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If there be two subsequent events, the probability of the second b/N and the probability of
both together P/N , and it being first discovered that the second event has also happened, from
hence I guess that the first event has also happened, the probability I am right is P/b.

Thomas Bayes, c. 1760

The explicit calculation of the optimal estimate as a function of the observed variables is, in
general, impossible.

Rudolph Kalman, 1960.

The use of Kalman Filtering techniques in the on-board navigation systems for the Apollo
Command Module and the Apollo Lunar Excursion Module was an important factor in the over-
whelming success of the Lunar Landing Program.

Peter Kachmar, 2002.



Dedicated to the memory of Landis Markley, Gene Muller, Emil Schiesser, and Bill Lear.
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Foreword to the Second Edition

Many engineers have heard of Kalman filtering and many use Kalman filters in their state
estimation work, especially those of us involved in navigation. The Kalman filter is a powerful
tool in spacecraft navigation. Yet my experience is that many (if not most) of these same engineers
do not fully understand the underlying mathematics, the basic assumptions, nor how to expertly
analyze the estimation accuracies produced by the Kalman filter algorithms. This is especially true
when the Kalman filter (which is based on linear system theory) is utilized in the more realistic
stochastic non-linear setting. Its full potential and limitations are not always well understood
especially when transitioning from its traditional linear formulation to non-linear systems, which
is where the extended Kalman filter (EKF) comes into play. The extended Kalman filter is known
to be an ad hoc algorithm and requires skill to properly tune to obtain realistic state estimation
accuracies.

In practical scenarios, most systems are nonlinear, and we often linearize the system around
the current state estimate using Jacobian matrices, but this linearization can introduce inaccu-
racies, especially when the underlying system is highly nonlinear. Because of this, the nonlinear
filters can be unstable or inaccurate if the assumptions of small nonlinearities or well-behaved sys-
tems are violated. Tuning the filter becomes more complex, requiring an understanding of both
the system dynamics and the noise characteristics. This is largely an art form.

What is critically important in applications utilizing EKFs and various variants of the Kalman
filter based on linearization assumptions (such as Taylor series approximations) is that the state
estimation error covariance matrix (which is an approximation due to the linearizations inherent
in the algorithm) reflect reality as closely as possible. For example, during a spacecraft rendezvous
where the state estimation accuracy is a key to the mission success, the state estimation error co-
variance provides insight into how the filter is performing. Sometimes engineers apply the filter
without thoroughly analyzing the state estimation error covariances beforehand (typically em-
ploying high-fidelity computer simulations) potentially leading to overconfidence in the estimated
states during actual operations.

Many of the tools the Apollo and Shuttle era navigators employed to analyze and tune the
EKF have seemingly been lost in time. These include Monte Carlo analysis, error budgets, and
sensitivity analysis and the development of suboptimal filters utilizing these tools. Additionally,
questions around measurement underweighting and measurement editing and the role of mea-
surement residuals in keeping the EKF stable are often overlooked.

Dr. Carpenter and Dr. D’Souza have assembled a text exploiting the wisdom of many experts
in the field. Indeed, this book will guide you through a more clearly developed understanding of
Kalman filters in practical applications. The material is presented from an engineering perspec-
tive – it is not a mathematics treatise. In that sense, it is a treasure for practitioners and will remain
a key resource for engineers to truly understand how to create and tune nonlinear filters in state
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vi FOREWORD (SECOND ED.)

estimation applications. Also the authors present outstanding material for highly nonlinear sys-
tems employing other approaches like Unscented Kalman Filters (UKF) and Particle Filters (PF),
which might provide more robust solutions.

In essence, while the Kalman filter and its variants are widely used, their correct application,
particularly in nonlinear settings requires deep expertise and curiosity when the estimation errors
don’t meet expectations.

Robert H. Bishop, PhD, PE
Vice Chancellor for Engineering, The Texas A&M University System

Dean of Engineering, Texas A&M University
Director, Texas A&M Engineering Experiment Station

Harold J. Haynes Dean’s Chair in Engineering
October 2024



Foreword to the First Edition

It certainly should not come as a surprise to the reader that navigation systems are at the heart
of almost all of NASA’s missions, either on our launch vehicles, on robotic science spacecraft, or on
our crewed human exploration vehicles. Clearly navigation is absolutely fundamental to operating
our space systems across the wide spectrum of mission regimes. Safe and reliably performing
navigation systems are essential elements needed for routine low Earth orbiting science missions,
for rendezvous and proximity operation missions or precision formation flying missions (where
relative navigation is a necessity), for navigation through the outer planets of the solar system,
and for accomplishing pinpoint landing on planets/small bodies, and many more mission types.

I believe the reader will find that the navigation filter best practices the team has collected,
documented, and shared in this first edition book will be of practical value in your work designing,
developing, and operating modern navigation systems for NASA’s challenging future missions. I
want to thank the entire team that has diligently worked to create this NASA Engineering and
Safety Center (NESC) GN&C knowledge capture report. I especially want to acknowledge the
dedication, care, and attention to detail as well as the energy that both Russell Carpenter and Chris
D’Souza, the report editors, have invested in producing this significant product for the GN&C
community of practice. It was Russell and Chris who had the inspiration to create this report
and they have done a masterful job in not only directly technically contributing to the report but
also coordinating its overall development. It should be mentioned that some high-level limited
work was previously performed under NESC sponsorship to capture the lessons learned over the
course of the several decades NASA has been navigating space vehicles. This report however fills
a unique gap by providing extensive technical details and, perhaps more importantly, providing
the underlying rationale for each of the navigation filter best practices presented here. Capturing
these rationales has proven to be a greatly needed but very challenging task. I congratulate the
team for taking this challenge on.

The creation, and the wide dissemination of this report, is absolutely consistent with the
NESC’s commitment to engineering excellence by capturing and passing along, to NASA’s next
generation of engineers, the lessons learned emerging from the collective professional experiences
of NASA’s navigation system subject matter experts. I believe this book will not only provide rel-
evant tutorial-type guidance for early career GN&C engineers that have limited real-world on the
job experience but it should also serve as a very useful memory aid for more experienced GN&C
engineers, especially as a handy reference to employ for technical peer reviews of navigation sys-
tems under development.

As the NASA Technical Fellow for GN&C I urge the reader (especially the “navigators” among
you obviously) to invest the time to digest and consider how the best practices provided in this
report should influence your own work developing navigation systems for the Agency’s future
missions. The editors and I recognize this will be a living document and we sincerely welcome
your feedback on this first edition of the report, especially your constructive recommendations on

vii
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ways to improve and/or augment this set of best practices.

Cornelius J. Dennehy
NASA Technical Fellow for GN&C

January 2018



Editors’ Preface to the Second Edition

This second edition welcomes several new contributors, and features a new chapter on batch
filtering for onboard applications, major augmentations to the chapters on factorization and us-
ability, and numerous minor corrections. An index of best practices has also been added.

The Editors wish to thank the many readers whose feedback has resulted in the improvements
to the present edition; in particular: Nathan Stacey, John Christian, Terry Sabaka, and Francesco
Capolupo.

Among the main topics of feedback we received for the first edition concerned our failure to
explicitly mention that the primary target application for these best practices is onboard, rather
than ground-based navigation, although many of the best practices described here have mutual ap-
plicability to both domains. It is not our purpose here to recapitulate the pros and cons of onboard
vs. ground-based navigation, or to discuss when one or the other approach is either necessary
and/or desirable. For those interested in such topics, a number of standard texts [5, 62] discuss
this trade space. Rather, herein we proceed from the notion that for a given application, the trade
has resulted in a decision to implement onboard navigation. Thus, the best practices offered here
pertain primarily to this context.

ix





Editors’ Preface to the First Edition

As the era of commercial spaceflight begins, NASA must ensure that lessons the US has learned
over the first 50 years of the Space Age will continue to positively influence the continuing explo-
ration and development of space. Of the many successful strands of this legacy, onboard navigation
stands out as an early triumph of technology whose continuous development and improvement
remains as important to future exploration and commercial development as it was in the era of
Gemini and Apollo. The key that opened the door to practical and reliable onboard navigation was
the discovery and development of the extended Kalman filter (EKF) in the 1960s, a story that has
been well-chronicled by Stanley Schmidt [76], and Kalman filtering has far outgrown NASA’s ap-
plications over the intervening decades. What are less well-documented are the accumulated art
and lore, tips and tricks, and other institutional knowledge that NASA navigators have employed
to design and operate EKFs in support of dozens of missions in the Gemini/Apollo era, well over one
hundred Space Shuttle missions, and numerous robotic missions, without a failure ever attributed
to an EKF. To document the best of these practices is the purpose that motivates the contributors
of the present document.

Kernels of such best practices have appeared, scattered throughout the open technical litera-
ture, but such contributions are limited by organizational publication policies, and in some cases
by technology export considerations. Even within NASA, there has heretofore not been any at-
tempt to codify this knowledge into a readily available design handbook that could continue to
evolve along with the navigation community of practice. As a result, even within the Agency, it
is possible for isolated practitioners “not to know any better:” to fail to appreciate the subtleties
of successful and robust navigation filter design, and to lack an understanding of the motivations
for, and the implied cost/benefit trades, of many of the tried and true approaches to filter design.

Some limited progress toward filling this void has been made at a summary level in reports
and briefings prepared for the NASA Engineering and Safety Center (NESC) [20]. In particular,
one of a series of recommendations in Reference 20 “…directed towards the development of future
non-human rated [rendezvous] missions…” included as its fourteenth recommendation the admon-
ishment to “[u]tilize best practices for rendezvous navigation filter design.” This recommendation
listed eight such practices, as follows:

a. Maintain an accurate representation of the target-chaser relative state
estimation errors, including an accurate variance-covariance matrix.
This allows the filter to compute an appropriate gain matrix. It also aids the
filter in appropriately editing unsuitable measurements.

b. Provide a capability for measurement underweighting that adapts to
the current uncertainty in the filter’s state estimation error, as re-
quired to be consistent with the suboptimality of the navigation fil-
ter’s measurement update. Effective means for accomplishing this have
been found to include:

i. Modified second-order Gaussian state update method [38];
xi
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ii. Multiplicative adjustment of the mapping of the state error covariance
matrix into the measurement subspace, which occurs within the com-
putation of the residual covariance [91]; and

iii. Schmidt-Kalman state update [7] that utilizes the covariance matrix of
“consider” parameters (i.e., states that the filter does not update, but for
which it maintains a covariance).

Multiplicative adjustment of the measurement noise covariance matrix within
the computation of the residual covariance (the “bump up R” method [7]) has
been found to be less effective, and is not recommended unless other methods
are not feasible.

c. Estimate states thatmodel biases in sensormeasurements and account
for unmodeled accelerations. Gauss-Markov models for these biases have
been found to be more effective than random constant or random walk mod-
els. Random constant models can become stale, and random walk models can
overflow during long periods without measurement updates.

d. Provide commands that allow for selective processing of individual
measurement types. If the filter utilizes an automated residual edit process,
then the recommended command capability should be able to override the
residual edit test.

e. Maintain a backup ephemeris, unaltered bymeasurement updates since
initialization, which can be used to restart the filter without uplink of
a new state vector.

f. Provide a capability for reinitializing the covariance matrix without
altering the current state estimate.

g. Ensure tuning parameters are uplinkable to the spacecraft, and capa-
ble of being introduced to the filterwithout loss of onboard navigation
data.

h. Provide flexibility to take advantage of sensors’ and sensor suites’ full
capability over all operating ranges.

A subsequent briefing given for an NESC webinar listed these as well as the following “additional
considerations:”

• State Representation
– Translational states
∗ Dual inertial
∗ Inertial/relative
∗ Relative-only

– Attitude states, as required
∗ 3-parameter vs. 4-parameter
∗ Multiplicative vs. additive update

• Covariance Factorization (or not)
– U-D
– “Square Root” Methods

• Measurement Correlation
• Non-simultaneous Measurements
• Backward smoothing (for [Best Estimated Trajectories/Reconstructions])
• Error Budgets
• Sensitivity Analysis
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• [Inertial Measurement Unit]/Accelerometer Processing
• Observability

While these summary-level lists give the community a place to start, they are lacking in some
respects. They lack sufficient rationale that would motivate a designer to adopt them. Even if so
motivated, a designer needs much more detailed information concerning how to implement the
recommendations.

The present work is an attempt to address these shortcomings. Each contributor has selected
one aspect of navigation filter design, or several closely related ones, as the basis of a chapter.
Each chapter clearly identifies best practices, where a consensus of the community of practice
exists. While it is sometimes difficult to cast aside one’s opinions and express such a consensus,
each contributor has made a best effort in this regard. Where a diversity of opinion exists, the
chapter will summarize the arguments for and against each approach. Also, if promising new
developments are currently afoot, the chapter will assess their prospects.

While the contributors strive for consistency of convention and notation, each has his own
preferences, and readers may need to accommodate subtle differences along these lines as they
traverse the book. The first chapter, which summarizes the EKF, sets the stage, and should be
briefly perused by even seasoned navigators in order to become familiar with the conventions
adopted for this work. Subsequent chapters should stand on their own, and may be consulted in
any order.

While this is a NASA document concerned with space navigation, it is likely that many of
the principles would apply equally to the wider navigation community. That said, readers should
keep in mind that hard-earned best practices of a particular discipline do not always carry over
to others, even though they may be seemingly similar. To assume so is a classic example of the
logical fallacy argumentum ad verecundiam, or the argument from [false] authority.

Finally, the contributors intend for this work to be a living document, which will continue to
evolve with the state of the practice.





Notational Conventions

A A set

a, α,A Scalars

q,M An array of scalars, e.g. column, row, matrix

x A point in an abstract vector space

r⃗ A physical vector, i.e. an arrow in 3-D space

F A coordinate frame

MT The transpose of the array M

∥x∥ The (2-)norm of the vector x

y A random variable

z A random vector

px(x) The probability density function of the random variable x evaluated at the realization
x

Pr(y < Y ) The probability that y < Y

E[z] The expectation of the random vector z

exp(t) The exponential function of t

et exp(t) written as Euler’s number raised to the t power

dx Leibniz’ (total) differential of x
dy
dx (First) (total) derivative of y with respect to x

dny
dxn = dn

dxn y nth (total) derivative of y with respect to x
Fdn

dtn r⃗ nth (total) derivative of r⃗ with respect to t in frame F
∂M
∂x (First) partial derivative of M with respect to x

∂M
∂x

∣∣
xo

(First) partial of M with respect to x, evaluated at xo
ẋ, ẍ, etc. Overdots may be used as a shorthand for time derivatives

xv





CHAPTER 1

The Extended Kalman Filter

Contributed by J. Russell Carpenter

As described in the preface, use of the Extended Kalman Filter (EKF) for navigation has a long
history of flight-proven success. The EKF thus forms the foundational best practice advocated by
this work, and it forms the basis for many of the best practices later chapters describe. The purpose
of the present chapter is not to derive the EKF and its relations, but rather to present them in a
basic form, as a jumping off point for the rest of the material we shall present. As we shall show,
while the EKF is a powerful and robust algorithm, it is based on a few ad hoc assumptions, which
can lead to misuses and misunderstandings. Many of the best practices we shall describe are tricks
of the trade that address such issues.

1.1. The Additive Extended Kalman Filter
The additive EKF is distinguished from the multiplicative EKF (MEKF) by the form of its mea-

surement update. The additive EKF is the usual and original form of the EKF, and when we refer
to the EKF without a modifier, one may assume we mean the additive form.

1.1.1. The Dynamics Model Suppose we have a list of n real quantities that we need to
know in order to perform navigation, and we have a differential equation that tells us how these
quantities evolve through time, such as

Ẋ(t) = f(X(t), t) (1.1)

where X ∈ Rn, which we call the state vector, contains the quantities of interest; we shall call
f(X, t) the dynamics function. If we knew these quantities perfectly at any time, (1.1) would
allow us to know them at any other time. For a variety of reasons, this is not the case however;
both the initial conditions and the dynamics function are corrupted by uncertainty.

Suppose instead that the quantities of interest are realizations of a random process, X(t),
whose distribution at some initial time to is known to us, and whose evolution (forward) in time
follows the stochastic differential equation given by

dX(t) = f(X(t), t) dt+B(t) dw(t) (1.2)

where the presence of the process noise dw(t) reflects uncertainty in the dynamics. To interpret
(1.2), imagine dw(t) as the limit of a discrete sequence of random increments, as the time between
increments goes to zero. The result will be a continuous but non-differentiable process; hence the
notation Ẋ(t) has ambiguous meaning. Henceforth, we shall define our notation such that when
we write

Ẋ(t) = f(X(t), t) +B(t)w(t) (1.3)
what we mean is really (1.2).

1



2 1. THE EXTENDED KALMAN FILTER

Finally, suppose that at some earliest time, to, the initial distribution of X(to) is Gaussian, with
mean and covariance given by

E[X(to)] = X̄o and E
[
(X(to)− X̄o)(X(to)− X̄o)

T
]
= Po (1.4)

and suppose that infinitesimal increments of w(t) are Gaussian, with
E[w(t)] = 0 and E[w(t)wT(τ)] = Q(t)δ(t− τ) (1.5)

where Q(t) is the power spectral density function of w(t), and δ(t − τ) is the Dirac delta, a
generalized function. We shall also assume that

E
[
w(t)(X(to)− X̄o)

T
]
= 0, ∀ t (1.6)

We shall take (1.3) – (1.6) to define the dynamics model for the additive EKF. Note that even though
we have assumed X(to) and w(t) are Gaussian, we cannot assume that X(t) remains Gaussian for
t > to, because f may be a nonlinear function.

1.1.2. The Measurement Model In an ideal world, we might have devices for measuring
all of the state vector components directly; then state determination would be simply a matter of
collecting enough such observations to reduce the state uncertainty to sufficient levels. Unfortu-
nately, this is almost never the case. Instead, like Socrates’ prisoners, we can usually only perceive
noisy projections of the state elements, at discrete times, ti, in the form of measurements:

Y(ti) = h(X(ti), ti) + v(ti) (1.7)
where h is a surjection from Rn to Rm. We shall assume that v(ti), which we call the measurement
noise, is a Gaussian sequence, with mean and covariance given by

E[v(ti)] = 0 and E[v(ti)v(tj)
T] = R(ti)δij (1.8)

where δij is the Kronecker delta function. We shall also assume that

E
[
v(ti)(X(to)− X̄o)

T
]
= 0 and E[w(t)v(ti)

T] = 0, ∀ i, t (1.9)
We shall take (1.7) – (1.9) to define the measurement model for the additive EKF. Note that we
cannot assume that Y(ti) is Gaussian, because h may be a nonlinear function. For compactness
of notation, we shall often suppress the time argument and write (1.7) as

Yi = hi(Xi) + vi (1.10)

Bayes’ Law, the Markov Property, and Observability Bayes’ Law tells us how to update
the conditional probability density function (PDF) ofX(ti), given a realizationY (ti) of the random
process Y(ti):

pXi|Yi
(Xi|Yi) = pYi|Xi

(Yi|Xi)
pXi

(Xi)

pYi
(Yi)

(1.11)

If all the PDFs in (1.11) were known, it would be relatively simple to use (1.11) to estimate the
state vector from a single measurement; our best estimate of the state would simply be the mean
of pXi|Yi

(Xi|Yi). But to apply (1.11) to the navigation problem, where we have a time sequence
of measurements, Yi = {Yi,Yi−1, . . . ,Y1}, we need to consider how the state dynamics evolve.

Unlike (1.1), our dynamics model, given by (1.3), only runs forward in time. Hence, the state
at any future time depends only on its history. Also, because the non-homogeneous inputs to (1.3)
are uncorrelated by the Dirac delta in (1.5), the value of the state at any particular time in the future
depends only on its present value, and its accumulated diffusion due to the process noise over the
interval between now and the future time of interest. Random processes such as this are said to



1.1. THE ADDITIVE EXTENDED KALMAN FILTER 3

possess the Markov Property. Using this property, we can write (1.11) in terms of the measurement
history as follows:

pXi|Yi
(Xi|Yi) = pYi|Xi

(Yi|Xi)
pXi|Yi−1

(Xi|Yi−1)

pYi|Yi−1
(Yi|Yi−1)

(1.12)

Even if we could compute all of the PDFs in (1.12), we are not guaranteed that the sequence of
measurements provide sufficient information to reduce the initial uncertainty of all the modes of
(1.1). If the system given by (1.1) and (1.10) is such that use of (1.12) results in uncertainty in all
the modes going asymptotically to zero in finite time, from any initial condition, then we say the
system is globally asymptotically observable. If at least all of the unstable modes are observable,
then we say the system is detectable. Unfortunately, for nonlinear systems, there is no known
way to compute global observability. At best, under certain restrictions on (1.1) and (1.10), we
can in principle establish local observability, in the neighborhood of a particular initial condition.
However, this is a laborious calculation, often numerically unstable to evaluate. Also, note that
observability is a property of the structure of (1.1) and (1.10), and hence is dependent on how
one chooses to represent the navigation problem. Hence, a system that is observable with one
representation may be unobservable with a different representation.

Kalman’s original filter, which we now usually call the linear Kalman filter (LKF), is the result
when the dynamics and measurement models are linear, Markov, Gaussian, and observable. An
appreciation of the linear Kalman filter is essential to understanding the strengths and weaknesses
of the EKF, although it is almost never the case that such assumptions are valid for real-world
navigation problems.

1.1.3. The Linear Kalman Filter Suppose the dynamics and measurements are given by the
following discrete-time linear models:

xi = Φi,i−1xi−1 + Γiui (1.13)
yi = Hixi + vi (1.14)

with
E[xo] = x̄o and E[(xo − x̄o)(xo − x̄o)]

T] = Po (1.15)
E[ui] = 0 and E

[
Γiuiu

T
jΓ

T
i

]
= Siδij (1.16)

and the moments of vi as given by (1.8). This system will be globally observable if the observability
Gramian is strictly positive definite,

Wk =
k∑

i=1

ΦT
i,1H

T
iHiΦi,1 > 0 (1.17)

i.e. it has full rank.
With such assumptions, Kalman showed [44] that Algorithm 1.1 provides an optimal (both

minimum variance and maximum liklihood) estimate of the moments of the PDFs appearing in
(1.11). Note that in Algorithm 1.1, the covariance recursion given by (1.19) and (1.22) does not
depend on the measurement history, and hence one may compute the gain sequence, Ki, off-line
and store it as a time-indexed table or schedule, along with Φi,i−1 and Hi. Also note that because
the system is globally observable, there is no chance that it will fail to converge from any initial
condition, except perhaps due to build up of numerical truncation and/or roundoff error.

If we further suppose the dynamics and measurements are given by linear time-invariant (LTI)
models,

xi = Φxi−1 + Γui (1.23)



4 1. THE EXTENDED KALMAN FILTER

Algorithm 1.1 The Linear Kalman Filter

x̂−
i = Φi,i−1x̂

+
i−1, x̂+

0 = x̄o (1.18)

P−
i = Φi,i−1P

+
i−1Φ

T
i,i−1 + Si, P+

0 = Po (1.19)

Ki = P−
i H

T
i

(
HiP

−
i H

T
i +Ri

)−1 (1.20)
x̂+
i = x̂−

i +Ki

(
yi −Hix̂

−
i

)
(1.21)

P+
i = P−

i −KiHiP
−
i (1.22)

yi = Hxi + vi (1.24)

then we may test its global observability using a somewhat simpler calculation than (1.17), as
follows:

W =


H
HΦ
HΦ2

...
HΦn−1

 > 0 (1.25)

If the system is detectable, then it turns out that the covariance recursion given by (1.19) and (1.22)
reaches a steady-state, which we denote P∞. The corresponding gain is K∞ = P∞HTR−1.
There exist numerous software packages that will compute such quantities, e.g. the Matlab Control
Systems Toolbox, which may unfortunately lead to their misuse in inappropriate contexts. Perhaps
worse, experts from other domains, who are familiar with techniques such as pole placement for
control of LTI systems, may recognize that the steady-state linear Kalman filter is “just a pole
placement algorithm,” and may infer that the EKF is not much more than a clever pole placement
algorithm as well. As we shall show below, this is far from being the case; the EKF operates directly
on the nonlinear system of interest, for which such LTI concepts have dubious applicability.

1.1.4. The Linearized Kalman Filter An immediately apparent generalization of the linear
Kalman Filter is to use it to solve for small corrections to a nonlinearly propagated fixed reference
trajectory. While such an approach may have certain applications over limited time horizons,
and/or for ground-based applications where an operator can periodically intervene, experience
with onboard navigation systems has shown that such corrections can fail to remain small enough
to justify the required approximations.

1.1.5. The Extended Kalman Filter There are a number of ways to proceed from Algo-
rithm 1.1 to “derive” the EKF, but all contain a variety of ad hoc assumptions that are not guar-
anteed to hold in all circumstances. Most weaknesses and criticisms of the EKF arise from such
assumptions. Rather than reproduce one or more of such derivations, we will simply point out
that if one replaces (1.18) with an integral of (1.1) over the time between measurements, and com-
putes the coefficient matrices appearing in (1.13) and (1.14) as Jacobians evaluated at the current
solution of (1.1), then the result is Algorithm 1.2, which bears more than a passing resemblance to
the Kalman filter.

Several observations are in order regarding Algorithm 1.2.
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Algorithm 1.2 A Naive Extension of the Kalman Filter

X̂−
i = X̂+

i−1 +

∫ ti

ti−1

f(X(τ), τ) dτ, X̂+
0 = X̄o (1.26)

A(t) =
∂f

∂X

∣∣∣∣
X̂(t)

, Hi =
∂hi

∂X

∣∣∣∣
X̂−

i

(1.27)

Φ(ti, ti−1) = I+

∫ ti

ti−1

A(τ)Φ(ti, τ) dτ (1.28)

Si =

∫ ti

ti−1

∫ ti

ti−1

Φ(ti, τ)B(τ) E[w(τ)wT(σ)]BT(σ)ΦT(ti, σ) dτ dσ (1.29)

P−
i = Φ(ti, ti−1)P

+
i−1Φ

T(ti, ti−1) + Si, P+
0 = Po (1.30)

Ki = P−
i H

T
i

(
HiP

−
i H

T
i +Ri

)−1 (1.31)

X̂+
i = X̂−

i +Ki

(
Yi − hi(X̂

−
i )
)

(1.32)

P+
i = P−

i −KiHiP
−
i (1.33)

• One might infer from (1.26) that X̂−
i = E[X|Yi−1]. This would be a somewhat problem-

atic inference however, since in general∫ ti

ti−1

f(E[X(τ)] , τ) dτ ̸= E

[∫ ti

ti−1

f(X(τ), τ) dτ

]
(1.34)

This implies that an initially Gaussian distribution for the state cannot in general remain
Gaussian. At best, all we can hope is that X̂−

i ≈ E[X|Yi−1].
• Let us define the estimation error as e(t) = X(t)−X̂(t). Then since X̂(t) ̸= E[X(t)|Yi−1],

P(t) ̸= E[e(t)eT(t)|Yi−1] (1.35)

At best, all we can hope is that P(t) ≈ E[e(t)eT(t)|Yi−1].
• Let us define the innovation as ri = Yi − h(X̂−

i ). Then since h(X̂−
i ) ̸= E[Y],

HiP
−
i H

T
i +Ri ̸= E[rir

T
i ] (1.36)

At best, all we can hope is that the above will hold approximately.
• Taken together, the approximations listed above imply that (1.32) and (1.33) can at best

satisfy (1.12) only approximately, not only because the mean and covariance are approx-
imations, but also because the PDFs fail to remain Gaussian, and hence fail to be charac-
terized completely by only their first two moments.
• Even if all of the above are reasonable approximations, there is a problem with (1.33). The

posterior covariance should be approximated by

P+
i ≈ E

[
e+i (e

+
i )

T|Yi

]
(1.37)

Let us assume that
Yi − hi(X̂

−
i ) ≈ Hie

−
i + vi (1.38)

Then (1.32) implies that

e+i = e−i −KiHie
−
i −Kivi (1.39)
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and by our prior assumption that E
[
e−i v

T
i

]
= 0,

P+
i ≈ E

[
e+i (e

+
i )

T|Yi

]
(1.40)

= (I−KiHi)P
−
i (I−KiHi)

T +KiRiK
T
i (1.41)

Equation (1.41) is Joseph’s Formula, and it holds for any gain Ki. Only for the optimal
gain and true covariance does (1.41) reduce to (1.33). Since (1.31) was computed with only
an approximate covariance, and due to the various other approximations listed above as
well, Ki cannot be the optimal gain, so at best, (1.33) will only hold approximately. At
worst, such approximations may lead to P+

i becoming non-positive definite, which is a
significant issue. Because of its symmetric and additive form, (1.41) is much less likely
(but not impossible!) to produce a non-positive definite P+

i .
• By our assumption thatE[w(t)wT(τ)] = Q(t)δ(t−τ), one of the integrals in (1.29) should

be annihilated by the Dirac delta, resulting in

Si =

∫ ti

ti−1

Φ(ti, τ)B(τ)Q(τ)BT(τ)ΦT(ti, τ) dτ (1.42)

In any case, unlike for a discrete time dynamics model,

E

[∫ ti

ti−1

∫ ti

ti−1

Φ(ti, τ)B(τ)w(τ)wT(σ)BT(σ)ΦT(ti, σ) dτ dσ

]

̸= E

[∫ ti

ti−1

Φ(ti, τ)B(τ)w(τ) dτ

∫ ti

ti−1

wT(τ)BT(τ)ΦT(ti, τ) dτ

]
(1.43)

• In general, one would need to simultaneously integrate (1.26) and (1.28) due to their in-
terdependence via the Jacobian A. If the time between measurements is small enough,
then if one were to employ a suitable approximation for (1.28), perhaps as simple as

Φ(ti, ti−1) ≈ I+A(ti) (ti − ti−1) (1.44)
then one may reasonably expect that a carefully chosen approximation would be no worse
than the many other approximations inherent in the EKF. One may also consider the same
or simpler approximations when considering approximations to (1.42).
• Because there is no way to prove global observability for a nonlinear system, the EKF

may fail to converge from some initial conditions, even if the system is locally observable
in particular neighborhoods.

In light of the above observations, we conclude this section by presenting a slightly improved
version of the EKF as Algorithm 1.3. In subsequent chapters, we shall describe additional improve-
ments to the EKF.

1.2. The Multiplicative Extended Kalman Filter
An interesting variation on the EKF is possible in the context of estimating attitude parameters.

An attitude correction may be viewed as a small-angle rotation from a frame associated with the
previous estimate to a frame associated with a current estimate. In this context, one may use the
previous attitude estimate as a linearization reference for a linearized Kalman Filter’s Jacobian
matrices, and estimate the small-angle correction as the filter state. After each state update, one
performs a rectification of the attitude reference by applying the small-angle correction. Since
for many attitude representations, a frame rotation is multiplicative operation, this procedure has
become known as the multiplicative EKF. Chapter 9 covers this subject.
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Algorithm 1.3 A Slightly Improved Extension of the Kalman Filter

X̂−
i = X̂+

i−1 +

∫ ti

ti−1

f(X(τ), τ) dτ, X̂+
0 = X̄o (1.45)

A(t) =
∂f

∂X

∣∣∣∣
X̂(t)

, Hi =
∂hi

∂X

∣∣∣∣
X̂−

i

(1.46)

Φ(ti, ti−1) = a suitable approximation to (1.28) (1.47)
Si = a suitable approximation to (1.42) (1.48)

P−
i = Φ(ti, ti−1)P

+
i−1Φ

T(ti, ti−1) + Si, P+
0 = Po (1.49)

Ki = P−
i H

T
i

(
HiP

−
i H

T
i +Ri

)−1 (1.50)

X̂+
i = X̂−

i +Ki

(
Yi − hi(X̂

−
i )
)

(1.51)

P+
i = (I−KiHi)P

−
i (I−KiHi)

T +KiRiK
T
i (1.52)





CHAPTER 2

Batch-Sequential Filters

Contributed by Lincoln Wood, Shyam Bhaskaran, and Timothy McElrath

Most of this document discusses on-board navigation filter best practices in the context of
continuously running filters, with measurements processed upon becoming available. In some
space applications, however, it may be advantageous to accumulate a batch of measurements taken
over a range of times, before processing the accumulated collection all at once. This may lead to
improved computational efficiency if the time interval between measurements is short compared
to the characteristic times associated with spacecraft translational dynamics, for example. It may
also provide decreased solution sensitivity to bad measurement data, since bad data may be more
readily identified when processing many data points simultaneously, rather than one at a time.

2.1. Batch and Batch-Sequential Filters
In the context of earlier sections of this document, consider an m-dimensional measurement

vector y, which is linearly related to the n-dimensional vector x and corrupted by measurement
noise v:

y = Hx+ v (2.1)
where H is an m× n matrix and

E[v] = 0 (2.2)
E[vvT] = R (2.3)

with R an m × m positive-definite matrix. Then if we choose x to minimize the least-squares
performance function

J(x) = (y −Hx)TR−1(y −Hx) (2.4)
we find that the minimizing value x̂+ satisfies the normal equation

HTR−1Hx̂+ = HTR−1y. (2.5)
This equation can be solved uniquely for x̂+ if HTR−1H is nonsingular. (Of course, there are
potential numerical problems associated with these mathematical operations.) In addition, the
error covariance matrix associated with x̂+ is the inverse of the information matrix HTR−1H.
This is, so far, a simpler estimation problem than was considered in the previous chapter in that
we have said nothing yet about dynamics – we are dealing with a static estimation problem.

Now let us suppose that some a priori information was available about x before the processing
of the measurements y in the form of an estimate x̂− and an n× n weighting matrix Λ− charac-
terizing the accuracy of the estimate (with large eigenvalues of Λ− indicating good knowledge of
certain linear combinations of components of x and small eigenvalues indicating poor knowledge).
We shall assume that

E
[
(x− x̂−)vT

]
= 0. (2.6)

9



10 2. BATCH-SEQUENTIAL FILTERS

Then the least-squares performance function that was minimized above to provide an estimate of
x after the processing of the measurements can now be generalized to

J(x) = (x− x̂−)TΛ−(x− x̂−) + (y −Hx)TR−1(y −Hx). (2.7)
Minimization of this quantity with respect to x yields the quantity x̂+, which satisfies the modified
normal equation

(Λ− +HTR−1H)x̂+ = Λ−x̂− +HTR−1y (2.8)
or

(Λ− +HTR−1H)(x̂+ − x̂−) = HTR−1(y −Hx̂−). (2.9)
Assuming that Λ− has full rank, it can be inverted, with its inverse being the error covariance
matrix associated with the a priori estimate x̂−. If the updated information matrix, Λ−+HTR−1H,
is invertible, Eq. 2.9 may be solved for x̂+. The error covariance matrix associated with the solution
x̂+ is the inverse of the updated information matrix. This updated error covariance matrix is
mathematically (though not numerically) equivalent to equations for the covariance update in
earlier chapters, such as Eqs. (1.31) and (1.33), although if there is process noise, Λ− could be
different.

The equations above can be extended to accommodate parameters that are not estimated, but
whose uncertainties are considered by the estimator. This topic is covered in the context of batch-
sequential estimators in many textbooks, including Bierman’s Section VIII.2 [5].

In real spacecraft navigation problems, of course, the available measurements are unlikely to
be simple linear functions of the quantities to be estimated and may be time dependent as well.
Thus, given measurements of the form

y(ti) = h(x(ti), ti) + v(ti) (2.10)
quantities of the form Hx above would be more generally replaced by h(x(ti), ti) with the matrix
H replaced elsewhere by the partial derivative matrix ∂h(x(ti),ti)

∂x(ti)
.

Measurements that are accumulated over some time interval may be referenced back to the
estimated parameters at the start of that time interval. In 4.1, this document addresses the situa-
tion in which measurement time tags are not equal to the current filter epoch. The situation under
discussion there is that in which some latency is associated with the measurements, so that the
measurement times are earlier than the current state epoch. However, the mathematical develop-
ment there is also applicable to the situation of interest here, in which the measurement times are
later than the state epoch, corresponding to the state epoch being held fixed (at least temporarily)
as measurements are accumulated.

If the state epoch is never advanced, the estimator is referred to as a batch filter. If the epoch is
advanced periodically, the estimator is referred to as a batch-sequential filter. The use of a batch-
sequential filter allows process noise effects to be treated more effectively than is the case with
a simpler batch filter, as discussed in Bierman’s Chapters VI and X [5]. When all measurements
within some time interval have been processed, the parameter estimates and associated error co-
variance may be propagated forward to a new reference time (as in (1.26) and (1.30) or (1.45) and
(1.49)), which then serves as the beginning of the next batch of measurements.

2.2. Onboard Navigation Using Batch-Sequential Filters
While navigational computations have been performed on the ground in the great majority

of NASA’s missions, a few robotic planetary exploration missions have required on-board au-
tonomous navigation over brief time intervals to achieve a satisfactory return of scientific data or
to survive passage through a difficult flight regime. In these instances, mission objectives could
not be fulfilled using ground-based navigation alone, due to round-trip light time delays and their
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effect on navigational accuracies. The first onboard navigation filter used for deep space missions
was developed for the Deep Space 1 mission (DS1, launched in 1998); and versions of the software
(called AutoNav) were subsequently flown on the Stardust (launched in 1999) and Deep Impact
(DI, launched in 2004) missions. Other subsequent deep space missions have relied on sequential
Kalman-like filtering approaches of the sort described elsewhere in this document.

For DS1, onboard navigation in the cruise phase was done autonomously by imaging “bea-
con” asteroids, one at a time, relative to star backgrounds. Each such measurement gave a two-
dimensional position fix for the spacecraft to some level of accuracy. Subsequent measurements
in different directions provided different two-dimensional position fixes. Several clusters of such
sightings were incorporated into a least-squares filter to obtain an orbit determination (OD) so-
lution. The on-board dynamical model of the spacecraft included gravitational attractions of the
major bodies of the solar system, solar radiation pressure, thrust forces due to the ion propulsion
system or the hydrazine attitude control thrusters, and a three-dimensional bias acceleration to
account for small unmodeled forces. The propagation of the spacecraft motion was done in a he-
liocentric coordinate system using a 7-8th order Runge-Kutta numerical integrator. The reason
for selecting this propagator was largely pragmatic: comparisons between this propagator and the
one used by the Orbit Determination Program, used for all ground-based navigation of JPL’s deep
space missions at that time, indicated that errors when integrating a low-thrust trajectory for sev-
eral months were on the order of meters, well below the sensing ability of the optical data. This
integrator was readily available and could easily be coded. Orbit determination solutions were
obtained by linearizing about a nominal trajectory and estimating corrections to parameters that
minimized the data residuals in a weighted least-squares sense, using the U-D covariance factoriza-
tion method for solving the normal equations. The accuracy of the autonomous navigation system
was assessed by comparison to the results of a standard full, ground-based orbit determination
process [4], [2].

From its initial inception, the DS1 navigation filter was designed as a batch processor. The
primary reason for this was the sporadic nature of the measurements, in which a batch of 12-16
images would be taken for OD approximately once every week. In addition, the data arc for which
the OD was performed spanned multiple weeks. This was needed to build up enough accumulated
thrust from the ion engines such that the change in orbit could be observable in the optical data,
and any trajectory deviations could then be corrected in upcoming thrusting cycles. For robust
operations over these long durations, AutoNav would periodically “wake up” when the burst of
images became available, perform an OD solution, update the future maneuvers, and then return
to a hibernation state. The OD arcs were overlapping. The filter was only invoked after about four
weeks of data were accumulated; and when an additional week of data was taken, the epoch would
move forward a week, with the OD performed on the current four-week arc. Each week’s OD fit
was initialized with essentially an open a priori covariance; in other words, the post-fit covariance
from the previous solution was effectively thrown away and the filter started anew (however, using
the previous OD solution itself as the new reference). This ensured that the covariances did not
end up overly constraining the solution, as early simulations indicated could easily happen. The
initialization of the reference was first done from the ground; subsequently, it was obtained from
the previous OD fit.

Data editing was an important step in the process, but had to be tailored for each specific sce-
nario. For the DS1 cruise, the editing was fairly straightforward: the mean and standard deviation
of the residuals between the observed measurement data and those computed from the latest, best
OD solution for each batch of 12-16 images were computed, and any point above a pre-specified
limit was deleted. The limit was a parameter that could be set, and typically values of 2.5 or 3
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sigma were used. Once the data passed this test, the data were never removed but reprocessed in
the filter for each OD arc. This way, rigorous quality checking could occur on the data by com-
paring the prefit residuals against the best OD from the previous fit, and this process was greatly
facilitated by use of the batch filter. The overall philosophy was to never allow bad data to corrupt
the filter, so that each OD update could be largely guaranteed to be accurate. Consequently, if a
situation occurred where no good data were obtained, the latest successful OD could always be
used as a starting point when good data were available. This document more fully addresses the
topic of editing in Section 10.1.

A modified version of AutoNav was used in a more limited scenario on the DI mission. On
DI, the cruise portion was navigated using standard ground practices, but the mission’s goal -
impacting the nucleus of comet 9P/Tempel 1 at a speed of over 10 km/s with one spacecraft, while
tracking the nucleus through the impact time frame with a second, flyby spacecraft - could not
have been accomplished from the ground. Thus, the DS1 AutoNav system was adapted to DI’s
mission needs, which maintained the basic filter functionality, changing primarily the time frame
of the imaging cadence and OD updates [47].

For the Tempel 1 encounter, AutoNav was initialized on the impactor spacecraft 2 hours prior
to encounter with the best ground-based information to that point. Images were accumulated
every 15 seconds; but for the first 10 minutes, no filter update was performed. Instead, the obser-
vation residuals against the reference trajectory were first checked for bad data, and any outliers
removed. The editing scheme used was relatively simple: an absolute cutoff for any residual over
a set number of pixels (adjustable and set in practice to about half the total camera field-of-view)
was employed to protect against events such as a large, bright, comet outgassing event, or stray
light in the camera. With the cleaned-up data, a batch estimate was performed. Subsequently,
each image would trigger an OD update, using all accumulated data, and always checking for bad
data/outliers by examining the prefit residuals against the previous OD solution. After 20 minutes,
the filter epoch was moved forward to always maintain a 20-minute data arc. As was described
for DS1 above, each OD would also start with an essentially open a priori state covariance; and the
filter was never constrained by using the post-fit covariance from a previous OD run. Since the
impactor’s purpose was to hit the nucleus, the OD solutions were used to compute three impul-
sive maneuvers (at 90, 30, and 12 minutes prior to impact); after each maneuver, all previous data
were thrown away and the filter re-initialized and the OD process repeated as before. The identi-
cal software was also used on the flyby spacecraft (without the maneuvers) to track the nucleus,
and the impact event, as it flew by. This experience was successfully repeated in a flyby of comet
103P/Hartley 2 in 2010.

