,000 meters from the conflict location, i.e., an estimated time of 200
seconds to conflict at a groundspeed of 20 m/s. When the simulation starts, each UAS travels on its
respective route towards the final waypoints. In Fe3, by default a conflict is detected when the pair
of UAS are within broadcast range of each other (6,000 meters) and are on track to collide. From
this point, the DRL agent calculates heading change maneuvers for the ownship UAS to execute
until one of the scenario termination conditions is met: the conflict is resolved or the vehicles have
collided. A conflict is resolved when the ownship UAS has a clear line-of-sight to the destination.

2.3.2 Agent

This research treats the ownship UAS in the UTM airspace as the RL agent. The UAS
performance data shown in Table 1 is based on DJI Phantom 4.0 UAS (Ref. 30). These parameters
are used to compute the power required (Prequired) and energy consumption for UAS flights. The
instantaneous power required in forward flight is equal to the sum of the induced power, parasite
power, climb power, and profile power (Ref. 28, 43, 44). The energy consumption (Econsumption) il
time () is as follows (Ref. 30):

t
Econsumption = A Prequired dt (4)

Table 1.— UAS Performance Parameters Relevant to Deep Reinforcement Learning (Ref. 30).

UAS Performance Parameter Value(s)
Cruise Airspeed 20 m/s
Cruise Altitude 121.92 m
Mass 1.410 Kg
Rotor Diameter 0.24 m
Equivalent Front Plate Area 0.012 m?
Equivalent Top Plate Area 0.03 m?

Maximum Heading Change Rate 150°/s

2.3.3 State Space

Selecting the appropriate state space dimensions is crucial to providing the agent with sufficient
information to effectively navigate the environment optimizing for reward. To minimize compu-
tational complexity, unnecessary and redundant states should be avoided, which may be derived
from combinations of others. For the dynamic re-routing of two agents, the state space has been
defined in Table 2. In order to reduce the state space size, only scenarios where the intruder UAS
approaches the ownship UAS from the right are considered. In the case that the trained agent
encounters scenarios upon deployment where the intruder UAS is to the left, the intruder UAS
is mirrored around the ownship UAS’s original route for the state computation and the policy’s
output is mirrored back before execution in the environment, as can be observed in Figure 4. This
method halves the size of the state space.

2.3.4 Action Space

The dimensions of the action space dictates how the agent interacts with the environment. To
compute the optimal action based on the Q-value function, the action space needs to be discretized,
with the number of output neurons in the value networks matching the number of possible actions.
For the present research, only heading changes with respect to the original route heading are

Table 2.—State space definition.

State name Limits Units Dimensions
Simulation Time [0, 4100] S 1
Time to Conflict [0, 180] s 1
Ownship UAS position | [-4000, 4000] m 2
Conflict Location [-4200, 4200] m 2
Relative distance [-4200, 4200] m 2
Relative velocity [-40, 40] m/s 2

Mirroring intruder around the ownship original path
A

Ownship's

Action policy
executed in the i computed

environment action

i

Figure 4.—Computation and execution of action when the intruder UAS approaches from the left
of the ownship UAS’s path.

considered in the range [-45°, 45°] segmented into intervals of one degree (specifically {-45°, -44°,
-43°, ..., 44°, 45°}. As an example, if the UAS is heading East at the beginning of the scenario,
namely 90° heading if the North is considered to be the reference direction, then it can only change
its heading in the range [45°, 135°].

2.3.5 Reward Function

The agent’s goal is to maintain visual contact with the destination while avoiding conflict
with the intruder UAS. The reward function includes a large termination reward, complemented
with smaller rewards at each time step, to accelerate the agent’s learning of desired behaviors. To
balance safety and efficiency, the reward function incorporates the following factors:

1. Intermediate Reward

(a) Energy consumption penalty: Fe? incorporates an energy model of the UAS. Each time
step’s energy consumption (AFjy) is penalized by multiplying it with a negative weight
(wy), aimed at minimizing the overall energy usage. This penalty incentivizes the agent
to make decisions that are more energy-efficient.

(b) Destination proximity reward: besides conflict resolution, the agent’s goal involves pro-
gressing towards its destination. To incentivize this behavior, the distance flown towards
the destination (Adpp) during each time step is multiplied by a positive weight (ws).