The use of the moving data arc window, starting with an open a priori covariance for each
arc, and re-starting the filter after maneuvers, was in general found to be the best practice for
these particular onboard scenarios, namely the relative infrequency of data (every 15 seconds at
best as compared to, for example, Doppler data which are generated at 10 Hz), the slow dynamics
(cruise in interplanetary space and fast encounters of small bodies with little gravitational bend-
ing), and highly unknown characteristics of the observed bodies (size, shape) which could induce
unpredictable signatures in the observations. The practices and filter parameters (such as the data
editing criteria) were arrived at through testing in many thousand Monte Carlo simulation runs,
adjusting parameters until, heuristically, a reasonably optimal solution was found that balanced
risk and probability of success. The choices were validated by the fact that the end result proved
successful on multiple occasions on three different spacecraft.

In addition to the mainline filter used by DI, and by DS1 in the cruise portion of the mission, a
stripped down filter was also developed specifically for flybys of small bodies, which was also part
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of the mission plan for DS1. This filter, dubbed Reduced State Encounter Navigation (RSEN), was
intended for use during the tens of minutes surrounding the flyby to update the target-relative
spacecraft state, which could then be used to improve instrument pointing to maintain lock on the
target during the high speed flyby [3]. Unlike the mainline filter, this was originally developed as
a standard Kalman filter since the state update had to occur quickly, with each measurement being
immediately ingested to update the state and no data editing. The assumption at the time was that
the signal of the target body would be extremely bright, and so little was done to prevent bad data
from being ingested into the filter; in retrospect, this was obviously a very bad assumption.

Unfortunately, in its first use during the flyby of the asteroid Braille, the software failed to track
the target during the encounter. It was determined after the fact that the very first observation
it received was bad data (presumably from a cosmic ray hit); this spurious signal appeared above
the detection threshold level before Braille itself exceeded that level, causing the initial on-board
orbit solution to shift by 30 km. The filter never recovered thereafter, always causing the imaging
system to point in the wrong direction [2] and never detecting Braille.

After the Braille experience, the RSEN code was reformulated in the same batch formulation
as the mainline code. Although in principle the same Kalman filter could have been used with
a front-end data editor, the familiarity, experience, and successful implementation of the batch
setup warranted the change. Starting 32 minutes prior to closest approach, data were allowed
to be accumulated (at a rate of once every 30 seconds) without a filter update. These data were
rigorously checked for consistency, using a somewhat complicated editing scheme where residual
points were checked three at a time in a moving window, rejecting points which did not match
their neighbors within a threshold more than once. The reason this scheme, rather than a simpler
mean and standard deviation check, was used was because the signature of the optical residuals
during the flyby was not flat, but sloped considerably due to parallax as the spacecraft approached
the asteroid. At 10 minutes before encounter, the batch filter was invoked to update the target-
relative trajectory. Each subsequent image would trigger a new solution, starting from the previous
OD, but still using all the accumulated data. This new formulation was employed in the encounter
with comet 19P/Borrelly in 2001, successfully capturing high resolution images of the nucleus. The
final image was shuttered 166 seconds before encounter. This same system was, with some minor
modifications to the filter starting time and update point, used on the Stardust mission to track the
asteroid 5535 Annefrank (2002), and the comets 81P/Wild 2 (2004) and 9P/Tempel 1 (2011) [3].

While the three previous mission examples describe the use of autonomous navigation in
small-body flyby or impacting missions, substantially different issues arise in autonomously land-
ing on Mars, one of which will be described here. The Mars Science Laboratory (MSL) mission
used data from its Terminal Descent Sensor (TDS), a multi-beam radar that provided velocity and
range measurements [16]. The parameters of interest were vertical position and all three velocity
components, allowing a touchdown at a constant vertical velocity of 0.60 m/s and a horizontal ve-
locity of 0.12 m/s. Generally speaking, the navigation system design was heavily focused on being
robust and facilitating a survivable landing, rather than on accuracy per se or other performance
measures. Rather than expecting the hardware to be perfect, the plan was to build a filter that
could be made robust to a variety of measurement error modes, as well as to hardware failures in
flight (e.g., losing one of the radar beams). The TDS was extensively characterized, including tests
with aircraft that largely duplicated the MSL flight profile. While largely successful, the testing
revealed that there was an ambiguity resolution failure that could lead to spurious 40 m/s velocity
residuals for a small fraction of the measurements (compared to a residual RMS of 1 m/s or less for
the good data points). The MSL navigation filter had tuning parameters that easily handled this
data error and also demonstrated in testing that it could survive a complete beam failure.
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The navigation filter architecture actually used three different batch filters, running in paral-
lel. Each filter drew from a buffer of 20-some minimally checked TDS measurements. Up until
rover detachment, each used a fixed-length, sliding-window mode (each filter using a different
length); and afterwards, each ran in fixed-epoch, increasing-length mode. One filter’s output was
used for the velocity estimate, and two different filters contributed altitude estimates. The altitude
estimates were stored in a buffer, and their mean was used by the control system. Each filter per-
formed a finite number of recursive data editing steps to remove the velocity outliers mentioned
above and (hopefully) any other data artifacts. After rover detachment from the descent stage
(with the rover descending on a tether), concerns that the rover or debris from the approaching
surface would interfere with the vertical beams limited the radar data to usage in the horizontal
velocity estimate, with the vertical state proceeding on inertial measurement unit propagation.
(As it turned out, the radar did generate some measurements of blowing dust near the surface, and
these were ingested for MSL landing with some loss of accuracy. For the later Mars 2020 landing,
the editing parameters were adjusted to reject these data, with better results.) Each stage of the
landing process had the capability to use a unique set of filter parameters. All together, the heavily
defensive solution approach succeeded in the actual landing and in passing many stress and failure
tests during development. This focus on being highly resistant to problems (while still being good
enough to land) is very appropriate for this sort of critical application.



CHAPTER 3

The Covariance Matrix

Contributed by J. Russell Carpenter

As Chapter 1 pointed out, the EKF estimate X̂(t) is at best an approximation for E[X(t)|Y], and
hence the EKF symbol P(t) is at best an approximation for E[e(t)eT(t)|Y]. In the present Chapter
we discuss best practices for maintaining such approximations, and henceforth we will simply
refer to P(t) as the covariance matrix.

3.1. Metrics for Orbit State Covariances
To discuss what makes one covariance approximation better or worse than another, we must be

able to compare matrices to one another, and hence we must adopt metrics. For matrices that serve
as coefficients, there exist various matrix norms that serve as distance-like metrics for the strength
of the coefficient. For covariance matrices, we are usually more interested in measures of the range
of possible realizations that could be drawn from the probability distribution characterized by the
covariance. The square root of the trace of the covariance is often a reasonable choice, since it is the
root sum squared (RSS) formal estimation error. A drawback to the trace for orbital applications
is that coordinates and their derivatives typically differ by several orders of magnitude, so that
for example the RSS position error will dominate the RSS velocity error if the trace is taken over
a 6 × 6 Cartesian position and velocity state error covariance, unless some scaling is introduced.
Although arbitrary scalings are possible, we discuss several metrics herein that have been found
to be especially suitable to space applications.

Orbit determination is distinguishable from other types of positioning and navigation not only
by the use of dynamics suitable to orbiting bodies, but also by a fundamental need to produce states
that predict accurately. This need arises because spacecraft operations require accurate predictions
for acquisition by communications assets, for planning future activities such as maneuvers and
observations, for predicting conjunctions with other space objects, etc. For closed, i.e. elliptical,
orbits about most planetary bodies, the two-body potential dominates all other forces by several
orders of magnitude. Thus, in most cases, the ability of an orbit estimate to predict accurately is
dominated by semi-major axis (SMA) error, δa. This is because SMA error translates into period
error through Kepler’s third law, and an error in orbit period translates into a secularly increasing
error in position along the orbit track. As Reference [10] shows, the along-track drift per orbit
revolution, δs, for an elliptical orbit with eccentricity e is bounded by

δs = −3π
√

1 + e

1− e
δa from periapse to periapse (3.1)

δs = −3π
√

1− e
1 + e

δa from apoapse to apoapse (3.2)

15
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This phenomenon is especially significant for rendezvous and formation flying applications, where
relative positions must be precisely controlled.

For a central body whose gravitational constant is µ, the SMA of a closed Keplerian orbit, a,
may be found from the vis viva equation,

− µ

2a
= −µ

r
+
v2

2
(3.3)

from which one can see that achieving SMA accuracy requires good knowledge of both radius,
r, and speed, v. What is less obvious from (3.3) is that radius and speed errors must also be both
well-balanced and well-correlated to maximize SMA accuracy [10,13,35], as Figure 3.1 illustrates.
In this figure, radius standard deviation, or formal error, σr , has been normalized by the squared

SMA Error vs. Normalized Radius and Speed Error
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Figure 3.1. Formal error in semi-major axis depends on formal errors in radius,
speed, their correlation, and their balance. All scales are in units of position.

ratio of radius to SMA, and speed formal error, σv , has been normalized by nvc/v, where the orbital
rate is n =

√
µ/a3, and the circular speed is vc =

√
µ/a, to make the relationships illustrated be

independent of any particular point in any particular closed orbit. Figure 3.1’s contours of constant
SMA error, σa, show that σa is dominated by radius error below a diagonal region, and dominated
by speed error above the diagonal. When radius and speed errors are balanced, along the diagonal,
SMA accuracy can be substantially improved by increasing (negative) correlation. Experience
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has shown that σa is one of the more useful figures of merit for evaluating orbit determination
performance, particularly for relative navigation applications.

In fact, it is easy to show that any function of two (scalar) random variables possesses a similar
correlation and balance structure, at least to first order. For example, navigation requirements for
atmospheric entry are often stated in terms of flight-path angle error, δγ. Since sin γ = r⃗/∥r⃗∥ ·
v⃗/∥v⃗∥, then from geometrical considerations we should expect that δγ depends on the component
of position error which is in the local horizontal plane, in the direction of the velocity vector, and
on the component of velocity error that is normal to both velocity and angular momentum, i.e.
binormal to the velocity vector. These are of course the in-plane components of position and
velocity that are normal to radius and speed. Thus by using the pair δa and δγ as metrics, we
can fully characterize the correlation and balance of the in-plane covariance components. The
following subsections derive these relationships.

3.1.1. Variance of an Arbitrary Function of Two Random Variables Suppose there ex-
ists a random variable z which is a possibly nonlinear function1 of two other random variables, x
and y, such that

z = f(x, y) (3.4)
and let the joint covariance of x and y be given by

P =

[
σ2x ρxyσxσy

ρxyσxσy σ2y

]
(3.5)

The variance of z is given by
σ2z = E

[
(z− E[z])2

]
(3.6)

where
E[z] =

∫ ∞

−∞
ζ pz(ζ) dζ =

∫ ∞

−∞

∫ ∞

−∞
f(ξ, η) pz(f(ξ, η)) dξ dη (3.7)

Let x̂ = E[x] and ŷ = E[y]. Then E[x− x̂] = 0 and E[y − ŷ] = 0. Expanding f(x, y) around
f(x̂, ŷ) in a Taylor series to first order, we find that

f(x, y) ≈ f(x̂, ŷ) + fx · (x− x̂) + fy · (y − ŷ) (3.8)
where fx and fy are the partials of f with respect to x and y, respectively; so, to first order,

ẑ = E[z] = E[f(x, y)] ≈ f(x̂, ŷ) (3.9)
Now let us similarly expand (z− E[z])2 to first order:

(z− E[z])2 = (f(x, y)− f(x̂, ŷ))2 (3.10)
≈ f2x · (x− x̂)2 + 2fxfy · (x− x̂)(y − ŷ) + f2y · (y − ŷ)2 (3.11)

Taking expectations on both sides yields
E
[
(z− E[z])2

]
= f2x E

[
(x− x̂)2

]
+ 2fxfy E[(x− x̂)(y − ŷ)] + f2y E

[
(y − ŷ)2

]
(3.12)

σ2z = f2xσ
2
x + 2fxfyρxyσxσy + f2yσ

2
y (3.13)

= FPFT (3.14)

where F = [fx, fy]. Since−1 < ρxy < 1, it is clear that a high negative correlation between x and
y will minimize σz for given values of σx and σy, but if either fxσx >> fyσy or fxσx << fyσy,
the impact of the negative correlation will be insignificant. Thus, the only way to simultaneously

1If the function is nonlinear, the variance formula here is an approximate, first-order result.



18 3. THE COVARIANCE MATRIX

achieve σz << fxσx and σz << fyσy is when ρxy ≈ −1 and fxσx ≈ fyσy, which are the correla-
tion and balance conditions mentioned above, and which occur along the diagonal of Figure 3.1.

Note also that by defining new variables scaled by their respective partial derivatives, x̃ = xfx
and ỹ = yfy , and correspondingly σ̃x = fxσx and σ̃y = fyσy, then a normalization of the fashion
described above is also possible:

σz =
√
σ̃2x + 2ρxyσ̃xσ̃y + σ̃2y (3.15)

3.1.2. Semi-Major Axis Variance To derive a relationship for semi-major axis variance, let
us take variations on (3.3), which results in

δa

a2
=

2δr

r2
+

2vδv

µ
(3.16)

If we replace the variations with deviations of random variables from their expectations, and the
non-deviated terms with their expected values, we find that

(a− â) = 2â2
(
(r − r̂)
r̂2

+
v̂(v − v̂)

µ

)
(3.17)

which by squaring and taking expectation yields the following linearized approximation for the
SMA variance:

σ2a = 4â4
{

1

r̂4
σ2r + 2

v̂

µr̂2
ρrvσrσv +

v̂2

µ2
σ2v

}
(3.18)

For the normalization used in Figure 3.1, rewrite (3.18) as

σa = 2

√(
σr

r̂2/â2

)2

+ 2ρrv

(
σr

r̂2/â2

)(
σv

µ/(â2v̂)

)
+

(
σv

µ/(â2v̂)

)2

(3.19)

and note that µ/(â2v̂) = n̂v̂c/v̂. As mentioned above, normalizing radius and speed standard
deviation in this manner permits comparison of data across all points in all closed orbits.

If the orbit is exactly circular, then further simplification of (3.18) is possible. In this case,
a = r and v/µ = Tp/2π, where Tp is the orbit period. Then (3.18) may be rewritten as

σa = 2

√
σ2r + 2

(
Tp
2π

)
ρrvσrσv +

(
Tp
2π

)2

σ2v (3.20)

For orbit determination applications, the state representation most often chosen is a Cartesian
inertial state vector, x = [r⃗T, v⃗T]T. Rewriting (3.3) as

a(x) =

(
2

∥r⃗∥
− ∥v⃗∥

2

µ

)−1

(3.21)

and taking partials yields
∂a

∂x

∣∣∣∣
x̂

= Fa(x̂) = 2â2
[
ˆ⃗rT

r̂3

ˆ⃗vT

µ

]
(3.22)

so that
σ2a = Fa(x̂)PxF

T
a(x̂) (3.23)

where Px is the state error covariance.
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3.1.3. Flight-Path Angle Variance The flight-path angle, γ, is the angle between the veloc-
ity vector and the local horizontal plane; it is therefore the complement of the angle between the
position and velocity vectors, so that

γ = arcsin(ur⃗ · uv⃗) (3.24)
where ur⃗ = r⃗/r and uv⃗ = v⃗/v. Taking partials with respect to x, we find that

Fγ(x̂) =
∂γ

∂x

∣∣∣∣
x̂

=
1√

1− sin2 γ̂

[
uT
v̂ − sin γ̂uT

r̂

r̂

uT
r̂ − sin γ̂uT

v̂

v̂

]
, −π

2
< γ̂ <

π

2
(3.25)

so that
σ2γ = Fγ(x̂)PxF

T
γ(x̂) (3.26)

which is a form suitable for use in an OD filter estimating a Cartesian inertial state.
For analysis, a simpler form of (3.26) is as follows. Let us define two vectors that are normal

to both the position vector and a vector normal to the orbit plane, n⃗: the unit in-track vector,

u∆v⃗ = un⃗ × ur⃗ =
uv⃗ − ur⃗ sin γ√

1− sin2 γ
(3.27)

which defines a unit vector in the orbit plane that is along the orbit track at apoapsis and periapsis,
and the unit bi-normal vector,

u
b⃗
= uv⃗ × un⃗ =

ur⃗ − uv⃗ sin γ√
1− sin2 γ

(3.28)

which defines a unit vector in the orbit plane that is along the position vector at apoapsis and
peripasis. Let us next define a composite transformation matrix as follows. Let

Mrtn =
[
ur⃗I u∆v⃗I un⃗I

]
(3.29)

where the subscript I indicates that the specified vector is expressed in an inertial basis. The
unitary matrix MT

rtn thus transforms coordinates of vectors in physical space, which are given in
the frame I , to a coordinates defined in the basis given by the the radial, transverse, and normal
unit vectors. Similarly, define Mvnb as

Mvnb =
[
uv⃗I un⃗I u

b⃗I

]
(3.30)

Now define the block diagonal transformation matrix M as

M =

[
Mrtn 03x3
03x3 Mvnb

]
(3.31)

Using the matrix M, we can transform the state error covariance, given in inertial coordinates,
such that its position error covariance is expressed in the “RTN” frame, and its velocity error
covariance is in the “VNB” frame. Using the preceding results in (3.26) results in considerable
simplification:

σ2γ =
[
uT

t̂
/r̂ uT

b̂
/v̂
] [MT

rtn 03x3
03x3 MT

vnb

]
Px

[
Mrtn 03x3
03x3 Mvnb

] [
ut̂/r̂
ub̂/v̂

]
(3.32)

=
(σrt
r̂

)2
+ 2ρrtvb

(σrt
r̂

)(σvb
v̂

)
+
(σvb
v̂

)2
(3.33)

which demonstrates the aforementioned assertion that flight-path angle error depends on the in-
track component of position error, and the bi-normal component of velocity error. Note that (3.33)
possesses the desirable feature that the relevant covariance information (in-track position variance
and bi-normal velocity variance) is normalized by radius and speed, allowing differing orbital
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conditions to be readily compared with one another. In most applications, σrt << r̂ and σvb << v̂
so that these ratios can be taken as small angles and expressed in angular measures commensurate
with the units chosen for flight-path angle itself. Figure 3.2 employs this convention.
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Figure 3.2. Formal error in flight-path angle depends on formal errors of in-track
component of position, bi-normal component of velocity, their correlation, and
their balance.

3.1.4. Summary of Orbit Determination CovarianceMetrics A recommended best prac-
tice for comparison of OD covariances is to use the semi-major axis standard deviation as a metric
for most applications, with a secondary emphasis on flight-path angle standard deviation. For en-
try applications, a best practice is to use flight-path angle standard deviation at entry interface as
the primary metric. In using these metrics, one should keep in mind that when computed in the
manner shown here, they are nonlinear functions of the state variables, and hence do not preserve
properties of the underlying state error distributions. A summary of these metrics is as follows.
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For orbits that are very close to circular:

σa = 2

√
σ2r + 2

(
Tp
2π

)
ρrvσrσv +

(
Tp
2π

)2

σ2v (3.34)

For elliptical orbits:

σa = 2â2

√
1

r̂4
σ2r + 2

v̂

µr̂2
ρrvσrσv +

v̂2

µ2
σ2v (3.35)

For normalization of radius and speed standard deviations across points in closed orbits:

σa = 2

√(
σr

r̂2/â2

)2

+ 2ρrv

(
σr

r̂2/â2

)(
σv

n̂v̂c/v̂

)
+

(
σv

n̂v̂c/v̂

)2

(3.36)

For entry applications, and as a secondary metric:

σγ =

√(σrt
r̂

)2
+ 2ρrtvb

(σrt
r̂

)(σvb
v̂

)
+
(σvb
v̂

)2
(3.37)

For use in an OD filter that is estimating a Cartesian inertial state vector:

σa =
√
Fa(x̂)PxF

T
a(x̂), Fa(x̂) = 2â2

[
ˆ⃗rT

r̂3

ˆ⃗vT

µ

]
(3.38)

σγ =
√

Fγ(x̂)PxF
T
γ(x̂), Fγ(x̂) =

[
uT

t̂

r̂

uT

b̂

v̂

]
(3.39)

3.2. Covariance Propagation
This section discusses best practices for implementing the covariance propagation recursion

P−
i = Φ(ti, ti−1)P

+
i−1Φ

T(ti, ti−1) + Si, P+
0 = Po (3.40)

As Chapter 1 mentions, to achieve this goal we need suitable approximations for the state transi-
tion matrix, Φ(ti, ti−1), and the process noise covariance, Si. However, the suitability of a given
set of approximations is strongly dependent on specifics of the application. For example, if a set of
measurements from which the state is fully observable are available at an interval that is a small
fraction of the orbit period, without significant drop-outs, and prediction of the covariance far into
the future of the time of availability of the measurements is not required, then simple models such
as those to which Chapter 1 alluded have been successfully employed. Selection of appropriate
covariance propagation approximations also depends strongly on the choice of state representa-
tion, which is the subject of Chapter 7. Therefore, this section will discuss the merits of some of
the more common and generally applicable approaches, in the context of orbit determination.

3.2.1. Matrix Riccati Equation Many textbooks on Kalman filtering derive (3.40) as the
solution of a matrix Riccati equation; using the notation of Chapter 1, this takes the following
form:

Ṗ(t) = A(t)P(t) +P(t)AT(t) +Q(t) (3.41)
Use of (3.41) would seem to avoid the need to perform the integrations required to compute the
state transition matrix (STM) and process noise covariance (PNC). In orbit determination practice
however, (3.40) has been found to be more numerically stable and also, despite the need to compute
or approximate the state transition and process noise integrals, more efficient than (3.41).



22 3. THE COVARIANCE MATRIX

3.2.2. State Transition Matrix A common approach in ground-based OD, especially in the
batch least squares context, is to simultaneously integrate the STM along with the state vector,

Ẋ(t) = f(X(t), t), X(to) = Xo (3.42)
Φ̇(t, to) = A(t)Φ(t, to), Φ(to, to) = I (3.43)

When coupled with a good numerical integration algorithm, this method has excellent fidelity,
which is rarely necessary in onboard OD applications. Lear [50] studied a number of practical
methods for computing the STM in the onboard OD context. As his report is not widely available,
we will summarize some key findings here.

Lear’s approach was to compare various orders of truncated Taylor series and Runge-Kutta
approximations to the solution of (3.43). He used these STM approximations to propagate an
initially diagonal covariance for one revolution in a two-body circular orbit around a point mass
with the GM of Earth. By comparing these results to those he obtained using an analytic STM,
Lear could compute the maximum step size that would result in a given relative accuracy for radius
and speed formal standard deviations. Table 1 lists a few of Lear’s results. Notably, Method H

Description Method Max. Step [sec]
A. 1st-order Taylor I+Ai∆t 0.125
B. 2nd-order Taylor, ignoring Ȧ I+Ai∆t+A2

i∆t
2/2 1.0

C. 2nd-order Taylor I+Ai∆t+ (Ȧi +A2
i )∆t

2/2 16
F. 1st-order Runge-Kutta I+Ai+.5∆t 0.14
G. 2nd-order Runge-Kutta, with one

evaluation of A
I+Ai+.5∆t+A2

i+.5∆t
2/2 14

H. 2nd-order Runge-Kutta, with two
evaluations of A

I+(Ai+Ai+1)∆t/2+Ai+1Ai∆t
2/2 16

Table 1. A few of Lear’s STM Comparison Results, for 1% relative error.

has the desirable feature that simply saving the value of the state Jacobian from the previous
propagation step allows for more than an order of magnitude increase in allowable time step, with
essentially the same computational burden as Method B. If it is not too burdensome to compute
A at the midpoint of the propagation step, then Method G offers nearly equivalent performance
without the need to retain the previous value of A. For higher-rate propagations, Method B offers
far more accuracy than Method A with only a small additional computational burden. While
Method A appears to be a poor choice for many applications, it does play a central role in some
useful approximations to the process noise covariance, as the sequel shows.

3.2.3. Process Noise Covariance As stated in Chapter 1, nearly all practical methods for
computing the process noise covariance assume that E[w(t)wT(τ)] = Q(t)δ(t− τ), so that (1.29)
simplifies to a single integral for the process noise covariance2, given by (1.42), and repeated here:

Si =

∫ ti

ti−1

Φ(ti, τ)B(τ)Q(τ)BT(τ)ΦT(ti, τ) dτ (3.44)

2A notable exception is the work of Wright [89], which describes a correlated process noise model that is intended
to account for gravity modeling errors in a “physically realistic” manner. Although this method has had occasional
onboard application, it is more widely known for its inclusion in commercial-off-the-shelf software for ground-based
OD.
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Tapley, Schutz, and Born [81] describe two approximations to the portion of (3.44) which cor-
responds to position and velocity state noise, which have proven useful in both ground- and
onboard-OD applications. Reference 81 refers to these methods as “State Noise Compensation”
(SNC) and “Dynamic Model Compensation” (DMC). Before describing SNC and DMC however,
we will consider some inappropriate models.

Chapter 1 pointed out that

E

[∫ ti

ti−1

∫ ti

ti−1

Φ(ti, τ)B(τ)w(τ)wT(σ)BT(σ)ΦT(ti, σ) dτ dσ

]

̸= E

[∫ ti

ti−1

Φ(ti, τ)B(τ)w(τ) dτ

∫ ti

ti−1

wT(τ)BT(τ)ΦT(ti, τ) dτ

]
(3.45)

Let us explore the implications of assuming equality of the expression above. Suppose we assume
that the process noise increments are approximately constant over some particular interval ∆t =
ti − ti−1, and that E[w(ti)wT(tj)] = W(ti)δij , where δij denotes the Kronecker delta function.
Then,

E

[∫ ti

ti−1

Φ(ti, τ)B(τ)w(τ) dτ

∫ ti

ti−1

wT(τ)BT(τ)ΦT(ti, τ) dτ

]

=

∫ ti

ti−1

Φ(ti, τ)B(τ) dτ E[w(ti)w(ti)
T]

∫ ti

ti−1

BT(τ)ΦT(ti, τ) dτ

= ΓiWiΓ
T
i

(3.46)

There is a subtlety with (3.46) that can lead to issues: if the time interval associated with the
assumption that E[w(ti)wT(tj)] = W(ti)δij is not the same as the time interval associated with
the integral Γi =

∫ ti
ti−1

Φ(ti, τ)B(τ) dτ , then the process noise will not be consistently applied.
For example, if the EKF is tuned at a particular time step using a particular noise covariance W,
and then for some reason the time step is changed, then one must retune the value of W.

A similar issue occurs when the process noise covariance is chosen without regard for the
dynamics, e.g. by setting it equal to a diagonal matrix of user-specified parameters. Whatever
careful tuning has been done to choose such parameters will be invalidated by a change in the
time step.

3.2.3.1. State Noise Compensation For SNC, as applied to OD, we assume velocity error is an
uncorrelated random walk with fixed intensity in orbit-fixed coordinates, such as the RTN or
VNB coordinates described above. Thus, assuming RTN coordinates without loss of generality, the
process noise spectral density matrix becomes

Q(t) = Qrtn =

qr 0 0
0 qt 0
0 0 qn

 (3.47)

We assume the transformation from orbit-fixed coordinates to the coordinates used for navigation,
which are typically inertial coordinates, is approximately constant over the interval∆t = ti−ti−1,
and ignore the correlation-inducing dependence of this transformation on the estimated position
and velocity. This results in

B(t) = Brtn =

[
03×3

Mrtn

]
(3.48)
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We also assume that ∆t is small enough that a 1st-order Taylor series truncation (Lear’s Model A)
is adequate for modeling the STM Φ(ti, τ) in the integrand of (3.44), and that Mrtn is constant.
With these assumptions, (3.44) becomes

Si =

Q̃
∆t3

3
Q̃
∆t2

2

Q̃
∆t2

2
Q̃∆t

 (3.49)

where Q̃ = MrtnQrtnM
T
rtn. Note that with the SNC model, velocity covariance grows linearly

with time, as expected for a random walk model, and hence we should expect the units of√q
i
, i =

r, t, n to be meters per second3/2. Reference [79] provides alternative approximations to (3.44) for
an orbital element state representation, and for relative spacecraft states at both small and large
interspacecraft separations.

3.2.3.2. State Noise Compensation for Maneuvers During powered flight, it is often necessary
to include additional process noise to accommodate maneuver magnitude and direction errors.
One approach is to simply define an additional SNC process noise covariance, with intensities that
are sized to the maneuvering errors. While this works fine for modeling maneuver magnitude er-
rors, direction errors may be more accurately modeled by recognizing that a misaligned maneuver
vector may be represented by (I3− δθ×)∆v⃗nom, where δθ× represents a skew-symmetric matrix
of small angle misalignments, and ∆v⃗nom is the nominal maneuver vector. Thus, ∆v⃗×

nomδθ is the
error in the velocity increment due to maneuver direction errors, or if sensed accelerations are
being fed-forward into the dynamics, due to IMU misalignments. To model these direction errors
as a process noise term, let

B(t) =

[
03×3

∆v⃗×
nom

]
(3.50)

and let qθ be the intensity of the maneuver direction noise. Then the SNC-style process noise for
accommodating maneuver direction errors becomes

Si = qθ

−(∆v⃗×
nom)2

∆t3

3
−(∆v⃗×

nom)2
∆t2

2

−(∆v⃗×
nom)2

∆t2

2
−(∆v⃗×

nom)2∆t

 (3.51)

since ∆v⃗×
nom∆v⃗×T

nom = −(∆v⃗×
nom)2. A version of this method was used by the Space Shuttle

during powered flight with IMU-sensed accelerations.
3.2.3.3. Dynamic Model Compensation The DMC approach assumes the presence of exponentially-

correlated acceleration biases, which are included as additional solve-fors in the filter state. As
Chapter 6 and Appendix A discuss, a model for such biases is given by

b(t+∆t) = e−
∆t
τ b(t) +ϖ(t) (3.52)

where b(to) ∼ N(0, pbo), and ϖ(t) ∼ N(0, qτ2

(
1− e−

2∆t
τ

)
). As Chapter 6 discusses, τ is a time

constant controlling the “smoothness” of the random process, and q is a power spectral density
that describes the intensity of the random input. While Chapter 6 discusses a variety of other bias
models that might be used, the exponentially-correlated model has proved to be a best practice for
applications in which there are measurements continually available to persistently excite it. Refer
to Chapter 6 for a fuller discussion of the relative merits of various bias modeling approaches.

As above, without loss of generality we can assume the acceleration biases are aligned with
the RTN frame, and again assume that ∆t is small enough that a 1st-order Taylor series truncation
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is adequate for modeling the portion of the STM corresponding to position and velocity errors.
With these assumptions, the terms appearing the integrand of (3.44) become

B(t) = Brtn =

03×3

03×3

Mrtn

 (3.53)

and

Φ(t+∆t, t) =

 I3 ∆tI3
{
τ∆t− τ2(1− e−∆t/τ )

}
I3

03×3 I3 τ(1− e−∆t/τ )I3
03×3 03×3 e−∆t/τ I3

 (3.54)

and the process noise covariance becomes3

Si =

γppQ̃ γpvQ̃ γpaQ̃

γpvQ̃ γvvQ̃ γvaQ̃

γpaQ̃ γvaQ̃ γaaQ̃

 (3.55)

with
γpp =

τ5

2

{(
1− e−2∆t/τ

)
+ 2∆t

τ

(
1− 2 e−∆t/τ

)
− 2

(
∆t
τ

)2
+ 2

3

(
∆t
τ

)3} (3.56)

γpv = τ4

2

{(
e−2∆t/τ −1

)
− 2

(
e−∆t/τ −1

)
+ 2∆t

τ

(
e−∆t/τ −1

)
+
(
∆t
τ

)2} (3.57)

γpa = τ3

2

{(
1− e−2∆t/τ

)
− 2∆t

τ e−∆t/τ
}

(3.58)

γvv = τ3

2

{(
1− e−2∆t/τ

)
− 4

(
1− e−∆t/τ

)
+ 2∆t/τ

}
(3.59)

γva = τ2

2

(
1− e−∆t/τ

)2
(3.60)

γaa = τ
2

(
1− e−2∆t/τ

)
(3.61)

This analytic result for the DMC model first appeared in [18].
3.2.3.4. Explicit Dynamic Biases While the DMC approach allows for quite general estimation

of otherwise unmodeled forces on the spacecraft, it is often the case that the domain of application
provides context that can narrow the filter designer’s focus. For example, it may be the case that
the only under-modeled force of appreciable significance on the spacecraft is drag, or perhaps
solar radiation pressure, within the context of the application. Alternatively, the application may
require much higher resolution models than DMC, which might necessitate estimation of smaller
forces with larger uncertainties such as Earth radiation pressure, spacecraft thermal emission,
etc., or panel-based modeling of drag and/or solar radiation pressure, etc. In such cases, it is often
useful to tailor the DMC approach so that it estimates model-specific biases, such a drag or SRP
corrections, rather than modeling three general RTN biases. Similarly, during powered flight,
maneuver magnitude and direction errors might be more successfully modeled explicitly.

As an example of an explicit bias, consider estimating a multiplicative correction to the density;
a similar approach may be used for drag or solar radiation pressure coefficients. Let t denote geo-
centric coordinate time. LetR denote a planetary-body-fixed, body-centric system of coordinates,
aligned with the central body’s rotation axis. Let I denote a body-centric, celestially-referenced
system of coordinates, aligned with R at an epoch to. Let r⃗ represent the position of the center

3In (3.55), the matrix Q̃ has the same form as it does for the SNC method, but with√
q
i
, i = r, t, n now representing

acceleration intensities, with units of meters per second5/2. Also note that (3.55) assumes the same time constant is
applicable to all three acceleration channels. While this is usually sufficient, it is straightforward to extend (3.55) to
accommodate separate time constants for each channel.
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of gravity of a satellite, expressed in I . Let v⃗ represent the satellite’s velocity within I . Let v⃗r
represent the satellite’s velocity within frameR. Assume that r⃗ evolves with respect to t and I in
the vicinity of to according to

Id2

dt2
r⃗ = − µ

r3
r⃗ − 1

2
CD

A

m
ρ

(
1 +

δρ

ρ

)
vrv⃗r (3.62)

where r = ∥r⃗∥, vr = ∥v⃗r∥, δρ is an atmospheric density disturbance, ρ is the undisturbed at-
mospheric density, A is the area of the satellite in a plane normal to v⃗r , m is the satellite mass,
and CD is the satellite’s coefficient of drag. Assume that δρ/ρ is a random process that formally
evolves as a first-order Gauss-Markov process, similar to a DMC bias:

d

dt

(
δρ

ρ

)
= −1

τ

(
δρ

ρ

)
+ wρ (3.63)

where qρ is the intensity of wρ. Let the state vector be x = [r⃗′, v⃗′, (δρ/ρ)]′. With these assump-
tions, the state dynamics and noise input partials are

A(t) =

 03×3 I3 03×1

G(t) +Dr(t) Dv(t) d⃗(t)
01×3 01×3 −1/τ

 , B(t) =

03×1

03×1

1

 (3.64)

where G(t) is the gravity gradient matrix, d⃗(t) = −1
2CD

A
mρvrv⃗r is the nominal drag accelera-

tion, and Dr and Dv are partials of the drag acceleration with respect to position and velocity,
respectively4.

Using the DMC results from above, with the assumption that the nominal drag acceleration is
approximately constant over the integration time, ∆t, the term Φ(t+∆t, t)B(t) appearing in the
integrand of (3.44) becomes

Φ(t+∆, t)B(t) =

{τ∆t− τ2(1− e−∆t/τ )
}
d⃗

τ(1− e−∆t/τ )d⃗

e−∆t/τ

 (3.65)

and the process noise for a proportional density bias becomes

Si = qρ

γppd⃗d⃗′ γpvd⃗d⃗
′ γpad⃗

γpvd⃗d⃗
′ γvvd⃗d⃗

′ γvad⃗

γpad⃗
′ γvad⃗

′ γaa

 (3.66)

3.2.3.5. Episodic Dynamic Biases It has sometimes been found to be the case, particularly for
crewed missions, that episodic spacecraft activities can produce un-modeled accelerations. In the
early days of manned spaceflight, events such as vents, momentum unloads, thruster-based atti-
tude control firings, etc. that may perturb a spacecraft’s trajectory were not well modeled, and
came to be described as FLAK, which was supposed to be an acronym for (un)-Fortunate Lack of
Acceleration Knowledge.

4The sensitivity Dr contains terms that are roughly proportional to the drag acceleration magnitude divided by
the atmospheric scale height, and to the product of drag acceleration magnitude and the ratio of planetary rotation
rate to speed relative to the atmosphere. For nearly all spacecraft, these terms will be many orders magnitude smaller
than the gravity gradient, which is proportional to the gravity acceleration divided by the radius. So Dr can usually
be neglected. For reference, Dv = − 1

2
CD

A
m
ρvr(u⃗vr u⃗

′
vr + I3), and Dr = d/Rs(u⃗ru⃗

′
vr ) − Dvω⃗

×, where ω⃗× is
the skew-symmetric “cross-product” matrix formed from the central body’s rotation rate vector, and the notation u⃗(·)
indicates the unit vector of its subscript.
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If the mean time between such activities can be characterized, along with the expected in-
tensity of the acceleration, a compound Poisson-Gaussian process noise model may be effective.
Conveniently, it turns out that the covariance of a linear system driven by a train of Gaussian-
distributed impulses whose arrival times follow a Poisson distribution is the same as the covari-
ance of the same system driven by a white noise input process, except for the scaling of the process
noise covariance by the Poisson process rate parameter [32].

To understand this result, consider a linear model of the error in a spacecraft trajectory as
follows

ẋ(t) = A(t)x(t) +B(t)u(t) (3.67)
where x represents the deviation of the actual position/velocity state from its estimated or nominal
value, and u represents the FLAK acceleration bias. Then, if we make use of inertial coordinates,

A(t) =

[
0 I

G(t) 0

]
, B(t) =

[
0

M(t)

]
(3.68)

where G represents the gravity gradient matrix, and M is the direction cosine matrix rotating the
supposed body-fixed FLAK into the inertial frame. There is no general solution to this differential
equation, but over short time intervals, we can assume that

x(tk) = Φ(tk, tk−1)xk−1 +

∫ tk

tk−1

Φ(tk, τ)B(τ)u(τ) dτ (3.69)

where
Φ(tk, tk−1) = I+A(tk)(tk − tk−1) (3.70)

We assume the input is a sequence of velocity impulses of (random) length nk,

u(t) =

nk∑
i=1

uiδ(t− ti) (3.71)

with tk−1 < ti < tk. The delta functions annihilate the integral and our model becomes (with
∆ti = tk − ti):

x(tk) = Φ(tk, tk−1)xk−1 +

nk∑
i=1

[
κ⃗i∆ti
κ⃗i

]
∥ui∥ (3.72)

where κ⃗i is the unit inertial direction vector for the FLAK event. Note that the input response is
in some sense fundamentally an increment to the entire state vector at each tk; we can however
compute an equivalent zero-order hold acceleration by dividing the velocity increment by the time
step tk − tk−1.

Since we assume each impulse is zero-mean and Gaussian, the input response has zero mean.
To find a tractable form for the covariance, assume that the direction of the FLAK event is constant
over each interval tk − tk−1. This assumption assures that the impulses are identically distributed
over each sampling interval. Then, the process noise covariance is given by Reference 32:

S(tk) = qλ

∫ tk

tk−1

[
κ⃗k(tk − τ)

κ⃗k

] [
κ⃗′
k(tk − τ), κ⃗′

k

]
dτ (3.73)

where q is the variance of the discrete Gaussian velocity impulses and λ is the rate parameter of
the Poisson process. Carrying out the integration results in

S(tk) = qλ

[
κ⃗kκ⃗

′
k∆t

3/3 κ⃗kκ⃗
′
k∆t

2/2
κ⃗kκ⃗

′
k∆t

2/2 κ⃗kκ⃗
′
k∆t

]
(3.74)

where the product qλ must have “SNC” kinds of units, such as meters2 per second3.
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3.2.3.6. Computational Considerations The primary computational issues that can affect co-
variance propagation may be broadly characterized as underflow and overflow. Underflow can
occur especially because many of the process noise parameters described above may often have
values that approach computational truncation limits, which can lead to non-positive-definite pro-
cess noise covariances. Overflow can similarly occur when truncation limits are approached by
very large covariance values such as can occur with long propagation times. Because the orbital
dynamics are at best marginally stable, even propagating without process noise can result in dif-
ferences of many orders of magnitude between largest and smallest eigenvalues. This problem will
be exacerbated if process noise is present, since all of the process noise models described above
introduce unbounded position covariance error growth5.

Simple tricks like enforcing symmetry, or adding a small positive diagonal matrix, will not
always ensure positive eigenvalues in such cases. A better solution is to maintain the covariance in
factorized form, for example as Chapter 8 describes. In lieu of a fully factorized filtering approach,
process noise factors may be computed from their factorizations. Chapter 6 shows a few examples
of Cholesky factorizations that may be employed in this fashion.

3.2.4. Tuning the Covariance Propagation Since even the best practices this Chapter has
discussed are at best approximations, it is inevitable that EKF designers must perform some artful
tuning of the free parameters to achieve acceptable results. Furthermore, computational limita-
tions of flight computers often lead to the need for compromises in modeling fidelity. What one
generally hopes to accomplish via tuning of the covariance propagation is that any approximations
or compromises the EKF has had to endure to be implementable have not impaired its covariance’s
accuracy too much. In particular, one would like to compute an idealized “truth” covariance ma-
trix, based on the best-available models and data, and adjust the EKF’s “formal” covariance via the
tuning process to yield some semblance of a match.

In some cases, it is possible to compute the true covariance. In particular, if we are studying
a linear system, and the random components have zero-mean Gaussian distributions, then the
mean errors will be zero, and we can use linear covariance analysis [27, 58, 60] to compute the
covariances. It is often possible to approximate the performance for a nonlinear system with this
technique by linearization. This is often a first step in early conceptual design studies.

One may divide tuning of the covariance propagation into those activities a designer performs
(1) during the detailed development of a system, prior to the collection of any flight data, and (2)
during the commissioning of a new system or an existing system in a new application, when flight
data are available. For pre-flight detailed design studies, one generally simulates the system, so
one has access to truth data. One can also run the mission simulation many times, generating
an ensemble of parallel results, performing a Monte Carlo analysis. During and after the actual
mission, we never have access to truth data. At best, we can reconstruct the trajectory after the
fact using more sophisticated processing and additional data that were not available in real-time.
For near real-time analysis, we can compare current state estimates to predictions from previous
epochs. These predictions can come from either mission products generated in real-time at a past
epoch, or past reconstructions of the trajectory. In all cases, the best we have are differences
between estimates, not errors from the truth. There are several empirical approximations to the
true covariance that one might use in these situations.

5Reference 11 proposes an approximate “solution” to this problem via a Floquet analysis of a modified set of
covariance propagation dynamics that include artificially-introduced damping.
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3.2.4.1. Empirical Approximations of the True Covariance Let ej(ti) represent the random error
vector at time ti for case j from a Monte Carlo simulation, and {e(ti)} be the set of all cases at
time ti. Assume the total number of cases is K , and the total number of time samples is N .

Time Series Expectation: We can take statistics of the error realizations across time for
each case, ej(ti), to get the time series expectations for each case:

Êt(ej) =
1

N

N∑
i=1

ej(ti) (3.75)

Êt(eje
T
j ) =

1

N − 1

N∑
i=1

ej(ti)e
T
j (ti) (3.76)

If the data are stationary6, the time series statistics are usually an adequate approximation,
if we have considered a long enough time span. In some systems, described as ergodic,
a long time series is in some sense equivalent to a large number of shorter Monte Carlo
cases.

Ensemble Expectation: We can take statistics of the error realizations over all the cases
at each time sample to get the ensemble expectations:

Êe{e(ti)} =
1

K

K∑
j=1

ej(ti) (3.77)

Êe{e(ti)eT(ti)} =
1

K − 1

K∑
j=1

ej(ti)e
T
j (ti) (3.78)

The ensemble statistics will generally give the best indication of performance if the data
are non-stationary, so long as we use an adequate number of Monte Carlo cases.

Since there is nothing analogous to an ensemble of Monte Carlo cases for flight data, we cannot
use ensemble statistics as defined above. Let d represent the random difference vector between the
quantity of interest and its comparison value. We can apply time series statistics, but as the mission
evolves, the span of the time series continually extends, so we have to decide which subsets of the
entire mission span to use, e.g. the time series extending back over the entire history of the mission,
extending back only over some shorter interval, etc., and also how frequently to recompute the
time series statistics, e.g. continuously, once per day, etc. There are some other approximations to
the expectation that we might use here.

Sliding Window Time Series Expectation: We can take statistics of the difference real-
izations, d(ti), across a sliding window extending ∆t into the past from each observation,
for each case, to get the ∆t-sliding window time series expectations:

Êt,∆t(d) =
1

∆n

∆n−1∑
i=0

d(tN−i) (3.79)

Êt,∆t(dd
T) =

1

∆n− 1

∆n−1∑
i=0

d(tN−i)d(tN−i)
T (3.80)

where ∆n is the number of time samples in the window ∆t.

6Stationary data are those for which the statistics do not change when the time origin shifts.
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Period-Folding Expectation: If the data are periodic, we can break up the data into K
spans of one period in duration each, and shift the time origin of each span so that the
data are “folded” into the same, one-period-long interval. We can then take ensemble
statistics over times at the same phase angle, tϕi, within each period.

Êf{d(tϕi)} =
1

K

K∑
j=1

dj(tϕi) (3.81)

Êf{d(tϕi)d(tϕi)T} =
1

K − 1

K∑
j=1

dj(tϕi)d
T
j (tϕi) (3.82)

It is often useful to fold the data into bins of equal mean anomaly. This is especially useful
for orbits with notable eccentricity, since it ensures that a roughly equal number of time
points will be present in each bin.

Sliding Window Period-Folding Expectation: Period-folding can obviously be applied
over a sliding window as well, with each window extending n periods into the past.

Êf,n{d(tϕi)} =
1

n

n−1∑
j=0

dK−j(tϕi) (3.83)

Êf,n{d(tϕi)d(tϕi)T} =
1

n− 1

n−1∑
j=0

dK−j(tϕi)d
T
K−j(tϕi) (3.84)

This is especially useful for identifying secular trends in periodic data sets.
3.2.4.2. Tuning for Along-track Error Growth As described above, the position error component

along the orbit track will dominate covariance propagation error, and so the most important step
in tuning the covariance propagation is to ensure that this component grows no faster or slower
than it should based on the truncations and approximations that the EKF design has employed.
One may use any of the analytical or empirical methods described above to estimate the “true” co-
variance. For example, for preflight analysis, one may generate a time series or ensemble of time
series of differences between states propagated using the formal models the filter employs, and a
best available “truth” model of the system. One can then compare the appropriate empirical co-
variance computed from this data set to the filter’s formal covariance, and adjust the process noise
intensities until a reasonable match occurs. For flight data analysis, one may similarly difference
across overlaps between predictive and definitive states, and compare these empirical covariances
of these differences to the sum of the predictive and definitive formal covariances from the filter.

If one uses the SNC method, the primary “knob” for tuning the alongtrack covariance growth
rate is the corresponding alongtrack component of the process noise intensity qT or qV , depending
on whether RTN or VNB components are used, respectively. Essentially, an impulse along the
velocity vector, or change in speed, causes a change in SMA, corresponding to a change in period,
and hence a secular growth in position error along the orbit, as discussed at the beginning of
this Chapter. This mechanism is especially transparent for near-circular orbits, and some simple
analysis yields a good starting point. One may find a fuller exposition of the following result in
Reference 28.
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For near-circular orbits, the position components of the integrand in (3.44) become, in RTN
coordinates,

Φrv(∆t)

qR 0 0
0 qT 0
0 0 qN

ΦT
rv(∆t) (3.85)

where Φrv(∆t) is given, per Hill, Clohessy, and Wiltshire, by

Φrv(∆t) =

 sin(n∆t)/n 2(1− cos(n∆t))/n 0
2(cos(n∆t)− 1)/n 4 sin(n∆t)/n− 3∆t 0

0 0 sin(n∆t)/n

 (3.86)

Retaining only secular terms and carrying out the integral, the along-track component of the
process noise covariance becomes

ST (∆t) ≈ 3∆t3qT (3.87)
an approximation which holds for ∆t > Tp. Thus, one may use an empirical covariance of the
along-track error after one orbit period, such as σ̂2δs = Êf{δs2}, to derive a starting point from
which to tune qT , as

qT =
σ̂2δs
3T 3

p

(3.88)

3.3. Covariance Measurement Update
This section discusses methods for implementing the covariance measurement update. Some

of the most important of these best practices are related to factorization methods and underweight-
ing, which are topics of enough significance to warrant their own chapters.

3.3.1. “Stable Form” of non-Joseph Covariance Update As Chapter 1 pointed out, only
for the optimal gain and true covariance does the Joseph form of the covariance measurement
update, (1.41),

P+
i = (I−KiHi)P

−
i (I−KiHi)

T +KiRiK
T
i (3.89)

reduce to (1.33),
P+

i = P−
i −KiHiP

−
i (3.90)

While this assertion is strictly true, the cancellations that produce the above results will still occur
so long as the EKF algorithm is internally consistent with truncating and approximating its var-
ious terms. The resulting “covariance” will not accurately represent E

[
e+i (e

+
i )

T|Yi

]
, but the fact

that these truncations and approximations have produced a suboptimal gain will, in themselves,
provide no computational issues. In effect, the resulting suboptimal gain remains “optimal” with
respect to the internally consistent set of approximations and truncations internal to the filter.

However, even if the gain is optimal, the stability of the non-Joseph form depends on the
order of multiplication, as Schmidt points out [75]. He describes a “stable form” of the non-Joseph
update, given by Algorithm 3.1, which was successfully used by the Space Shuttle. Algorithm 3.1
processes each jth scalar element of the measurement vector one at a time, using only the jth row
of the measurement partials matrix, hj , and the (j, j) diagonal element of the measurement noise
covariance, rj , assuming Ri is a diagonal matrix. In comparison with P+

i = (I−KiHi)P
−
i , use

of Algorithm 3.1 also reduces the computational burden from O(n3) to O(n2/2), where n is the
state dimension.

Although Algorithm 3.1 does not show the state update, it may also be sequentially updated
as part of the iteration. However, the order in which the scalar measurements update the state can
affect the outcome, if the measurement partials are computed one row at a time, corresponding
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Algorithm 3.1 “Stable form” of the non-Joseph Covariance Measurement Update
P1 = P−

i
for each scalar measurement j = 1 through k do

hj = jth row of Hi

rj = (j, j) element of Ri

bj = Pjh
T
j

kj = bj/ (hjbj + rj)
Pj ← Pj − kjb

T
j

end for
P+

i = Pk

Only the non-redundant (upper or lower triangular) portions of the covariance should be up-
dated, and then the other redundant elements set equal to the ones that have been computed.

with each scalar update. This may produce undesirable or even unstable outcomes. Chapter 4 will
discuss such issues further.

Despite the extensive and successful flight heritage of Algorithm 3.1, it cannot guarantee nu-
merical stability and positive definiteness of the covariance. Chapter 8 describes a recommended
best practice for the covariance update, the UD-factorization, which makes checking for positive
definiteness transparently easy.

3.3.2. Use of Consider States It may often be the case that unobservable states are present
in the system being estimated. Most commonly, such states will be parameters whose values are
unknown or uncertain. Inclusion of such parameters as solve-for states in the EKF is a not a recom-
mended practice. However, if the EKF completely ignores the uncertainty that such parameters
introduce, its covariance can become overly optimistic, a condition sometimes known as “filter
smugness.” One approach to addressing this problem was introduced by Schmidt [75], originally
in the context of reducing the computational burden that the EKF imposed on flight computers of
the 1960’s. Schmidt’s idea is essentially for the EKF to maintain a covariance containing all of the
states whose uncertainties are significant enough to affect filter performance, but only to update a
subset of those states. The states which are not updated in this framework are typically known as
“consider” parameters, and such a filter has been called a “consider filter” or a “Schmidt-Kalman”
filter. Although most commonly the state space is simply partitioned by selecting states as either
solve-for or consider states, Reference 58 points out that partitioning using linear combinations
of the full state space is also possible.

Following Reference 58, suppose the filter produces estimates for a subset of ns solve-for
states, out of the full state of size n. The filter does not estimate the remaining nc = n − ns
consider states. Denote the true solve-for vector by s(t), and the true consider vector by c(t).
Assume that these are linear combinations of the true states, according to the following:

s(t) = S(t)x(t) and c(t) = C(t)x(t) (3.91)
where the ns × n matrix S(t) and the nc × n matrix C(t) are such that the matrix

M =

[
S
C

]
(3.92)

is non-singular. The inverse of M is partitioned into an n× ns matrix S̃ and an n× nc matrix C̃:

M−1 =
[
S̃, C̃

]
. (3.93)
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The properties of the matrix inverse then lead immediately to the identities
SS̃ = Ins , CC̃ = Inc , SC̃ = 0ns×nc , CS̃ = 0nc×ns , (3.94)

and
S̃S+ C̃C = In. (3.95)

In the usual case that the elements of the solve-for and consider vectors are merely selected and
possibly permuted components of the state vector, the matrix M is an orthogonal permutation
matrix. In this case, and in any case for which M is orthogonal, the matrices S̃ and C̃ are just
the transposes of S and C, respectively, which makes inversion of M unnecessary and simplifies
many of the following equations.

It follows from Eqs. 3.91 and 3.95 that
x(t) = S̃(t)s(t) + C̃(t)c(t). (3.96)

Relations similar to Eq. 3.91 give the estimated solve-for vector ŝ(t) and the assumed consider
vector ĉ(t) in terms of the estimated state x̂(t). Thus, errors in the solve-for and consider states
are given by

es(t) = s(t)− ŝ(t) = S(t)e(t) (3.97)
ec(t) = c(t)− ĉ(t) = C(t)e(t) (3.98)

and the true error may be written in terms of the solve-for and consider errors by
e(t) = S̃(t)es(t) + C̃(t)ec(t). (3.99)

In terms of this notation, the EKF update has the form
ŝ+i = ŝ−i +Kir

−
i (3.100)

where
r−i = yi − h(x̂−i ) = Hie

−
i + vi, (3.101)

and the subscript i is a shorthand for the time argument ti. The usual EKF will not contain the full
covariance, but only its solve-for part

Pss(t) = E[es(t)e
T
s(t)] (3.102)

By contrast, the Schmidt-Kalman filter will use the full covariance, P(t). In the usual case, the
Kalman gain is given by

Ki = P−
ssiH

T
si

[
HsiP

−
ssiH

T
si +Ri

]−1 (3.103)
where

Hsi = HiS̃i (3.104)
In the Schmidt-Kalman case,

Ki = SiP
−
i H

T
i

[
HiP

−
i H

T
si +Ri

]−1 (3.105)
Thus, the Schmidt-Kalman gain matrix is computed from the full covariance, but only applies
measurement innovations to the solve-for states.

3.4. Sigma-Point Methods
Before concluding this Chapter, it is worth noting that a promising method for propagating

and updating the covariance that is coming into greater use and acceptance within the naviga-
tion community is the use of sigma-point methods, also known as “unscented” transforms. A
subsequent chapter covering Advanced Topics will cover these topics in a section on sigma-point
filtering.





CHAPTER 4

Processing Measurements

Contributed by Christopher N. D’Souza and J. Russell Carpenter

This chapter will discuss how to handle real-world measurement processing issues. In particular,
being able to handle measurements that aren’t synchronous is of paramount importance to run-
ning filters in a real-time environment. As well, the performance of navigation filters which have
nonlinear measurement models are susceptible to divergence depending on the order of processing
of measurements which occur at the same epoch. Therefore, a technique which provides invari-
ance to measurement processing is detailed. A technique for processing correlated measurements
is presented, and brief comments on filter cascading and processing of inertial data are offered.

4.1. Measurement Latency
In general, the measurement time tags are not going to be equal to the current filter epoch

time, tk. To state it another way, the measurements do not come in at the current filter time.
Rather, they may be latent by up to p seconds. Thus, a situation will arise where the filter has
propagated its state and covariance to time t = tk from time t = tk−1, and is subsequently given
a measurement to be filtered (denoted by subscript m) that corresponds to the time t = tm, where

tm ≤ tk (4.1)

If ∆t = tm − tk is not insignificant, the time difference between the measurement and the filter
state and covariance will need to be accounted for during filtering in order to accurately process
the measurement. This can be done in much the same way a batch filter operates (see pages 196-
197 of Tapley [81]). If the measurement at time t = tm is denoted as ym, the nominal filter state
at that time is given by X∗

m ≡ X∗(tm) (∗ denotes the nominal), and the measurement model is
denoted as hm (Xm, tm), then one can expand the measurement model to first order about the
nominal filter state to get

hm (Xm, tm) = hm (X∗
m, tm) +Hmxm + νm (4.2)

where xm = Xm − X∗
m and Hm is defined as

Hm
∆
=

(
∂hm (X, tm)

∂X

)
X=X∗

m

(4.3)

The perturbed state at time tm can be written in terms of the state at time tk as follows

xm = Φ(tm, tk)xk + Γmwm (4.4)

so we can compute the measurement as

hm (Xm, tm) = hm (X∗
m, tm) +HmΦ(tm, tk)xk +HmΓmwm + νm (4.5)
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where the measurement noise has the characteristics E[νm] = 0 and E
[
ν2m
]
= Rm, the state

process noise from t = tm to t = tk has the characteristics E[wm] = 0 and E[wmwT
m] = Qm, and

the state deviation is given by
xk = δXk = Xk − X∗

k (4.6)
(Note that the effect of the state process noise would be to increase the measurement noise vari-
ance. However, because the process noise term is very small over time periods of a few seconds,
it can safely be neglected for the remainder of this analysis.)

Upon taking the conditional expectation of the measurement equation and rearranging, the
scalar residual of the measurement is given by

ym − H̃mx̂k(−) = Ym − hm(X∗
m, tm)−HmΦ(tm, tk)x̂k(−) (4.7)

where ·̂ denotes an estimated value,
ym = Ym − hm(X∗

m, tm)

x̂k(−) = X̂k(−)− X∗
k (4.8)

The measurement partials that are used in the update, which map the measurement to the state at
time t = tk, are given by

H̃m = HmΦ(tm, tk) (4.9)
Eq. 4.9 was derived by noting that

Hmx̂m = HmΦ(tm, tk)x̂k

= H̃mx̂k (4.10)
From the above discussion, it is evident that the unknown quantities needed to update the state

at time t = tk with a measurement from time t = tm are the nominal state at the measurement
time, X∗

m, and the state transition matrix relating the two times, Φ(tm, tk). Given those values,
hm (X∗

m, tm) and H̃m can be calculated.
Thus the nominal state at the measurement time is calculated by back-propagating the filter

state from time tk to time tm. The same thing is done to calculate the required state transition
matrix. The same propagation algorithms used in forward propagation ought to be utilized for the
back-propagation, with the exception that the smaller time step allows for a 1st-order approxima-
tion of the matrix exponential used to update the state transition matrix.

4.2. Invariance to the Order of Measurement Processing
It has long been known that the performance of an EKF is dependent on the order in which

one processes measurements. This is of particular import in the case when there is powerful mea-
surement coupled with a large a priori error. The state (and covariance) update will be large, very
likely out of the linear range. Subsequent measurements which are processed may well be out-
side the residual edit thresholds, and hence will be rejected. In order to remedy this, we employ
a hybrid Linear/Extended Kalman Filter measurement update. Recall that in an Extended Kalman
Filter, the state is updated / relinearized / rectified after each measurement is processed, regardless
of whether the measurements occur at the same time. Hence, the solution is highly dependent on
the order in which the measurements are processed. This is not a desirable situation in which to
be.

We obviate this difficulty simply by not updating the state until all the measurements at a
given time are processed. We accumulate the state updates in state deviations x, using Algo-
rithm 4.1. This algorithm makes use of the fact that, in the absence of process noise, a batch/least
squares algorithm is mathematically equivalent to a linear Kalman Filter [33]. Algorithm 4.1 is
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a recommended best practice. Algorithm 4.1 may readily be combined with the residual mapping

Algorithm 4.1 Measurement Update Invariant to Order of Processing
for each (scalar) measurement j = 1 through k do

yj = Yj − hj(X∗
m, tm)

Hj =
∂hj

∂X (X∗
m, tm)

Kj = PjH
T
j

(
HjPjH

T
j +Rj

)−1

x̂j ← x̂j +Kj (yj −Hj x̂j)
Pj ← (I−KjHj) Pj (I−KjHj)

T +KjRjK
T
j

end for
Xm ← X∗

m + x̂j

approach described above when the measurements are asynchronous. Algorithm 4.1 may also
be readily combined with Algorithm 3.1, for cases in which the preferred factorized covariance
methods are precluded.

4.3. Processing Vector Measurements
If the UDU factorization is used, the measurements are usually processed as scalars. If the

vector measurements are correlated, one option is to assume they are uncorrelated and ignore the
correlations between the measurements.

However, there is a better alternative. Given the measurement equation (Yj = Hj(Xj , tj) +
νj) with measurement error covariance matrix, Ri, first decompose the matrix with a Cholesky
factorization as

Ri = E
[
νjν

T
j

]
= R

1/2
i R

T/2
i (4.11)

and premultiply the measurement equation by R
−1/2
i to yield

Ỹj = H̃j(Xj , tj) + ν̃j (4.12)

with

Ỹj = R
−1/2
i Yj (4.13)

H̃j(Xj , tj) = R
−1/2
i Hj(Xj , tj) (4.14)

ν̃j = R
−1/2
i νj (4.15)

so that E[ν̃j ν̃j ] = I. Thus, the new measurement equation has errors which are now decorrelated.
Alternatively, one can decompose the m × m measurement error covariance matrix with a

UDU decomposition as Ri = URi DRiU
T
Ri

so that using a similar reasoning, we premultiply
the measurement equation by U−1

Ri
so that in this case

Ỹj = U−1
Ri

Yj (4.16)

H̃j(Xj , tj) = U−1
Ri

Hj(Xj , tj) (4.17)
ν̃j = U−1

Ri
νj (4.18)

so that E[ν̃j ν̃j ] = DRi where DRi is a diagonal matrix and, as in the case of the Cholesky de-
composition, the new measurement model has decorrelated measurement errors.
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4.4. Filter Cascades
Contributed by James McCabe

It is often tempting to ingest the output of one navigation filter, an “upstream” filter, into an-
other filter, a “downstream” filter. This is commonly proposed for systems equipped with sensors
that furnish, in one sense or another, a post-processed data source, such as a Global Navigation
Satellite System Position-Velocity-Time output, a derived measurement produced via an image
processing algorithm such as seen in terrain relative navigation, or a pose solution from a lidar
utilizing model matching. However, one of the few key, and often overlooked, assumptions critical
to ensuring a Kalman filter’s performance is that the measurement noise is white, i.e. uncorrelated
in time. Many of these post-processed data sources employ online iterative procedures, many times
themselves being Kalman filters, to produce the output. In this case, the measurement source has
errors that are guaranteed to be time-correlated, and, if a practitioner is not careful, the system
inherits a dangerous upstream filter/downstream filter relationship that can cause serious issues
during runtime. If the downstream filter was provided or had a priori knowledge of the corre-
lation this would not be an issue, but it is almost always impossible to directly quantify it. As
such, the downstream Kalman filter is assuming a white noise signature, yet the input errors are
time-correlated, and the resulting downstream estimates are flawed and, in practice, promote filter
divergence (or, at minimum, a biased result). It is important to emphasize that, while this is often
dismissed as a mere academic detail, cascades drastically increase overall navigation system risk.

This inadvertent relationship between assumed and real-world statistics is easy to acciden-
tally happen into, especially considering that sensor vendors are manufacturing ever smarter and
smarter sensors that employ “in the box” post-processing of their data to produce a convenient
output for their customers. However, these outputs are often inconsistent with the Kalman filter’s
white noise assumption, even if the noise statistics provided on a specifications sheet are accurate.
As such, a navigation practitioner is cautioned against presuming a post-processed output from
any “navigation in a box” solution provided by a vendor can be naively ingested into a Kalman
filter. Note that there are methods to aid in combating the negative effects of time-correlated
measurement errors, often through the use of additional exponentially correlated random variable
(ECRV) states in the filter to accommodate the bias-like effects of the time correlations, but the
variances and time constants of these ECRVs become design variables that must be selected during
tuning pre-flight, adding design complexity.

It is worth noting that there are cases where filter cascades have been utilized successfully
despite their flaws, such as carrier-smoothing via pre-filtering of noisy high-rate data or direct in-
gestion of quaternion output from star tracker systems,1 but a navigator must be extremely careful
in understanding the error signature in these signals to guarantee that the time history of the mea-
surement errors are approximately white or appropriately treated within the filter formulation to
account for time correlation. The success of these systems typically relies upon the upstream pro-
cess producing a result that is, on the whole, fairly unbiased such that the signal appears to be
corrupted by an approximately-white, zero-mean noise process.

4.5. Use of Data from Inertial Sensors
Inertial measurement units (IMUs), consisting of gyros and accelerometers, sense rotational

and translational accelerations. While in principle these high-rate data could be processed as ob-
servations in the navigation filter, it is often sufficient instead to use this data in model replacement
mode, which Brown and Hwang [7] compare to complementary filtering. In this approach, the

1Note that some, but not all, quaternion outputs from such systems do not exhibit time-correlated errors, but this
must be treated on a case-by-base basis.
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sensed accelerations are fed forward as deterministic inputs to the navigation filter’s dynamics
model. Biases affecting the IMU data usually must be estimated by the filter. Thresholding the
IMU accelerations is also usually necessary to avoid the introduction of unfiltered IMU noise into
the filter state propagation. Chapter 7 describes best practices for modeling the structures associ-
ated with IMU data.





CHAPTER 5

Measurement Underweighting

Contributed by Renato Zanetti

5.1. Introduction
Given an m-dimensional random measurement y which is somehow related to an unknown,

n-dimensional random vector x the family of affine estimators of x from y is

x̂ = a+K y (5.1)

where a ∈ ℜn and K ∈ ℜn×m. The optimal, in a Minimum Mean Square Error sense, affine
estimator has

K = Pxy P
−1
yy (5.2)

a = E[x]−K E[y] (5.3)

where

Pxy = E
[(

x− E[x]
)(

y − E[y]
)T]

(5.4)

Pyy = E
[(

y − E[y]
)(

y − E[y]
)T]

(5.5)

In the presence of nonlinear measurements of the state,

y = h(x) + v (5.6)

(where v is zero-mean measurement noise) the extended Kalman filter (EKF) [27] approximates
all moments of y by linearization of the measurement function centered on the mean of x. This
methodology has proven very effective and produces very satisfactory results in most cases. Ap-
proaches other than the EKF exist, for example the Unscented Kalman Filter [40] approximates
the same quantities via stochastic linearization using a deterministic set of Sigma Points. High
order truncations of the Taylor series are also possible. Underweighting [46,50] is an ad-hoc tech-
nique to compensating for nonlinearities in the measurement models that are neglected by the EKF
and successfully flew on the Space Shuttle, on Orion Exploration Flight Test 1, and the Artemis I
mission.

The commonly implemented method for the underweighting of measurements for human
space navigation was introduced by Lear [48] for the Space Shuttle navigation system. In 1966
Denham and Pines showed the possible inadequacy of the linearization approximation when the
effect of measurement nonlinearity is comparable to the measurement error [19]. To compensate
for the nonlinearity Denham and Pines proposed to increase the measurement noise covariance
by a constant amount. In the early seventies, in anticipation of Shuttle flights, Lear and others
developed relationships which accounted for the second-order effects in the measurements [50].

41
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It was noted that in situations involving large state errors and very precise measurements, appli-
cation of the standard extended Kalman filter mechanization leads to conditions in which the state
estimation error covariance decreases more rapidly than the actual state errors. Consequently the
extended Kalman filter begins to ignore new measurements even when the measurement residual
is relatively large. Underweighting was introduced to slow down the convergence of the state es-
timation error covariance thereby addressing the situation in which the error covariance becomes
overly optimistic with respect to the actual state errors. The original work on the application of
second-order correction terms led to the determination of the underweighting method by trial-
and-error [48].

More recently, studies on the effects of nonlinearity in sensor fusion problems with applica-
tion to relative navigation have produced a so-called “bump-up” factor. [23, 54, 67, 69]. While
Ferguson [23] seems to initiate the use of the bump-up factor, the problem of mitigating filter
divergence was more fully studied by Plinval [69] and subsequently by Mandic [54]. Mandic gen-
eralized Plinval’s bump-up factor to allow flexibility and notes that the value selected influences
the steady-state convergence of the filter. In essence, it was found that a larger factor keeps the
filter from converging to the level that a lower factor would permit. This finding prompted Mandic
to propose a two-step algorithm in which the bump-up factor is applied for a certain number of
measurements only, upon which the factor was completely turned off. Finally, Perea, et al. [67]
summarize the findings of the previous works and introduce several ways of computing the ap-
plied factor. In all cases, the bump-up factor amounts in application to the underweighting factor
introduced in Lear [48]. Save for the two-step procedure of Mandic, the bump-up factor is allowed
to persistently affect the Kalman gain which directly influences the obtainable steady-state covari-
ance. Effectively, the ability to remove the underweighting factor autonomously and under some
convergence condition was not introduced.

The work of Lear [12,49] is not well known as it is mostly only documented in internal NASA
memos [48,50]. Kriegsman and Tau [46] mention underweighting in their 1975 Shuttle navigation
paper without a detailed explanation of the technique.

5.2. Nonlinear Effects and the Need for Underweighting
We review briefly the three state estimate update approaches assuming a linear time-varying

measurement model leading to the classical Kalman filter, a nonlinear measurement model with
first-order linearization approximations leading the widely used extended Kalman filter, and a
nonlinear model with second-order approximations leading to the second-order extended Kalman
filter.

5.2.1. LinearMeasurementModel and the Classical Kalman Filter Update Let’s briefly
recap the linear Kalman filter. The measurement model is

yi = Hixi + vi , (5.7)
where yi ∈ Rm are the m measurements at each time ti, xi ∈ Rn is the n-dimensional state
vector, Hi ∈ Rm×n is the known measurement mapping matrix, vi ∈ Rm is modeled as a zero-
mean white-noise sequence with E[vi] = 0, ∀ k and E

[
viv

T
j

]
= Riδkj where Ri > 0 ∀ k and

δkj = 1 when k = j and δkj = 0 when k ̸= j. The Kalman filter state update algorithm provides
an optimal blending of the a priori estimate x̂−

i and the measurement yi at time ti to obtain the a
posteriori state estimate x̂+

i via

x̂+
i = x̂−

i +Ki

[
yi −Hix̂

−
i

]
, (5.8)

where the superscript − denotes a priori and + denotes a posteriori.
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Defining the a priori estimation error as e−i = xi − x̂−
i and the a posteriori estimation error

as e+i = xi − x̂+
i and assuming these errors to be zero mean, the associated symmetric, positive

definite a priori and a posteriori estimation error covariances are P−
i = E

[
e−i
(
e−i
)T] and P+

i =

E
[
e+i
(
e+i
)T], respectively. Using Eq. (5.8) and the definitions of the state estimation errors and

error covariances, we obtain the a posteriori state estimation error covariance via the well-known
Joseph formula

P+
i = [I−KiHi]P

−
i [I−KiHi]

T +KiRiK
T
i , (5.9)

which is valid for any Ki. If the gain Ki is chosen so as to minimize the trace of the a posteriori
estimation error, we call that gain the Kalman gain which is given by

Ki = PiH
T
i

[
HiP

−
i H

T
i +Ri

]−1
. (5.10)

The trace of the state estimation error covariance is generally not a norm but is equivalent to the
nuclear norm (the matrix Shatten 1-norm) for symmetric semi-positive matrices. If the gain given
in Eq. (5.10) is applied to the state estimation error covariance of Eq. (5.9), then the update equation
can be rewritten after some manipulation as

P+
i = [I−KiHi]P

−
i , (5.11)

or equivalently,
P+

i = P−
i −Ki[HiP

−
i H

T
i +Ri]K

T
i . (5.12)

Under the assumptions of the Kalman filter development (linear, time-varying measurement model
with a zero-mean white-noise sequence corrupting the measurements, unbiased a priori estimation
errors, known dynamics and measurement models, etc.), the state estimate and state estimation
error covariance updates are optimal and we expect no filter divergence issues. The estimation
error covariance will remain positive definite for all ti and the estimation error covariance will be
consistent with the true errors. In practice, the measurements are usually nonlinear functions of
the state, leading to a variety of engineering solutions that must be carefully designed to ensure
acceptable state estimation performance. Underweighting is one such method to improve the
performance of the extended Kalman filter in practical settings.

5.2.2. The Nonlinear Measurement Model and the Extended Kalman Filter Update In
the nonlinear setting, consider the measurement model given by

yi = h(xi, ti) + vi , (5.13)

whereh(xi) ∈ Rm is a vector-valued differentiable nonlinear function of the state vectorxi ∈ Rn.
The idea behind the extended Kalman filter (EKF) is to utilize Taylor series approximations to
obtain linearized models in such a fashion that the EKF state update algorithm has the same general
form as the Kalman filter.

yi ≃ h(x̂−
i , ti) +Hi e

−
i + vi , (5.14)

where

Hi ≜

[
∂h(xi, ti)

∂xi

∣∣∣∣
xi=x̂−

i

]
. (5.15)

Since the estimation error is (approximately) zero mean and the measurement noise is zero mean,
it follows that

E[yi] ≃ h(x̂−
i , ti), (5.16)
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where all expectations are conditioned on past measurements and we find that the state estimate
update is given by [27]

x̂+
i = x̂−

i +Ki[yi − h(x̂−
i )] . (5.17)

Similarly, the measurement residual is given by
ri = yi − h(x̂−

i ) ≃ Hie
−
i + vi , (5.18)

Computing the measurement residual covariance E[rir
T
i ] yields

Wi = HiP
−
i H

T
i +Ri . (5.19)

The state estimation error covariance and Kalman gain are the same as in Eqs. (5.9) and (5.10),
respectively, with Hi given as in Eq. (5.15). The state estimation error covariances in the forms
shown in Eqs. (5.11) and (5.12) also hold in the nonlinear setting with Hi as in Eq. (5.15).

From Eqs. (5.12) and (5.17), it is seen that reducing the Kalman gain leads to a smaller update
in both the state estimation error covariance and the state estimate, respectively. Reducing the
gain and hence the update is the essence of underweighting and the need for this adjustment is
illuminated in the following discussion.

Adopting the viewpoint that the state estimation error covariance matrix represents the level
of uncertainty in the state estimate, we expect that when we process a measurement (adding new
information) the uncertainty would decrease (or at least, not increase). This is, in fact, the case and
can be seen in Eq. (5.12). Under the assumption that the symmetric matrices P−

i > 0 and Ri > 0,
it follows that

Ki[HiP
−
i H

T
i +Ri]K

T
i ≥ 0 , (5.20)

and we can find a number αi ≥ 0 at each time ti such that
P−

i −P+
i ≥ αiI , (5.21)

which shows that the P−
i − P+

i is non-negative definite. The same argument can be made from
the viewpoint of comparing the trace (or the matrix norm) of the a posteriori and a priori state
estimation error covariances. As each new measurement is processed by the EKF, we expect the
uncertainty in the estimation error to decrease. The question is, does the a posteriori uncertainty
as computed by the EKF represent the actual uncertainty, or in other words, is the state estimation
error covariance matrix always consistent with the actual state errors? In the nonlinear setting
when there is a large a priori uncertainty in the state estimate and a very accurate measurement, it
can happen that the state estimation error covariance reduction at the measurement update is too
large. Underweighting is a method to address this situation by limiting the magnitude of the state
estimation error covariance update with the goal of retaining consistency of the filter covariance
and the actual state estimation error through situations of high nonlinearity of the measurements.

Pre- and post-multiplying the a posteriori state estimation error covariance in Eq. (5.12) by Hi

and HT
i , respectively, yields (after some manipulation)

HiP
+
i H

T
i = HiP

−
i H

T
i (HiP

−
i H

T
i +Ri)

−1Ri . (5.22)
In Eq. (5.22), we see that if HiP

−
i H

T
i ≫ Ri then it follows that

HiP
+
i H

T
i ≃ Ri . (5.23)

The result in Eq. (5.23) is of fundamental importance and is the motivation behind underweighting.
What this equation express is the fact that when the a priori estimated state uncertainty HiP

−
i H

T
i

is much larger than the measurement error covariance Ri, the Kalman filter largely neglects the
prior information and relies heavily on the measurement. Therefore the a posteriori estimated state
uncertainty HiP

+
i H

T
i is approximately equal to Ri.
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5.2.3. The Nonlinear Measurement Model and the 2nd-Order Kalman Filter Update
Whereas Eq. (5.14) truncates the Taylor series expansion of the nonlinear measurement function
to first order, carrying it to second order we obtain

yi ≃ h(x̂−
i , ti) +Hi e

−
i +

m∑
k=1

(
∂2h(xi, ti)

∂xi∂xi(k)

∣∣∣∣
xi=x̂−

i

ei(k) ei

)
+ vi (5.24)

= h(x̂−
i , ti) +Hi e

−
i + bi + vi , (5.25)

where ei(k) and xi(k) are the k-th elements of vectors ei and xi, respectively. The expected value
of the measurement now includes contributions from the second order terms, denoted as b̂i

E[yi] ≃ h(x̂−
i , ti) + b̂i (5.26)

Define

HT
i,k ≜

[
∂2hi(xi)

∂xi∂xT
i

∣∣∣∣
xi=x̂−

i

]
,

where hi(xi) is the k-th component of h(xi). Then the k-th component of bi is given by

bi,k =
1

2
(e−i )

THT
i,ke

−
i =

1

2
tr(HT

i,ke
−
i (e

−
i )

T) . (5.27)

where tr denotes the trace. To keep the filter unbiased, the k-th component of b̂i is given by

b̂i,k = 1/2 tr(HT
i,kP

−
i ) .

The measurement residual is
ri = yi − E[yi] (5.28)

Expanding Eq. (5.28), the k-th component of the residual is obtained to be
ri,k = hT

i,k e
−
i + 1/2 tr(HT

i (ti)e
−
i (e

−
i )

T)− 1/2 tr(HT
i (ti)P

−
i ) + vi,k , (5.29)

where hT
i,k is the ik-th row of the measurement Jacobian and vi,k is the k-th component of the

measurement noise vi. Computing the measurement residual covariance E[rir
T
i ] yields

Wi = HiP
−
i H

T
i +Bi +Ri , (5.30)

where matrix Bi is the contribution of the second order effects and its (kj)-th component is given
by

Bi,kj ≜ 1/4E
[
tr(HT

i (ti)e
−
i (e

−
i )

T) tr(HT
i (ti)e

−
i (e

−
i )

T)
]

− 1/4 tr(HT
i (ti)P

−
i ) tr(H

T
i (ti)P

−
i ) .

where it was assumed that the third order central moments are all zeros. Assuming the prior
estimation error is distributed as a zero-mean gaussian distribution with covariance P−

i , the ijth
component of Bi is given by

Bi,kj =
1

2
tr(HT

i,k P
−
i HT

i,j P
−
i ) . (5.31)

Comparing the measurement residual covariance for the EKF in Eq. (5.19) with the measure-
ment residual covariance for the second-order filter in Eq. (5.30), we see that when the nonlinear-
ities lead to significant second-order terms which should not be neglected, then the EKF tends to
provide residual covariance estimates that are not consistent with the actual errors. Typically, we
address this by tuning the EKF using Ri as a parameter to be tweaked. If the contribution of the
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a priori estimation error HiP
−
i H

T
i to the residuals covariance is much larger than the contribu-

tion of the measurement error Ri, the EKF algorithm will produce HiP
+
i H

T
i ≃ Ri. If Bi is of

comparable magnitude to Ri then the actual covariance of the posterior measurement estimate
should be HiP

+
i H

T
i ≃ Ri +Bi. Therefore, a large underestimation of the a posteriori covariance

can occur in the presence of nonlinearities when the estimated measurement error covariance is
much larger than the measurement error covariance.

The covariance update is given by the modified Gaussian second order filter update [38]
P+

i = P−
i −HiP

−
i W

−1
i

(
HiP

−
i

)T
, (5.32)

where the residual covariance Wi is given by Eq. (5.30).
5.3. Underweighting Measurements

In the prior section we saw that when “large” values of HiP
−
i H

T
i exist (or similarly, large

values of P−
i ), and possibly “small” values of Ri, the EKF is at risk underestimating the posterior

estimation error covariance matrix. We must repeat that this can only happen in the presence of
“large” nonlinearities. The larger P−

i is, the larger the domain of possible values of the true state
x, hence the more likely the higher order terms of the expansion of the nonlinear measurement
functions will become relevant. If a measurement function is largely non-linear, but the prior
estimate is very precise, the EKF algorithm and linearization are likely sufficiently accurate since:

(1) The posterior measurement will rely heavily on the prior and rely less on the measure-
ment

(2) Since the error is small, while the Hessian matrix might be relatively large, the actual
contributions of the second order effects is likely to remain small

Underweighting is the process of modifying the residual covariance to reduce the update and
compensate for the second-order effects described above. In this section, we describe three com-
mon methods for performing underweighting with the EKF algorithm.

5.3.1. Additive CompensationMethod The most straightforward underweighting scheme
is to add an underweighting factor Ui as

Wi = HiP
−
i H

T
i +Ri +Ui . (5.33)

With the Kalman gain given by
Ki = P−

i H
T
iW

−1
i , (5.34)

we see that the symmetric, positive-definite underweighting factor Ui decreases the Kalman gain,
thereby reducing the state estimate and state estimation error covariance updates. One choice is
to select Ui = Bi, which is the contribution to the covariance assuming the prior distribution
of the estimation error is Gaussian. The advantage of this choice is its theoretical foundation
based on analyzing the second-order terms of the Taylor series expansions. The disadvantages
include higher computational costs to calculate the second-order partials and the reliance on the
assumption that the estimation errors possess Gaussian distributions. In practical applications,
the matrix Ui needs to be tuned appropriately for acceptable overall performance of the EKF. The
process of tuning a positive definite matrix is less obvious than tuning a single scalar parameter.

5.3.2. Scaling the Measurement Error Covariance Another possible underweighting ap-
proach is to scale the measurement noise by choosing

Ui = γRi , (5.35)
where γ > 0 is a scalar parameter selected in the design process. This approach has been success-
fully used [39]; however, it is not recommended from both a conceptual and a practical reason.
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Recalling that the underweighting is necessary because of neglecting the second-order terms of
the Taylor series expansion of the measurement function, it seems more natural to express the
underweighting as a function of the a priori estimation error covariance. Choosing a constant
coefficient to scale Ri seems less practical and will probably lead to a more complicated tuning
procedure. As long as the measurement noise is white the contributions of the second order ef-
fects are not a function of the measurement error covariance, therefore making them a fraction or
a multiple of the measurement noise (an unrelated quantity) is likely not the best choice.

5.3.3. Lear’s Method Lear’s choice was to make Ui a percentage of the a priori estimation
error covariance via [48]

Ui = βHiP
−
i H

T
i . (5.36)

Let P̄−
i ∈ R3×3 be the partition of the state estimation error covariance associated with the po-

sition error states. The Space Shuttle employs underweighting when
√

tr P̄
−
i > α. The positive

scalars α and β are design parameters. For the Space Shuttle, α is selected to be 1000 meters and
β is selected to be 0.2 [48]. When

√
tr P̄

−
i > 1000 m, then β = 0.2, otherwise β = 0.