2. Termination Reward

(a) Base reward: an initial positive reward of 0.75 provides the agent a fixed incentive to
reach the goal, signaling that the termination itself is not undesirable.

(b) Conflict resolution time frame penalty: Dynamic re-routing takes place between three
minutes and one minute of collision (1< ¢. <3). To promote conflict resolution before
reaching the one-minute mark before impact, the agent incurs a large penalty (ws) if the
agent fails to resolve the conflict before that threshold.

()

{1, if t. < 60.
1:

0, otherwise.

(c) Total extra energy consumption penalty: A penalty is added that scales with the extra
total energy used by the UAS when compared to the same UAS flying directly on the
initial path as if there was no conflict (AE}) by a factor of w4. This is to avoid maneuvers
that have high total energy costs.

Considering all the aforementioned components shaping the reward, the intermediate (R;41)
and the termination (Ryp) signals can be formulated as in Equation 6 and Equation 7, respectively,
with the weight values in Table 3.

Ri1 = w1 - AE; +wo - Adop (6)
Rr =075+ w3 -\ +ws - AE; (7)

Table 3.—Reward function weights.

w1 Wo w3 Wy

-0.002 0.001 -0.5 -0.001

3 Preliminary Results and Discussions

Without performing a sensitivity analysis on the impact of each of the chosen states, actions
and reward factors enumerated in Section 2, as well as fine-tuning their chosen values, preliminary
results were collected in order to verify the functionality of the complete simulation pipeline and
the learning of the DRL agent. The Q-value function consists of a multi-layer perceptron (MLP)
with 3-hidden layers, each with 64 neurons. The input layer contains 10 neurons, corresponding to
the 10 perceived environmental states (see Section 2.3.3), while the output layer has 91 neurons,
representing the 91 possible heading angle changes (see Section 2.3.4). Leaky ReLU is the activation
function for all the layers. The probability € of the e-greedy policy linearly decays from 1 to 0.25
in 500,000 time steps, ensuring that initial actions are random and that there is always at least a
25% chance of taking a random action during training.

The replay buffer has a size of 300,000 samples and for every time step of data collected,
100 update steps with batches of 256 data points are performed on the Q-network. The Adam
optimizer is used with a learning rate of 1- 107 and a discount factor of 0.99. Instead of updating
the target network with the weights of the Q-network every Cs steps, its weights are updated at
every time step following Equation 8 with (=0.99. Thanks to this software update (Ref. 45), the
target changes slowly, improving learning stability at the expense of slower learning.

P =0 -C+0-(1-0) (8)

Exploiting the automated conflict scenario tool discussed in Section 2.3.1, 150 flight plans were
created for training and run for 50 epochs. Figure 5 shows how the percentage of successful decon-
flicted flight plans increases with the number of epochs for the training and validation scenarios.
The validation scenarios were 100 randomly generated pairwise scenarios that were simulated after
each epoch. The validation scenarios remained the same across the epochs. In both cases, the
validation signal seems to lag behind the training counterpart by one epoch. Additionally, from
these plots, it is clear that the policy has not yet converged and it could benefit from more training
epochs.

Safety can be assessed by looking at the closest distance of the ownship to the intruder before
declaring the conflict as resolved and disconnecting the DRL agent from the environment, as well
as the time that has taken the DRL to resolve the conflict. Figure 6 presents the first metric
by showing the closest ownship-intruder distance among all the scenarios in each epoch for the
training and validation datasets. As the value function is trained with more epochs, the closest
distance to the intruder while in conflict increases, showing that the agent is learning to take action
early in order to minimize energy consumption. Similar conclusions can be derived from Figure 7,
which shows the final ownship-intruder time to conflict remain much greater than the limit failure
threshold of 60 seconds. Again, the oscillations in Figure 6 and Figure 7 signals call for more epochs
to reach convergence.

Finally, the efficiency of the policy can be assessed by examining the total energy consumed by
the agent per epoch, as illustrated in Figure 8. For the training dataset and validation dataset, the
total energy consumption remains relatively constant. Again, it is clear that neither of the signals
has converged. This suggests that further training of the value function is needed.

Some reasons for why the percent of successful deconflictions becomes very high early in the
training, as seen in Figure 5 is that the model learns a suboptimal policy that successfully deconflicts
UAS-to-UAS in many scenarios. The model then improves upon that policy by learning maneuvers
that are more efficient but still successfully deconflicts UAS as seen as seen in Figure 8 as the total
energy used decreases while the percent of successful deconflictions remains high.