Orion employs a slightly different approach, underweighting is applied when HiP
−
i H

T
i > α,

where α is a tunable flight software parameter.
This choice of underweighting scheme is sound since it assumes that the higher order effects

are a fraction (or a multiple) of the first order effects, which are a related quantity. There may
exist some unusual nonlinear measurement cases where the measurement Jacobian evaluates to
zero, or a small value, while at the same time the Hessian does not vanish; these cases are not
appropriately handled by underweighting.

5.4. Pre-Flight Tuning Aids
In this section, a technique to aid the tuning of the underweighting coefficient during pre-flight

analysis is presented. When the nonlinearities lead to second-order terms that cannot be neglected,
we find that the measurement residual covariance is more accurately given by (see Eq. (5.30))

Wi = HiP
−
i H

T
i +Ri +Bi . (5.37)

Following Lear’s approach to underweighting, we have that
WU,i = (1 + β)HiP

−
i H

T
i +Ri . (5.38)

Comparing Eqs. (5.37) and (5.38), the desired effect is to have
trWU,i ≥ trWi . (5.39)

This leads us to choose the underweighting coefficient βi such that
β ≥ trBi/ trHiP

−
i H

T
i ∀i. (5.40)

The designer can run simulations before the flight and calculate the time history of trBi/ trHiP
−
i H

T
i

and choose an appropriate value of β. It is unlikely that higher order terms than Bi will need to
be considered in designing the value of β.





CHAPTER 6

Bias Modeling

Contributed by J. Russell Carpenter

A general model for a measurement error is as follows:

e = b+ v (6.1)

where b models the systematic errors, and v models the measurement noise. We assume that the
measurement noise is a discrete sequence of uncorrelated random numbers. Variables such as
v are known as random variables, and Appendix A describes how to model them. This Chapter
describes models for the systematic errors.

The discussion of systematic errors treats such errors as scalar quantities to simplify the expo-
sition; generalization to the vector case is straightforward. Note that if the measurement is non-
scalar, but the errors in the component measurements are independent of one another, then we
can model each measurement independently, so modeling the biases as a vector is not required. If
the measurement errors are not independent, then many estimators require that we apply a trans-
formation to the data prior to processing so that the data input to the estimator have independent
measurement errors; Appendix A describes some ways to accomplish this transformation.

6.1. Zero-Input Bias State Models
The simplest non-zero measurement error consists only of measurement noise. The next sim-

plest class of measurement errors consists of biases which are either themselves constant, or are
the integrals of constants. We can view such biases as the output of a system which has zero in-
puts, and which may have internal states. In the sequel, we will consider cases where there are
random inputs to the system.

In cases where the bias is the output of a system with internal states, the estimator may treat
the internal states as solve-for or consider parameters. In such cases, the estimator requires a
measurement partials matrix. Otherwise, the “measurement partial” is just H = ∂b/∂b = 1.

6.1.1. Random Constant The simplest type of systematic error is a constant bias on the
measurement. There are two types of such biases: deterministic constants, which are truly constant
for all time, and random constants, which are constant or very nearly so over a particular time of
interest. For example, each time a sensor is power-cycled, a bias associated with it may change in
value, but so long as the sensor remains powered on, the bias will not change.

In some cases, we may have reason to believe that a particular systematic error source truly is
a deterministic bias, but due to limited observability, we do not have knowledge of its true value.
In such cases, we may view our estimate of the bias as a random constant, and its variance as a
measure of the imprecision of our knowledge.

49
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Thus, we may view all constants that could be solve-for or consider parameters in orbit deter-
mination as random constants. A model for a random constant is

ḃ(t) = 0, b(to) ∼ N(0, pbo). (6.2)
Thus the unconditional mean of b(t) is zero for all time, and its unconditional covariance is con-
stant for all time as well. If b(t) is a filter solve-for variable that is observable, then its covariance
conditioned on the measurement sequence will reach zero in the limit as t → ∞. This is an
undesirable characteristic for application in a sequential navigation filter.

To simulate a realization of the random constant, we need only generate a random number
according to N(0, pbo), as the previous subsection described.

6.1.2. Random Ramp The random ramp model assumes that the rate of change of the bias
is itself a random constant; thus the random ramp model is

b̈(t) = 0, ḃ(to) ∼ N(0, pḃo). (6.3)

Thus, the initial condition ḃ(to) is a random constant. For a pure random ramp, the initial condition
on b(to) and its covariance are taken to be zero, but an obvious and common generalization is to
allow b(to) to also be a random constant.

It is convenient to write this model as a first-order vector system as follows:[
ḃ(t)

b̈(t)

]
=

[
ḃ(t)

ḋ(t)

]
=

[
0 1
0 0

] [
b(t)
d(t)

]
(6.4)

ẋ(t) = Ax(t) (6.5)

where d(t) = ḃ(t). The resulting output equation for the total measurement error is
e =

[
1 0

]
x+ v (6.6)

= Hx+ v (6.7)
Note that the ensemble of realizations of x(t) has zero-mean for all time. The unconditional co-
variance evolves in time according to

Px(t) = Φ(t− to)PxoΦ
T(t− to) (6.8)

where
Φ(t) =

[
1 t
0 1

]
and Pxo =

[
pbo 0
0 pḃo

]
(6.9)

which we can also write in recursive form as
Px(t+∆t) = Φ(∆t)Px(t)Φ

T(∆t) (6.10)
Thus, we can generate realizations of the random ramp with either x(t) ∼ N(0,Px(t)) or recur-
sively from

x(t+∆t) = Φ(∆t)x(t) (6.11)
Note that the norm of the unconditional covariance becomes infinite as t2 becomes infinite.

This could lead to an overflow of the representation of the covariance in a computer program if
the propagation time between measurements is large, if the bias is unobservable, or if the bias is
a consider parameter, and could also lead to the representation of the covariance losing either its
symmetry and/or its positive definiteness due to roundoff and/or truncation. If the bias and drift
are filter solve-for variables, then the norm of their covariance conditioned on the measurement
sequence will reach zero in the limit as t → ∞. These are all undesirable characteristics for
application in a sequential navigation filter.
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6.1.3. Higher-Order Derivatives of Random Constants In principle, a random constant
may be associated with any derivative of the bias in a straightforward extension of the models
above. In practice, it is rare to need more than two or three derivatives. Conventional terminology
does not appear in the literature for derivatives of higher order than the random ramp. The slope
of the bias is most commonly described as the “bias drift,” so that a “drift random ramp” would
be one way to describe a bias whose second derivative is a random constant. The measurement
partials matrix needs to be accordingly padded with trailing zeros for the derivatives of the bias
in such cases.

6.2. Single-Input Bias State Models
The simplest non-constant systematic errors are systems with a single input that is a random

process. We can think of a random process as the result of some kind of limit in which the intervals
between an uncorrelated sequence of random variables get infinitesimally small. In this limit,
each random increment instantaneously perturbs the sequence, so that the resulting process is
continuous but non-differentiable. We call this kind of a random input “process noise.”

Although such random processes are non-differentiable, there are various techniques for gen-
eralizing the concept of integration so that something like integrals of the process noise exist,
and hence so do the differentials that appear under the integral signs. It turns out that so long as
any coefficients of the process noise are non-random, these differentials behave for all practical
purposes as if they were differentiable.

6.2.1. RandomWalk The random walk is the simplest random process of the type described
above. In terms of the “formal derivatives” mentioned above, the random walk model for a mea-
surement bias is

ḃ(t) = w(t), w(t) ∼ N(0, qδ(t− s)) (6.12)
The input noise process on the right hand side is known as “white noise,” and the Dirac delta
function that appears in the expression for its variance indicates that the white noise process
consists of something like an infinitely-tightly spaced set of impulses. The term q that appears
along with the delta function is the intensity of each impulse1. The initial condition b(to) is an
unbiased random constant. Since b(to) and w(t) are zero-mean, then b(t) is also zero-mean for all
time. The unconditional variance of b evolves in time according to

pb(t) = pbo + q(t− to) (6.13)
which we can also write in recursive form as

pb(t+∆t) = pb(t) + q∆t (6.14)
Thus, to generate a realization of the random walk at time t, we need only generate a random
number according to N(0, pb(t)). Equivalently, we could also generate realizations of ϖ(t) ∼
N(0, q∆t), and recursively add these discrete noise increments to the bias as follows:

b(t+∆t) = b(t) +ϖ(t) (6.15)
Note that the unconditional variance becomes infinite as t becomes infinite. This could lead to

an overflow of the representation of pb if q is large in the following circumstances: in a long gap
between measurements, if the bias is unobservable, or if the bias is a consider parameter. These are
all somewhat undesirable characteristics for application in a sequential navigation filter. However,
because the process is persistently stimulated by the input, its variance conditioned on a measure-
ment history will remain positive for all time. Hence the random walk finds frequent application

1Another way to imagine the input sequence, in terms of a frequency domain interpretation, is that it is a noise
process whose power spectral density, q, is non-zero at all frequencies, which implies infinite bandwidth.
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in sequential navigation filters, particularly when continuous measurements from which the bias
is observable are generally available, such as often occurs for GPS data.

6.2.2. Random Run The random run model assumes that the rate of change of the bias is
itself a random walk; thus the random run model is

b̈(t) = w(t), w(t) ∼ N(0, qδ(t− s)) (6.16)

The initial condition ḃ(to) is a random constant. For a pure random run, the initial condition on
b(to) and its covariance are taken to be zero, but an obvious and common generalization is to allow
b(to) to also be a random constant.

It is convenient to write this model as a first-order vector system as follows:[
ḃ(t)

b̈(t)

]
=

[
ḃ(t)

ḋ(t)

]
=

[
0 1
0 0

] [
b(t)
d(t)

]
+

[
0
1

]
w(t) (6.17)

ẋ(t) = Ax(t) +Bw(t) (6.18)
The measurement partial is the same as for the random ramp. The initial condition x(to) is an
unbiased random constant. Since x(to) and w(t) are zero-mean, then x(t) is also zero-mean for all
time. The covariance evolves in time according to

Px(t) = Φ(t− to)PxoΦ
T(t− to) + S(t− to) (6.19)

where
Φ(t− to) =

[
1 t
0 1

]
and Pxo =

[
pbo 0
0 pḃo

]
(6.20)

and
S(t) = q

[
t3/3 t2/2
t2/2 t

]
(6.21)

which we can also write in recursive form as
Px(t+∆t) = Φ(∆t)Px(t)Φ

T(∆t) + S(∆t) (6.22)
Thus, we can generate realizations of the random run with eitherx(t) ∼ N(0,Px(t)) or recursively
from

x(t+∆t) = Φ(∆t)x(t) +ϖ(t) (6.23)
where ϖ(t) ∼ N(0,S(∆t)) is a noise sample vector arising from formal integration of the scalar
noise input process over the sample time. A Cholesky decomposition of S(t) useful for sampling
is

C
√

S(t) =

[√
3t3/3 0√
3t/2

√
t/2

]
(6.24)

Note that the norm of the unconditional covariance becomes infinite as t3 becomes infinite,
and the process is persistently stimulated by the input, so its covariance conditioned on a mea-
surement history will remain positive definite for all time. Hence, the random run shares similar
considerations with the random walk for application in sequential navigation filters.

6.2.3. Higher-Order Derivatives of Random Walks In principle, a random walk may be
associated with any derivative of the bias in a straightforward extension of the models above. In
practice, it is rare to need more than two or three derivatives. Conventional terminology does not
appear in the literature for derivatives of higher order than the random run. A “drift random run”
would be one way to describe a bias whose second derivative is a random walk. Below, we will
refer to such a model as a “random zoom.”
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6.2.4. First-Order Gauss-Markov The first-order Gauss-Markov (FOGM) process is one of
the simplest random processes that introduces time correlation between samples. In terms of a
frequency domain interpretation, we can view it as white noise passed through a low-pass filter.
Since such noise, often called “colored noise,” has finite bandwidth, it is physically realizable, unlike
white noise. In the notation of formal derivatives, the FOGM model is

ḃ(t) = −1

τ
b(t) + w(t), (6.25)

where, as with the random walk, b(to) ∼ N(0, pbo), andw(t) ∼ N(0, qδ(t−s)). The time constant,
τ gives the correlation time, or the time over which the intensity of the time correlation will fade
to 1/ e of its prior value2. Note that as τ →∞, the FOGM approximates a random walk.

Since b(to) and w(t) are zero-mean, then b(t) is also zero-mean for all time. The covariance
evolves in time according to

pb(t) = e−
2
τ
(t−to) pbo + s(t− to) (6.26)

where
s(t− to) =

qτ

2

(
1− e−

2
τ
(t−to)

)
(6.27)

which we can also write in recursive form as

pb(t+∆t) = e−
2∆t
τ pb(t) + s(∆t) (6.28)

Thus, to generate discrete samples of a particular realization of the FOGM, we can either generate
samples from b(t) ∼ N(0, pb(t)), or generate a realization of the initial bias value, and then at
each sample time generate realizations of ϖ(t) ∼ N(0, s(∆t)), and recursively add these discrete
noise sample increments to the bias sample history as follows:

b(t+∆t) = e−
∆t
τ b(t) +ϖ(t) (6.29)

Note that pb approaches a finite steady-state value equal to qτ/2 as t becomes infinite. One
can choose the parameters of the FOGM so that this steady-state value avoids any overflow of the
representation of pb in a computer program, and such that the FOGM’s covariance evolution prior
to reaching steady-state closely mimics that of a random walk. For these reasons, the FOGM is
recommended as a best practice for bias modeling in sequential navigation filters.

6.2.5. Integrated First-Order Gauss-Markov Model As with the random walk and ran-
dom constant models, any number of derivatives of the bias may be associated with a FOGM pro-
cess. However, integration of the FOGM destroys its stability. For example, the singly integrated
first-order Gauss-Markov model is given by[

ḃ(t)

ḋ(t)

]
=

[
0 1
0 −1/τ

] [
b(t)
d(t)

]
+

[
0

w(t)

]
, (6.30)

which leads to the following state transition matrix,

Φ(t) =

[
1 τ

(
1− e−t/τ

)
0 e−t/τ

]
, (6.31)

2One sometimes sees τ described as the “half-life,” but since 1/ e < 1/2, this is not an accurate label.
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and process noise covariance3,

S(t) =
qτ

2

[
τ2
{(

1− e−2t/τ
)
− 4

(
1− e−t/τ

)
+ 2t/τ

}
τ
(
1− e−t/τ

)2
τ
(
1− e−t/τ

)2 (
1− e−2t/τ

) ]
. (6.32)

Clearly, this is an unstable model, as the bias variance increases linearly with elapsed time. As an
alternative, the following second-order model is available.

6.2.6. Second-Order Gauss-Markov The model for a second-order Gauss-Markov (SOGM)
random process is

b̈(t) = −2ζωnḃ(t)− ω2
nb(t) + w(t), w(t) ∼ N(0, qδ(t− s)) (6.33)

The initial conditions b(to) and ḃ(to) are random constants. It is convenient to write this model
as a first-order vector system as follows:[

ḃ(t)

b̈(t)

]
=

[
ḃ(t)

ḋ(t)

]
=

[
0 1
−ω2

n −2ζωn

] [
b(t)
d(t)

]
+

[
0
1

]
w(t) (6.34)

ẋ(t) = Ax(t) +Bw(t) (6.35)

The measurement partial is the same as for the random ramp. The initial condition x(to) is an
unbiased random constant vector. Since x(to) and w(t) are zero-mean, then x(t) is also zero-mean
for all time.

The covariance evolves in time according to

Px(t) = Φ(t− to)PxoΦ
T(t− to) + S(t− to) (6.36)

which we can also write in recursive form as

Px(t+∆t) = Φ(∆t)Px(t)Φ
T(∆t) + S(∆t) (6.37)

Thus, we can generate realizations of the SOGM with either x(t) ∼ N(0,Px(t)) or recursively
from

x(t+∆t) = Φ(∆t)x(t) +ϖ(t) (6.38)
where ϖ(t) ∼ N(0,S(∆t)).

For the underdamped case (ζ < 1), the state transition matrix and discrete process noise
covariance are given by Reference 86:

Φ(t) =
e−ζωnt

ωd

[
(ωd cosωdt+ ζωn sinωdt) sinωdt

−ω2
n sinωdt (ωd cosωdt− ζωn sinωdt)

]
(6.39)

and

S(1,1)(t) =
q

4ζω3
n

[
1− e−2ζωnt

w2
d

(ω2
d + 2ζωnωd cosωdt sinωdt+ 2ζ2ω2

n sin
2 ωdt)

]
(6.40)

S(2,2)(t) =
q

4ζωn

[
1− e−2ζωnt

w2
d

(ω2
d − 2ζωnωd cosωdt sinωdt+ 2ζ2ω2

n sin
2 ωdt)

]
(6.41)

S(1,2)(t) =
q

2ω2
d

e−2ζωnt sin2 ωdt, (6.42)

S(2,1)(t) = S(1,2)(t) (6.43)

3Note that (6.32) corrects an error in Reference 14.
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where ωd = ωn

√
1− ζ2. In the over-damped case (ζ > 1), replace sin and cos with sinh and cosh,

respectively. In the critically-damped case,

Φ(t) =

[
e−ωnt(1 + ωnt) t e−ωnt

−ω2
nt e

−ωnt e−ωnt(1− ωnt)

]
(6.44)

and
S(1,1)(t) =

q

4ω3
n

[
1− e−2ωnt(1 + 2ωnt+ 2ω2

nt
2)
]

(6.45)

S(2,2)(t) =
q

4ωn

[
1− e−2ωnt(1− 2ωnt+ 2ω2

nt
2)
]

(6.46)

S(2,1)(t) = S(1,2)(t) =
qt2

2
e−2ωnt (6.47)

Note that for any damping ratio, ∥Px∥ remains finite, since as t→∞,

Px(t→∞) =
q

4ζωn

[
1/ω2

n 0
0 1

]
. (6.48)

Thus, the ratio of the steady-state standard deviations of the bias and drift will be
σd
σb

= ωn, (6.49)

and these are related to the power spectral density by

q = 4ζ
σ3d
σb
. (6.50)

Hence, we can choose the parameters of the SOGM so that we avoid any overflow, loss of symmetry
and/or positive definiteness of Px due to roundoff and/or truncation. For these reasons, the SOGM
is recommended as a best practice for bias drift modeling in sequential navigation filters.

6.2.7. VasicekModel A criticism of the FOGM process is that as t→∞, E[b(t)]→ 0. In the
filtering context, this implies that a data outage that is long relative to the time constant, τ , can
result in the filter’s bias estimate decaying toward zero, which may be undesirable. To address this
concern, Seago et al. [77] proposed that biases the filter should retain across such outages might
be modeled instead with a model proposed by Vasicek [85] for modeling interest rates:

ḃ(t) = −1

τ
(b(t)− b∞) + w(t), (6.51)

where, as previously, b(to) ∼ N(0,Pbo), and w(t) ∼ N(0, qδ(t− s)). A formal solution to (6.51)
gives

b(t) = b(to) e
− t−to

τ +b∞(1− e−
t−to
τ ) +

∫ t

to

e−
s
τ w(s) ds (6.52)

Since b(to) and w(t) are zero-mean, then

E[b(t)] = b∞(1− e−
t−to
τ ) (6.53)

and E[b(t)] = b∞ as t→∞. Since E[b(t)]2 is subtracted from E
[
b(t)2

]
to get the covariance, the

covariance evolves in time identically to the FOGM,

pb(t) = e−
2
τ
(t−to) pbo + s(t− to) (6.54)

where as before
s(t− to) =

qτ

2

(
1− e−

2
τ
(t−to)

)
(6.55)
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Thus, to generate a realization of the Vasicek Model at particular time t, we could generate a
realization of the initial bias value, and then at each sample time generate realizations of ϖ(t) ∼
N(0, s(∆t)), and recursively add these discrete noise sample increments to the bias sample history
as follows:

b(t+∆t) = b(t) e−
∆t
τ +b∞(1− e−

∆t
τ ) +ϖ(t) (6.56)

or we could generate a random realization of N(0, pb(t)) and add this to b∞(1− e−
t−to
τ ).

To configure or “tune” the Vasicek model, one chooses the time constant τ and the noise PSD
q in a manner analogous to the FOGM process; it is less clear how one might choose b∞. Seago
et al. [77] proposed that b∞ be estimated as a random constant filter state. Casting the Vasicek
model into such a two-state form results in the following model:[

ḃ(t)

ḃ∞

]
=

[
−1/τ 1/τ
0 0

] [
b(t)
b∞

]
+

[
w(t)
0

]
, (6.57)

which leads to the following state transition matrix and process noise covariance:

Φ(t) =

[
e−t/τ 1− e−t/τ

0 1

]
, S(t) =

[
qτ
2

(
1− e−

2t
τ

)
0

0 0

]
. (6.58)

While the Vasicek Model shares with the FOGM the desirable feature that pb → qτ/2 as
t → ∞, in the two-state form just described, it also has the undesirable feature that the variance
of b∞ goes to zero as t → ∞. Modeling b∞ with process noise, e.g. as a random walk with PSD
of q∞, introduces an unstable integral of the process noise as occurs for the integrated FOGM:

S(t) =

q∞ (t− 3τ
2 + 2τ e−

t
τ − τ

2 e
− 2t

τ

)
+ qτ

2

(
1− e−

2t
τ

)
q∞t− q∞τ

(
1− e−

t
τ

)
q∞t− q∞τ

(
1− e−

t
τ

)
q∞t

 , (6.59)

although choosing q∞ appropriately small may mitigate this concern. In any case, retaining a
steady-state bias across long data gaps may not always be warranted, depending on the context.
And if long measurement gaps are not present, the need to retain such a bias, with the accom-
panying complexity of maintaining an additional state, may not be necessary. We will consider
further such multi-input bias models in the sequel.

6.3. Multi-Input Bias State Models
We may combine any of the above models to create multi-input bias models; for example the

bias could be a second-order Gauss-Markov, and the bias rate could be a first-order Gauss-Markov.
In practice, the most useful combinations have been found to be the following.

6.3.1. Bias and Drift RandomWalks (RandomWalk + RandomRun) A common model
for biases in clocks, gyros, and accelerometers is that the bias is driven by both its own white noise
input, and also by the integral of the white noise of its drift. Such models derive from observations
that the error magnitudes of these devices depend on the time scale over which the device is ob-
served. They are often characterized by Allan deviation specifications, which may be heuristically
associated with the white noise power spectral densities. The model is as follows:[

ḃ(t)

ḋ(t)

]
=

[
0 1
0 0

] [
b(t)
d(t)

]
+

[
1 0
0 1

] [
wb(t)
wd(t)

]
(6.60)

ẋ(t) = Ax(t) +Bw(t) (6.61)
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The measurement partial is the same as for the random ramp. The initial condition x(to) is an
unbiased random constant. Since x(to) and w(t) are zero-mean, then x(t) is also zero-mean for all
time. The covariance evolves in time according to

Px(t) = Φ(t− to)PxoΦ
T(t− to) + S(t− to) (6.62)

where
Φ(t) =

[
1 t
0 1

]
and Pxo =

[
pbo 0
0 pḃo

]
(6.63)

and
S(t) =

[
qbt+ qdt

3/3 qdt
2/2

qdt
2/2 qdt

]
(6.64)

which we can also write in recursive form as
Px(t+∆t) = Φ(∆t)Px(t)Φ

T(∆t) + S(∆t) (6.65)
Thus, we can generate realizations of the random run with either x(t) ∼ N(0,Px(t)) or recur-
sively from

x(t+∆t) = Φ(∆t)x(t) +ϖ(t) (6.66)
where ϖ(t) ∼ N(0,S(∆t)). Note that a Cholesky decomposition of S(t) is

C
√
S(t) =

[√
qbt+ qdt3/12

√
qdt3/2

0
√
qdt

]
(6.67)

As with its constituent models, the norm of the unconditional covariance becomes infinite as
t3 becomes infinite, while the process is persistently stimulated by the input, so its covariance
conditioned on a measurement history will remain positive definite for all time. Hence, this model
shares similar considerations with its constituents for application in sequential navigation filters.

6.3.2. Bias, Drift, andDriftRate RandomWalks (RandomWalk +RandomRun +Ran-
dom Zoom) Another model for biases in very-high precision clocks, gyros, and accelerometers is
that the bias is driven by two integrals of white noise in addition to its own white noise input. Such
models are often characterized by Hadamard deviation specifications, which may be heuristically
associated with the white noise power spectral densities. The model is as follows:ḃ(t)ḋ(t)

d̈(t)

 =

0 1 0
0 0 1
0 0 0

b(t)d(t)

ḋ(t)

+

1 0 0
0 1 0
0 0 1

wb(t)
wd(t)
wḋ(t)

 (6.68)

ẋ(t) = Ax(t) +Bw(t) (6.69)
The resulting output equation is

e =
[
1 0 0

]
x+ v (6.70)

= Hx+ v (6.71)
The initial condition x(to) is an unbiased random constant. Since x(to) and w(t) are zero-mean,
then x(t) is also zero-mean for all time. The covariance evolves in time according to

Px(t) = Φ(t− to)PxoΦ
T(t− to) + S(t− to) (6.72)

where

Φ(t) =

1 t t2/2
0 1 t
0 0 1

 and Pxo =

pbo 0 0
0 pdo 0
0 0 pḋo

 (6.73)
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and

S(t) =

qbt+ qdt
3/3 + qḋt

5/5 qdt
2/2 + qḋt

4/8 qḋt
3/6

qdt
2/2 + qḋt

4/8 qdt+ qḋt
3/3 qḋt

2/2
qḋt

3/6 qḋt
2/2 qḋt

 (6.74)

which we can also write in recursive form as

Px(t+∆t) = Φ(∆t)Px(t)Φ
T(∆t) + S(∆t) (6.75)

Thus, we can generate realizations of the random run with either x(t) ∼ N(0,Px(t)) or recur-
sively from

x(t+∆t) = Φ(∆t)x(t) +ϖ(t) (6.76)

where ϖ(t) ∼ N(0,S(∆t)). Note that a Cholesky decomposition of S(t) is

C
√

S(t) =


√
qbt+ qdt3/12 + qḋt

5/720 t/2
√
qdt+ qḋt

3/12 t2/6
√
qḋt

0
√
qdt+ qḋt

3/12 t/2
√
qḋt

0 0
√
qḋt

 (6.77)

Similar to its constituent models, the norm of the unconditional covariance becomes infinite
as t5 becomes infinite, while the process is persistently stimulated by the input, so its covariance
conditioned on a measurement history will remain positive definite for all time. Hence, this model
shares similar considerations with its constituents for application in sequential navigation filters.

6.3.3. Bias and Drift Coupled First- and Second-Order Gauss-Markov The following
model provides a stable alternative, developed in Reference 14, to the “Random Walk + Random
Run” model. Note that the following description corrects a sign error in the process noise cross-
covariance results of the cited work. The transient response of the stable alternative can be tuned
to approximate the Random Walk + Random Run model, and its stable steady-state response can
be used to avoid computational issues with long propagation times, observability, consider states,
etc. Although this model has received limited application as of the time of this writing, due to
its stability, it shows promising potential to evolve into a best practice for sequential navigation
filtering applications.

The coupled first- and second-order Gauss-Markov model is as follows.[
ḃ(t)

ḋ(t)

]
=

[
−1/τ 1
−ω2

n −2ζωn

] [
b(t)
d(t)

]
+

[
1 0
0 1

] [
wb(t)
wd(t)

]
(6.78)

ẋ(t) = Ax(t) +Bw(t) (6.79)

The measurement partial is the same as for the random ramp. The initial condition x(to) is an
unbiased random constant. Since x(to) and w(t) are zero-mean, then x(t) is also zero-mean for all
time. The covariance evolves in time according to

Px(t) = Φ(t− to)PxoΦ
T(t− to) + S(t− to) (6.80)

where

Φ(t) =
eηt

ν

[
ν cos νt+ (η + 2ζωn) sin νt sin νt

−ω2
n sin νt ν cos νt+ (η + β) sin νt

]
(6.81)
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with

β = 1/τ, (6.82)

η = −1

2
(β + 2ζωn) , (6.83)

ν =

√
ω2
d + βζωn −

1

4
β2, (6.84)

ωd = ωn

√
1− ζ2 (6.85)

and we assume that ν2 > 0. Let

κ = −β
2
+ ζωn

Then, the process noise covariance is given by the following:

S(1,1)(t) = qb

[
e2ηt−1
4η

(
1 +

κ2

ν2

)
+

e2ηt sin 2νt

4(η2 + ν2)

(
ν2 − κ2 + ηκ

ν

)
+
e2ηt cos 2νt− 1

4(η2 + ν2)

(
ην2 − ηκ2 + 2ν2κ

ν2

)]
+
qd
ν2

(
e2ηt−1
4η

− e2ηt(ν sin 2νt+ η cos 2νt)− η
4(η2 + ν2)

) (6.86)

S(2,2)(t) = qd

[
e2ηt−1
4η

(
1 +

κ2

ν2

)
+

e2ηt sin 2νt

4(η2 + ν2)

(
ν2 − κ2 + ηκ

ν

)
+
e2ηt cos 2νt− 1

4(η2 + ν2)

(
ην2 − ηκ2 + 2ν2κ

ν2

)]
+
qbω

4
n

ν2

(
e2ηt−1
4η

− e2ηt(ν sin 2νt+ η cos 2νt)− η
4(η2 + ν2)

) (6.87)

S(1,2)(t) =
qbω

2
n

ν2

[
κ

4η

(
1− e2ηt

)
+

e2ηt
[
(νκ− ην) sin 2νt+ (ηκ+ ν2) cos 2νt

]
− (ηκ+ ν2)

4(η2 + ν2)

]

+
qd
ν2

[
κ

4η

(
1− e2ηt

)
+

e2ηt
[
(ην + νκ) sin 2νt+ (ηκ− ν2) cos 2νt

]
− (ηκ− ν2)

4(η2 + ν2)

]
(6.88)

S(2,1)(t) = S(1,2)(t) (6.89)

Examining the solution given above, we see that the parameter η governs the rate of decay of
all of the exponential terms. Therefore, we define the “rise time” as that interval within which the
transient response of the covariance will reach a close approximation to the above steady-state
value; thus, we define the rise time as follows:

tr = −
3

η
(6.90)

Next, we note that all of the trigonometric terms are modulated by 2ν; thus we may view this
value as a characteristic damped frequency of the coupled system. The period of the oscillation,
Π, is then

Π = π/ν (6.91)
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In the limit as t → ∞, all the exponential terms in the analytical solution die out, so that the
steady-state value of the covariance simplifies to:

P(∞) = − 1

4η(η2 + ν2)

[
qd + (2η2 + ν2 + κ2 − ηκ)qb qbω

2
n(η − κ)− qd(η + κ)

qbω
2
n(η − κ)− qd(η + κ) (2η2 + ν2 + κ2 + ηκ)qd + qbω

4
n

]
(6.92)

which may be expressed in terms of the original parameters as

P(∞) =
1

4ωn(ωn + 2βζ)(ζωn + β/2)

·
[
qd + (ω2

n + 2βζωn + 4ζ2ω2
n)qb qdβ − 2ζω3

nqb
qdβ − 2ζω3

nqb (ω2
n + 2βζωn + β2)qd + ω4

nqb

] (6.93)



CHAPTER 7

State Representations

Contributed by J. Russell Carpenter and Christopher N. D’Souza

This Chapter discusses state representation, primarily for translations; attitude representations are
discussed in Chapter 9.

7.1. Selection of Solve-For State Variables for Estimation
As has been discussed in Chapter 3, it not good practice to include unobservable states in

the EKF solve-for vector, particularly if this introduces unstable dynamical modes. Nonetheless,
during the early stages of designing a navigation filter, it may not be clear to the designer which
states to include. There are essentially two approaches to addressing this question, which we may
describe as the additive and subtractive methods. With the additive approach, one begins with the
smallest possible set of states, adding additional models as one deems them necessary. The problem
with this approach is essentially that it is not possible to foresee how additional states will affect
the system until they are added; one cannot analyze the sensitivity of the filter’s performance to
states which are not present in the analysis. The preferred, subtractive, approach is instead to
start with a design of as high a fidelity as practical, including even modes which one may suspect
are unobservable and possibly destabilizing. A designer may then readily perform sensitivity and
covariance analysis [27,60] to winnow the solve-for state to as parsimonious a set of observable
states as needed to achieve design requirements.

7.2. Units and Precision
In the early days of ground-based orbit determination, canonical units were preferred due to

the limited word lengths that were available for computation. Factorized filtering methods largely
eliminated the need for canonical units even before “modern” double-precision word lengths be-
came available in onboard processors. A renewed interest in single-precision computations has
emerged however as the desire to utilize processors based on Field Programmable Gate Arrays
has become widespread. Thus, the possibility of overflow, truncation, and roundoff errors must
still be considered. Wherever possible, filter computations, especially those involving the covari-
ance matrix (even when it is factorized!), should be done in double precision, and time should be
maintained in either two double-precision variables, or in quadruple precision if available. For
low-Earth orbit navigation in an Earth-centered frame, position/velocity units based on meters
and seconds are often adequate; for applications that may reach into cislunar space and beyond,
units based on kilometers and seconds are preferred.

7.3. Coordinate and Time Systems
For most orbital navigation applications, use of an “inertial” coordinate frame, such as the

International Celestial Reference Frame, the “J2000” (FK5) frame, etc., will be desirable, since on-
board computations utilizing navigation filter state estimates will typically most naturally occur

61
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in an inertial setting. It is usually convenient to choose a frame whose origin is at the center of
the primary gravitational body. Some missions, such as cislunar and interplanetary missions, will
occur within the Hill spheres of more than one celestial body, and some mechanism for changing
the coordinate system origin without requiring reset of the filter should be considered.

In some cases, consideration may be given to central-body-fixed frames, such as the Inter-
national Terrestrial Reference Frame, World Geodetic System of 1984, etc., particularly for appli-
cations that rely primarily on Global Navigation Satellite Systems (GNSS), and/or ground-based
tracking systems. Although integrating the equations of motion in such systems necessitates
additional calculations of Coriolis and centripetal acceleration, such calculations are relatively
trivial in comparison to the computations required to accurately maintain a transformation be-
tween central-body-fixed and inertial frames. Computations of higher-order gravity acceleration
are simplified, and maintenance of polar motion coefficients is also eliminated. Several of NASA’s
early Global Positioning System relative navigation experiments used such a formulation success-
fully [66,74]. If other onboard applications require inertial states, but are indifferent as to which
inertial frame is provided, it may be prudent to consider defining a fixed, true-of-date inertial frame
which is identical to the body-fixed frame at the initial power-up of the navigation system, and
which is henceforth related to the body-fixed frame by a simple single-axis polar rotation. Such
an approach will permit navigation in the body-fixed frame without the difficulties of maintaining
a relationship onboard the spacecraft to one of the conventional inertial frames.

With regard to time systems, navigation filter designs should strongly avoid dependence upon
discontinuous time scales, such as Coordinated Universal Time (“UTC”). While ground-based ap-
plications will generally prefer UTC, it is far easier for the mission’s ground system to manage
leap seconds than it is to robustly test and maintain discontinuous time scales in an autonomous
onboard navigation setting. The filter designer should strive to ensure that a misapplication of leap
second logic can never affect filter performance. If requirements for maintenance of UTC onboard
cannot be avoided, all such calculations should occur independently from the uniform continu-
ous time scale that the filter uses internally. Time-tagged commands that affect filter performance
should also utilize the same internal, continuous time scale.

7.4. Orbit Parameterizations
For orbital navigation applications, orbital elements are geometrically appealing as a state

representation, and there exist various “semi-analytic” theories for improving their usefulness as
ephemeris representations for real-world orbits, such as the GPS broadcast ephemeris model, two-
line elements, etc. Furthermore, long-term evolution of the orbital error covariance more natu-
rally occurs in element representations, which may be especially relevant to conjunction analysis.
However, NASA’s experience has been that Cartesian parameters generally offer computational ef-
ficiencies for high-fidelity measurement and dynamics models, including for the Jacobian matrices
required in estimation algorithms. Cartesian coordinates are also free of singularities.

7.5. Relative State Representations
Although the subject of this Section implies the need for relative state knowledge, it is not

necessarily the case that this implies estimation of the relative states directly. For example, if
each spacecraft’s only sensor is a GNSS receiver, and there is no method for exchanging the GNSS
data between spacecraft, then each satellite’s measurement errors will be largely uncorrelated,
assuming that errors in the GNSS constellation data are minimal. Furthermore, there may be
no common sources of dynamical error, such as might arise from common yet imperfect models
of atmospheric density for low Earth orbiters. In such cases, mission requirements may be met
simply be performing isolated state estimation onboard each satellite, and simply differencing the
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estimated state vectors. In such cases, the covariance of the relative state error between any two
spacecraft is given by

Prel = E[(e2 − e1)(e2 − e1)T]
= P1 + P2 (7.1)

where ei denotes the estimation error for spacecraft i, since (by assumption) E[e1eT2] = 0. For
many other applications, either the measurements or the dynamics or both will induce a cor-
relation structure, making it necessary to simultaneously estimate some combination of Earth-
centered (a.k.a. “absolute” or “inertial”) states and spacecraft-to-spacecraft relative states. The
choice of state representation and associated dynamical model for each application can have sig-
nificant impacts on efficiency and accuracy, and requires careful consideration.

Aside from the choice of orbit parameterization, there are at least three choices for estimating
a relative orbit. The most obvious choice is to solve directly for the differences between the param-
eters chosen for the orbit representation; that is, to solve for relative position and relative velocity,
or relative orbital elements. In some contexts, such as nearly circular orbits, efficient dynamics,
such as the linear time-invariant Hill-Clohessy-Wilshire model [17,34], become available with a
choice to solve directly for relative Cartesian states. In many other contexts, higher fidelity may
be required, and furthermore, models for drag, solar radiation pressure, the ephemerides of other
gravitational bodies, etc. may require knowledge of the Earth-centered (Cartesian) state of one
or more of the spacecraft. In such cases, the estimator may solve for a combination of pure abso-
lute/inertial states, or some combination of absolute and relative states. The architecture originally
developed for NASA’s Apollo missions was the former “dual-inertial” formulation [63]. While the
absolute/relative formulation may appear to be mathematically equivalent, computational con-
siderations may choose one or the other to be favored in various application contexts. A gen-
eral observation is that the dual-inertial formulation may be favorable for computations involving
the state and state error covariance, and for “absolute” measurements such as undifferenced GPS
pseudorange, while the absolute/relative formulation may be favorable for computations involv-
ing satellite-to-satellite relative measurements. Reference [63] provides a comprehensive mathe-
matical description of the dual-inertial formulation in the context of relative range, Doppler, and
bearing measurements that one may easily adapt to any other measurement types.

7.5.1. Dual Inertial State Representation Here, we consider only two spacecraft, but the
results are easily generalized. Let xi = [rTi , v

T
i ]

T, i = 1, 2 denote the true state of spacecraft i,
with ri, vi the position and velocity vectors expressed in non-rotating coordinates centered on the
primary central gravitational body. Based on mission requirements, any appropriate fidelity of
dynamics may be directly utilized, e.g.

ẋi =

[
vi

− µ
∥ri∥3 ri +

∑
j fj

]
(7.2)

where the specific forces fj may include thrust, higher-order gravity, drag, solar radiation pressure,
gravity from non-central bodies such as the moon and the sun, etc.

Let ei = x̂i − xi, where x̂i is an estimate for the state of spacecraft i. Then, the error in the
state estimate x̂ = [x̂T

1, x̂
T
2]

T is e = [eT1, e
T
2]

T, and the error covariance is

P = E[eeT] =

[
P1 P12

P T
12 P2

]
(7.3)
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Any linear unbiased estimate of x will have the following measurement update equation:

x̂+ = x̂− +K(y − h(x̂−)) (7.4)

where x̂− is the value of x̂ immediately prior to incorporating the observation, y, and h(x̂−) is an
unbiased prediction of the measurement’s value. The optimal gain is

K = PHT(HPHT +R)−1 (7.5)

where R is the measurement noise covariance and H = ∂h(x)/∂x|x̂− . Partition the update as
follows: [

x̂+1
x̂+2

]
=

[
x̂−1
x̂−2

]
+

[
K1

K2

]
(y − h(x̂−)) (7.6)

=

[
x̂−1
x̂−2

]
+

[
P1H

T
1 + P12H

T
2

P T
12H

T
1 + P2H

T
2

]
(HPHT +R)−1(y − h(x̂−)) (7.7)

from which it is clear that the optimal update for the relative state x̂rel = x̂2 − x̂1 is

x̂+rel = x̂−rel + (P2H
T
2 − P1H

T
1 − P12H

T
2 + P T

12H
T
1 )(HPH

T +R)−1(y − h(x̂−)) (7.8)

with corresponding relative error covariance

Prel = P1 + P2 − P12 − P T
12 (7.9)

Noting that it must be true that h(xrel) = h(x) and hence that ∂h(xrel)/∂xrel = ∂h(x2)/∂x2 =
−∂h(x1)/∂x1, let Hrel = H2 = −H1. Then it is clear that

PrelH
T
rel = P2H

T
2 − P1H

T
1 − P12H

T
2 + P T

12H
T
1 (7.10)

and that

HrelPrelH
T
rel = HPHT (7.11)

and hence

x̂+rel = x̂−rel + PrelH
T
rel(HrelPrelH

T
rel +R)−1(y − h(x̂−rel)) (7.12)

Therefore, the dual inertial state update is mathematically (although perhaps not computationally)
equivalent to a direct update of the relative state.

Appendix C reproduces a memorandum that further details the benefits of the dual inertial
formulation.

7.5.2. Linearized Relative State Representation While it is sometimes useful to employ
a linear model of the relative dynamics, especially for close proximity operations in near-circular
orbits, there is significant benefit to casting the equations of motion in spherical coordinates. The
following derivation of the Hill-Clohessy-Wiltshire equations in spherical coordinates is derived
from notes from a lecture given by Robert H. Bishop. Let the position of a spacecraft be given by
a set of right-handed spherical coordinates

r = ρ

cosϕ sin θsinϕ
cosϕ cos θ

 (7.13)

where ρ is the distance from the central body to the spacecraft, θ is measured along some specified
great circle of the central body, and ϕ is measured along a great circle of the central body that is
normal to the former great circle, and contains the position vector, as Figure 7.1 depicts. Define
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θ

φρ

Figure 7.1. Spherical coordinates.

a state vector as follows: x = [ρ, ρ̇, θ, θ̇, ϕ, ϕ̇]. If the only force on the spacecraft is point-mass
gravity from the central body, then the equations of motion are given by

ẋ = f(x) =



ρ̇

−µ/ρ2 + ρϕ̇2 + ρθ̇2 cos2 ϕ

θ̇

−2ρ̇θ̇/ρ+ 2ϕ̇θ̇ tanϕ

ϕ̇

−2ρ̇ϕ̇/ρ− θ̇2 cosϕ sinϕ

 (7.14)

Now consider a circular reference orbit, with radius ρ∗, which is in the plane of the great circle
containing the θ coordinate. Let ω∗ =

√
µ/ρ3∗. Then, the state of an object following the circular

reference orbit at any time t > to will be x∗(t) = [ρ∗, 0, ω∗(t− to)− θo, ω∗, 0, 0]. Without loss of
generality, take θo = to = 0. Letting δx = x − x∗, linearization of (7.14) in the neighborhood of
x∗ yields

δẋ(t) =
∂f(x)

∂x

∣∣∣∣
x∗(t)

δx(t) =


0 1 0 0 0 0

3ω2
∗ 0 0 2ω∗ρ∗ 0 0

0 0 0 1 0 0
0 −2ω∗/ρ∗ 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −ω2

∗ 0

 δx(t) (7.15)

In this context, it is useful to redefine the state vector x̃ = [ρ, ρ̇, ρ∗θ, ρ∗θ̇, ρ∗ϕ, ρ∗ϕ̇] so that angles
are replaced by arc lengths. Then, the linearized equations of motion become

δ ˙̃x(t) =


0 1 0 0 0 0

3ω2
∗ 0 0 2ω∗ 0 0

0 0 0 1 0 0
0 −2ω∗ 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −ω2

∗ 0

 δx̃(t) (7.16)

If linearized relative dynamics are to be used for relative navigation in near-circular orbits,
then interpreting the motion along the orbit track, and normal to the orbit track, as arc lengths,
per the derivation above, is desirable since it will preserve the linearity of the approximation over
a much wider range than if the along-track and cross-track coordinates are taken as rectilinear
tangents to the reference orbit position.
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7.6. Modeling Inertial Components
Many onboard navigation systems employ inertial components consisting of gyros and/or ac-

celerometers. In some applications, an external algorithm will process the increments of rotational
and/or translational motion that these devices inherently measure, and produce an acceleration
vector that the filter can directly incorporate into its computation of the equations of motion.
However, it will often be the case that biases affecting these devices should be estimated by the
filter. This section describes some recommended models for such biases, as well as the computa-
tions that need to be performed to accumulate the inertial measurement unit’s (IMU) angle and
velocity increments.

7.6.1. The Gyro Model The gyro is modeled in terms of the bias, scale factor and non-
orthogonality. The IMU case frame is defined such that the x-axis of the gyro is the reference
direction with the x− y plane being the reference plane; the y- and z-axes are not mounted per-
fectly orthogonal to it (this is why we don’t have a full misalignment/nonorthogonality matrix
as we will in the accelerometer model). The errors in determining these misalignments are the
so-called non-orthogonality errors, expressed as a matrix Γ, as

Γ
∆
=

 0 0 0
γyx 0 0
γzx γzy 0


The gyro scale factor represents the error in conversion from raw sensor outputs (gyro digitizer
pulses) to useful units. In general we model the scale-factor error as a first-order Markov (or a
Gauss-Markov) process in terms of a diagonal matrix given as

Sg =

 sgx 0 0
0 sgy 0
0 0 sgz


Similarly, the gyro bias errors are modeled as as first-order vector Gauss-Markov processes as

bg =

 bgx
bgy
bgz


Finally, the gyro noise is represented by ϵg . Hence

ωC
m = (I3 + Γ+ Sg)

(
ωC + bg + ϵg

)
(7.17)

where I3 is a 3×3 identity matrix, the superscript C indicates that this is an inertial measurement
at the “box-level” expressed in case-frame co-ordinates, and ωC is the ‘true’ angular velocity in the
case frame. If we let ∆g ∆

= Γ+Sg and (I+∆g)−1 ≈ I−∆g ‡, we can express the actual angular
‡In order to evaluate (I+∆)−1 we recall the Woodbury matrix identity

(A+UCV)−1 = A−1 −A−1U
(
C−1 +VA−1U

)−1
VA−1

Using this, we obtain the following relation (with A = I, U = ∆, C = I and V = I),
(I+∆)−1 = I−∆ (I+∆)−1

which, worked recursively, yields the following approximation
(I+∆)−1 = I−∆+∆2 −∆3 +∆4 −∆5 + · · ·

Therefore, to first-order (neglecting second-order and higher terms in the above equation), we get
(I+∆)−1 ≈ I−∆
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velocity in terms of the measured angular velocity as

ωC = (I3 −∆g)ωC
m − bg − ϵg (7.18)

7.6.2. The Accumulated∆θ In order to find the accumulated angle (not as a function of the
measurement, but purely as a function of the true angular velocity), we define ∆θ as(
∆θCk

Ck−1

)
m

∆
=

∫ tk

tk−1

{
ωC
m(τ) +

1

2
ϕC
Cref × ω

C
m(τ)

}
dτ (7.19)

=

∫ tk

tk−1

{
ωC
m(τ) +

1

2

[∫ τ

tk−1

ϕ̇
C
Cref (χ) dχ

]
× ωC

m(τ)

}
dτ (7.20)

=

∫ tk

tk−1

{
ωC
m(τ) +

1

2

[∫ τ

tk−1

(
ωC
m(χ) +

1

2
ϕC
Cref × ω

C
m(χ)

)
dχ

]
× ωC

m(τ)

}
dτ

Ignoring second-order terms, we get(
∆θCk

Ck−1

)
m

=

∫ tk

tk−1

[
ωC
m(τ) +

1

2

∫ τ

tk−1

ωC
m(χ) dχ× ωC

m(τ)

]
dτ (7.21)

With this expression, we find that, by analogy, we can express
(
∆θCk

Ck−1

)
as

(
∆θCk

Ck−1

)
=

∫ tk

tk−1

[
ωC(τ) +

1

2

∫ τ

tk−1

ωC(χ) dχ× ωC(τ)

]
dτ (7.22)

7.6.3. The Accelerometer Model The accelerometer package will likely be misaligned rel-
ative to the IMU reference frame. This is due to the fact that the three accelerometers (contained
in the accelerometer package) are not mounted orthogonal to each other and these errors are ex-
pressed in terms of six different small angles as:

Ξa =

 0 ξaxy ξaxz
ξayx 0 ξayz
ξazx ξazy 0


As with the gyros, the accelerometer scale factor represents the error in conversion from raw

sensor outputs (accelerometer digitizer pulses) to useful units. In general we model the scale-factor
error as a first-order (Gauss-) Markov process in terms of a diagonal matrix given as

Sa =

 sax 0 0
0 say 0
0 0 saz


Similarly, the bias errors are modeled as first-order Gauss-Markov processes as

ba =

 bax
bay
baz


So, the accelerometer measurements, aCm are modeled as:

aCm = (I3 +Ξa) (I3 + Sa)
(
aC + ba + υa

)
(7.23)
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where I3 is a 3×3 identity matrix, the superscript C indicates that this is an inertial measurement
at the ‘box-level’ expressed in case-frame co-ordinates, and AC is the ‘true’ non-gravitational ac-
celeration in the case frame. The quantity υa is the velocity random walk, a zero-mean white
sequence on acceleration that integrates into a velocity random walk, which is the ‘noise’ on the
accelerometer output. If we assume that the errors are small, then to first-order

(I3 +Ξa) (I+ Sa) ≈ I+Ξa + Sa

So, the linear accelerometer measurements (in the case frame) are:

aCm = (I3 +Ξa + Sa)
(
aC + ba + υa

)
(7.24)

7.6.4. Accumulated∆v We note that the measured ∆v in the case frame, ∆vC
m, is mapped

to the end of its corresponding time interval by the sculling algorithm within the IMU firmware,
so that we can write (

∆vC
m

)
k
=

∫ tk

tk−1

TCk
C(t)a

C(t)
m dt (7.25)

where
(
∆vC

m

)
k

covers the time interval from tk−1 to tk (tk > tk−1) and C(t) is the instantaneous
case frame§. We recall that a transformation matrix can be written in terms of the Euler axis/angle
as

T (ϕ) = cos(ϕ)I− sinϕ

ϕ
[ϕ×] + 1− cosϕ

ϕ2
ϕϕT (7.28)

= I− sinϕ

ϕ
[ϕ×] + 1− cosϕ

ϕ2
[ϕ×] [ϕ×] (7.29)

which, for ϕ ∼ 0, can be approximated as

T (ϕ) = I− [ϕ×] (7.30)

With this in mind, TCk
C(t) = I3 −

[
θCk
C(t)×

]
, and

(
∆vC

m

)
k
, using Eq. (7.24), becomes

(
∆vC

m

)
k
=

∫ tk

tk−1

[
I3 −

[
θCk
C(t)×

]] [
(I3 +∆a)aC + ba + υa

]
dt (7.31)

We can expand this equation, neglecting terms of second-order, as follows(
∆vC

m

)
k

=

∫ tk

tk−1

[
I3 −

[
θCk
C(t)×

]]
aCdt+

∫ tk

tk−1

(ba + υa) dt

+

∫ tk

tk−1

∆aaCdt (7.32)

§Or equivalently, (
∆vB

m

)
k
=

∫ tk

tk−1

T
Bk
B(t)a

B(t)
m dt (7.26)

But since T
Bk
B(t) ≈ I3 −

[
ϕ

Bk
B(t)×

]
, we find(
∆vB

m

)
k
=

∫ tk

tk−1

[
I3 −

[
ϕ

Bk
B(t)×

]]
aB(t)
m dt (7.27)
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The first term in the above equation (Eq. (7.32)) becomes∫ tk

tk−1

[
I3 −

[
θCk
C(t)×

]]
aCdt =

(
∆vC)

k
(7.33)

and the third term becomes∫ tk

tk−1

∆aaCdt = ∆a

∫ tk

tk−1

aCdt ≈∆a
(
∆vC)

k
(7.34)

Finally, the accelerometer noise, which is a zero-mean process with spectral density Sa becomes∫ tk+1

tk

υadt = ua (7.35)

where ua is a random vector with covariance Sa(tk − tk−1). So, Eq. (7.32) becomes(
∆vC

m

)
k

= [I3 +∆a]
(
∆vC)

k
+ ba∆t+ υa∆t (7.36)

Since we have established that [I3 +∆a]−1 ≈ [I3 −∆a], and neglecting terms of second-order,(
∆vC)

k
= [I3 −∆a]

(
∆vC

m

)
k
− ba∆t− υa∆t (7.37)

The average acceleration in the case frame is

aCave =

(
∆vC)

k

∆t
(7.38)

and the average measured acceleration in the case frame is(
aCm
)
ave

=

(
∆vC

m

)
k

∆t
(7.39)

so we find that

aCave = [I3 −∆a]
(
aCm
)
ave
− ba − υa (7.40)

Recalling that the IMU measures accelerations except for gravity, total acceleration is

aI = gI(r) +
(
TI

Bref

)
k
T

Bref

B TB
C a

C
ave (7.41)

7.6.5. The Gravity Call One of the more expensive computations involving the propagation
of the trajectory with IMU data is the gravity calculation. This is particularly acute when the
gravity field used is of high order. The gravity gradient matrix requires even more computation.
Hence it goes without saying that if a way is found to minimize the gravity calls, that would
make the navigation software more tractable. Taking advantage of the fact that propagation of the
trajectory using IMU data occurs at a high rate (usually at 40 Hz or higher), we expand the gravity
vector in terms of a Taylor series about r∗ as

g(r) = g(r∗) +
∂g

∂r

∣∣∣∣
r=r∗

[r− r∗] +
1

2
[r− r∗]T

∂2g

∂r2

∣∣∣∣
r=r∗

[r− r∗] + . . . (7.42)

Knowing that the gravity gradient matrix, G, is

G(r∗) =
∂g

∂r

∣∣∣∣
r=r∗

(7.43)
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and truncating after the first-order in r, we find that
g(r) ≈ g(r∗) +G(r∗) [r− r∗] (7.44)

≈ G(r∗)r+ [g(r∗)−G(r∗)r∗] (7.45)
where now the gravity vector and the gravity gradient matrix need only to be evaluated at the
beginning of the major cycle.



CHAPTER 8

Factorization Methods

Contributed by Christopher D’Souza

Of the various covariance factorization methods∗, the UDU covariance factorization technique is
among the most commonly used covariance matrix factorization methodologies used in practice.
For example, it is implemented in the Goddard Enhanced Onboard Navigation System (GEONS),
which has flown on several robotic missions, and is the heart of the Orion Absolute Navigation
System. This chapter is intended to present the UDU triangular factorization method and the
rationale for its use.

Above all, we demonstrate that the UDU factorization results in a significant reduction in
the arithmetic operations (specifically adds and multiplies) compared with the usual (P−

k+1 =

Φ(tk, tk+1)PkΦ
T(tk, tk+1) +Qk) time update and the Joseph measurement update.

In the next section, we present some notational and preliminary operations for the matrix
factors U and D. In the section that follows, we will derive the time update equations for the
aforementioned covariance matrix factors. Next, we will derive the measurement update equations
for the covariance matrix factors. Finally, we will present some concluding comments.

8.1. Why Use the UDU Factorization?
The usual Kalman filter equations work well for rather simple problems. But once the state-

space becomes large, the condition number of the covariance matrix becomes large and nonlinear
effects begin to affect the numerical characteristics, problems such as filter divergence and non-
positive definiteness of the covariance matrix occur. These issues began to be observed almost as
soon as Kalman filters began to be used in real problems. Matrix factorization techniques were
introduced to solve (at least) some of these issues. The earliest was the Potter Square Root Factor-
ization, which was used in the on-board Apollo navigation filters.

In fact Bierman and Thornton, in a 1976 JPL Report, rather cheekily compare those who insist
on using the conventional Kalman filtering and batch least-squares algorithms (contra the ma-
trix factorization algorithms) to unrepentant smokers by describing “an attitude often encountered
among estimation practitioners [is] that they will switch to the more accurate and stable algorithms
if and when numerical problems occur. An analogy comes to mind of a smoker who promises to stop
when cancer or heart ailment symptoms are detected. To expand on the analogy, one may note the
following:

• Most smokers do not get cancer or heart disease. (Most applications of the Kalman algorithms
work.)
• Even when catastrophic illness does not occur, there is diminished health. (Even when algo-

rithms work, performance may be degraded.)

∗Other options include the Square Root Covariance Factorization and the Square Root Information Filter (SRIF).
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• Smokers can take precautions to lessen the danger, such as smoking low tar or filtered cigarettes.
(Engineers can scale their variables to reduce the dynamic range or use double-precision
arithmetic.)
• Lung cancer may not be diagnosed until it is too advanced for treatment. (Numerical prob-

lems may not be detected in time to be remedied.) ” [83]
In addition, a little advertised, but incredibly useful feature of the UDU factorization is the

ability to interrogate for the positive definiteness of the covariance matrix for ‘free’, because the
condition required for positive definiteness of P is that the entries of D are positive††.

This sets the stage for the need for the matrix factorization techniques and the UDU technique
in particular.

8.2. Preliminaries
Let us factor a covariance matrix, P, into the following form

P = UDUT (8.1)

where U is a upper triangular matrix with 1’s on the diagonals and 0’s on the lower portion of the
matrix, D is a diagonal matrix. We can write U and D compactly as

U = {uij}, i < j (8.2)
D = {dii} (8.3)

as well

uii = 1 (8.4)

It should be noted that Eq. (8.2) gives the upper triangular portion of the covariance; the lower
triangular matrix can be obtained by reflection or by evaluation of Eq. (8.2), with ulm = 0 for
l > m.

With this in hand, the off-diagonal elements of P are

pij =
n∑

k=j

uikdkkujk, i < j (8.5)

and for the diagonals we find,

pii =
n∑

k=j

u2ikdkk (8.6)

††The positive definiteness of the covariance matrix, P, can be determined by interrogating the entries of D. It
must be noted that the elements of D are not the eigenvalues of P. To see this we begin with the definition of positive
definiteness of a matrix

xTPx > 0

for any x, so that if we can factor the (symmetric) covariance matrix in terms of its eignevectors (E) and eigenvalues
(Λ) we find that

xTPx = xTEΛETx = yTΛy > 0

where y = ETx. As well, we can also factor the covariance matrix in terms of its UDU factors as

xTPx = xTUDUTx = zTDz > 0

where z = UTx. Since, in general U ̸= E, this means that D ̸= Λ and the eigenvalues of P are not the entries of D.
However, since D is a diagonal matrix, for positive definiteness of the covariance matrix we must have dii > 0.
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So, given an n×n symmetric, positive semi-definite matrix P, the unit upper triangular factor
U and the diagonal factor D (such that P = UDUT) is obtained using the following equations.
We begin with the (n, n) element and work upwards (along the columns).

The algorithm is as follows:
for j = n : −1 : 2 do

dj,j = pj,j
one over d = 0.0
if dj,j > ϵ then

one over d = 1.0/djj
else

dj,j = 0.0
end if
uj,j = 1.0
for k = 1 : j − 1 do

β = pk,j
uk,j = β · one over d
for i = 1 : k do

pi,k = pi,k − ui,j · β
end for

end for
end for

A word of caution: Maybeck [60] on page 392, rather uncharacteristically, calls the matrix
U a unitary matrix, ostensibly because there are 1’s on the diagonals. Strictly speaking a if U
were a unitary matrix, UUT = UTU = I, which is clearly not the case for the U in the UDU
factorization.

In practice, particularly when storage limitations are driving the design, the n× n matrix D,
which is a diagonal matrix comprising of non-zero entries (for a positive definite matrix P), can
be stored as a n−vector. Likewise, the matrix n× n matrix U which is upper triangular with 1’s
on the diagonal, can be stored as a n(n − 1)/2 vector. The storage savings can be particularly
significant as n increases. Of course the algorithms need to be designed to ensure that the entries
of U above the diagonal are the only ones used in the computations.

8.3. The Time Update of the Covariance
As is necessary in Kalman Filtering, we wish to propagate the UDU factorization of the covari-

ance matrix. We loosely follow Maybeck [60] in this development. First, we will pose the more
general problem and then we will specialize it for navigation problems with a large number of
sensor biases.

We begin by expressing the equations for the general time update problem. Next, we specialize
the general problem to the case where a subset of states, which we will call ‘parameters’, whose
dynamics are uncorrelated with any other state other than themselves. Finally, we present the
arithmetic operation (numbers of adds, multiplies, and divides) of the time update of the covariance
matrix.

8.3.1. The General Time Update Problem Given a state, x, that evolves according to
x(tk) = Φ(tk, tk−1)x(tk−1) +Gkwk

where wk is the process noise at time tk, where x is an n × 1 vector, and w is an m × 1 vector.
With this in hand, the general problem is as follows [82]: we wish to propagate the covariance
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matrix defined by

P(tk) = Φ(tk, tk−1)P(tk−1)Φ
T(tk, tk−1) +GkQkG

T
k (8.7)

where P is the propagated covariance (the overbar indicates a propagated quantity) and P is the
updated covariance at the prior time step, Qk is the diagonal process noise covariance matrix and
Gk is the n×m mapping matrix of the noise to the state. To save memory, since Qk and Dk are
diagonal matrices, in the implementation, we pass Qk and Dk as vectors.

We want to find the propagated factors U−
k and D−

k , such that P−
k

∆
= U−

k D
−
k U

−T

k . For com-
pactness, we now drop the time subscripts. Given the UDU factorization of covariance matrices,
we can write Eq. (8.7) as

U−
k D

−
k U

−T

k = ΦkUk−1Dk−1U
T
k−1Φ

T
k +GkQkG

T
k (8.8)

=
[
ΦkUk−1 Gk

] [ Dk−1 0
0 Qk

] [
ΦkUk−1 Gk

]T (8.9)

Since x is an n×1 vector, and w is anm×1 vector, Φk is an n×nmatrix, Gk is an n×mmatrix,
and Qk is an m×m matrix.

We recall that both U−
k and Uk−1 are n×n upper triangular matrices, with 1’s on the diagonal

and D− and D are purely diagonal matrices. So, we have some work to do on Eq, (8.9) because[
ΦkUk−1 Gk

]
is an n×(n+m) matrix and

[
Dk−1 0
0 Qk

]
is an (n+m)×(n+m) diagonal

matrix.
Defining the first matrix (

[
ΦkUk−1 Gk

]
which is an n × (n + m) matrix) on the right

hand side of Eq.(8.9) as

Y
∆
=
[
ΦkUk−1 Gk

]
(8.10)

we seek a matrix Tk that transforms Yk such that

YkT
−T

k =
[
U−

k 0n×m

]
(8.11)

where U−
k is an n×n upper triangular matrix with 1’s on the diagonal. Tk is an (n+m)×(n+m)

orthogonal matrix with (n+m)× 1 basis vectors bi, i = 1, · · · , n+m as

Tk =
[
b1 b2 b3 · · · bn bn+1 · · · bn+m

]
(8.12)

In order to find the desired matrix Tk we perform a modified weighted Gram-Schmidt orthogo-
nalization‡. We define the diagonal matrix D̃k as

D̃k
∆
=

[
Dk−1 0
0 Qk

]
(8.13)

which will be important as we define the weighted inner product in the Gram-Schmidt Orthogo-
nalization. Eq. (8.9) which was

U−
k D

−
k U

−T

k = YkD̃kY
T
k (8.14)

can now be rewritten as

U−
k D

−
k U

−T

k = YkT
−T

k

[
TT

kD̃kTk

]
T−1

k YT
k (8.15)

‡Whereas we can use a qr factorization, we specifically perform a modified weighted Gram-Schmidt factorization
specialized to the UDU factorization on the non-parameter states.
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We note that the matrix
[
TT

kD̃kTk

]
is a diagonal matrix.

“All” that remains is to find Tk. This is where we harness the power of the modified Gram-
Schmidt orthogonalization process which provides us with what we were after: U−

k and D−
k .

8.3.1.1. The Modified Gram-Schmidt Algorithm
Given the n × (n + m) matrix Yk =

[
ΦkUk−1 Gk

]
, ΦkUk−1 can be constructed taking

advantage of the structure of Uk−1 which is an upper triangular matrix with 1’s on the diagonal,
with 1

2(n
3−n2) adds and 1

2(n
3−n2) multiplies. We recall that Yk is an n×(n+m) matrix and bi

are the (n+m)× 1 basis vectors. In the following algorithm, the number of adds, multiplies and
divides as a consequence of each operation is expressed in terms of ‘[adds, multiplies, divides]’.
We only go to j = 2 because U−

11 = 1. The MGS algorithm can be expressed as:

for l = n, · · · , 2 do
bl = Yl

end for

for j = n, · · · , 2 do
f j = D̃bj [0, n(n+m), 0]
D−

jj = bT
j f j [n(n+m), n(n+m), 0]

f j = f j/D
−
jj [0, 0, (n+m)(n− 1)]

for i = 1, · · · , j − 1 do
U−

ij = bT
i f j [(n+m) (n

2−n)
2 , (n+m) (n

2−n)
2 , 0]

bi = bi −U−
ijbj [(n+m) (n

2−n)
2 , (n+m) (n

2−n)
2 , 0]

end for

U−
11 = 1

f1 = D̃b1

D−
11 = bT

1f1
end for

Thus, the algorithm not only provides the orthogonal basis vectors, bj , j = 1, · · · , nx, but it
also provides the triangular matrix factors U− and D−.

Since we are also interested in the arithmetic operations, we find that there are n3x + n2xmx

adds, nx(nx+1)(nx+mx) multiplies and (nx+mx)(nx−1)divides. For the case whenmx = 0,
i.e. no process noise, we have n3x adds and n3x + n2x multiplies and n2x − nx divides.

Finally, the entire covariance update algorithm, including the computation of Yk uses 1.5n3x+
0.5n2x(2mx−1) adds, 0.5n2x(3nx+1)+nxmx(nx+1) mulitplies and (nx+mx)(nx−1) divides.

The Modified Gram-Schmidt orthogonalization process makes no assumptions regarding the
structure of Φ. For a large number of states (say, nx = 35 with process noise inputs, mx = 35),
most of which might be biases (or Gauss Markov processes), much of this is wasted considering
the sparseness of Φ. In Appendix B.1, we show that we use [n3x + n2xmx] adds and [nx(nx +
1)(nx + mx)] multiplies to obtain U−

k and D−
k . For nx = 35 and mx = 35, we require 85,750

adds and 88,200 multiplies – quite a large number of computations. We can stop here and all will
be well – if we are willing to pay the heavy computational price.
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But we can do better! We can vastly improve (reduce) on the number of computations by
partitioning the original state vector into ‘states’ and ‘parameters’, where the parameters will be
modeled as first-order Gauss-Markov processes. Unlike the parameters, the states can vary in any
manner. This motivates the next section.

8.3.2. An Improvement for the Case of Parameters As stated earlier, for a large number
of states (say, nx = 35), the UDU time update for the full covariance matrix (à la Gram-Schmidt
orthogonalization) is computationally expensive, requiring 2n3x + 2n2x multiplies and additions.
This is not competitive with the “standard” (P−

k+1 = Φ(tk, tk+1)P
+
k Φ

T(tk, tk+1) + GkQkG
T
k)

formulation (which uses 2n3x multiplies). However, one might guess that an improvement can be
made. This is particularly significant because, normally, most of the states are biases or ECRVs
(Exponentially Correlated Random Variables) or first-order Gauss-Markov processes. In order to
generalize the development, we assume ECRVs for the ‘parameter’ (or bias) states.

For most space-borne navigation applications, we can usually partition the states into position,
velocity, attitude (if applicable) and clock states, all of which we group together and denote as x,
and parameter states which usually comprise the sensor biases, scale factors, etc., which we denote
as p. This means that the full state space is

X =

[
x
p

]
(8.16)

The ‘states’ partition must comprise all those quantities whose time evolution cannot be described
as purely self-auto correlated processes. With this in hand, we partition U and D as

U =

[
Uxx Uxp

0 Upp

]
D =

[
Dxx 0
0 Dpp

]
(8.17)

Also, partition Φk according to

Φ(tk+1, tk) = Φk =

[
Φxxk

Φxpk

0 M

]
=

[
I 0
0 M

] [
Φxxk

Φxpk

0 I

]
= Φ2kΦ1k (8.18)

where M is a diagonal matrix, representing an ECRV whose propagation for pk is

p−k = e−∆t/τp+k−1 (8.19)
so that

M(i, i) = mi = e−∆t/τi (8.20)

where τi is the time constant of the ith ECRV state.
Likewise Qk is partitioned according to

Qk =

[
Gxxk

Qxxk
GT

xxk
0

0 Qppk

]
=

[
GxxkQxxk

GT
xxk

0
0 0

]
+

[
0 0
0 Qppk

]
= Q1k

+Q2k
(8.21)

where we assume that the parameters are ECRVs and hence Qpp is a diagonal matrix.
Recall that the original propagation equation was

U−
k+1D

−
k+1U

−T

k+1 = ΦkU
+
k D

+
k U

+T

k ΦT
k +GkQkG

T
k (8.22)

Harnessing the development in Appendix B.1, U−
k+1D

−
k+1U

−T

k+1 becomes

U−
k+1D

−
k+1U

−T

k+1 = Φ2k

[
Φ1kU

+
k D

+
k U

+T

k ΦT
1k

+Q1k

]
ΦT

2k
+Q2k

(8.23)
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This suggests the following two-step process:
1) Find Ũ and D̃ from

ŨkD̃kŨ
T

k = Φ1kU
+
k D

+
k U

+T

k ΦT
1k

+Q1k
(8.24)

2) Find U−
k+1 and D−

k+1 from

U−
k+1D

−
k+1U

−T

k+1 = Φ2kŨkD̃kŨ
T

kΦ
T
2k

+Q2k
(8.25)

The following sub-sections will describe each of these steps.

8.3.2.1. The First Sub-Problem (Φ1kU
+
k D

+
k U

+T

k ΦT
1k

+Q1k
)

Lets look at 1). The left hand side of Eq. (8.24) is

ŨkD̃kŨ
T

k =

[
Ũxxk

D̃xxk
Ũ

T

xxk
+ Ũxpk

D̃ppk
Ũ

T

xpk
ŨxpkD̃ppk

Ũ
T

ppk

Ũppk
D̃ppk

Ũ
T

xpk
Ũppk

D̃ppk
Ũ

T

ppk

]
(8.26)

The right hand side of Eq. (8.24) is

ŨkD̃kŨ
T

k =



Φxxk

(
U+

xxk
D+

xxU
+T
xxk

+U+
xpk

D+
ppk

U+T
xpk

)
ΦT

xxk
| Φxxk

U+
xpk

D+
ppk

U+T
ppk

+Φxxk
U+

xpk
D+

ppk
U+T

ppk
ΦT

xpk
| +Φxpk

U+
ppk

D+
ppk

U+T
ppk

+Φxpk
U+

ppk
D+

ppk
U+T

xpk
ΦT

xxk
|

+Φxpk
U+

ppk
D+

ppk
U+T

ppk
ΦT

xpk
+Qxxk

|
− − −−−−−−−−−−−−−− | − −−−−−−−

U+
ppk

D+
ppk

U+T
xpk

ΦT
xxk

+U+
ppk

D+
ppk

U+T
ppk

ΦT
xpk

| U+
ppk

D+
ppk

U+T
ppk


(8.27)

Equating each component of the matrix in Eqs (8.26) and (8.27), we find that the (2, 2) com-
ponent yields

Ũppk
= U+

ppk
(8.28)

D̃ppk
= D+

ppk
(8.29)

Equating the (1, 2) (or (2, 1)) component yields

Ũxpk
= Φxxk

U+
xpk

+Φxpk
U+

ppk
(8.30)

Finally, equating the (1, 1) components of Eqs. (8.26) and (8.27), and using Eqs. (8.28), (8.29) and
(8.30), we find that

Ũxxk
D̃xxk

Ũ
T

xxk
= Φxxk

U+
xxk

D+
xxk

U+T
xxk

ΦT
xxk

+Qxxk
(8.31)

Since we have partitioned the states such that x comprises the position, velocity, attitude and
clock states (or others, as appropriate), we use the modifiedGram-Schmidt algorithm to update
Ũxxk

and D̃xxk
. And then we compute Ũppk

, D̃ppk
and Ũxpk

according to Eqs. (8.28) - (8.30).
Thus, given nx states withmx process noise parameters associated with those states, the num-

ber of computations associated with the the first sub-problem is: [1.5n3x +0.5n2x(2mx − 1)] adds,
[0.5n2x(3nx + 1) + nxmx(nx + 1)] multiplies, and [(nx +mx)(nx − 1)] divides.
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8.3.2.2. The Second Sub-Problem (Φ2kŨkD̃kŨ
T

kΦ
T
2k

+Q2k
)

Now we look at 2). We now partition Ũk and D̃k as

Ũk =

 Ũaak
Ũabk Ũack

0 1 Ũbck

0 0 Ũcck

 }na} 1
}nc

and D̃k =

 D̃aak
0 0

0 d̃bk 0

0 0 D̃cck

 }na} 1
}nc

(8.32)

in order to isolate a parameter. Correspondingly,

Φ2k =

 I 0 0
0 1 0
0 0 Mck

  I 0 0
0 mbk 0
0 0 I

 = Φck Φbk (8.33)

and since the process noise of an ECRV is constant Q2k
= Q2 so that Q2 is

Q2 =

 0 0 0
0 qb 0
0 0 0

+

 0 0 0
0 0 0
0 0 Qc

 = Qb +Qc (8.34)

As in the previous section, we note that Φ−1
ck

QbΦ
−T
ck

= Qb. So, now Eq. (8.25) becomes

U−
k+1D

−
k+1U

−T

k+1 = Φck

[
ΦbkŨkD̃kŨ

T

kΦ
T
bk

+Qb

]
ΦT

ck
+Qc (8.35)

The term in the square bracket in Eq. (8.35) is

ŬkD̆kŬ
T

k = ΦbkŨkD̃kŨ
T

kΦ
T
bk

+Qb (8.36)
In Appendix B, the equation above is expanded until we find that

Ŭack = Ũack , D̆cck = D̃cck , Ŭ
T

cck
= Ũ

T

cck
(8.37)

Additionally,

Ŭbck = mbkŨbck (8.38)
and

d̆bk = m2
bk
d̃bk + qb (8.39)

and

Ŭabk = mbk

d̃bk
d̆bk

Ũabk (8.40)

Finally, we find that

Ŭaak
D̆aak

Ŭ
T

aak
= Ũaak

D̃aak
Ũ

T

aak
+

(
d̃bkqb

d̆bk

)
ŨabkŨ

T

abk
(8.41)

We note that Ũabk is a column vector (and is thereby of rank 1) so Eq. (8.41) constitutes a ‘rank
one’ update. Since d̆bk , d̃bk and qb are all positive (assuming mbk is a positive quantity), we can
use the Agee-Turner Rank One update [1]. It should be pointed out that as the algorithm proceeds
down the ‘list’ of parameters, the size of the states a increases by one (and consequently the size
of the parameters c decreases by one. Hence Ŭaak

and D̆aak
begins with a dimension of nx and

concludes with dimension nx + np − 1.
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Therefore, this is done recursively for all the (sensor) parameters p which are of size np.

The Algorithm for Φ2kŨkD̃kŨ
T

kΦ
T
2k

+Q2k

The algorithm can be expressed as follows (with the arithmetic operations (adds, multiplies, di-
vides) in square brackets per k ):

for k = 1, · · · , np do
D̆(nx + k, nx + k) = M(k, k)2D̃(nx + k, nx + k) +Qpp(k, k) (Eq. (8.39)) [1, 2, 0]
α = M(k, k) D̃(nx+k,nx+k)

D̆(nx+k,nx+k)
[0, 1, 1]

for i = 1, · · · , (nx + k − 1) do
Ŭ(i, nx + k) = αŨ(i, nx + k) (Eq. (8.40)) [0, nx + k − 1, 0]

end for
for j = nx + k + 1, · · · , (nx + np) do

Ŭ(nx + k, j) = M(k, k)Ũ(nx + k, j) (Eq. (8.38)) [0, np − k, 0]
end for
Solve for Ŭ(k)

xx , D̆
(k)
xx using1 the Rank-One update [nx + k)2, (nx + k)2 + 3(nx + k) + 2, 0]

end for
Thus, the arithmetic operations are as follows:
Adds:

np∑
k=1

(
(nx + k)2 + 1

)
= n2xnp + np + nx(np + 1)np +

np∑
k=1

k2 (8.42)

Multiplies:
np∑
k=1

(
3 + (nx + k − 1) + np − k + (nx + k)2 + 3(nx + k) + 2

)
= (5.5 + 5nx + n2x)np

+
1

2
(2nx + 5)n2p +

np∑
k=1

k2 (8.43)

and np divides.

The Agee-Turner Rank One Update Algorithm

Appendix B.3 contains the development of the Agee-Turner Rank-One update which is the key
to reducing the numerical operations on the UDU Time Update. Given U and D, along with c,
and the vector x, we are interested in obtaining Ũ and D̃ along the lines of

ŨD̃Ũ
T
= UDUT + cxxT (8.44)

where c > 0 is a specified scalar term.
The algorithm to compute Ũij and D̃ii is:

1We are using the nomenclature U(k) and D(k) to denote the upper left nx + k − 1 rows and columns of the U
and D matrices
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Cn = c
for j = n, · · · , 2 do

D̃jj = Djj + Cjx2j , [n− 1, 2(n− 1), 0]

Ũjj = 1

βj = Cj/D̃jj [0, 0, (n− 1)]
vj = βj xj [0, (n− 1), 0]
for i = 1, · · · , j − 1 do

xi := xi − Uijxj [12(n
2 − n), 12(n

2 − n), 0]
Ũij = Uij + xivj [12(n

2 − n), 12(n
2 − n), 0]

end for
Cj−1 = βj Djj [0, (n− 1), 0]

end for
D̃11 = D11 + C1x21 [1, 2, 0]

This algorithm has n2 adds, (n2 + 3n+ 2) multiplies and n− 1 divides.

8.3.3. Arithmetic Operations for Time Update For the time update of the covariance ma-
trix, we have the following arithmetic operations:

Adds : 1.5n3x + n2xmx + n2xnp − 0.5n2x + np + nx(np + 1)np +

np∑
k=1

k2

Multiplies : 0.5n2x(3nx + 1) + nxmx(nx + 1) + (5.5 + 5nx + n2x)np +
1

2
(2nx + 5)n2p +

np∑
k=1

k2

Divides : (nx +mx)(nx − 1) + np

For nx = 9, mx = 9, np = 26, we will utilize 16,407 adds, 19,338 multiplies, and 170 divides.
In contrast, if we did the MGS on all 35 states (nx = 35, mx = 35 and np = 0), we would use
85,750 adds, 88,200 multiplies, and 34 divides. Finally, if the covariance were updated (without
any consideration given to the structure of Φk from ΦkP

−
k Φ

T
k +Qk) in the conventional manner,

with nx = 35, mx = 35, it would cost 84,525 adds, 85,750 multiplies and no divides†. Thus, a very
strong case is made for using the UDU factorization and harnessing the benefit of updating the
sensor parameters using the Agee-Turner Rank-One update. Thus, the UDU time update taking
advantage of the fact that most of the states are sensor parameters results in nearly five times
fewer adds and multiplies and 170 more divides that if we operated on the full covariance matrix.

8.4. The Measurement Update
The UDU factorization requires that we process the measurements one-at-a-time [5]. This

should not be construed as a weakness of the formulation. If the measurements are correlated,
they can be ‘decorrelated’ as in Appendix B.4

†For matrices, A and B of dimension n×m and m× p, respectively, the product

C = AB (8.45)

results in n(m− 1)p adds, nmp multiplies and no divides.
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We remind ourselves that the covariance update equation is
P+ = P− −KHP− (8.46)

where K is the Kalman Gain matrix, H is the measurement partial, P− is the a priori covariance,
and P+ is the a posteriori covariance matrix. Using the covariance factors U and D, we rewrite
the above equation as

U+D+U+T = U−D−U
−T −KHU−D−U

−T (8.47)
We note that U and U− and D and D− are n×nmatrices, and because we are using the paradigm
of processing the measurements one at a time, H is an 1 × n vector and K is an n × 1 vector.
Recalling that K is defined as

K = P−HT
(
HP−HT +R

)−1
=

U−D−U
−T

HT

HU−D−U
−T

HT +R
=

U−D−U
−T

HT

α
(8.48)

where the scalar α is defined to be

α
∆
= HU−D−U

−T
HT +R (8.49)

We find that Eq. (8.47) becomes

U+D+U+T = U−

[
D− − D−U

−T
HT

α
HU−D−

]
U

−T (8.50)

If we define the n× 1 vector v as

v
∆
= D−U

−T
HT (8.51)

Eq. (8.50) becomes

U+D+U+T = U−
[
D− − 1

α
vvT

]
U

−T (8.52)

We now analyze the bracketed term in Eq. (8.52) and find that we can define

ŨD̃Ũ
T ∆
= D− − 1

α
vvT (8.53)

Therefore,
U+ = U−Ũ and D+ = D̃ (8.54)

So, how do we proceed? This has all the marks of a rank-one update, for after all v is of rank one.
We can proceed by using the Agee-Turner rank-one update. Except for one thing – that pesky
minus sign in Eq. (8.53). That minus sign portends all sorts of numerical issues because there is a
possibility that we can lose numerical precision if the Agee-Turner update is used blindly. It turns
out that we can have ‘our cake and eat it too’; Neil Carlson developed a rank-one update to pre-
cisely remedy our issue. The mathematical development of this algorithm is detailed in Appendix
B.5.

The algorithm is as follows: Given U−, D−, R, and H

f = U
−T

HT where f =
[
f1 f2 · · · fn

]T
[12(n

2
x − nx), 12(n

2
x − nx), 0]

v = D
−T

f where v =
[
d1f1 d2f2 · · · dnfn

]T
[0, nx, 0]

K1 =
[
v1 0 · · · 0

]T
α1 = R+ v1f1 [1, 1, 0]
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d1 =
(

R
α1

)
d1 [0, 1, 1]

for j = 2, · · · , n do
αj = αj−1 + vjfj [nx − 1, nx − 1, 0]

dj =
(
αj−1

αj

)
dj [0, nx − 1, nx − 1]

λj = − (fj/αj−1) [0, 0, nx − 1]

U+
j = U−

j + λjKj−1 [12(n
2
x − nx), 12(n

2
x − nx), 0]

Kj = Kj−1 + vjU
−
j [12(n

2
x − nx), 12(n

2
x − nx), 0]

end for
K = Kn/α [0, 0, nx]

Thus, taking advantage of the triangularity of theU− matrix (and the fact thatU−T
HT andλjKj−1

and vjU−
j use nx(nx−1)/2multiplies and adds), for each measurement processed, the covariance

update results in 1.5n2x − 0.5nx adds, 1.5n2x + 1.5nx multiplies and 3nx − 1 divides.
For the normal, Joseph Kalman filter update, for a scalar measurement, we find that if we use

efficient methods of calculating and storing quantities [5], we use 4.5n2x+3.5nx adds, 4n2x+4.5nx
multiplies and 1 divide.

For the “Conventional” Kalman filter update (P = P− − KHP− in Eq.(61)), for a scalar
measurement, we find that [5] we use 1.5n2x+1.5nx adds, 1.5n2x+0.5nx multiplies and 1 divide.

Thus, for nx = 35, the covariance update due to measurement processing with the UDU
factorization uses 1820 adds, 1890 divides and 104 divides compared with 5635 adds, 5058 multiplies
and 1 divide for the efficient Joseph update. The “Conventional” Kalman update uses 1890 adds,
1855 multiplies, and 1 divide.

Hence there is almost a factor of 2.5 improvement in the adds and multiplies using the triangu-
lar (UDU) update compared with the Joseph update. This rivals the efficiency of the “conventional”
Kalman Filter update.