To better understand what policy the model learned, Figure 9 shows the first flight plan of
epoch 50. As can be seen, the ownship UAS (blue) initially makes a left turn of 35°, followed by a
right turn of 57°, ultimately heading back toward the goal with a 22° left turn.

Percent Successful Deconflictions

1.0
0.8 1
o 061
=
v
b
-4
0.49
0.21
— Train
—— Validation
T T T T T T
0 10 20 30 40 50

Epoch

Figure 5.—Percentage of successfully decon-
flicted flight plans per epoch for the training
and validation datasets.

Closest Time to Conflict

160 — Train

—— Validation

140 A

120 A

100 A

80 4

Time (s)

60 4

40

20 A

0 10 20 30 40 50
Epoch

Figure 7.—Ownship-intruder time to conflict
prior to conflict resolution among all scenarios
per epoch. The blue line reflects the training
results whereas the orange line those from the
validation dataset.

Closest Distance

110 4

100 4

90 A

80

Distance {m)

70 A

60

50 4 — Train
—— Validation

0 10 20 30 40 50
Epoch

Figure 6.—Closest ownship-intruder distance
while in conflict among all scenarios per epoch.
The blue line reflects the training results whereas
the orange line those from the validation dataset.

Total Energy Used

40000 — Train

—— Validation

39800

39600 -

39400 A

39200 A

Energy (kW)

39000 A

38800

38600 -

0 10 20 30 40 50
Epoch

Figure 8.—Total energy consumed per epoch.
The blue line reflects the training results
whereas the orange line those from the valida-
tion dataset.

4000 -

3000 A \

2000 - \

1000 A \

y (m)
o

~1000 A \

—2000 A \\
—3000 A \\
—4000 A
-4000 -3000 -2000 -1000 0 1000 2000 3000 400C
x (m)

Figure 9.—First deconflicted scenario of epoch 50. The blue line represents the ownship vehicle’s
flight track and the orange represents the intruder’s flight track.

4 Conclusions

This report proposes a simulation framework for training and evaluating Deep Reinforcement
Learning (DRL) approaches for tactical separation assurance services in Unmanned Aircraft Sys-
tems (UAS) Traffic Management (UTM). To assess its functionality, the Double Deep Q-Network
with experience replay, a DRL algorithm from literature, was implemented as the policy for the
ownship agent, constrained to heading changes, in a pairwise UAS conflict scenario. The reward
used to guide the learning process encouraged safety and efficiency, the latter in the form of energy
consumption minimization.

Preliminary results from a dataset comprising 150 conflict scenario geometries, run for 50
epochs, demonstrate that the agent is successfully learning. This is evidenced by an increase in the
percentage of deconflicted scenarios per epoch. Additionally, the safety performance of the policy
has improved by deconflicting with the other UAS earlier in the flight and at greater distances from
the conflict area.

References

1. Prevot, T.; Rios, J.; Kopardekar, P.; III, J. E. R.; Johnson, M.; and Jung, J.: UAS Traffic
Management (UTM) Concept of Operations to Safely Enable Low Altitude Flight Operations.
16th AIAA Aviation Technology, Integration, and Operations Conference, 2016.

2. Rios, J. L.; Homola, J.; Craven, N.; Verma, P.; and Baskaran, V.: Strategic Deconfliction
Performance: Results and Analysis from the NASA UTM Technical Capability Level 4 Demon-
stration. Technical Memorandum NASA /TM-2020-5006337, NASA Ames, August 2020.

3. Federal Aviation Administration NextGen Office: UTM ConOps Version2. March 2020.
URL https://www.faa.gov/sites/faa.gov/files/2022-08/UTM_ConOps_v2.pdf, accessed
on 05-05-2024.

4. Erzberger, H.; Paielli, R. A.; Isaacson, D. R.; and Eshow, M. M.: Conflict detection and
resolution in the presence of prediction error. 1st USA/Europe Air Traffic Management RED
Seminar, Saclay, France, Citeseer, 1997, pp. 17-20.

5. Johnson, M.; and Larrow, J.: UAS traffic management conflict management model. Technical
Memorandum NASA /TM-2020-5002076, NASA Ames, May 2020.

6. Bilimoria, K.: A geometric optimization approach to aircraft conflict resolution. 18th Applied
aerodynamics conference, 2000, p. 4265.

7. Erzberger, H.; and Heere, K.: Algorithm and operational concept for resolving short-range
conflicts. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, vol. 224, no. 2, 2010, pp. 225-243.

8. Brittain, M.; and Wei, P.: Autonomous air traffic controller: A deep multi-agent reinforcement
learning approach. arXiv preprint arXiv:1905.01308, 2019.

9. Evans, A. D.; Egorov, M.; and Munn, S.: Fairness in decentralized strategic deconfliction in
UTM. AIAA Scitech 2020 Forum, 2020, p. 2203.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Hunter, G.; and Wei, P.: Service-oriented separation assurance for small UAS traffic man-
agement. 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS),
IEEE, 2019, pp. 1-11.

Kochenderfer, M. J.; Holland, J. E.; and Chryssanthacopoulos, J. P.: Next generation airborne
collision avoidance system. Lincoln Laboratory Journal, vol. 19, no. 1, 2012, pp. 17-33.

Kuchar, J.; and Drumm, A. C.. The traffic alert and collision avoidance system. Lincoln
laboratory journal, vol. 16, no. 2, 2007, p. 277.

Kochenderfer, M. J.: Decision making under uncertainty: theory and application. MIT press,
2015.

Yang, X.; and Wei, P.: Scalable multi-agent computational guidance with separation assurance
for autonomous urban air mobility. Journal of Guidance, Control, and Dynamics, vol. 43, no. 8,
2020, pp. 1473-1486.

Owen, M. P.; Panken, A.; Moss, R.; Alvarez, L.; and Leeper, C.: ACAS Xu: Integrated
Collision Avoidance and Detect and Avoid Capability for UAS. 2019 IEEE/AIAA 38th Digital
Awvionics Systems Conference (DASC), 2019, pp. 1-10.

Owen, M. P.; Panken, A.; Moss, R.; Alvarez, L.; and Leeper, C.: ACAS Xu: Integrated collision
avoidance and detect and avoid capability for UAS. 2019 IEEE/AIAA 38th Digital Avionics
Systems Conference (DASC), IEEE, 2019, pp. 1-10.

Brittain, M. W.; Alvarez, L. E.; and Breeden, K.: Improving autonomous separation assurance
through distributed reinforcement learning with attention networks. Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 38, no. 21, 2024, pp. 22857—22863.

Sutton, R. S.; and Barto, A. G.: Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA, 2018.

Cone, C.; Owen, M.; Alvarez, L. E.; and Brittain, M. W.: Reward Function Optimization of
a Deep Reinforcement Learning Collision Avoidance System. AIAA SCITECH 2023 Forum,
2023, p. 2155.

Li, S.; Egorov, M.; and Kochenderfer, M.: Optimizing collision avoidance in dense airspace
using deep reinforcement learning. arXiv preprint arXiv:1912.10146, 2019.

Julian, K. D.; and Kochenderfer, M. J.: Reachability analysis for neural network aircraft
collision avoidance systems. Journal of Guidance, Control, and Dynamics, vol. 44, no. 6, 2021,
pp- 1132-1142.

Mueller, E. R.; and Kochenderfer, M.: Multi-rotor aircraft collision avoidance using partially
observable Markov decision processes. AIAA Modeling and Simulation Technologies Conference,
2016, p. 3673.

Fremond, R.; Xu, Y.; and Inalhan, G.: Application of an autonomous multi-agent system
using Proximal Policy Optimisation for tactical deconfliction within the urban airspace. 2022
IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), IEEE, 2022, pp. 1-10.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

Huang, C.; Petrunin, I.; and Tsourdos, A.: Strategic conflict management using recurrent
multi-agent reinforcement learning for urban air mobility operations considering uncertainties.
Journal of Intelligent & Robotic Systems, vol. 107, no. 2, 2023, p. 20.

Xie, Y.; Gardi, A.; and Sabatini, R.: Reinforcement learning-based flow management techniques
for urban air mobility and dense low-altitude air traffic operations. 2021 IEEE/AIAA J0th
Digital Avionics Systems Conference (DASC), IEEE, 2021, pp. 1-10.

Yang, X.; Egorov, M.; Evans, A.; Munn, S.; and Wei, P.: Stress testing of UAS traffic manage-
ment decision making systems. ATAA AVIATION 2020 FORUM, 2020, p. 2868.