8.4.1. Consider Covariance and its Implementation in the UDU Filter ‘Consider’ Anal-
ysis was first introduced by S. F. Schmidt of NASA Ames in the mid 1960s as a means to account
for errors in both the dynamic and measurement models due to uncertain parameters [75]. The
Consider Kalman Filter, also called the Schmidt-Kalman Filter, resulted from this body of work.
The consider approach is especially useful when parameters have low observability.

We partition the state-vector, x into the ns“estimated states”, s, and the np “consider” param-
eters, p, as

x
∆
=

[
s
p

]
(8.55)

so that

P =

[
Pss Psp

Pps Ppp

]
, H =

[
Hs Hp

]
(8.56)

Kopt =

[
Ks,opt

Kp,opt

]
=

[
P−

ssH
T
s +P−

spH
T
p

P−
psH

T
s +P−

ppH
T
p

]
W−1 (8.57)

where Kopt is the optimal Kalman gain computed for the full state, x, and W is

W = HsP
−
ssH

T
s +HsP

−
spH

T
p +HpP

−
psH

T
s ++HpP

−
ppH

T
p (8.58)
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Therefore, if we now choose the Ks and Kp carefully such that the Ks = Ks,opt, the a posteriori
covariance matrix is

P+ =

 P−
ss −KsWKT

s P−
sp−KsH

[
P−

sp

P−
pp

]
P−

ps −
[
P−

sp

P−
pp

]T
HTKT

s P−
pp −KpWKT

p

 (8.59)

This equation is valid for any value of Kp. Notice that there is no Kp in the correlation terms of
the covariance matrix. Therefore, what is remarkable about this equation is that once the
optimal Ks is chosen, the correlation between s and p is independent of the choice of
Kp.

In its essence, the consider parameters are not updated; therefore, the Kalman gain associated
with the consider parameters, p, is zero, i.e. Kp = 0. However, several comments are in order:

(1) When using the Schmidt-Kalman filter, the a priori and a posteriori covariance of the
parameters (Ppp) are the same.

(2) The a posteriori covariance matrix of the states and the correlation between the states and
the parameters are the same regardless of whether one uses the Schmidt-Kalman filter or
the optimal Kalman update

Therefore, the consider covariance, P+
con is

P+
con =

 P−
ss −KsWKT

s P−
sp−KsH

[
P−

sp

P−
BB

]
P−

ps −
[
P−

sp

P−
pp

]T
HTKT

s P−
pp

 (8.60)

Of course, the “full” optimal covariance matrix update is

P+
opt =

 P−
ss −Ks,optWK′

s,opt P−
sp−Ks,optH

[
P−

sp

P−
pp

]
P−

ps −
[
P−

sp

P−
pp

]T
HTK′

s,opt P−
pp −Kp,optWK′

p,opt

 (8.61)

The UDU formulation, while numerically stable and tight, is quite inflexible to making any
changes in the framework. At first blush, it would seem that the consider analysis would not fit
into the framework. However, all is not in vain. With some clever rearrangements, we can allow
for a rank-one update to include consider states in the measurement update. The measurement
update, expressed in terms of the consider covariance [92], is

P+
opt = P+

con − (SKopt)W (SKopt)
′ (8.62)

where S is an nx × nx matrix (defining nx
∆
= ns + np, where nx is the total number of states, np

is the number of consider states, and ns is the number of “non-consider” states) defined as

S
∆
=

[
0ns×ns 0ns×np

0np×ns Inp×np

]
(8.63)

Since we are processing scalar measurements, we note that W = 1
α is a scalar and Kopt is an

nx×1 vector. Therefore SKopt is an nx×1 vector. Therefore, solving for the consider covariance,

P+
con = P+

opt +W (SKopt) (SKopt)
T (8.64)
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Eq. (8.62) has the same form as the original rank-one update i.e. P+ = P−+caaT, with a = SKopt

and c = 1
α . With this in mind, we can use the (un-modified) rank-one update which is a backward-

recursive update [1]. If, for example, all the consider parameters are in the lower part of the state-
space, we can effectively reduce the computations by ending the update when the covariance of
the state of the last consider parameter is updated.

Therefore, the procedure is as follows: first perform a complete Carlson rank-one measure-
ment update with the optimal Kalman Gain (Kopt) on the full covariance matrix. Second, perform
another rank-one update with a = SKopt and c = 1

α , according to the Agee-Turner rank-one
update (as in Table 1).

Therefore, since there is an additional rank-one update associated with the consider states and
if no rearrangements of the consider states are performed, then there will be an additional n2x adds,
n2x + 3nx + 2 multiplies, and nx − 1 divides per measurement.

The use of the “consider state” option, if it is exercised, is likely to be used in “consider”ing
the attitude states, particularly during entry. The rationale for this is that in certain degenerate
cases, like when GPS satellites are reacquired after entry blackout, the attitude estimate could be
adversely affected. So, to protect against this, the “consider” option may be exercised with respect
to the attitude states.

8.5. Conclusions
Matrix factorization methods, particularly the UDU factorization, are very useful – indeed

essential – for onboard navigation algorithms. They are numerically stable and computationally
efficient, competitive with the classic Kalman filter implementation. In addition, they allow the
navigation designer to investigate the positive definiteness of the covariance matrix for “free,”
since by inspecting the entries of D, if any elements of D are negative, then the covariance matrix
will not be positive semi-definite.



CHAPTER 9

Attitude Estimation

Contributed by F. Landis Markley

The particular complications of attitude estimation arise from a fundamental difference be-
tween rotational kinematics and translational kinematics. The translational state of motion can
be completely specified in a nonsingular way by the cartesian components of the position vector
r(t) and the velocity vector v(t). The integral of any reasonable function v(t) between two times
gives the translational displacement of r(t) between these two times. Other parameterizations
of the translational state may be singular; the classical Keplerian orbit elements are singular for
zero inclination or zero eccentricity, for example. It is the case, however, that globally nonsingular
six-parameter representations exist.

Rotations in three-dimensional space have three degrees of freedom, just like translations in
three dimensions, and the angular velocity vector ω(t) is the rotational analog of the velocity
vector. However, two different time histories ω(t) that have the same integral over a time interval
can result in different rotational displacements over the interval. This is because the order in
which rotations are performed is significant, unlike the order in which translations are performed.
Thus integration of ω(t) does not result in a three-vector rotational analog of the position vector.
In fact, it can be proven that no global three-component parameterization of rotations without
singular points exists [80]. Rotational analysis is forced to deal with either higher-dimensional
representations of rotations or with three-dimensional representations possessing singularities or
discontinuities. The following seven sections will briefly present a nine-parameter representation,
two four-parameter representations, and five three-parameter representations. Fuller discussions
can be found in Refs. [59,78]. The discussion of attitude representations is followed by two sections
on extended Kalman filters for attitude estimation.

9.1. Attitude Matrix Representation
Attitude representations are the methods of representing the orientation of an orthonormal

triad of basis vectors in one reference frame with respect to an orthonormal triad in some other
reference frame. The attitude matrix, in particular, represents the orientation of a vehicle’s body
frame with respect to a frame that is often, but not always, an inertial frame. The attitude deter-
mination of earth-pointing spacecraft, for example, typically employs a reference frame in which
one basis vector is pointed from the spacecraft toward the center of the earth and another points
opposite to the orbital angular velocity. The body frame of a rigid vehicle is simply defined as a
frame fixed in the vehicle. No vehicle is completely rigid, though, so it is quite common to de-
fine the body frame operationally as the orientation of some navigation base, a sufficiently rigid
subsystem of the spacecraft including the most critical attitude sensors and payload instruments.
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For actual applications, representations are 3×3 matrices that transform the representations
of vectors in one frame, i.e. their components along the basis vectors in that frame, to their rep-
resentations in a different frame. Thus attitude representations describe a fixed physical vector
in a rotated frame rather than a rotated vector. This is the passive interpretation of a transforma-
tion, also known as the alias sense (from the Latin word for “otherwise,” in the sense of “otherwise
known as”) [78]. The alternative active interpretation (also known as the alibi sense from the Latin
word for “elsewhere”) considers the representation in a fixed reference frame of a rotated physical
vector. It is crucial to keep this distinction in mind, because an active rotation in one direction cor-
responds to a passive rotation in the opposite direction. Overlooking this point has led to errors
in flight software.1

Now consider transforming the representation of a vector x⃗ in a frame F to its representation
in a frame G and then from frame G to frameH or directly from frame F to frameH, so

xH = AHGxG = AHG (AGFxF ) = AHFxF (9.1)

These transformations must be equivalent for any vector xF , so successive transformations are
accomplished by simple matrix multiplication:

AHF = AHGAGF (9.2)

This may appear to be an obvious result, but only one other attitude representation has such a
simple composition rule. Matrix multiplication is associative, meaning that AHG(AGFAFE) =
(AHGAGF )AFE . Matrix multiplication is not commutative, however, which means thatAHGAGF ̸=
AGFAHG in general. The non-commutativity of matrix multiplication is at the heart of the prob-
lem of finding a suitable attitude representation.

Transforming from frame F to frame G and back to frame F is effected by the matrix AFF =
AFGAGF , which must be the identity matrix. Rotations must also preserve inner products and
norms of vectors, so

xF · yF = xG · yG = (AGFxF )
T AGFyF = xT

FA
T
GFAGFyF (9.3)

These two observations mean that

AT
GF = A−1

GF = AFG (9.4)

A matrix with its transpose is equal to its inverse is called an orthogonal matrix, and its determinant
must equal±1. The attitude matrix must be a proper orthogonal matrix, i.e. have determinant +1,
in order to transform a right-handed coordinate frame to a right-handed coordinate frame.

The nine-component attitude matrix is in some ways the ideal representation of a vehicle’s
attitude. It has a 1:1 correspondence with physical attitudes, it varies smoothly as the physical
attitude varies smoothly, its elements all have magnitudes less than or equal to one, and it fol-
lows a simple rule for combining successive rotations. It is not an efficient representation, though;
only three of its nine parameters are independent because the orthogonality constraint is equiva-
lent to six independent scalar constraints. This provides the opportunity to specify an attitude or
an attitude matrix using only three parameters, but not, as was pointed out above, in a globally
continuous and nonsingular fashion.

1One example is an incorrect sign for the velocity aberration correction for star tracker measurements on the
Wilkinson Microwave Anisotropy Probe (WMAP) spacecraft, which fortunately was easily corrected.
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9.2. Euler Axis/Angle Representation
The Euler axis/angle representation of a rotation matrix is based on Euler’s Theorem, which

states that the general displacement of a rigid body with one point fixed is a rotation about a fixed
axis [29]. Specify the axis by a unit vector e⃗ and the rotation angle by ϑ, and denote the matrix
that maps the representations of vectors from frameF to frame G by AGF (e, ϑ). The rotation axis
is fixed, so e can be its representation in either frame F or frame G, which are identical. Consider
the mapping of a vector x⃗ whose representation in frame F is

xF = (e eT)xF + (I3 − e eT)xF (9.5)
where In denotes the n×n identity matrix. The first term on the right side is parallel and the
second is perpendicular to to the rotation axis. The rotation does not affect the parallel component
and rotates the perpendicular component through an angle ϑ around the rotation axis out of the
plane defined by that axis and xF , so

xG = AGF (e, ϑ)xF = (e eT)xF + cosϑ(I3 − e eT)xF − sinϑ(e× xF ) (9.6)
This formula preserves the norm of xF because e×xF and (I3−e eT)xF are orthogonal and have
equal magnitude. Since xF is an arbitrary vector, Eq. (9.6) means that

A(e, ϑ) = (cosϑ) I3 − sinϑ [e×] + (1− cosϑ)e eT (9.7)
where [e×] is the cross-product matrix:

[e×] ≡

 0 −e3 e2
e3 0 −e1
−e2 e1 0

 (9.8)

The cross-product matrix is defined so that [x×]y = x×y. Equation (9.7) is the Euler axis/angle
parameterization of an attitude matrix, with explicit frame indices omitted. It requires four pa-
rameters, but only three are independent because of the unit vector constraint ∥e∥ = 1.

The sinϑ terms in Eqs. (9.6) and (9.7) are negative because the rotation in Euler’s theorem is an
active rotation of the frame G relative to the frame F , while the rotation matrix A(e, ϑ) specifies
the passive mapping of the representation of x⃗ from frame F to frame G.

The Euler axis/angle representation can be used to find the time dependence of the rotation
matrix. The fundamental definition of a derivative gives

ȦGF (t) ≡ lim
∆t→0

AGF (t+∆t)−AGF (t)

∆t

=

(
lim
∆t→0

AGF (t+∆t)AFG(t)− I3
∆t

)
AGF (t) (9.9)

because AFG(t)AGF (t) is equal to the identity matrix. For small ∆t, the matrix product AGF (t+
∆t)AFG(t) differs from the identity matrix by a small rotation, so it can be represented by a small
angle approximation of Eq. (9.7):

AGF (t+∆t)AFG(t) ≈ I3 − ϑ [e×] (9.10)
Inserting this into Eq. (9.9), taking the limit of as ∆t goes to zero, and omitting time arguments
gives

ȦGF = −[ωGF
G ×]AGF (9.11)

where
ωGF

G ≡ lim
∆t→0

ϑ e

∆t
(9.12)
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is the vector representation in frame G of the angular velocity of frame G with respect to frame
F . The angular velocity is known to be represented in frame G because the product AGF (t +
∆t)AFG(t) is a rotation from frame G at one time to frame G at a different time, and these two
frames coincide in the limit that ∆t goes to zero. The angular velocity is usually written simply as
ω, with the frames understood. Its units are rad/sec, assuming that time is measured in seconds,
because radian measure was assumed in taking the small angle limit of sinϑ.

Equation (9.11) is the fundamental equation of attitude kinematics. It does not distinguish
between the situations where frameF or frame G or both frames are rotating in an absolute sense;
it only cares about the relative rotation between the two frames. This equation can also be written
as

ȦGF = −AGFAFG [ω
GF
G ×]A

T
FG = −AGF [AFGω

GF
G ×] = −AGF [ω

GF
F ×] (9.13)

which expresses the kinematics in terms of the representation in frame F of ωGF . The second
equality uses an identity that holds for any proper orthogonal matrix. These kinematic equations,
if integrated exactly, preserve the orthogonality of the attitude matrix.

The Euler axis/angle representation is fundamental for analysis, as demonstrated above, but it
has been entirely superseded for practical applications by a superior four-parameter representation
described in the next section.

9.3. Quaternion Representation
Applying trigonometric half-angle identities to Eq. (9.7) gives

A(q) =
(
q24 − ∥q1:3∥2

)
I3 − 2q4[q1:3×] + 2q1:3 q

T
1:3 (9.14)

where the three-component vector q1:3 and the scalar q4 are defined by
q1:3 = e sin(ϑ/2) (9.15a)
q4 = cos(ϑ/2) (9.15b)

This representation has the advantage over the Euler axis/angle representation of requiring no
trigonometric function evaluations, and its four components are more economical than the nine-
component attitude matrix.

The four parameters of this representation were first considered by Euler but their full signif-
icance was revealed by Rodrigues, so they are often referred to as the Euler symmetric parameters
or Euler-Rodrigues parameters. This representation is called the quaternion representation and
denoted A(q) because the four parameters can be regarded as the components of a quaternion

q =

[
q1:3

q4

]
(9.16)

with vector part q1:3 and scalar q4. A quaternion is basically four-component vector with some
additional operations defined for it.2 The attitude quaternion

q(e, ϑ) =

[
e sin(ϑ/2)
cos(ϑ/2)

]
(9.17)

is a unit quaternion, obeying the norm constraint ∥q∥ = 1, but not all quaternions are unit quater-
nions. It is clear from Eq. (9.14) that q and −q give the same attitude matrix. This 2:1 mapping

2This is conceptually different from the quaternion introduced by Hamilton in 1844, before the introduction of
vector notation, as a hypercomplex extension q = q0 + iq1 + jq2 + kq3 of a complex number z = x+ iy. The scalar
part of a quaternion is often labeled q0 and put at the top of the column vector. Care must be taken to thoroughly
understand the conventions embodied in any quaternion equation that one chooses to reference.
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of quaternions to rotations is a minor annoyance that cannot be removed without introducing
discontinuities in the representation.

The most important added quaternion operations are two different products of two quaternions
q and q̄. They can be implemented in matrix form similar to the matrix form of the vector cross
product:3

q⊗ q̄ = [Ψ(q) q ] q̄ (9.18a)
q⊙ q̄ = [Ξ(q) q ] q̄ (9.18b)

where Ψ(q) and Ξ(q) are the 4× 3 matrices

Ψ(q) ≡
[
q4 I3 − [q1:3×]
−qT

1:3

]
(9.19a)

Ξ(q) ≡
[
q4 I3 + [q1:3×]
−qT

1:3

]
(9.19b)

Unlike the vector cross product, though, the norm of either product of two quaternions is equal to
the product of their norms.

Both quaternion products are associative but not commutative in general, in parallel with
matrix products. The two product definitions differ only in the signs of the cross product matrices
in Eqs. (9.19a) and (9.19b), from which it follows that

q⊗ q̄ = q̄⊙ q (9.20)

The identity quaternion
Iq ≡

[
0 0 0 1

]T (9.21)

acts in quaternion multiplication like the identity matrix in matrix multiplication. The conjugate
q∗ of a quaternion is obtained by changing the sign of its vector part:

q∗ =

[
q1:3

q4

]∗
≡
[
−q1:3

q4

]
(9.22)

Either product of a quaternion with its conjugate is equal to the square of its norm times the
identity quaternion.

The inverse of any quaternion having nonzero norm is defined by

q−1 ≡ q∗/∥q∥2 (9.23)

A unit quaternion, such as the attitude quaternion, always has an inverse, which is identical
with its conjugate. The conjugate of the product of two quaternions is equal to the product of their
conjugates in the opposite order: (q̄⊗ q)∗ = q∗ ⊗ q̄∗. The same relationship holds for the other
product definition and with conjugates replaced by inverses.

Equation (9.14) can be compactly written as

A(q) = ΞT(q)Ψ(q) (9.24)

3The notation q⊗ q̄ was introduced in Ref. [53], and q⊙ q̄ is a modification of notation introduced in Ref. [68].
Hamilton’s product qq̄ corresponds to q⊙q̄, but q⊗q̄ has proven to be more useful in attitude analysis. The order of the
quaternion products in Eqs. (9.27) and (9.28) would be reversed with the classical definition of quaternion multiplication.
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Now consider, for a unit quaternion q, the product

q⊗
[
x
0

]
⊗ q∗ = q∗ ⊙

(
q⊗

[
x
0

])
=
[
Ξ(q∗) q∗] [Ψ(q) q

] [x
0

]
=

[
ΞT (q)
qT

]
Ψ(q)x =

[
A(q)x

0

]
(9.25)

Applying a transformation by a second quaternion q̄ gives

q̄⊗
(
q⊗

[
x
0

]
⊗ q∗

)
⊗ q̄∗ = q̄⊗

[
A(q)x

0

]
⊗ q̄∗ =

[
A(q̄)A(q)x

0

]
= (q̄⊗ q)⊗

[
x
0

]
⊗ (q̄⊗ q)∗ =

[
A(q̄⊗ q)x

0

]
(9.26)

Because this must hold for any x, it shows that

A(q̄⊗ q) = A(q̄)A(q) (9.27)

This and Eq. (9.2) mean that the quaternion corresponding to successive rotations is just the prod-
uct

qHF = qHG ⊗ qGF (9.28)

A simple bilinear composition rule of this type holds only for the attitude matrix and quaternion
representations, a major reason for the popularity of quaternions.

Representing the rotation between times t and t+∆t by an Euler axis and angle, Eqs. (9.28),
(9.17), (9.20), and (9.18b) give

q(t+∆t) =

[
e sin(ϑ/2)
cos(ϑ/2)

]
⊗ q(t) = cos(ϑ/2)q(t) + sin(ϑ/2)

[
e
0

]
⊗ q(t)

= cos(ϑ/2)q(t) + sin(ϑ/2)Ξ (q(t)) e (9.29)

This quaternion propagation equation has proven to be very useful. It preserves the unity norm of
the attitude quaternion. If the angular velocity is well approximated as constant over the time in-
terval, then ϑ = ∥ω∥∆t and e = ω/∥ω∥. Alternatively, and particularly for onboard applications,
ϑe can be computed by differencing the outputs of rate-integrating gyroscopes.

Using small angle approximations for the sine and cosine leads to the kinematic equation for
the quaternion:

q̇ ≡ lim
∆t→0

q(t+∆t)− q(t)

∆t
=

1

2

[
ω
0

]
⊗ q =

1

2
Ξ(q)ω (9.30)

where ω is defined by Eq. (9.12) and several time arguments have been omitted. Exact integration
of this equation preserves the unit norm of the quaternion. The inverse of Eq. (9.30) is often useful:

ω = 2ΞT(q)q̇ (9.31)
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The quaternion representation of a given attitude matrix A can be found by normalizing any
one of the four vectors [56]

1 + 2A11 − trA
A12 +A21

A13 +A31

A23 −A32

 = 4q1q ,


A21 +A12

1 + 2A22 − trA
A23 +A32

A31 −A13

 = 4q2q


A31 +A13

A32 +A23

1 + 2A33 − trA
A12 −A21

 = 4q3q ,


A23 −A32

A31 −A13

A12 −A21

1 + trA

 = 4q4q (9.32)

Numerical errors are minimized by choosing the vector with the greatest norm, which can be
found by the following procedure. Find the largest of trA and the three diagonal elements of A.
If trA is the largest, then |q4| is the largest of the |qi|, otherwise the largest value of |qi| is the
one with the same index as the largest diagonal element of A. The overall sign of the normalized
vector is not determined, reflecting the twofold ambiguity of the quaternion representation.

Extracting many of the other parameterizations from an attitude matrix is most easily accom-
plished by first extracting a quaternion and then converting to the desired representation. The
kinematic equations of these other representations can also be readily derived through the inter-
mediary of the quaternion representation.

A three-parameter representation can be obtained by using only three components of the
quaternion, say the i, j, k components, with the fourth component given by

qℓ = ±
√
1− q2i − q2j − q2k (9.33)

The sign is not arbitrary, but is determined by the four-component quaternion being represented
by three of its components. Once so determined, the sign will not change if the quaternion varies
smoothly unless qℓ passes through zero. To avoid a sign error if |qℓ| becomes small, the repre-
sentation is switched to make qℓ one of three components in the three-parameter representation,
replacing one of the other components, which is then given by the square root with the correct
sign. The unit norm constraint on the attitude quaternion means that at least one of its compo-
nents must have magnitude 1/2 or greater. To minimize switching, it should be done when |qℓ| is
significantly less than 1/2, and the component replaced by qℓ in the three-component represen-
tation should have magnitude no smaller than 1/2. To first order in the errors, the error in the
fourth component of the quaternion is

∆qℓ = − q−1
ℓ (qi∆qi + qj∆qj + qk∆qk) (9.34)

This approaches the indeterminate quantity 0/0 as |qℓ| → 0, providing another reason for switch-
ing.

9.4. Rodrigues Parameter Representation
The three Rodrigues parameters appeared in 1840 [72], but were first arranged in a vector by

Gibbs, who invented modern vector notation. For this reason, the vector of Rodrigues parameters
is often called the Gibbs vector and denoted by g. The Rodrigues parameters are related to the Euler
axis/angle and the quaternion by

g = e tan(ϑ/2) =
q1:3

q4
(9.35)
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The quaternion as a function of the Gibbs vector is

q =
±1√

1 + ∥g∥2

[
g
1

]
(9.36)

It is clear from Eq. (9.35) that q and−q map to the same Gibbs vector, so the Rodrigues parameters
provide a 1:1 mapping of rotations. The price paid for this is that the Gibbs vector is infinite for a
180◦ rotation. Thus this parameterization is not recommended as a global attitude representation,
but it provides an excellent representation of small rotations.

The Rodrigues parameter representation of the attitude matrix is

A(g) = I3 + 2
[g×]2 − [g×]
1 + ∥g∥2

(9.37)

This resembles the quaternion representation in requiring no transcendental function evaluations,
but it is a rational function rather than a simple polynomial.

The composition rule for the Rodrigues parameters corresponding to the quaternion product
q̄⊗ q is

ḡ ⊠ g ≡ ḡ + g − ḡ × g

1− ḡ · g
(9.38)

This composition law is associative but not commutative in general, in parallel with matrix and
quaternion products. Because it is not a bilinear function of the constituent Gibbs vectors, it cannot
be represented as a matrix product like quaternion composition.

The kinematic equation for the Rodrigues parameters is
ġ = (1/2) (I3 + [g×] + ggT)ω (9.39)

with the inverse
ω = 2

(
1 + ∥g∥2

)−1
(ġ − g × ġ) (9.40)

9.5. Modified Rodrigues Parameters
The modified Rodrigues parameters (MRPs) were invented by T. F. Wiener in 1962 [88], redis-

covered by Marandi and Modi in 1987 [55], and have been championed by Junkins and Schaub [73].
The vector of MRPs is related to the Euler axis/angle and the quaternion by

p = e tan(ϑ/4) =
q1:3

1 + q4
(9.41)

The quaternion as a function of the MRPs is

q =
1

1 + ∥p∥2

[
2p

1− ∥p∥2
]

(9.42)

and the attitude matrix is given by

A(p) = I3 +
8 [p×]2 − 4

(
1− ∥p∥2

)
[p×]

(1 + ∥p∥2)2
(9.43)

Every vector of MRPs has a shadow

pS ≡ − p

∥p∥2
=
−q1:3

1− q4
(9.44)

An MRP vector and its shadow represent the same attitude because q and −q represent the same
attitude, so the MRPs are a 2:1 mapping of the rotations just as the quaternions are. It is clear from
Eq. (9.44) that ∥pS∥∥p∥ = 1, so every attitude can be represented by either an MRP vector with
∥p∥ ≤ 1 or an equivalent MRP vector in the shadow set of MRPs with ∥p∥ ≥ 1.
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The MRP vector corresponding to the quaternion product q̄⊗ q follows the composition rule

p̄ ⊡ p ≡
(
1− ∥p∥2

)
p̄+

(
1− ∥p̄∥2

)
p− 2 p̄× p

1 + ∥p∥2∥p̄∥2 − 2 p̄ · p
(9.45)

This composition law is associative but not commutative in general, in parallel with matrix and
quaternion products. It cannot be represented as a matrix product.

The kinematic equation for the MRPs is

ṗ =
1 + ∥p∥2

4

(
I3 + 2

[p×]2 + [p×]
1 + ∥p∥2

)
ω (9.46)

The matrix in parentheses is orthogonal, so the inverse of Eq. (9.46) is

ω =
4

1 + ∥p∥2

(
I3 + 2

[p×]2 − [p×]
1 + ∥p∥2

)
ṗ (9.47)

The norm of an MRP vector can grow without limit during dynamic propagation or attitude
estimation; Eq. (9.41) shows that the norm is infinite for ϑ = 2π. This singularity can be avoided
by switching from the MRP vector to its shadow. The norm can be restricted to be less than or
equal to unity in theory, but in practice it is best to allow the norm to exceed unity by some amount
before switching in order to avoid “chattering” between the MRP and its shadow. An error ∆p in
an MRP vector corresponds to an error

∆pS =
∂pS

∂p
∆p =

2ppT − ∥p∥2 I3
∥p∥4

∆p =
[
2pS(pS)T − ∥pS∥2 I3

]
∆p (9.48)

in its shadow. This relation is useful for mapping covariance matrices into and out of the shadow
set. The 2:1 four-component quaternion representation does not have these complications because
the two quaternions representing the same attitude both have unit norm, so there is no need to
switch between them.

9.6. Rotation Vector Representation
It is convenient for analysis, but not for computations, to combine the Euler axis and angle

into the three-component rotation vector

ϑ ≡ ϑ e = 2(cos−1 q4)
q1:3

∥q1:3∥
(9.49)

This leads to the very elegant expression
A(ϑ) = exp(−[ϑ×]) (9.50)

where exp(·) is the matrix exponential. This equation can be verified by expansion of it and Eq. (9.7)
as Taylor series in ϑ and repeated applications of the identity [e×]2 = eeT − I3.

The kinematic equation for the rotation vector is

ϑ̇ = ω +
1

2
ϑ× ω +

1

ϑ2

(
1− ϑ

2
cot

ϑ

2

)
ϑ× (ϑ× ω) (9.51)

The coefficient of ϑ× (ϑ×ω) goes to 1/12 as ϑ goes to zero, but it is singular for ϑ equal to any
nonzero multiple of 2π. The inverse of Eq. (9.51) is

ω = ϑ̇− 1− cosϑ

ϑ2
ϑ× ϑ̇+

ϑ− sinϑ

ϑ3
ϑ× (ϑ× ϑ̇) (9.52)

The rotation vector is useful for the analysis of small rotations, but not for large rotations,
because of both the computational cost of evaluating the matrix exponential and the kinematic
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singularity for ∥ϑ∥ = 2π. This singularity can be avoided, as for the MRPs, by switching from the
rotation vector to its shadow

ϑS ≡ (1− 2π∥ϑ∥−1)ϑ (9.53)
which represents the same attitude. This can restrict the norm of the rotation vector to π or less in
theory, but in practice it is best to allow the norm to exceed π by some amount before switching
in order to avoid “chattering” between the rotation vector and its shadow.

The properties of the rotation vector are very similar to those of the MRPs, and it has no
obvious advantages over the MRPs. It has the disadvantage of requiring transcendental function
evaluations to compute the attitude matrix, so it is rarely used in practical applications.

9.7. Euler Angles
An Euler angle representation parameterizes a rotation by the product of three rotations about

coordinate frame unit vectors:
Aijk(ϕ, θ, ψ) = A(ek, ψ)A(ej , θ)A(ei, ϕ) (9.54)

where ej , ej , and ej are selected from the set

e1 =
[
1 0 0

]T
, e2 =

[
0 1 0

]T
, e3 =

[
0 0 1

]T (9.55)
The possible choice of axes is constrained by the requirements i ̸= j and j ̸= k, leaving six sym-
metric sets with ijk equal to 121, 131, 232, 212, 313, and 323 and six asymmetric sets with ijk
equal to 123, 132, 231, 213, 312, and 321. Symmetric Euler angle sets are used in classical studies
of rigid body motion [29,36,43,59,87].

The asymmetric sets of angles are called the Tait-Bryan angles or roll, pitch, and yaw angles.
The latter terminology originally described the motions of ships and then was carried over into
aircraft and spacecraft. Roll is a rotation about the vehicle body axis that is closest to the vehicle’s
usual direction of motion, and hence would be perceived as a screwing motion. The roll axis is
conventionally assigned index 1. Yaw is a rotation about the vehicle body axis that is usually
closest to the direction of local gravity, and hence would be be perceived as a motion that points
the vehicle left or right. The yaw axis is conventionally assigned index 3. Pitch is a rotation about
the remaining vehicle body axis, and hence would be perceived as a motion that points the vehicle
up or down. The pitch axis is conventionally assigned index 2. Note that Eq. (9.54) assigns the
variables ϕ, θ, andψ based on the order of rotations in the sequence, making no definite association
between these variables and either the axis labels 1, 2, and 3 or the names roll, pitch and yaw. Many
authors follow a different convention, denoting roll by ϕ, pitch by θ, and yaw by ψ. As always,
the reader consulting any source should be careful to understand the conventions that it follows.

Using the product rule and Eq. (9.11) to compute the time derivative of Eq. (9.54) gives

−[ω×]Aijk(ϕ, θ, ψ) =
{
−[(ψ̇ek)×]−A(ek, ψ)[(θ̇ej)×]AT(ek, ψ)

−A(ek, ψ)A(ej , θ)[(ϕ̇ei)×]AT(ej , θ)A
T(ek, ψ)

}
Aijk(ϕ, θ, ψ) (9.56)

The identity A[x×]AT = [(Ax)×], which holds for any proper orthogonal A, gives
ω = ψ̇ ek + θ̇A(ek, ψ)ej + ϕ̇A(ek, ψ)A(ej , θ)ei = A(ek, ψ)M[ϕ̇ θ̇ ψ̇]T (9.57)

where
M = [A(ej , θ)ei ej ek ] (9.58)

The second equality in Eq. (9.57) makes use of A(ek, ψ)ek = ek. The Euler angle rates as functions
of the angular velocity are

[ϕ̇ θ̇ ψ̇]T = M−1AT(ek, ψ)ω (9.59)
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This kinematic equation is singular if the determinant of M is zero. Equation (9.7) and the Euler
axis requirement that ei · ej = ej · ek = 0 gives

detM = [A(ej , θ)ei] · (ej × ek) = cos θ[ ei · (ej × ek)]− sin θ(ei · ek) (9.60)
The triple vector product ei · (ej × ek) is zero for the symmetric Euler angles, so the kinematic
equations of these representations are singular if sin θ = 0. The dot product ei · ek is zero for
the asymmetric Euler angles, so the kinematics of these representations are singular if cos θ = 0.
This singularity is known as gimbal lock and is caused by collinearity of the physical rotation axis
vectors of the first and third rotations in the sequence. Note that the column vector representations
of these rotation axes are always parallel for the symmetric Euler angle sequences and always
perpendicular for the asymmetric sequences, but this neither causes nor prevents gimbal lock.

Because Euler angles are discussed in many references on rotational motion and because
they are not widely used in navigation filters, they will not be discussed further here. Kine-
matic equations and explicit forms of the attitude matrices for all twelve sets can be found in
Refs. [36,43,59,87].

9.8. Additive EKF (AEKF)
Three-component representations are the most natural representations for filtering, because

only three parameters are needed to represent rotations. As was pointed out at the beginning of
this Chapter, though, all three-parameter representations of the rotation group have discontinu-
ities or singularities. Any filter using a three-dimensional attitude representation must provide
some guarantee of avoiding these singular points, either by restricting the vehicle’s attitude or
by switching between different parameter sets if the representation approaches a discontinuity or
singularity.

The earliest Kalman filters for spacecraft attitude estimation used a roll, pitch, yaw sequence
of Euler or Tait-Bryan angles discussed in Section 9.7 [21,22]. This is a very useful representation
if the middle angle of the sequence, generally the pitch angle, stays well away from±90◦, and has
been used for Earth-pointing spacecraft with small pitch angles. One disadvantage of this repre-
sentation is its trigonometric function evaluations, but this is less of an issue with the computing
power now available, especially in onboard computers.

An EKF can estimate three components of a quaternion, with the fourth component being
determined by the quaternion unit norm constraint, as discussed at the end of Section 9.3 [53]. If
the fourth component becomes small, it must be added to the set of estimated quaternion com-
ponents, with one of the other components switched out. This switch should be made when the
magnitude of the fourth component is is not too close to either end of the range from 0 and 1/2 to
avoid “chattering” between component sets. The switch must be accompanied by the following co-
variance matrix transformation. Assuming the three components in the pre-switch representation
have indices i, j, k in ascending order, their 3×3 covariance matrix is the symmetric matrix

P3×3 =

Pii Pij Pik

Pji Pjj Pjk

Pki Pkj Pkk

 (9.61)

The 4×4 covariance matrix of the full quaternion is formed by adding the ℓth row and column,
keeping the indices in ascending order. The needed covariance components, using using Eqs. (9.33)
and (9.34), are

Pmℓ = Pℓm = −q−1
ℓ (qiPim + qjPjm + qkPkm) for m = i, j, k (9.62a)

Pℓℓ = q−2
ℓ (q2i Pii + q2jPjj + q2kPkk + 2qiqjPji + 2qiqkPik + 2qjqkPjk) (9.62b)
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Then the row and column corresponding to the quaternion component switched out of the repre-
sentation are deleted to form the new 3×3 covariance matrix.

The modified Rodrigues parameters (MRPs) are non-singular for rotations of less than 360◦,
and the singularity can be avoided by switching to an MRP in the shadow set, as discussed in
Section 9.5. The switch to the shadow set is made at some angle greater than 180◦ to avoid “chat-
tering” between the two parameter sets. The switch must be accompanied by a covariance matrix
transformation using Eq. (9.48)

PS
pp =

[
2pS(pS)T − ∥pS∥2 I3

]
Ppp

[
2pS(pS)T − ∥pS∥2 I3

]
(9.63)

where Ppp is the covariance before the switch, and PS
pp is the covariance of pS after the switch

[45]. This covariance mapping is simpler than the corresponding mapping for the three-component
quaternion representation, and the MRP representation avoids a square root computation. The ap-
pearance of ϑ/4 in Eq. (9.41) as opposed to ϑ/2 in Eq. (9.17) means that switching will be less
frequent when the MRP representation is used. For these reasons the MRP representation has
become the preferred three-parameter attitude filter when the attitude is unrestricted.

The Gibbs vector or Rodrigues parameter representation has been used in an EKF [37], but it
is not well suited to filtering because of its inability to represent 180◦ rotations, as discussed in
Section 9.4. It provides an excellent representation of small attitude errors, however. The rotation
vector, discussed in Section 9.6, is also not recommended for application in an EKF, as it has no
clear advantage over the MRPs and has the disadvantage of requiring transcendental function
evaluations.

The nine-component attitude matrix and the four-component quaternion represent the entire
rotation group without singularities or discontinuities, but the linear measurement update in EKFs
employing these representations violates the orthogonality constraint on the attitude matrix or the
unit norm constraint on the quaternion. Various methods have been proposed to circumvent this
difficulty, but these are not without problems [59]. At the very least, they are inefficient due to
the larger dimesionality of the covariance matrix.

9.9. Multiplicative EKF (MEKF)
The multiplicative EKF (MEKF) uses the nine-component attitude matrix or the four-component

quaternion as the “global” attitude representation and a three-component vector δϑ for the “local”
representation of attitude errors, so that the true attitude is represented as a product

Atrue = δA(δϑ)Â (9.64a)
qtrue = δq(δϑ)⊗ q̂ (9.64b)

The constraints on the representations are satisfied becauseAtrue, δA, and Â are all proper orthog-
onal matrices, and qtrue, δq, and q̂ all have unit norm. The MEKF avoids the attitude restrictions
or switching required by additive attitude EKFs because the error vector δϑ is assumed to be small
enough to completely avoid singularities in the parameterizations δA(δϑ) or δq(δϑ). In some
sense, though, Eq. (9.64) incorporates a continuous switching of the attitude reference.

Only the quaternion version of the MEKF, which is much more widely employed, is presented
here. Reference [53] reviews its history. Any three-component attitude representation that is
related to first order in δϑ to the quaternion by

δq ≈
[
δϑ/2
1

]
(9.65)

can be used as the error vector. Common choices are the rotation vector, as suggested by the
notation of Eq. (9.64), two times the vector part of the quaternion, two times the vector of Rodrigues
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parameters, four times the vector of MRPs, or a vector of suitably indexed roll, pitch, and yaw
angles [59].

The order of the factors on the right side of Eq. (9.64) means that the attitude errors are in
the body reference frame. This leads to a major advantage of the MEKF, that the covariance of the
attitude error angles in the body frame has a transparent physical interpretation. The covariance of
estimators using other attitude representations has a less obvious interpretation unless the attitude
matrix is close to the identity matrix. It is possible to reverse the order of the factors on the right
side of Eq. (9.64) so the attitude errors are in the reference frame [26]. The covariance can be
mapped into the body frame if desired.

The MEKF estimates δϑ and any other state variables of interest. This discussion addresses
only the attitude part, as the equations for the other components of the state vector obey the
usual EKF equations. The MEKF proceeds by iteration of three steps: measurement update, state
vector reset, and propagation to the next measurement time. The measurement update step updates
the local error state vector. The reset moves the updated information from the local error state
to the global attitude representation and resets the components of the local error state to zero.
The propagation step propagates the global variables to the time of the next measurement. The
local error state variables do not need to be propagated because they are identically zero over the
propagation step. These three steps will be discussed in more detail.

9.9.1. Measurement Update The observation model in given in terms of the true global
state

y = h(qtrue) + v (9.66)
but the measurement sensitivity matrix is the partial derivative with respect to the local error state,
so the measurement sensitivity matrix is

H =
∂h

∂q

∂qtrue

∂(δϑ)
(9.67)

Equations (9.64), (9.65), (9.18b), and (9.20) give, to first order in the error vector,

qtrue ≈
[
δϑ/2
1

]
⊗ q̂ = q̂+

1

2
Ξ(q̂)δϑ (9.68)

Inserting the partial derivative of this with respect to δϑ into Eq. (9.67) then gives

H =
1

2

∂h

∂q
Ξ(q̂) (9.69)

Simplifications are possible in some special cases.
The Kalman gain computation and covariance update have the standard Kalman filter forms.

The error state update employs the first-order Taylor expansion

E{h(qtrue)} ≈ h(q̂) +Hδϑ̂ (9.70)

giving
δϑ̂

+
= δϑ̂

−
+K

[
y − E{h(qtrue)}

]
= (I−KH)δϑ̂

−
+K

[
y − h(q̂−)

]
(9.71)

9.9.2. Reset The discrete measurement update assigns a finite post-update value to δϑ̂
+, but

the global state still retains the value q̂−. A reset procedure is used to move the update information
to a post-update estimate global state vector q̂+, while simultaneously resetting δϑ̂ to 03, the
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three-component vector with all zero components. The reset does not change the overall estimate,
so the reset must obey

q̂+ = δq(03)⊗ q̂+ = δq(δϑ̂
+
)⊗ q̂− (9.72)

Thus the reset moves information from one part of the estimate to another part.
Every EKF includes an additive reset of the global state vector, but this is usually implicit rather

than explicit. The multiplicative quaternion reset is the special feature of the MEKF. This reset has
to preserve the quaternion norm, so an exact unit-norm expression for the functional dependence
of δq on δϑ must be used, not the linear approximation of Eq. (9.65). Using the Rodrigues param-
eter vector has the practical advantage that the reset operation for this parameterization is

q̂+ = δq(δϑ̂
+
)⊗ q̂− =

1√
1 + ∥δϑ̂+

/2∥2

[
δϑ̂

+
/2

1

]
⊗ q̂− (9.73)

Using an argument similar to Eq. (9.68), this can be accomplished in two steps:

q′ = q̂− +
1

2
Ξ(q̂−)δϑ̂

+ (9.74)

followed by

q̂+ =
q′

∥q′∥
(9.75)

The first step is just the usual linear Kalman update, and the second step is equivalent to a brute
force normalization of the updated quaternion. Thus the MEKF using Rodrigues parameters for
the error vector provides a theoretical justification for brute force renormalization, with the added
advantage of completely avoiding the accumulation of quaternion norm errors after many updates.
The Rodrigues parameters also have the conceptual advantage that they map the rotation group
into three-dimensional Euclidean space, with the largest possible 180◦ attitude errors mapped
to points at infinity. Thus probability distributions with infinitely long tails, such as Gaussian
distributions, make sense in Rodrigues parameter space.

If a measurement update immediately follows a reset or propagation, the δϑ̂
− term on the

right side of Eq. (9.71) can be omitted because δϑ̂− is zero. The reset is often delayed for computa-
tional efficiency until all the updates for a set of simultaneous measurements have been performed,
though, in which case δϑ̂− may have a finite value and all the terms in Eq. (9.71) must be included.
It is imperative to perform a reset before beginning the time propagation, however, to avoid the
necessity of propagating δϑ̂ between measurements.

There is some controversy over the question of whether the reset affects the covariance. One
argument holds that it doesn’t because the covariance depends not on the actual measurements
but on their assumed statistics. Measurement errors are assumed to have zero mean, so the mean
reset is zero. But the reset is very different from the measurement update in that it changes the
reference frame for the attitude covariance, which might be expected to modify the covariance
even though it adds no new information. The change in the covariance of δϑ resulting from the
effect of the actual update, rather than its zero expectation, can be computed to be [57,71]

Preset
ϑϑ =

(
I3 − [δϑ̂

+×]/2
)
P+

ϑϑ

(
I3 − [δϑ̂

+×]/2
)T

(9.76)

to first order in δϑ̂
+. Comparison with Eq. (9.7) shows that the covariance reset looks to this order

like a rotation by δϑ̂
+
/2, but this equivalence does not hold in higher orders. Most applications

omit this covariance reset, but Reynolds has found that it speeds convergence and adds robustness
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in the presence of large updates, and that omitting it can even lead to filter divergence in some
cases [71].

9.9.3. Propagation An EKF must propagate the expectation and covariance of the state. The
MEKF is unusual in propagating the expectation q̂ and the covariance of the error-state vector.
The propagation of the attitude error is found by by differentiating Eq. (9.64):

q̇true = δq̇⊗ q̂+ δq⊗ ˙̂q (9.77)
The true and estimated quaternions satisfy the kinematic equations

q̇true =
1

2

[
ωtrue

0

]
⊗ qtrue (9.78a)

˙̂q =
1

2

[
ω̂
0

]
⊗ q̂ (9.78b)

where ωtrue and ω̂ are the true and estimated angular rates, respectively. Substituting these
equations and Eq. (9.64) into Eq. (9.77), multiplying on the right by q̂−1, and rearranging terms
gives [53]

δq̇ =
1

2

([
ωtrue

0

]
⊗ δq− δq⊗

[
ω̂
0

])
(9.79)

Substituting Eq. (9.65) andωtrue = ω̂+δω, where δω is the angular velocity error, and multiplying
by two leads to [

δϑ̇
0

]
=

[
ω̂
0

]
⊗
[
δϑ/2
1

]
−
[
δϑ/2
1

]
⊗
[
ω̂
0

]
+

[
δω
0

]
⊗
[
δϑ/2
1

]
(9.80)

Ignoring products of the small terms δω and δϑ, in the spirit of the (linearized) EKF, the first three
components of Eq. (9.80) are

δϑ̇ = −ω̂ × δϑ+ δω (9.81)
and the fourth component is 0 = 0. Equation (9.81) is the equation needed to propagate the
covariance of the attitude error-angle covariance.

The expectation of Eq. (9.81) is
δ
˙̂
ϑ = −ω̂ × δϑ̂ (9.82)

because δω has zero expectation. This says that if δϑ̂ is zero at the beginning of a propagation it
will remain zero through the propagation, which is equivalent to saying that δq̂ will be equal to
the identity quaternion throughout the propagation.





CHAPTER 10

Usability Considerations

Contributed by Cheryl J. Gramling

This chapter is written to address best practices for mechanisms like selective processing of mea-
surements, reinitializations and restarts, backup ephemeris, and the availability of a ground system
corollary to a flight filter implementation. These become key considerations when using filtering
techniques for navigation solutions operationally, and are especially pertinent to autonomous op-
erations.

10.1. Editing
Let r = y−h(x), where y is the observed measurement, h(x) is the value of the measurement

computed from the state x, y = h(x) + v, and v is the measurement noise, E[v] = 0, E[vvT] = R.
The quantity r is known as the innovation or sometimes the pre-fit residual. The covariance of r is
given by

W = HPHT +R (10.1)

where P = E[eeT], H = ∂h(x)/∂x, and e is the error in the estimate of x. The squared Maha-
lanobis distance associated with r,

m2
r = rTW−1r (10.2)

has a χ2 distribution with degrees of freedom equal to the number of measurements contained
in the vector y. The statistic m2

r , also known as the squared residual or innovations ratio, may
be compared to a χ2 statistic with a given probability in order to edit outlying measurements.
For a purely linear estimation scheme, such editing is unnecessary, but for an ad hoc lineariza-
tion such as the EKF, editing is essential to prevent large innovations that would violate Taylor
series truncations used to develop the EKF approximation, even in the unlikely scenario in which
sensors produced measurements with noise characteristics that perfectly followed their assumed
(Gaussian) probability distributions.

Experience has shown that it is beneficial to provide for a command-able capability to selec-
tively apply a three-way editing flag to each measurement type. This flag may be enumerated
with the labels “accept,” “inhibit,” and “force,” or similar. The “accept” label denotes use of the
measurement, if it is accepted by the aforementioned edit test (in the parlance used by Shuttle
and Orion, this flag is labeled “auto”). The “inhibit” flag indicates that the measurement should be
rejected regardless of the status of the edit test. The “force” flag correspondingly indicates that the
measurement should be ingested regardless of the edit test result.

Additional measurement edit or selection parameters may be considered to identify invalid
measurements for filter processing and state update, as applicable to the orbit regime or applica-
tion. The following categories capture a representative set of these criteria:

101
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• Satisfying time constraints. For example, elapsed time from the last successful measure-
ment update is greater than or equal to a threshold value, such as the expected measure-
ment sampling interval.
• Satisfying transmitter or sensor performance and operability criteria. For example, trans-

mitter or sensor are not available, or enabled, and/or have no valid state vector or ephemeris,
or exhibits an errant telemetry value that violates a specified tolerance.
• Acceptance for processing measurements that occur during a maneuver time span. NOTE:

This criteria type strongly depends on the procedure for process noise adjustments to ac-
commodate maneuvers. If a maneuver is known to occur, then the filter operator may
elect to introduce additional process noise to allow state update from the measurements
during or soon after the maneuver span and reflect a more representative covariance
during that period. Depending on the filter tuning, measurement processing for a state
update across or after a small maneuver may not need an increase in process noise.
• Satisfying measurement-type specific selection criteria. For example, include only valid

measurements: according to the GNSS receiver selection criteria for GPS space vehicles;
that meet radial distance constraints to achieve minimum signal-to-noise ratio (SNR);
when the receiving antenna boresight angle falls within the specified minimum and max-
imum constraints.
• Satisfying visibility criteria.

Visibility tests may take on different forms, but can generally be categorized as criteria that
interrupt or corrupt the line of sight for the sensed observation. Editing accommodation may be
needed to handle scenarios where the line of sight between a source (e.g. transmitter, celestial body
for imaging) and the measuring sensor (e.g. receiver, camera) is

• interrupted by an occultation, e.g. the Moon blocks the view to Earth;
• corrupted by an element known to introduce multipath reflections, like a spacecraft ap-

pendage; or
• degraded by expected interference in sensor performance, such as an angular keep-out

zone to ensure the Sun-Earth-Probe angle meets the minimum threshold for signal-to-
noise for a viable measurement.

One common example for visibility editing criteria occurs when the line of sight of the received
signal from the transmission source travels through a path of ionospheric or atmospheric distur-
bance above a specified tolerance. To avoid these corrupted observations adversely influencing
the filter solution accuracy, it may be suitable to preclude these observations from a state update.
Relevant editing schemes include Height of Ray Path (HORP) and Transmit-to-Receive elevation
angle.

10.1.1. Height of Ray Path Editing The HORP test is useful for measurements obtained
from a signal between two orbiting assets. The edit test is predicated on defining the distance of
the transmission path, or ray path, between the two orbiting assets with respect to the central
body radius, followed by a comparison of that distance to the sum of the central body radius plus
defined altitudes for the atmospheric interference zone. Figure 10.1 portrays a case where the
signal ray path incurs no violation, while in Figure 10.2 the signal ray path passes through the
defined atmospheric region to be considered for edit. The HORP test can be used to identify and
edit for occultations by using an altitude of zero km above the occulting body.
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!

Figure 10.1. Signal Ray Path Above the Defined Atmosphere Region

Figure 10.2. Signal Ray Path Transits Through the Defined Atmosphere Region

The HORP editing test starts by computing the distance between the two orbiters at the specific
time instance:

d = ∥d⃗∥ =

∥∥∥∥∥R⃗s −
x⃗(x⃗ · R⃗s)

x2

∥∥∥∥∥ (10.3)

where x = ∥x⃗∥,
x⃗ = R⃗− R⃗s (10.4)

and

R⃗s = transmitter satellite position vector at the measurement time

R⃗ = receiver position vector at the measurement time
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Accept the measurement if d ≥ Re + h, [Figure 10.1], where Re equals the mean equatorial
radius of the Earth (or relevant central body) and h is the height of the atmosphere (a configurable
parameter, based on the atmosphere applicable to the central body).

If d < Re + h [Figure 10.2], compute

δ = x′ −
√
(Re + h)2 − d2 (10.5)

where

x′ =

∥∥∥∥∥ x⃗ · R⃗s

x

∥∥∥∥∥ (10.6)

If x′ ≤ δ, accept the measurement.
If x′ > δ, accept the measurement if α < αmax, where αmax is the maximum central angle, a

configurable parameter, nominally equal to 70 degrees for Earth as a central body, given by

α = cos−1

(
R⃗s · R⃗
RsR

)
(10.7)

and Rs = ∥R⃗s∥, R = ∥R⃗∥.

10.1.2. ElevationAngle Editing An elevation angle editing test can be used to identify mea-
surements that may be impacted by a known multipath source, a long path through the atmosphere
between a ground antenna and the spacecraft, a lower SNR from a spill-over signal that may origi-
nate beyond an antenna pattern threshold, or other impacting sources that can be defined through
an angular constraint. Figure 10.3 depicts an example used herein, which represents editing for
when the line of sight between a ground station and spacecraft falls below a local horizon mini-
mum elevation. Case A represents accepted measurements and Case B represents measurements
for editing.

Figure 10.3. Elevation Angle Test, Represented for Ground Station to Spacecraft
Atmosphere Transit

Compute the instantaneous line-of-sight vector from the receiving satellite to the ith trans-
mitting ground station (GS) as follows:

ρ⃗ i = R⃗(tk)− R⃗i
GS(tk) (10.8)
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where

R⃗(tk) = position vector of the receiving satellite at time tk
R⃗i

GS(tk) = position vector of the ith transmitting GS at time tk

The editing test is based on whether the elevation angle, E, of the line-of-sight vector with
respect to the local horizon is greater than a minimum elevation angle, Emin. The measurement is
accepted (Fig 10.3, Case A) if the following is true:

sinE > sinEmin (10.9)

where Emin is a commandable minimum elevation angle within the ±90 degrees range, and Emin
and E are positive above the local horizon and negative below the horizon. In addition, sinE is
computed as:

sinE =
ρ⃗ i · R⃗i

GS(tk)

∥ρ⃗ i∥∥R⃗i
GS(tk)∥

(10.10)

Otherwise, the measurement is edited and not used to update the state.

10.1.3. General Angle Editing One can apply angular editing tests to other mission con-
straints, such as an angle between the signal source-to-sun vector and the signal source-to-spacecraft
to avoid solar scintillation impacts on the signal that may corrupt the navigation observable. A
common application is when the signal source is a ground station on Earth; then the resultant
angle is referred to as the Sun-Earth-Probe angle. In this example shown in Figure 10.4, this angle
is denoted as α. Note that the signal source may be a relay spacecraft or a GNSS space vehicle.
The threshold angle, αmin, is a configurable parameter and may vary depending on the spacecraft’s
distance to the sun and the power-level of the signal between the spacecraft and source.

α(tk) = cos−1

(
R⃗S(tk) · R⃗GS-SC(tk)

RS(tk)RGS-SC(tk)

)
(10.11)

where

R⃗S(tk) = Ground Station to Sun vector at the measurement time, tk
R⃗GS-SC(tk) = Ground Station to Spacecraft vector at the measurement time, tk

Accept the measurement if α > αmin. Otherwise, the measurement is edited and not used to
update the state.
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Figure 10.4. General Angle Editing Test Applied to Sun-Earth-Probe Angle
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10.2. Reinitialization and Restarts
Since no EKF can be guaranteed to remain converged, it is prudent to provide for features that

can ease the process of recovering nominal filter operation . While to a large extent the particulars
of each application will guide a designer to select among a variety of filter recovery features, a few
general design principles are broadly relevant.

Experience has shown that the fairly drastic step of completely re-initializing the filter may
not always be necessary or prudent. In particular, under conditions in which it is reasonably clear
that the filter has begun to edit measurements because its covariance matrix has become overly
optimistic, but there remains reason to believe that the state estimate has not yet become corrupted,
it may be beneficial to reinitialize the covariance while retaining the current state estimate. It may
also be desirable to retain flexibility to retain only the position/velocity state components, while
reinitializing the various bias components.

If the filter has halted for some reason other than divergence (e.g. a flight computer reset), or if
the start of the divergence can be reliably determined, it may be useful to “restart” the filter from a
previously saved state and covariance, especially if there would otherwise be a long time required
for re-convergence. To enable such a restart capability, the full state and covariance must have
been periodically saved, and then they must be propagated to the restart time.

10.3. Backup Ephemeris
A backup ephemeris can be a useful tool with navigation filters, serving as:
• a comparison to the filtered estimate, providing an input to fault detection based on com-

mandable tolerances to detect degraded filter performance;
• a reinitialization state, if needed by an onboard filter based on mission-defined tolerance

violation, or a previously identified fault response, or when a ground uplink is known to
not be available in a timely manner;
• an alternative navigation estimate that can be reliably propagated without any measure-

ment updates to maintain spacecraft orbit knowledge for health and safety and communi-
cation link pointing, e.g. in case of a safe-mode trigger or other case whereby the onboard
filter is disabled.

Backup ephemeris can be instantiated by several representations, and the selected represen-
tation should be based on the mission operations concept, data systems employed, risk level, and
requirements. In addition, the selected mean element variable set must align with the proper mean
theory [84, Section 9.7.3]. Backup ephemerides based on Brouwer-Lyddane mean orbital elements
and rates offer a mean representation of the orbit over a defined time period. The mean element
representation given in Table 1 has been used successfully on near-circular LEO and GEO missions
(not at the critical inclination of 63.483 degrees), and used onboard to support navigation fault de-
tection, isolation, and recovery [31]. To obtain a backup ephemeris from a filtered estimate, the
process usually involves converting the predicted osculating elements to Brouwer-Lyddane mean
elements. The Brouwer-Lyddane mean elements will deteriorate over time, especially if the propa-
gation or conversion does not account for the non-gravitational perturbations, such as atmospheric
drag for a LEO orbit or solar radiation pressure for a GEO orbit. When used as a backup ephemeris,
the accuracy expected from Brouwer-Lyddane mean elements, along with the expected coverage
period and update rate for the orbital element set, must be taken into consideration according to
the use case.

Chebyshev polynomials provide another option to represent a backup ephemeris, and may
offer a consistent representation format for the spacecraft as well as celestial bodies. The Spacecraft
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Table 1. Brouwer-Lyddane Mean Elements

Element Unit Description
T days Epoch of the elements
a m Semi-major axis
e n/a Eccentricity
i deg Inclination
ω deg Argument of periapsis
Ω deg Right Ascension of Ascending Node (RAAN)
M deg Mean anomaly
ȧ m/s Semi-major axis rate
ω̇ deg/s Argument of periapsis rate
Ω̇ deg/s RAAN rate
Ṁ deg/s Mean anomaly ratea

aIn Reference [31], the mean anomaly rate, Ṁ , for a LEO polar orbiting case combined mean
anomaly and argument of periapsis as

Ṁ =
[M(t2) + ω(t2)]− [M(t1) + ω(t1)]

t2 − t1

whereas, for the GEO low inclination case, Ṁ also includes RAAN to give

Ṁ =
[M(t2) + ω(t2) + Ω(t2)]− [M(t1) + ω(t1) + Ω(t1)]

t2 − t1
The expected accuracy of the Brouwer-Lyddane elements for the respective orbit representa-
tions are on the order of tens of kilometers, which serves the purposes for the mission.

Planet Instrument C-matrix Events (SPICE) toolkit offered by NASA’s Navigation and Ancillary
Information Facility (NAIF) provides commonly accepted utilities for Chebyshev polynomials from
an ephemeris (Types 2, 3, 14, and 20), as well as Hermite interpolators to evaluate the polynomial at
a selected epoch (Types 12 and 13). While it is possible to compute mean elements or Chebyshev
polynomials onboard, the computational overhead may induce a mission to periodically upload
these types of backups from the ground.

In some applications, such as use of measurements from a Global Navigation Satellite System
receiver, the receiver’s independent “point solution” may serve as a useful comparison source. The
periodically saved filter state that contains the full state and covariance, discussed as a means to
restart the filter, also provides capability to maintain a backup ephemeris. For flight phases of
limited duration, the backup ephemeris may be propagated inertially without any measurement
updates. For extended operations, it will usually be necessary to re-seed the backup with a current
filter state at periodic intervals.

Averaged equinoctial elements offer a more accurate backup that aligns with autonomous op-
erations and onboard processing capabilities, and more readily accommodate all trajectory types
because they avoid the singularities found in classical elements. In particular, an equinoctial sys-
tem of elements can be defined to represent any inclination or eccentricity, including e = 0 and
e > 1. Selecting equinoctial elements and rates that vary slowly can be especially useful in a

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/spk.html
https://naif.jpl.nasa.gov/naif/index.html
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mission with variable or low-thrust. Lastly, equinoctial elements can be transformed to Carte-
sian or Keplerian elements. Elements averaged over a period of time that sufficiently represents
the trajectory based on the filter estimates can serve as a state for comparison or to reinitialize a
navigation filter to start state estimation.

The following set of equinoctial elements [6, 15], have been successfully implemented and
operationally used in onboard filters. Table 2 provides a definition of the equinoctial elements
(a, h, k, p, q, λ), based on the classical Keplerian elements (a, e, i,Ω, ω,M). As Table 2 describes,
the equinoctial elements can be interpreted in terms of an equinoctial coordinate frame, whose
principal direction, x̂ep, is the “origin of longitudes” as shown in Figure 10.5.

Table 2. Equinoctial Element System

Element Definition Conversion from
Keplerian Elements

a Semi-major axis a

h Projection of the eccentricity vector e⃗ on the ŷep axis e sin(ω +Ω)

k Projection of the eccentricity vector e⃗ on the x̂ep axis e cos(ω +Ω)

p Projection of the nodal vector N⃗ on the ŷep axis
(
tan

(
i
2

))j
sinΩ

q Projection of the nodal vector N⃗ on the x̂ep axis
(
tan

(
i
2

))j
cosΩ

λ Mean longitude M + ω +Ω

e⃗ = eccentricity vector pointing in the direction of the x̂p axis (perifocus) with a magnitude
equal to the orbital eccentricity

N⃗ = nodal vector pointing in the direction of the ascending node with a magnitude equal to(
tan

(
i
2

))j where i denotes the orbital inclination and j is defined as:
j = 1 for direct orbits (0 ≤ i ≤ 90◦); j = −1 for retrograde orbits (90 < i ≤ 180◦)

These equinoctial elements can be averaged over more than one orbital period to define an
averaged set of elements and associated rates.

(Ei)0ref =
1

N + 1

N∑
n=0

Ei(t0 + n δt), i = 1, 5 (10.12)

(E6)0ref = λ(tref) (10.13)
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Figure 10.5. The Equinoctial Coordinate Frame

where

(Ei)0ref = reference averaged equinoctial element vector (ā, h̄, k̄, p̄, q̄, λ̄) associated with
the current reference time, tref

tref = reference time for a new set of reference averaged equinoctial elements, equal
to the center of the averaging interval

t0 = time of the first point in the current summation interval
Ei(t) = component of osculating equinoctial element vector at time t obtained from

the osculating position and velocity vectors
N = number of osculating equinoctial element sets included in the summation
δt = time interval between successive osculating equinoctial elements included in

the summation, commandable parameter (recommended to be on the order of
one (1) second

The value of N should be chosen so the average is performed over one spacecraft orbital period
to within a commandable tolerance.

N = 2

(
int

[
P + δt

2δt

])
(10.14)

where

P = 2π

√√√√(a−1
ref

)3
µCB

(10.15)
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and
µCB = gravitation constant of the central body

a−1
ref = reference averaged semi-major axis associated with the prior set of reference

averaged equinoctial elements
Equinoctial element rates for semi-major axis and mean longitude are computed as follows

using the average for each element over the current and previous orbital periods:

ȧ0ref =
1

tref − t−1
ref

[
a0ref − a

−1
ref

]
(10.16)

λ̇0ref =
1

tref − t−1
ref

[
λ0ref − λ

−1
ref + 2π

]
(10.17)

Averaged equinoctial elements assume that there is not a large change in the eccentricity vec-
tor or node over successive orbital periods; hence they should not be used over large discrete
maneuvers unless special care is taken. Therefore, generally, rates for the other elements are as-
sumed to be zero. If a maneuver does occur, the computation should be restarted.

To obtain the averaged equinoctial state vector at the current time, tc, perform the computation
as follows:

E(tc) = E
−2
ref + Ė

−2

ref ∆t (10.18)
where

E(tc) = vector of averaged equinoctial elements (listed in Table 2) evaluated at time tc

E
−2
ref = vector of reference averaged equinoctial elements at reference time t−2

ref

Ė
−2

ref = vector of reference averaged equinoctial element rates at reference time t−2
ref

t−2
ref = reference time of the reference equinoctial elements and rates computed over

the orbital period prior to the last
∆t = the time difference between the current time and the time of the reference

equinoctial elements and rates two orbits prior, tc − t−2
ref

10.4. Ground System Considerations
The operations concept, requirements on the onboard filter performance and products derived

from the filter estimate, whether derived onboard or on the ground, filter commissioning, anom-
aly resolution, and performance monitoring are critical factors to consider in designing a ground
system commensurate with the mission needs. The command and telemetry parameters necessary
to understand filter performance and the derived products need to be designed into the mission as
early in the design life cycle as possible. Filter operation, expected performance, known signatures
or constraints on operation, and any maintenance at the requisite cadence should be documented
and maintained throughout the mission lifetime. Default and current filter tuning parameters and
variables that effect operating modes should be archived for ready access in case of a cold restart
or for troubleshooting. While it may seem intuitive that all parameters affecting filter performance
should be available for re-tuning from the ground via mechanisms such as commands, table up-
loads, etc., experience has shown that decisions about ground system design and telemetry and
commanding constraints often limit the accessibility of key tuning parameters. Adequate band-
width in telemetry for full insight into filter performance, including access to full covariance data,
the restart record discussed above, and the backup ephemeris must be available, if only for limited
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periods during commissioning and/or troubleshooting activities. As a best practice, a comprehen-
sive snapshot of the filter performance including the restart record (full state and covariance), and
performance metrics on editing, measurement update, and tolerance parameters should be made
available in telemetry at a regularly defined cadence commensurate with the mission concept and
orbit regime .

The complementary side is that the ground system must be able to reproduce the onboard
filter’s performance when provided with corresponding input data via downlinked telemetry. Em-
pirical evidence recommends that the ground system include the ability to use a high-fidelity and
tunable representation of the filter to address current performance, analyses, and troubleshooting
for anomaly resolution. This includes access to default, current, and prior upload parameters for
modeling and tuning.

Often, the filter estimate developed onboard is used by the ground system to create subsequent
products for the mission. This includes the use of the as-telemetered filter state for predictive plan-
ning products or analysis for covariance realism. In some cases, it may be necessary to develop a
best estimated trajectory (BET), the generation of which may require alternate tuning or additional
processing (e.g. through the use of smoothing algorithms) on the ground to achieve the most ac-
curate orbit knowledge. The BET can be used to comparatively analyze filter performance, or may
be a source for predictive products for mission objective planning or projected filter performance
under alternative scenarios.

Careful consideration should be given to comprehensive operations concepts and usage for
onboard filters. These include editing methods, availability of restart records, the need for and
type of backup ephemeris, appropriate access for tuning and modeling changes, adequate infor-
mation content available in telemetry, and the appropriate instantiation of a ground system for
filter commissioning and performance monitoring throughout the mission lifetime.





CHAPTER 11

Smoothing

Contributed by Christopher N. D’Souza and J. Russell Carpenter

Since this work is primarily concerned with onboard navigation filters, one might question
the need for a chapter on best practices for smoothing. While the addition of a smoother to an
onboard navigation system has usually proved unnecessary, smoothing has nonetheless proved to
be a useful ancillary capability for trajectory reconstruction by ground-based analysts. Smoothed
trajectories form the basis for our best proxies for truth, in the form of “best estimated trajectories,”
(BET) and McReynold’s “filter-smoother consistency test,” propagated by Jim Wright [90], has
proven to be a useful aid to tuning a filter using flight data. Also, sequential smoothing techniques
can provide optimal estimates of the process noise sequence, as Appendix X of Bierman’s text [5]
shows. These estimates may prove useful as part of the filter tuning process.

It is also worth mentioning the topic of “smoothability.” As described in for example Gelb [27],
only states that are controllable from the process noise will be affected by smoothing. So for
example, estimates of random constant measurement biases cannot be improved by smoothing.

In point of fact there are three types of smoothing: fixed-interval smoothing, fixed-lag smooth-
ing, and fixed-point smoothing. The context described above is concerned with fixed-interval
smoothing. Maximum likelihood estimation (MLE) of states over a fixed interval has been sub-
ject of investigation ever since the advent of the Kalman filter [44] in 1961. In 1962, Bryson
and Frazier first approached the problem from a continuous time perspective [8] and obtained
the smoother equations as necessary conditions of an optimal control problem†. In 1965, Rauch,
Tung and Striebel [70] (RTS) continued the development of the MLE filters but from a discrete
time perspective. Their smoother, soon called the RTS smoother, was widely used because of its
ease of implementation. However, as Bierman [5] and others [61] pointed out, there can some-
times arise numerical difficulties in implementing the RTS smoother. A short time later Fraser and
Potter [24,25] approached the problem a bit differently, looking at smoothing as a optimal com-
bination of two optimal linear filters and obtained different, yet equivalent, equations. Bierman’s
Square-Root Information Filter [5] (SRIF) also has an accompanying smoother form, suitable for
applications utilizing the SRIF. Since the Fraser-Potter form avoids the numerical issues of the
RTS form, and since it can be easily adapted from existing onboard Kalman-type forward filtering
algorithms, it is generally to be preferred.

The boundary conditions for the Fraser-Potter (FP) smoother require the backward covariance
at the final time to be infinite, and the backward filter’s final state to be zero. Fraser and Potter
avoided the infinity by maintaining the backward filter covariance in information form, so that
both the information matrix and the information vector are zero. As Brown points out [7], the

†The Bryson-Frazier smoother is a continuous time instantiation of the smoother. It won’t be considered here for
we are interested in discrete smoothers. [8]
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backward filter may be retained in covariance form, and the infinite boundary condition covari-
ance replaced by either a covariance that is many multiples of the forward filter’s initial covariance,
or by the covariance and state from a short batch least-squares solution using the final few mea-
surements. Many practical smoother implementations used by NASA have followed an approach
of this sort.

Thus, a practical covariance form of the FP smoother results from running whatever imple-
mentation of Algorithm 1.3 has proved suitable for the application at hand, but in reverse time, and
combining the backward filter results with the forward filter results at each measurement time.
Given the forward filter state and covariance, X̂+

Fi
and P+

Fi
, which include the measurement at ti,

and the backward filter state and covariance, X̂−
Bi

and P−
Bi

, which do not include the measurement
at ti, the optimally smoothed state and covariance at ti are given by

X̂S
i = PS

i

[
(P+

Fi
)−1X̂+

Fi
+ (P−

Bi
)−1X̂−

Bi

]
(11.1)

PS
i =

[
(P+

Fi
)−1 + (P−

Bi
)−1
]−1

(11.2)

If covariance form is to be retained, the tedious number of inverses apparent in Eqs. (11.1)
and (11.2) may be avoided as follows. Suppose we define the smoothed state as a linear fusion of
the forward and backward filter states:

X̂S
i = WFiX̂

+
Fi

+WBiX̂
−
Bi

(11.3)

For X̂S
i to be unbiased, we must choose either WFi = I−WBi or WBi = I−WFi . Choosing

the latter, the smoothed state becomes
X̂S

i = WFiX̂
+
Fi

+ (I−WFi) X̂
−
Bi

(11.4)

Given the enforced lack of correlation between the forward and backward filters, the fused (smoothed)
covariance is given by

PS
i = WFiP

+
Fi
WT

Fi
+WBiP

−
Bi
P−

Bi
WT

Bi
(11.5)

= WFiP
+
Fi
WT

Fi
+ (I−WFi)P

−
Bi

(I−WFi)
T (11.6)

Choosing WFi to minimize the trace of PS
i results in

WFi = P−
Bi
(P+

Fi
+P−

Bi
)−1 (11.7)

To see that Eq. (11.6), with Eq. (11.7), is equal to Eq. (11.2), expand Eq. (11.6), substituting
Eq. (11.7), and recall Woodbury’s identity:[

(P+
Fi
)−1 + (P−

Bi
)−1
]−1

= P−
Bi
−P−

Bi
(P+

Fi
+P−

Bi
)−1P−

Bi
(11.8)

= P+
Fi
−P+

Fi
(P+

Fi
+P−

Bi
)−1P+

Fi
(11.9)

To see that Eq. (11.4), with Eq. (11.7), is equal to Eq. (11.1), use Eq. (11.8) to show thatPS
i (P

−
Bi
)−1 =

WBi and use Eq. (11.9) to show that PS
i (P

+
Fi
)−1 = WFi .

In a typical application, the forward filter has been running continuously onboard the vehi-
cle, and ground-based analysts will periodically wish to generate a BET over a particular span
of recently downlinked data. If the telemetry system has recorded and downlinked the full state
and covariance at each measurement time, along with the measurements, the ground system need
only run a “copy” of the forward filter backwards through the measurements and fuse the data
according to Eqs. (11.1) and (11.2). Care must be taken that regeneration of the state transition
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matrices and process noise covariances is consistent with the forward filter’s modeling, and with
the negative flow of time.

For various reasons, it may be necessary or desirable to run the forward filter on the ground
as well, e.g. with higher-fidelity modeling than the onboard implementation permits. If so, it
is efficient to store the state transition matrices and process noise covariances computed in the
forward pass for use in the backward filter. In this case, Brown shows that the backward covariance
may be propagated using

P−
Bi

= Φ−1
i+1,i

[
P+

Bi+1
+ Si+1

]
Φ−T

i+1,i (11.10)





CHAPTER 12

Advanced Estimation Algorithms

This chapter will describe advanced estimation algorithms that have yet to achieve the status
of best practices, but which appear to the contributors to have good potential for someday reaching
such status.

The Sigma-Point Estimator
Contributed by J. Russell Carpenter

Derivative-free state estimation techniques have received increasing attention in recent years. A
particular class of such estimators make use of the columns of the factors of the estimators’ er-
ror covariance matrices, which are scaled to form vectors that have become generally known as
“sigma points.” The so-called “Unscented Kalman Filter” [41, 42, 52] is a particular example of
a sigma-point filter. A more general form is the divided-difference sigma-point filter, which is
a sequential estimator that replaces first-order truncations of Taylor series approximations with
second-order numerical differencing equations to approximate nonlinear dynamics and measure-
ment models [64,65]. If the process and measurement noise enter the system additively, Lee and
Alfriend showed that several simplifications are possible, including a substantial reduction in the
number of sigma-points [51]. They refer to this construction as the Additive Divided Difference
Sigma-Point Filter (ADDSPF).

This section highlights some broad aspects of sigma-point filtering, then briefly reviews how
the ADDSPF works. It concludes with some brief comments comparing the ADDSPF to other
sequential filters.

The Sigma-Point Filter In its most general form, the sigma-point filter performs sequen-
tial estimation of the n-dimensional state, x, whose nonlinear dynamics over the time interval
[tk, tk+1] are given by

xk+1 = f(xk,wk) (12.1)
The process noise input, w, consists of independent increments whose first two moments are
E[wk] = 0 and E[wkwℓ] = Qkδkℓ, where δkℓ is the Kronecker delta. Although the second
moment may be a function of the time index, this estimator assumes that all of the samples of w
arise from the same type of distribution, and this work further assumes that this distribution is
Gaussian, so that higher-order moments may be neglected.

The filter sequentially processes an ordered set of measurements, Yk = [y0,y1, ...,yk] of the
form

yk = h(xk,vk) (12.2)
where the measurement noise input, v, consists of independent and identically distributed (again,
in this work, Gaussian) increments whose first two moments are E[vk] = 0 and E[vkvℓ] = Rkδkℓ.

117



118 12. ADVANCED ESTIMATION ALGORITHMS

By contrast, the ADDSPF utilizes models where the noise sources enter additively:

xk+1 = f(xk) + g(xk)wk (12.3)

and
yk = h(xk) + vk. (12.4)

All sigma-point filters utilize a linear measurement update equation of the form

x̂+
k = x̂−

k +Kk

(
yk − ŷ−

k

)
(12.5)

where the accented variables in Eq. (12.5) denote conditional expectations, as in the Kalman filter:

x̂+
k = E[xk|Yk] (12.6)

x̂−
k = E[xk|Yk−1] (12.7)

ŷ−
k = E[yk|Yk−1] (12.8)

The gain matrix, K, is based on conditional covariances, as in the Kalman filter:

Kk = P−
xyk

(
P−

yyk

)−1 (12.9)

P−
k = P−

xxk
= E

[(
xk − x̂−

k

) (
xk − x̂−

k

)T |Yk−1

]
(12.10)

P−
xyk

= E
[(
xk − x̂−

k

) (
yk − ŷ−

k

)T |Yk−1

]
(12.11)

P−
yyk

= E
[(
yk − ŷ−

k

) (
yk − ŷ−

k

)T |Yk−1

]
(12.12)

(12.13)

and the covariance associated with state estimate x̂+
k is

P+
k = P+

xxk
= E

[(
xk − x̂+

k

) (
xk − x̂+

k

)T |Yk

]
(12.14)

Hereafter, equations will suppress the time index if it is the same for all variables in the equation.
Estimators such as the Kalman filter estimate these conditional expectations by approximating

the nonlinear functions f and h with first-order Taylor series truncations, e.g.:

f(x) ≈ f(x̂−) + f ′(x)(x− x̂−) (12.15)

where f ′ is an exact gradient. By contrast, the divided difference filter uses a second-order trun-
cation along with numerical differencing formulas for the derivatives:

f(x) ≈ f(x̂−) + D̃(1)
∆xf(x̂

−) + D̃(2)
∆xf(x̂

−) (12.16)

where the divided difference operators, D̃(i)
∆xf(x̂

−), approximate the coefficients of the multidi-
mensional Taylor series expansion using Stirling interpolations. These interpolators difference
perturbations of f(x̂−) across a (dimensionless) interval, h, over a spanning basis set. Whether
they are first-order, such as the unscented filter, or second order, sigma-point filters choose the
interval so as to better approximate the moments required for the gain calculation, and choose
as the spanning basis a set of sigma points, which are derived from x̂− and the columns of the
Cholesky factors of P− as follows.
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The ADDSPF Let X̂ denote the array whose columns are a particular ordering of the sigma
points derived from x̂ and its corresponding covariance, P. Then

X̂ =
[
x̂, x̂+ h

c
√
P(:,1), x̂+ h

c
√
P(:,2), ..., x̂− h

c
√
P(:,1), x̂− h

c
√
P(:,2), ...

]
(12.17)

where the subscript (:, i) denotes column i of the corresponding array, and P = c
√
P c
√
P

T denotes
a Cholesky factorization. In the sequel, the shorthand notation x̂±h c

√
P will denote the array on

the right-hand side of the equation above. Then, for the ADDSPF, Ref. 51 shows that as each new
measurement becomes available, an array of sigma points generated from the prior update should
be propagated to the new measurement time:

X̂−
k = f(X̂+

k−1) (12.18)

These propagated sigma points are then merged to form the state estimate just prior to incorpo-
rating the new measurement as follows:

x̂− = µh(X̂−) =
h2 − n
h2

X̂−
(:,1) +

1

2h2

2n+1∑
i=2

X̂−
(:,i) (12.19)

To form an associated covariance, the following divided-differences are next computed:

D̃(1)
∆xf(x̂

−)(:,i) =
1

2h

[
X̂−
(:,i+1) − X̂

−
(:,i+1+n)

]
(12.20)

D̃(2)
∆xf(x̂

−)(:,i) =

√
h2 − 1

2h2

[
X̂−
(:,i+1) + X̂

−
(:,i+1+n) − 2X̂−

(:,1)

]
(12.21)

Ref. 51 shows that the covariance may then be computed from

P− =
[
D̃(1)
∆xf(x̂

−), D̃(2)
∆xf(x̂

−), c
√
Qd

] [
D̃(1)
∆xf(x̂

−), D̃(2)
∆xf(x̂

−), c
√
Qd

]T
(12.22)

One advantage of sigma-point filters is that the full covariance need not be maintained, but rather
only its Cholesky factor. Although the factors in square brackets in Eq. (12.22) are not Cholesky
factors, since each is a full n× 3n matrix, one may extract an n×n triangular factor from it using
the so-called “thin” version [30] of the QR decomposition1, or alternatively using a Householder
factorization [5]. Thus,

M

[
c
√
P−T

O2n×n

]
=
[
D̃(1)
∆xf(x̂

−), D̃(2)
∆xf(x̂

−), c
√

Qd

]T
(12.23)

where M is a full 3n× 3n orthonormal matrix, and O2n×n is a 2n× n matrix of zeros.
For the measurement update, a new array of sigma points must be generated from x̂− and P−;

this array is denoted X̂ ∗. These sigma points are used to generate a set of sigma points representing
the measurement:

Ŷ− = h(X̂ ∗) (12.24)
In similar fashion to the time update, the sigma points of the measurement are then merged to
form the estimated measurement:

ŷ− = µh(Ŷ−) (12.25)

1For Matlab users, this may be accomplished in several ways, e.g. by passing the transpose of this matrix to the
qr function, then keeping the first n non-zero rows from the second output, and transposing this result.
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the corresponding divided-differences are computed as:

D̃(1)
∆xh(x̂

−)(:,i) =
1

2h

[
Ŷ−
(:,i+1) − Ŷ

−
(:,i+1+n)

]
(12.26)

D̃(2)
∆xh(x̂

−)(:,i) =

√
h2 − 1

2h2

[
Ŷ−
(:,i+1) + Ŷ

−
(:,i+1+n) − 2Ŷ−

(:,1)

]
(12.27)

and the covariances required for the gain calculation may then be computed from

P−
yy =

[
D̃(1)
∆xh(x̂

−), D̃(2)
∆xh(x̂

−),
c
√
R
] [

D̃(1)
∆xh(x̂

−), D̃(2)
∆xh(x̂

−),
c
√
R
]T

(12.28)

P−
xy =

c
√
P−

[
D̃(1)
∆xh(x̂

−)
]T

(12.29)

Note that the second-order divided difference for the measurement function, D̃(2)
∆xh(x̂

−), does not
appear in the cross-covariance update. As with the time update, through the use of the thin QR
factorization, only triangular factors need be maintained for P−

yy
2 :

Myy

[
c

√
P−

yy

T

O2n×n

]
=
[
D̃(1)
∆xh(x̂

−), D̃(2)
∆xh(x̂

−),
c
√
R
]T

(12.30)

Now, all of the terms required for the state update (Eqs. 12.5 and 12.9), are available. Ref. 51 shows
that the corresponding Cholesky factor of the covariance is extracted from

M+

[
c
√
P+T

O2n×n

]
=
[

c
√

P− −KD̃(1)
∆xh(x̂

−), K
[
D̃(2)
∆xh(x̂

−),
c
√
R
]]

(12.31)

TheADDSPF vs. Other Sequential Filters To conclude this section, some observations con-
cerning the ADDSPF in comparison to other filters are offered. These observations concern the
number of sigma points, the order of approximation, and the existence and method of choice of
free parameters in the algorithms.

Although in many problems of practical interest the noise enters the system additively, if this
is not the case, then either the original divided difference filter or the unscented filter may provide
superior results to the ADDSPF, at the cost of requiring more sigma points. In both of the former
algorithms, the nonlinear functions must be perturbed not only over a basis spanning the state
space, but also over the discrete process noise and measurement noise spaces. Thus, rather than
2n+1 sigma points, the more general algorithms require 2na +1, where na = n+ nw + nv , and
nw and nv are the dimensions of the discrete process noise and measurement noise inputs.

The Kalman filter is an exact algorithm for linear stochastic systems driven by Gaussian noise,
and nothing is to be gained from the use the sigma-point filters for such purely linear systems.
First-order sigma-point filters such as the UKF retain the Kalman filter’s first-order truncation,
but avoid the need for the designer to supply explicit gradients. The divided difference filter is
comparable to a derivative-free version of the modified second-order Gaussian filter [38] in that,
for symmetric distributions, it retains some terms as high as order four.