Johnson, W.: Helicopter theory. Courier Corporation, 2012.
Johnson, W.: NDARC NASA design and analysis of rotorcraft. , NASA Ames, 2017.

Xue, M.; Rios, J.; Silva, J.; Zhu, Z.; and Ishihara, A. K.: Fe3: An evaluation tool for low-
altitude air traffic operations. 2018 Aviation Technology, Integration, and Operations Confer-
ence, 2018, p. 3848.

Pradeep, P.; Park, S. G.; and Wei, P.: Trajectory optimization of multirotor agricultural UAVs.
2018 IEEE Aerospace Conference, IEEE, 2018, pp. 1-7.

Nickolls, J.; Buck, I.; Garland, M.; and Skadron, K.: Scalable parallel programming with cuda:
Is cuda the parallel programming model that application developers have been waiting for?
Queue, vol. 6, no. 2, 2008, pp. 40-53.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.;
Gimelshein, N.; Antiga, L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani,
A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; and Chintala, S.: PyTorch: An Imperative
Style, High-Performance Deep Learning Library. 2019.

Bou, A.; Bettini, M.; Dittert, S.; Kumar, V.; Sodhani, S.; Yang, X.; Fabritiis, G. D.; and
Moens, V.: TorchRL: A data-driven decision-making library for PyTorch. 2023.

Stevens, W. R.; and Narten, T.: UNIX network programming. ACM SIGCOMM Computer
Communication Review, vol. 20, no. 2, 1990, pp. 8-9.

Ribeiro, M.; Ellerbroek, J.; and Hoekstra, J.: Distributed Conflict Resolution at High Traffic
Densities with Reinforcement Learning. Aerospace, vol. 9, no. 9, 2022. URL https://www.
mdpi.com/2226-4310/9/9/472.

Watkins, C. J.; and Dayan, P.: Q-learning. Machine learning, vol. 8, 1992, pp. 279-292.

Razzaghi, P.; Tabrizian, A.; Guo, W.; Chen, S.; Taye, A.; Thompson, E.; Bregeon, A.; Baheri,
A.; and Wei, P.: A survey on reinforcement learning in aviation applications. arXiv preprint
arXiw:2211.02147, 2022.

Hasselt, H. v.; Guez, A.; and Silver, D.: Deep reinforcement learning with double Q-Learning.
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAT’16, AAAT Press,
2016, p. 2094-2100.

39.

40.

41.

42.

43.

44.

45.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves,
A.; Riedmiller, M. A.; Fidjeland, A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg, S.; and Hassabis, D.: Human-
level control through deep reinforcement learning. Nature, vol. 518, 2015, pp. 529-533. URL
https://api.semanticscholar.org/CorpusID:205242740.

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A. A.; Milan,
K.; Quan, J.; Ramalho, T.; Grabska-Barwinska, A.; Hassabis, D.; Clopath, C.; Kumaran,
D.; and Hadsell, R.: Overcoming catastrophic forgetting in neural networks. Proceedings of
the National Academy of Sciences, vol. 114, no. 13, 2017, pp. 3521-3526. URL https://www.
pnas.org/doi/abs/10.1073/pnas.1611835114.

Morales, M.: Grokking Deep Reinforcement Learning. Manning Publications, 2020. URL
https://books.google.com/books?id=IpHIzAEACAAJ.

Hasselt, H.: Double Q-learning. Advances in Neural Information Processing Systems, J. Laf-
ferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, eds., Curran Associates,
Inc., vol. 23, 2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/
file/091d584fced301b442654dd8c23b3fc9-Paper. pdf.

Johnson, W.; Silva, C.; and Solis, E.: Concept Vehicles for VTOL Air Taxi Operations. Con-
ference on Aeromechanics Design for Transformative Vertical Flight, San Francisco, CA, 2018.

Pradeep, P.; Kulkarni, C. S.; Chatterji, G. B.; and Lauderdale, T. A.: Parametric Study of
State-of-Charge for an Electric Aircraft in Urban Air Mobility. ATAA Awviation 2021 Forum,
2021, p. 3181.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; and Wierstra,
D.: Continuous control with deep reinforcement learning. 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, Y. Bengio and Y. LeCun, eds., 2016. URL http://arxiv.org/abs/1509.
02971.