Unlike the Kalman filter, for which all of the parameters in principle can be associated with
properties of the underlying stochastic system, all of the sigma point filters involve at least one
free parameter. In the unscented filter, the weights for combining the sigma points involve three
parameters whose physical interpretation is perhaps less clear than with the single parameter in

2Although it might seem that the full matrix P−
yy is required for the gain computation of Eq. (12.9), Ref. 64 points

out that, rather than inverting the product of the factors to compute the gain, the gain may be solved from forward and
back substitution directly using the Cholesky factor.
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the divided difference algorithms, where the free parameter h is clearly associated with the size of
the perturbation in the numerical differencing formulae. Ref. 64 shows that h should be bounded
below by h > 1, and that for symmetric distributions,

√
h should be equal to the kurtosis, which

for a Gaussian distribution is three3.

3Some authors subtract three from the definition of kurtosis, so that Gaussian distributions have zero kurtosis.





APPENDIX A

Models and Realizations of Random Variables

Contributed by J. Russell Carpenter

A continuous random variable is a function that maps the outcomes of random events to the
real line. Realizations of random variables are thus real numbers. A vector of n random variables
maps outcomes of random events to Rn. For our purposes, random variables will always be as-
sociated with a probability density function that indicates the likelihood that a realization occurs
within a particular interval of the real line, or within a particular subspace of Rn for the vector
case. It is common to assume that this density is the normal or Gaussian density. For the vector
case, the normal probability density function is

px(x) =
1√
|2πP|

e−
1
2
(x−µ)TP−1(x−µ) (A.1)

where µ is a vector of mean values for each component of x, and P is a matrix that contains the
variances of each component of x along its diagonal, and the covariances between each component
as its off-diagonal components. The covariances indicate the degree of correlation between the
random variables composing x. The matrix P is thus called the variance-covariance matrix, which
we will hereafter abbreviate to just “covariance matrix,” or “covariance.” Since the normal density
is completely characterized by its mean and covariance, we will use the following notation as a
shorthand to describe drawing a realization from a normally-distributed random vector:

x ∼ N(µ,P) (A.2)

Thus, the model for realizations of a measurement noise vector is

v ∼ N(0,R) (A.3)

For the scalar case, or for the vector case when the covariance is diagonal, we may directly
generate realizations of a normally-distributed random vector from normal random number gen-
erators available in most software libraries. If P has non-zero off-diagonal elements, we must
model the specified correlations when we generate realizations. If P is strictly positive definite,
we can factor it as follows:

P =
C
√
P

C
√
P

T (A.4)
where C

√
P is a triangular matrix known as a Cholesky factor; this can be viewed as a “matrix

square root.” The Cholesky factorization is available in many linear algebra libraries. We can then
use C
√
P to generate correlated realizations of x as follows. Let z be a realization of a normally-

distributed random vector of the same dimension as x, with zero mean and unit variance, that
is

z ∼ N(0, I) (A.5)
123
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Then, with
x =

C
√
Pz (A.6)

we can generate properly correlated realizations of x. We can also use a Cholesky factorization
of the measurement noise covariance R, if R is non-diagonal, to transform correlated measure-
ments into uncorrelated auxiliary measurements for cases in which the estimator cannot handle
correlated measurement data.

If P is only non-negative definite, i.e. P ≥ 0 rather than P > 0 as above, the Cholesky
factorization does not exist. In this case, sinceP’s eigenvalues are real and distinct, it has a diagonal
factorization:

P = VDVT (A.7)
where V is a matrix of eigenvectors and D is a diagonal matrix of eigenvalues. Then, with z as
above,

x = V
√
Dz (A.8)

where
√
D implies taking the square roots of each diagonal element.



APPENDIX B

TheMathematics Behind the UDU Factorization

Contributed by Chris D’Souza

B.1. The Partitioning into Two Subproblems
We can find that the update equation is

U−
k+1D

−
k+1U

−T

k+1 = ΦkU
+
k D

+
k U

+T

k ΦT
k +Qk (B.1)

= Φ2kΦ1kU
+
k D

+
k U

+T

k ΦT
1k
ΦT

2k
+Q1k

+Q2k

= Φ2k

[
Φ1kU

+
k D

+
k U

+T

k ΦT
1k

]
ΦT

2k
+Q1k

+Q2k
(B.2)

Recalling that Q1k
= Φ2kΦ

−1
2k

Q1k
Φ−T

2k
ΦT

2k
and

Φ−1
2k

=

[
I 0
0 M−1

k

]
(B.3)

where M−1
k = diag(1/mki), i = 1, 2, 3, · · · , np. We note that

Φ−1
2k

Q1k
Φ−T

2k
=

[
I 0
0 M−1

k

] [
Qxxk

0
0 0

] [
I 0
0 M−1

k

]
=

[
Qxxk

0
0 0

]
= Q1k

(B.4)

B.2. The Mathematics Behind the Second Subproblem
Recall that we partitoned Ũ and D̃ as

Ũk =

 Ũaak
Ũabk Ũack

0 1 Ũbck

0 0 Ũcck

 }na} 1
}nc

and D̃k =

 D̃aak
0 0

0 d̃bk 0

0 0 D̃cck

 }na} 1
}nc

(B.5)

in order to isolate a parameter. In fact, the state we choose to isolate is one of the Gauss-Markov
states (likely associated with a sensor). Let

Φ2k =

 I 0 0
0 1 0
0 0 Mck

  I 0 0
0 mbk 0
0 0 I

 = Φck Φbk (B.6)

and

Q2k
=

 0 0 0
0 qbk 0
0 0 0

+

 0 0 0
0 0 0
0 0 Qck

 = Qbk
+Qck

(B.7)
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As in the previous exercise, we note that Φ−1
ck

Qbk
Φ−T

ck
= Qbk

. So, now Eq. (8.25) becomes

U−
k+1D

−
k+1U

−T

k+1 = Φck

[
ΦbkŨkD̃kŨ

T

kΦ
T
bk

+Qbk

]
ΦT

ck
+Qck

(B.8)

The term in the square bracket in Eq. (B.8) is

ŬkD̆kŬ
T

k = ΦbkŨkD̃kŨ
T

kΦ
T
bk

+Qbk
(B.9)

The left side of Eq. (B.9) (recalling that Ŭbbk = 1) is

ŬkD̆kŬ
T

k =



Ŭaak
D̆aak

Ŭ
T

aak
| ŬackD̆cckŬ

T

ack
| ŬackD̆cckŬ

T

cck

+Ŭabk d̆bkŬ
T

abk
| +Ŭabk d̆bk |

ŬackD̆cckŬ
T

ack
| |

− − −−−−− | − −−−−− | − −−−−
d̆bkŬ

T

abk
| d̆bk + ŬbckD̆cckŬ

T

bck
| ŬbckD̆cckŬ

T

cck

ŬbckD̆cckŬ
T

ack
| |

− − −−−−− | − −−−−− | − −−−−
ŬcckD̆cckŬ

T

ack
| ŬcckD̆cckŬ

T

bck
| ŬcckD̆cckŬ

T

cck


(B.10)

The right side of Eq. (B.9), once again recalling that Ũbbk = 1, is

ΦbkŨkD̃kŨ
T

kΦ
T
bk

+Qbk
=

Ũaak
D̃aak

Ũ
T

aak
| mbkŨackD̃cckŨ

T

ack
| ŨackD̃cckŨ

T

cck

+Ũabk d̃bkŨ
T

abk
| +mbkŨabk d̃bk |

ŨackD̃cckŨ
T

ack
| |

− − −−−−− | − −−−−− | − −−−−
mbk d̃bkŨ

T

abk
| m2

bk
ŨbckD̃cckŨ

T

bck
| mbkŨbckD̃cckŨ

T

cck

+mbkŨbckD̃cckŨ
T

ack
| +m2

bk
d̃bk + qbk |

− − −−−−− | − −−−−− | − −−−−
ŨcckD̃cckŨ

T

ack
| mbkŨcckD̃cckŨ

T

bck
| ŨcckD̃cckŨ

T

cck


(B.11)

Equating the components in Eqs. (B.10) and (B.11), from the (1,3) and (3,3) element, we find

Ŭack = Ũack , D̆cck = D̃cck , Ŭ
T

cck
= Ũ

T

cck
(B.12)

From the (2,3) element we get,

Ŭbck = mbkŨbck (B.13)

From the (2,2) element and using the results of Eq. (B.13), we find that

d̆bk = m2
bk
d̃bk + qbk (B.14)

The (2,1) element yields

Ŭabk = mbk

d̃bk
d̆bk

Ũabk (B.15)
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What finally remains is the (1,1) element and it is on this we focus. Using the relations in the
previous equations, we find that

Ŭaak
D̆aak

Ŭ
T

aak
= Ũaak

D̃aak
Ũ

T

aak
+

[
d̃bk −m

2
bk

d̃bk
d̆bk

]
ŨabkŨ

T

abk
(B.16)

The term in the bracket can be simplified as[
d̃bk −m

2
bk

d̃bk
d̆bk

]
=
m2

bk
d̃2bk + qbk d̃bk −m2

bk
d̃2bk

m2
bk
d̃bk + qbk

=
d̃bkqbk

m2
bk
d̃bk + qbk

=
d̃bkqbk
d̆bk

(B.17)

so Eq. (B.16) becomes

Ŭaak
D̆aak

Ŭ
T

aak
= Ũaak

D̃aak
Ũ

T

aak
+

(
d̃bkqbk
d̆bk

)
ŨabkŨ

T

abk
(B.18)

We note that Ũabk is a column vector so Eq. (B.18), and hence is of rank 1, constitutes a ‘rank one’
update. Since d̆bk , d̃bk and qbk are all positive (assumingmbk is a positive quantity), we can use the
Agee-Turner Rank One update [1]. It should be pointed out that as the algorithm proceeds down
the ‘list’ of parameters, the size of the states a increases by one (and consequently the size of the
parameters c decreases by one. Hence Ŭaak

and D̆aak
begin with a dimension of nx and conclude

with dimension nx + np − 1.
Therefore, this is done recursively for all the (sensor) parameters p which are of size np.

B.3. The Agee-Turner Rank-One Update
In trying to get an efficient algorithm for performing the time update of the covariance matrix,

we were faced with Eq. (8.41), which is of the form

ŨD̃Ũ
T
= UDUT + cxxT (B.19)

This is called a ‘rank one’ update because we are updating the matrix factors U and D based upon
products of x which is of rank 1.

In order to reduce the number of mathematical operations (adds/subtracts, multiplies and di-
vides), for the case of parameter or ECRV/First-order Gauss Markov processes, for sensor param-
eters, we consider the rank-one update first introduced by Agee and Turner (of the White Sands
Missile Range (WSMR)) in 1972.

Consider a covariance matrix update of the form,

P̃ = P+ cxxT (B.20)
or

ŨD̃Ũ
T
= UDUT + cxxT (B.21)

so, p̃ij can be expressed (and defined) as

p̃ij
∆
=

n∑
k=j

ũikd̃kkũjk =
n∑

k=j

uikdkkujk + cxixj (B.22)

and

p̃ii =
n∑

k=i

ũ2ikd̃kk =
n∑

k=i

u2ikdkk + cx2i (B.23)
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We recall that ũii = uii = 1 and thus, for an n× n matrix, for j = n (i.e. the last column),

d̃nn = dnn + c x2n (B.24)
p̃in = ũind̃nnũnn = dnnuinunn + cxixn (B.25)

so that

ũin =
1

d̃nn
(dnnuin + cxixn) (B.26)

The second-to-the-last (n − 1-th) column of U can now be can be operated on, by means of the
following decomposition of Eq. (B.22), as

n−1∑
k=j

ũikd̃kkũjk + ũind̃nnũjn =
n−1∑
k=j

uikdkkujk + uindnnujn + cxixj (B.27)

which leads to
n−1∑
k=j

ũikd̃kkũjk =
n−1∑
k=j

uikdkkujk +Υn (B.28)

If we work on the terms outside the two summations, using Eq. (B.26) for ũin and ũjn, Υn becomes

Υn = −ũind̃nnũjn + uindnnujn + cxixj

= − 1

d̃nn
[dnnuin + cxixn] [dnnujn + cxjxn]

+
dnn + c x2n

d̃nn
(uindnnujn + cxixj)

=
1

d̃nn

[
−c dnnujnxnxi − c dnnuinxnxj + c dnnxixj + c dnnx

2
nuinujn

)
=

c dnn

d̃nn
(xi − uinxn) (xj − ujnxn) (B.29)

Therefore, Eq. (B.27) can be written as
n−1∑
k=j

ũikd̃kkũjk =

n−1∑
k=j

uikdkkujk +
c dnn

d̃nn
(xi − uinxn) (xj − ujnxn) (B.30)

Now, if we operate a bit more on the quantity ũin, we find from Eq. (B.26), that we get

ũin =
dnn

d̃nn
uin +

c

d̃nn
xixn (B.31)

=
d̃nn − c x2n

d̃nn
uin +

c

d̃nn
xixn (B.32)

= uin + (xi − uinxn)
c xn

d̃nn
(B.33)

and if we define αi and vn as

αi
∆
= (xi − uinxn) (B.34)

vn
∆
=

c xn

d̃nn
(B.35)
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ũin can be rewritten as
ũin = uin + αi vn (B.36)

If we want to generalize this, we can write Eq. (B.30) as
n−1∑
k=j

ũikd̃kkũjk =

n−1∑
k=j

uikdkkujk + CnX n
i X n

j (B.37)

where

Cn ∆
=

c dnn

d̃nn
(B.38)

X n
i

∆
= xi − uinxn (B.39)

with
ũin = uin + αn

i vn

αn
i = xi − uinxn
vn =

c xn

d̃nn

d̃nn = dnn + c x2n

Thus, for the third-to-the-last column (j = n− 2), we expand Eq. (B.37) as
n−2∑
k=j

ũikd̃kkũjk + ũi,n−1d̃n−1,n−1ũj,n−1 =

n−2∑
k=j

uikdkkujk

+ui,n−1dn−1,n−1uj,n−1

+CnX n
i X n

j (B.40)
which produces

n−2∑
k=j

ũikd̃kkũjk =
n−2∑
k=j

uikdkkujk

+
Cndn−1,n−1

d̃n−1,n−1

[X n
i − ui,n−1X n

n ]
[
X n
j − uj,n−1X n

n

]
(B.41)

so that using the same machinery as above, we get
n−2∑
k=j

ũikd̃kkũjk =
n−2∑
k=j

uikdkkujk + Cn−1X n−1
i X n−1

j (B.42)

Cn−1 =
Cn dn−1,n−1

d̃n−1,n−1

(B.43)

X n−1
i = αn−1

i = X n
i − ui,n−1X n

n (B.44)

vn−1 =
CnX n

i

d̃n−1,n−1

(B.45)

ũi,n−1 = ui,n−1 + X n−1
i vn−1 (B.46)

d̃n−1,n−1 = dn−1,n−1 + Cn x2n−1 (B.47)
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We also are reminded that ũi,i = 1.

B.4. Decorrelating Measurements
We normalize the (original) measurement equation

zorig = Horigx+ νorig (B.48)
where the measurement noise has statistics

E[νorig] = 0 (B.49)
E[νorigν

T
orig] = Rorig (B.50)

where Rorig is the measurement noise.
We now change variables so that

z
∆
= R

−1/2
orig zorig (B.51)

H
∆
= R

−1/2
orig Horig (B.52)

ν
∆
= R

−1/2
orig νorig (B.53)

where R
−1/2
orig is the inverse of the Cholesky factor of Rorig ( = R

1/2
origR

T/2
orig). With this, the new

normalized measurement equation is
z = Hx+ ν (B.54)

where E[ν] = 0 and E[ννT] = I. This is sometimes referred to as pre-whitening or decorrela-
tion, because if the original measurements were correlated, the normalized measurements are now
uncorrelated (via the Cholesky decomposition of Rorig).

Alternatively, we can decorrelate the measurements by using a UDU factorization on the mea-
surement noise covariance matrix as

Rorig = URDRU
T
R (B.55)

so that the measurement equation, the measurement partial and the measurement noise are

z
∆
= U−1

R zorig (B.56)

H
∆
= U−1

R Horig (B.57)

ν
∆
= U−1

R νorig (B.58)
where the new/modified measurement equation is now uncorrelated withE[ν] = 0 andE[ννT] =
DR.

B.5. The Carlson Rank-One Update
The Carlson rank-one update [9], introduced in 1973, addresses the problem of updating the

covariance due to a loss of precision involved in the differencing of two positive quantities which
are nearly equal. In particular, the diagonal elements dii have the potential of going negative in
certain cases if the Agee-Turner rank-one update is blindly used. Thankfully, we resort to the
Carlson rank-one update to compute the measurement update without losing numerical precision.

We recall that α and v were defined earlier. We also define the n× 1 vector f as

f
∆
= U−THT (B.59)
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Therefore, since f is an n× 1 vector and D is a diagonal matrix, we can express α as

α = αn = R+
n∑

i=1

f2i dii (B.60)

so that

αj = R+

j∑
i=1

f2i dii = αj−1 + f2j djj (B.61)

Since v can be written as
v = Df (B.62)

we can also write
vj = djjfj (B.63)

and we can write αj as

αj = αj−1 +
v2j
djj

(B.64)

ŨkD̃kŨ
T

k
∆
= arD− 1

α
vvT (B.65)

which can be rewritten as:

ŨkD̃kŨ
T

k
∆
= arUarDarUT − 1

α
vvT (B.66)

where arU = I. Following the reasoning in the description for the Rank-One update earlier in
this Appendix,

p̃ij
∆
=

n∑
k=j

ũikd̃kkũjk = − 1

α
vivj (B.67)

and

p̃ii =
n∑

k=i

ũ2ikd̃kk = dii −
1

α
v2i (B.68)

For j = n, Eq. (B.67) becomes

ũind̃nnũnn = − 1

α
vivn (B.69)

and from Eq. (B.68),

ũ2nnd̃nn = dnn −
1

α
v2n (B.70)

Recalling that ũnn = 1, we get

d̃nn = dnn −
1

α
v2n (B.71)

and

ũin = − 1

αd̃nn
vivn (B.72)
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So, Eq. (B.67) can be written as
n−1∑
k=j

ũikd̃kkũjk + ũind̃nnũjn = − 1

α
vivj (B.73)

Substituting for ũin and ũin from Eq. (B.72), we find
n−1∑
k=j

ũikd̃kkũjk = − 1

α

[
1 +

1

αd̃nn
v2n

]
vivj (B.74)

But since [
1 +

1

αd̃nn
v2n

]
=
dnn

d̃nn
(B.75)

Eq. (B.74) becomes
n−1∑
k=j

ũikd̃kkũjk = − 1

α

dnn

d̃nn
vivj (B.76)

So, we can expand Eq. (B.76) as
n−2∑
k=j

ũikd̃kkũjk + ũi,n−1d̃n−1,n−1ũj,n−1 = −
1

α

dnn

d̃nn
vivj (B.77)

We need to obtain ũi,n−1 and d̃n−1,n−1. First we work on ũi,n−1d̃n−1,n−1 from Eq. (B.67) with
i = n− 1 as follows:

ũ2n−1,n−1d̃n−1,n−1 + ũ2n−1,nd̃n,n = dn−1 −
1

α
v2n−1 (B.78)

Recalling that ũn−1,n−1 = 1 and ũn−1,n was obtained (with i = n− 1) in Eq. (B.72), we get

d̃n−1,n−1 = dn−1,n−1 −
1

α

[
1 +

1

αd̃n,n
v2n

]
v2n−1 (B.79)

Knowing that [
1 +

1

αd̃n,n
v2n

]
=
dn,n

d̃n,n
(B.80)

d̃n−1,n−1 becomes

d̃n−1,n−1 = dn−1,n−1 −
1

α

(
dn,n

d̃n,n

)
v2n−1 (B.81)

Now we work on ũi,n−1. We recall that from Eq. (B.68), with j = n− 1, we find that

ũi,n−1d̃n−1,n−1ũn−1,n−1 + ũi,nd̃n,nũn−1,n = − 1

α
vivn−1 (B.82)
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We substitute for d̃n−1,n−1 from Eq. (B.81), for ũi,n and ũn−1,n from Eq. (B.72) and noting that
ũn−1,n−1 = 1, we get

ũi,n−1 = −
1

αd̃n−1,n−1

[
1 +

1

αd̃n,n
v2n

]
vivn−1 (B.83)

Using Eq. (B.80), ũi,n−1 becomes

ũi,n−1 = −
1

αd̃n−1,n−1

(
dn,n

d̃n,n

)
vivn−1 (B.84)

With this in mind, we are now prepared to work on Eq. (B.77), and we find that
n−2∑
k=j

ũikd̃kkũjk = −

(
dn,n

αd̃n,n

)[
dn,n

αd̃n,n
v2n−1 − 1

]
vivj

= −

(
dn,n

αd̃n,n

)(
dn−1,n−1

d̃n−1,n−1

)
vivj (B.85)

This has the same form as Eq. (B.73), so this suggests a recursion as follows:
With Cn = −1/α for j = n, · · · , 1:

d̃jj = djj + Cjv2j (B.86)

ũij = Cjvivj/d̃jj , k = 1, · · · , j − 1 (B.87)
Cj−1 = Cjdjj/d̃jj (B.88)

From Eq. (B.86), we get

d̃jj = djj + Cjv2j
and from Eq. (B.88), we find that

Cj−1 = Cj djj
d̃jj

=
Cjdjj

djj + Cjv2j
=

djj
djj
Cj + v2j

(B.89)

This can be written as
1

Cj−1
=

1

Cj
+
v2j
djj

(B.90)

or

− 1

Cj
= − 1

Cj−1
+
v2j
djj

(B.91)

Comparing Eqs. (B.64) and Eq. (B.91) we find that

αj = −
1

Cj
(B.92)

Using this equation, we find that

d̃jj = djj

(
αj−1

αj

)
(B.93)
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From Eq. (B.87) and using Eqs. (B.93) and (B.92), we can express ũij as

ũij = − vivj
djjαj−1

(B.94)

Recalling that vj = djjfj ,

ũij = − vifj
αj−1

(B.95)

If we define λj as

λj
∆
= − fj

αj−1
(B.96)

ũij becomes
ũij = λjvi (B.97)

Ũij has the structure

Ũk =



1 λ2v1 λ3v1 λ4v1 · · · λnv1
0 1 λ3v2 λ4v2 · · · λnv2
0 0 1 λ4v3 · · · λnv3
0 0 0 1 · · · λnv4
...

...
...

...
...

...
0 0 0 0 · · · 1


(B.98)

We can rewrite Ũ as
Ũk = In +

[
0n×1 λ2v

(1) λ3v
(2) λ4v

(3) · · · λnv
(n−1)

]
(B.99)

where v(j) is an n× 1 vector defined as

v(j) ∆
=
[
v1 v2 v3 · · · vj 0 · · · 0

]T (B.100)
We recall that

UDUT = U−
[
D− − 1

α
vvT

]
arUT

and

ŨkD̃kŨ
T

k
∆
= D− − 1

α
vvT

and
U = U−Ũk and D = D̃

With this in mind, U is
U = U− +U− [ 0n×1 λ2v

(1) λ3v
(3) λ4v

(3) · · · λnv
(n−1)

]
(B.101)

If we denote U(j) and U−j as the jth columns of U and U−, respectively, we find that

U(j) = U−j
+ λjKj−1 (B.102)

where
Kj = U−v(j) = Kj−1 + vjU

−j
with K0 = 0n×1 (B.103)
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Finally,

K =
1

αn
Kn (B.104)





APPENDIX C

An Analysis of Dual Inertial-Absolute and Inertial-Relative
Navigation Filters

Contributed by Chris D’Souza

This appendix describes a dual inertial-absolute state and dual inertial-relative state navigation
filter trade study performed for Orion. The formulation of each of these filters is detailed, the
advantages and disadvantages of each are discussed, and a recommendation to use the dual-inertial
formulation is made. This appendix is reproduced from CEV Flight Dynamics Technical Brief
Number FltDyn–CEV–07–141, dated December 21, 2007.

C.1. Introduction
Orion will need an efficient and well formulated relative navigation filter. Among the many

possibilities, two of the most promising will be discussed in this report. The two are the dual
inertial-absolute state navigation filter and the dual inertial-relative state navigation filter. The
dual inertial-absolute state filter includes the absolute inertial state of both vehicles (with respect
to the center of mass of the central body). The dual inertial-relative state navigation filter has as
its states the absolute inertial state of the chaser (Orion) vehicle and the relative inertial state of
the target with respect to the chaser (xrel = xT − xC ).

C.2. The Filter Dynamics
C.2.1. The Dual Inertial-Absolute Filter Dynamics In general, the inertial states of the

chaser vehicle can be expressed as
ẋC = fC(xC) +wC (C.1)

where fC are the chaser nonlinear dynamics and wC is the process (plant) noise (with statistics
E(wC(t)) = 01 and E(wC(t)wC(τ)) = QCδ(t − τ)). Similarly, the inertial states of the target
vehicle evolve according to

ẋT = fT (xT ) +wT (C.2)
where fT are the target nonlinear dynamics and wT is the process (plant) noise (with statistics
E(wT (t)) = 0 andE(wT (t)wT (τ)) = QT δ(t−τ)). The nominal state dynamics can be expressed
as

ẋCnom = fC(xCnom) (C.3)
ẋTnom = fT (xtnom) (C.4)

1The expectation operator E(·) for continuous random variables is defined as follows

E(X) =

∫ ∞

−∞
x p(x) dx

where p(x) is the probability density function.
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Defining

δxC
∆
= xC − xCnom (C.5)

δxT
∆
= xT − xTnom (C.6)

and taking derivatives and expanding to first-order, we get
δẋC = AC(xCnom) δxC +wC (C.7)
δẋT = AT (xTnom) δxT +wT (C.8)

where

AC(xCnom)
∆
=

(
∂fC
∂xC

)
xC=xCnom

and AT (xTnom)
∆
=

(
∂fT
∂xT

)
xT=xTnom

(C.9)

Equivalently, we can express the filter errors as

δx̂C
∆
= x̂C − xC (C.10)

δx̂T
∆
= x̂T − xT (C.11)

where, with a bit of abuse of notation2

x̂C
∆
= E(xC) and x̂T

∆
= E(xT ) (C.12)

so that the filter error dynamics evolve as

δ ˙̂xC = AC(xC) δx̂C +wC (C.13)
δẋT = AT (xT ) δx̂T +wT (C.14)

We can, therefore, write the inertial-absolute3 filter error dynamics (dropping the functional de-
pendence for compactness) as[

δ ˙̂xC

δ ˙̂xT

]
=

[
AC 0
0 AT

] [
δx̂C

δx̂T

]
+

[
I 0
0 I

] [
wC

wT

]
(C.15)

Defining

PIA
∆
= E

{[
δx̂C

δx̂T

] [
δx̂T

C δx̂T
T

]}
=

[
E[δx̂Cδx̂

T
C ] E[δx̂Cδx̂

T
T ]

E[δx̂T δx̂
T
C ] E[δx̂T δx̂

T
T ]

]
=

[
PC,C PC,T

PT,C PT,T

]
(C.16)

where the subscript IA denotes that this is the covariance associated with the inertial-absolute
filter. The differential equation for the covariance (assuming that the plant/process noise for the
two vehicles are independent and are independent of the states of the two vehicles) is

ṖIA = AIAPIA + PIAA
T
IA +GIAQIAG

T
IA (C.17)

where
AIA =

[
AC 0
0 AT

]
, GIA =

[
I 0
0 I

]
, QIA =

[
QC 0
0 QT

]
(C.18)

2To be precise, x̂C should be written in terms of the conditional expectation

x̂CK = E(xC |Z1, · · · ,Zk) and x̂TK = E(xT |Z1, · · · ,Zk)

with measurements Z1 through Zk . At the initial time x̂C0 = E(xC0) and x̂T0 = E(xT0)
3In order to distinguish between the two filters, we call this filter the (dual) inertial-absolute filter because both the

chaser and the target states are expressed in terms of absolute inertial coordinates.
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with the initial condition
PIA =

[
PC,C0

0
0 PT,T 0

]
(C.19)

wherePC,C0
andPT,T 0

are the initial covariances of the chaser and target inertial (absolute) states,
respectively. Finally, the covariance of the relative state is

Prel,rel = E
[
(δx̂C − δx̂T ) (δx̂C − δx̂T )

T
]

(C.20)

= PC,C + PT,T − PT,C − PC,T = PC,C + PT,T − PT,C − P T
T,C (C.21)

C.2.2. TheDual Inertial-Relative Filter Dynamics Consistent with the earlier definitions,
we define the inertial relative state as

xrel
∆
= xT − xC (C.22)

Taking derivatives of this equation and substituting from Eqs. (C.1) and (C.2) yields
ẋrel = fT (xT )− fC(xC) +wT −wC (C.23)

Expanding this equation to first-order yields
δẋrel = AT (xT ) δx̂T −AC(xC) δx̂C +wT −wC (C.24)

= AT (xT ) (δx̂rel + δx̂C)−AC(xC) δx̂C +wT −wC (C.25)
= (AT −AC) δx̂C +AT δx̂rel + (wT −wC) (C.26)

Therefore we write the inertial-relative4 filter error dynamics (once again dropping the functional
dependence for compactness) as[

δ ˙̂xC

δ ˙̂xrel

]
=

[
AC 0

AT −AC AT

] [
δx̂C

δx̂T

]
+

[
I 0
−I I

] [
wC

wT

]
(C.27)

Defining, as before,

PIR
∆
= E

{[
δx̂C

δx̂rel

] [
δx̂T

C δx̂T
rel

]}
=

[
E[δx̂C δx̂

T
C ] E[δx̂C δx̂

T
rel]

E[δx̂rel δx̂
T
C ] E[δx̂rel δx̂

T
rel]

]
(C.28)

=

[
PC,C PC,rel

Prel,C Prel,rel

]
(C.29)

where the subscript IR denotes that this is the covariance associated with the inertial-relative
filter. The differential equation for the covariance is

ṖIR = AIRPIR + PIRA
T
IR +GIRQIRG

T
IR (C.30)

where

AIR =

[
AC 0

AT −AC AT

]
, GIR =

[
I 0
−I I

]
, QIR =

[
QC 0
0 QT

]
(C.31)

where the initial covariance of the inertial-relative state is found to be5

PIR0 =

[
PC,C0

PC,rel0
Prel,C0

Prel,rel0

]
=

[
PC,C0

−PC,C0

−PC,C0
PC,C0

+ PT,T 0

]
(C.32)

4We refer to this filter as the inertial-relative filter to distinguish it from the prior inertial-absolute filter. In this
formulation, the filter states consist of the inertial absolute chaser state and the inertial relative target state.

5We assume that at the initial time, the chaser and target initial error covariance matrices are uncorrelated.
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in order to be consistent with the inertial-absolute formulation. We can also express Eqs. (C.30)
and (C.31) as

ṖIR = AIRPIR + PIRA
T
IR +Q′

IR (C.33)
where

Q′
IR =

[
QC −QC

−QC Qrel

]
(C.34)

where Qrel = QT + QC . This may simplify tuning. While the covariance of the relative state
is easily determined since it is the lower right partition of the covariance matrix (Prel,rel), the
covariance of the target vehicle (inertial) state is found (after a bit of manipulation) to be

PT,T = Prel,rel + PC,C + Prel,C + PC,rel = Prel,rel + PC,C + Prel,C + P T
rel,C (C.35)

C.3. Incorporation of Measurements
Whereas the previous section analyzed the filter error dynamics/propagation as it applies to

the inertial-absolute and inertial-relative filter formulation, this section will analyze the difference
in measurement processing between the two filters. Obviously, those measurements that are tied
only to the chaser absolute inertial state have the same instantiation in both formulations. This
section will only address those measurement types which have different formulations in the two
filters. In particular, the measurement and the measurement partials will be discussed.

C.3.1. The Dual Inertial-Absolute Measurement Formulations
C.3.1.1. The Target Inertial State Ground Update There will be instances during which the on-

board filter will need to process ground updates of the target vehicle. For the inertial-absolute
formulation, the measurement takes the following expression

zIATGU
= xT + νTGU

and νTGU
∼ N(0, RTGU

) (C.36)
Since the target state is a member of this filter’s state-space, the measurement partials matrix
associated with this measurement for the inertial-absolute formulation is

HIA
TGU

=
[
0 I

]
(C.37)

C.3.1.2. Range Measurements For the case of range measurements (either from the RF link or
from the Lidar), the measurement equation can be written simply as

zIArange =
√

(rT − rC) · (rT − rC) + brange + νrange (C.38)
with the range (measurement) noise statistics νrange ∼ N(0, Rrange). Since the target state is a
member of this filter’s state-space, the measurement partials associated with this measurement for
the inertial-absolute measurement are

∂zIArange
∂rC

= −uT
rel (C.39)

∂zIArange
∂vC

= 01×3 (C.40)

∂zIArange
∂rT

= uT
rel (C.41)

∂zIArange
∂vT

= 01×3 (C.42)

where
urel =

(rT − rC)

|rT − rC |
(C.43)
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C.3.1.3. Bearing Measurements Bearing measurements, which can be obtained from either the
star-tracker or the lidar, are

zIAbearing =

[
α
δ

]
+

[
bα
bδ

]
+

[
να
νδ

]
=

[
α
δ

]
+ bbearing + νbearing (C.44)

where the angles α and δ, the azimuth and elevation angles in the sensor frame with biases bα and
bδ , and with noise characteristics

E (νbearing) = 02×1 and E
(
νbearingν

T
bearing

)
=

[
Rα 0
0 Rδ

]
(C.45)

We can express α and δ in terms of the line-of-sight vector which is defined as cosα cos δ
sinα cos δ

sin δ

 ∆
=

1

r
TSB(qSB)TBI(qBI) (rT − rC) (C.46)

where TSB is the transformation matrix from the body (IMU) frame to the sensor frame (with qSB
being the quaternion associated with the transformation from body frame to sensor frame) and
TBI is the transformation matrix from the inertial frame to the body (IMU) frame (with qBI being
the quaternion associated with the transformation from the inertial frame to the body frame).

With this in hand, the measurement partials can be obtained (after a bit of manipulation [1])
to be

∂α

∂rC
= −uT

α

r
TSB(qSB)TBI(qBI) (C.47)

∂α

∂vC
= 01×3 (C.48)

∂α

∂rT
=

uT
α

r
TSB(qSB)TBI(qBI) (C.49)

∂α

∂vT
= 01×3 (C.50)

and
∂δ

∂rC
= −

uT
δ

r
TSB(qSB)TBI(qBI) (C.51)

∂δ

∂vC
= 01×3 (C.52)

∂δ

∂rT
=

uT
δ

r
TSB(qSB)TBI(qBI) (C.53)

∂δ

∂vT
= 01×3 (C.54)

where

uα =
1

cos δ

 − sinα
cosα
0

 (C.55)

uδ =

 − cosα sin δ
− cosα cos δ

cos δ

 (C.56)
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C.3.2. The Dual Inertial-Relative Measurement Formulations
C.3.2.1. The Target Inertial State Ground Update For the inertial-relative formulation, the mea-

surement takes the following expression

zIRTGU
= xrel + xC + νTGU

and νTGU
∼ N(0, RTGU

) (C.57)

Since the target state is not a member of this filter’s state-space, the measurement partials matrix
associated with this measurement for the inertial-relative formulation is

HIR
TGU

=
[
I I

]
(C.58)

C.3.2.2. Range Measurements For the case of range measurements with the inertial-relative
filter, the measurement equation can be written simply as

zIArange =
√
rTrel rrel + brange + νrange (C.59)

with, as before, the range (measurement) noise statistics νrange ∼ N(0, Rrange). Since the rel-
ative state is a member of this filter’s state-space, the measurement partials associated with this
measurement for the inertial-relative measurement are

∂zIArange
∂rC

= 01×3 (C.60)

∂zIArange
∂vC

= 01×3 (C.61)

∂zIArange
∂rrel

=
rTrel
|rrel|

(C.62)

∂zIArange
∂vrel

= 01×3 (C.63)

C.3.2.3. Bearing Measurements Bearing measurements, as in the previous formulation (in Eqs. (C.44)
and (C.45)), can be expressed in terms of the line-of-sight vector and the relative position vector
which can be expressed as follows cosα cos δ

sinα cos δ
sin δ

 =
1

r
TSB(qSB)TBI(qBI)rrel (C.64)

the quantities in Eq. (C.64) are defined in Section C.3.1.3. The measurement partials are expressed
as

∂α

∂rC
= 01×3 (C.65)

∂α

∂vC
= 01×3 (C.66)

∂α

∂rrel
=

uT
α

r
TSB(qSB)TBI(qBI) (C.67)

∂α

∂vrel
= 01×3 (C.68)
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and
∂δ

∂rC
= 01×3 (C.69)

∂δ

∂vC
= 01×3 (C.70)

∂δ

∂rrel
=

uT
δ

r
TSB(qSB)TBI(qBI) (C.71)

∂δ

∂vrel
= 01×3 (C.72)

where

uα =
1

cos δ

 − sinα
cosα
0

 (C.73)

uδ =

 − cosα sin δ
− sinα sin δ

cos δ

 (C.74)

C.4. Analysis of the Merits of the Inertial-Absolute and Inertial-Relative Filters
The Flight Day 1 rendezvous trajectory and models as described in [2] were used to analyze

the two filter formulations. Both formulations had the same driving dynamics and measurement
models – only the covariance propagation and covariance updates were different. With this in
mind, the comparison of the two filter formulation as it related to covariance operations were
analyzed.

C.4.1. Covariance Propagation First it must be pointed out that the propagation of the
filter dynamics are identical between both filter parameterizations. That is to say, in each filter,
the inertial absolute states of both the chaser vehicle and the target vehicle will be propagated.
The difference arises in the propagation of the covariance matrices associated with each of the
filter paramerizations. In the IA filter, the covariances (and cross-covarinces) of the chaser inertial
states and the target inertial states are computed. It should be noted that the dynamics of the two
vehicles’ states are inherently un-correlated (see AIA in Eq. (C.18)). In contrast, for the IR filter
the covariances (and cross-covariances) the chaser inertial states and the inertial relative states
(of the target with respect to the chaser) are computed. It should be noted that the dynamics in
this filter’s states are inherently correlated (see AIR in Eq. (C.31)). Hence, there are inherently
more non-zero computations (both additions and multiplications) involved6. Hence, there is more
room for round-off errors in the covariance propagation in the IR filter. In order to see this, Table
1 contains an analysis of the propagation error as a function of the propagation interval. This
propagation is carried out without process noise on either the chaser or target states. In addition,

6First, notice that in the IR filter, the term AT − AC will inherently cause a loss of precision. Second, as-
suming only the gravity gradient term in A, which is symmetric, AT − AC involves 6 additions/subtractions. The
term (AT − AC)PCC in Eqs. (C.30) and (C.31) involve 18 multiplications and 12 additions/subtractions. The term
(AT − AC)PC,rel (or Prel,C(AT − AC)

T ) involve 27 multiplications and 18 additions/subtractions. The terms
(AT −AC)PCC +ATPrel,C and (AT −AC)PC,rel+ATPrel,rel each involve 9 additions/subtractions. These total 45
multiplications and 54 additions/subtractions. This is doubled because of the symmetric nature of the covariance ma-
trix. Therefore, there are 90 additional multiplications and 108 additional additions/subtractions per function evaluation
in the IR filter formulation over the IA filter formulation. For a fourth-order Runge-Kutta integration method, the IR
filter formulation results in an additional 360 multiplications and 432 additions/subtractions per integration step. Each
of these operations results in a numerical loss of precision in finite-state machines.
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the chaser and the target states are uncorrelated at the initial time. Hence, since there are no
measurements which could correlate the two vehicles’ states, the correlation coefficients should
remain zero (i.e. PC,T = 06×6) throughout the interval. This was verified to be the case. Because
of the reduced number of computations inherent in the IA filter formulation, it was assumed that
the IA filter propagation was the ‘truth’ and the IR filter was compared to it.

∆t(sec) |Prel,rel|2 |PT,T |2 |δPrel,rel|2/|Prel,rel|2 |δPT,T |2/|PT,T |2
100 1.010E7 4.150E3 1.529E-16 4.867E-13
1000 6.997E7 4.519E3 5.729E-9 8.869E-6
10000 1.239E9 7.943E4 1.926E-5 0.349

Table 1. Numerical Precision Comparison of the IA and IR filter formulations for
propagation without process noise

∆t(sec) |Prel,rel|2 |PT,T |2 |δPrel,rel|2/|Prel,rel|2 |δPT,T |2/|PT,T |2
100 1.010E7 4.150E3 1.236E-13 1.551E-7
1000 6.997E7 4.519E3 2.172E-8 2.320E-4
10000 1.239E9 7.943E4 1.905E-5 0.392

Table 2. Numerical Precision Comparison of the IA and IR filter formulations for
propagation with process noise

It is clear that the additional non-zero multiplications and additions for the IR filter formulation
compared to the IA formulation result in a build-up of round-off error. This has the effect of
reducing the propagation accuracy of the IR filter vis-à-vis the IA filter. The additional operations,
in concert with the accompanying loss of precision, make a strong case for the use of the IA filter
formulation.

C.4.2. Measurement Update It should be apparent from comparing Eqs. (C.37) and (C.58)
that for the case of the target ground-update, there are 18 more multiplications (because of the
identity matrix) for the IR formulation than the IA formulation for each target ground-update.

For all other relative measurements, there are more operations for the IA filter formulation
than for the IR formulation. In fact, for the range measurements, there are more 54 multiplications
and 54 more additions for the IA formulation than the IR formulation for each range measurement
update.

For bearing measurements, there are more 108 multiplications and 108 more additions for the
IA formulation than the IR formulation for each bearing measurement update.

So, for relative sensor measurements, clearly there are more multiplications and more addi-
tions for the IA filter formulation than for the IR formulation.

C.5. Conclusions
While the inertial-absolute and inertial-relative filter formulations are mathematically equiv-

alent, the implementation on finite-state machines influences the choice.
With regard to propagation of the covariance matrices, there are more computations for the IR

filter than the (mathematically equivalent) IA filter. These additional computations, in concert with
the types of operations, result in a (significant) loss of precision with regard to the propagation of
the covariance matrices.
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With regard to the measurement updates to the covariance matrices, for the case of relative
navigation measurements, there are fewer non-zero operations for the IR filter than for the IA filter.
This is one of the strengths of this filter (IR) formulation, and if the computation and precision
with regard to the propagation of the covariance matrices were the same, the IR filter would be
advantageous in terms of computations and precision.
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