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1. Abstract

The Metropolitan Region in central Chile is home to approximately 7 million people. The region frequently
expetriences disastrous floods, physically impacting tens of thousands of people and causing millions of
dollars in damage. Remote sensing methods used to map flooding extents can help emergency responders
allocate resources efficiently. Partnering with Centro de Informacién de Recursos Naturales (CIREN) in
collaboration with the Embassy of Chile Agricultural Office, we leveraged the use of satellites Landsat 8
Operational Land Imager (OLI), Landsat 9 OLI-2, Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2
Multispectral Instrument (MSI) and hydraulic modeling to resolve flood extents for recent January 29, 2021,
and August 23, 2023 flood events. Compared to a reported August 2023 flooding extents, we found that the
Earth observation and hydraulic modeling results were significantly less extensive. Additionally, we found that
optical and radar datasets were inconsistent means of capturing flood extents, while hydraulic modeling
incorporating discharge observations from stream gauges provides a more reliable tool for modeling future
flood impacts within the Chile Metropolitan Region. The addition of more localized parameters by CIREN in
the hydraulic model can further enhance the model’s outputs. With these results, CIREN can integrate
hydraulic modeling into their current methods to characterize riverine floods. While optical and radar imagery
are feasible, CIREN should consider their limitations, given issues with cloud contaminations, data quality
and temporal restraints.
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2. Introduction

2.1 Background information

Chile has a long history of disastrous floods dating back to the late 16™ century (Rojas et al., 2014). Several
factors lead to Chile’s flood-prone nature including the country’s climatic conditions, topographic & tectonic
settings, and recent urbanization (Ebert et al., 2010; Gironas et al., 2021; Krellenberg et al., 2013; Rojas et al.,
2014). Evidence suggests that future development combined with climate change will impact the frequency
and severity of flooding events (Ebert et al., 2009; Krellenberg et al., 2013; Vicuna et al., 2013). These factors
have culminated in Chile experiencing losses due to natural disasters that equate to 1.2% of the country’s
annual GDP every year between 1980 and 2011 and landing the country in the top 30 countries that are under
the highest water-related risk by 2025 (Gironas et al., 2021; Luo et al., 2015). As the risk of flooding
intensifies in Chile, disaster response personnel must be equipped to quickly and accurately map flooding
patterns to help expedite disaster relief efforts.

The Metropolitan Region, centrally located within Chile and containing the capital of Santiago, is frequently
impacted by flooding (Figure 1). The Region encompasses 15,403 kilometers?, is topogtraphically bound by
the Central Andeans and Costal Cordilleras to the east and west and is home to around 7 million residents
(Ebett et al., 2010; Krellenberg et al., 2013). The Maipo and Mapocho Rivers traverse the Region from east to
west, ultimately terminating in the Pacific Ocean. The Rapel River borders the Metropolitan Region and
Libertador General Bernardo O’Higgins Region to the south. Both rivers had notable flooding events occur
in June 2023. This event made headlines when the most intense rainfall event recorded in the last 30 years
unleashed a deluge of flooding upon several regions, physically impacting nearly 21,000 people and causing
significant damage to critical infrastructure (IFRC, 2024; Olivares et al., 2023). Eight weeks later, a second
major flood displaced over 30,000 residents (Davies, 2023). Most recently, in June 2024, local reports indicate
that nearly 2,000 homes in the Metropolitan Region were damaged, with 60,000 people losing power
(Deutsche Welle, 2024).
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Figure 1. Map of Santiago Metropolitan Region, Chile, including the Maipo, Mapocho, and Rapel Rivers.
Basemap credits: Esti, TomTom, Garmin, FAO, NOAA, USGS

Remote sensing and conventional hydraulic models are frequently used to assess flooding. Satellites equipped
with sensors can obtain measurements covering large spatial scales, aiding emergency responders in
understanding a disaster’s magnitude and assessing affected areas across a region (Melancon et al., 2021).
Previous research have used optical and radar-based Earth observations to assess flood patterns. Ban et al.
(2017) used Terra Moderate Resolution Imaging Spectroradiometer visible and near-infrared bands to map
flooding in the Philippines and China in 2015 and 2016. Melancon et al. (2021) used Sentinel-1 Synthetic
Aperture Radar (SAR) data in a random-forest classification model to map flooding across North and South
Carolina following Hurricane Florence. Both studies showed how useful Earth Observations can be for
mapping inundated areas, but they also highlight the need for higher spatial-temporal resolutions and
validation data to assess accuracy. Other studies analyzed flood vulnerability indicators, such as urban growth
patterns, land use change, and vegetation loss using remote sensing datasets (Krellenberg et al., 2013). Satellite
imagery coupled with the hydrological model, Hydrologic Engineering Center — Hydrologic Modeling System
(HEC-HMS), allowed Ebert et al. (2009) to analyze how urban growth influences hydrology and flood hazard
in Santiago. Previous DEVELOP teams have explored rapid flood detection tools such as HYDRAFloods
(Hietpas et al., 2021) and Open Data Cube (Casey et al., 2022) to map flood extent.

2.2 Project Partners and Objectives

We partnered with Centro de Informacion de Recursos Naturales (CIREN) in collaboration with the
Embassy of Chile’s Agricultural Office. CIREN supports Chile’s Ministry of Agriculture to aid in managing
the country’s natural resources. CIREN staff are experienced with remote sensing technologies, and they
collect information through geospatial applications to create a comprehensive, georeferenced database of
natural resources. They also provide other organizations with information on potential environmental risks,
climate change, natural disasters, and mitigation techniques.

As flooding disasters affect natural resources, CIREN is seeking a monitoring technique to predict floods and
map regions susceptible to flood damage. Determining if hydraulic modeling or Earth observations (EOs) are
feasible to map floods in Chile will allow our partners to decide if NASA or European Space Agency (ESA)



imagery should be added to their current toolbox. Added results will enhance CIREN’s efforts to conserve
and protect natural resources from flood hazards. In addition, CIREN’s stakeholders, which include
researchers, agricultural producers, and public institutions, are not as familiar with remote sensing, so a clear
workflow and non-code method would help CIREN share our results with their users.

The objectives of our project include: 1) estimate flood extent in the study area using a hydraulic model, 2)
identify flooded areas using optical and radar data and 3) assess the feasibility of these methods to map flood
extent in the Region. We based our project on three major flooding events in the Region: January 29, 2021,
June 23, 2023, and August 23, 2023, as these events were based on personal recounts from our partners and
news articles. Focusing on data from recent flooding disasters would support CIREN’s current decision-
making needs for disaster relief programs.

3. Methodology

3.1 Data Acquisition

3.1.1 Hydranlic Engineering Center — River Analysis System (HEC-RAS)

We used the River Analysis System from the Hydrologic Engineering Center, a division within the US Army
Corp of Engineers. This model, more commonly known as HEC-RAS, allows users to create two-
dimensional (2-D) hydraulic models of a flood event. To construct our 2-D model, we derived several model
characteristics from outside data sources, including the discharge rates associated with the flood and the
topographic and land use data associated with areas where flooding occurred. We obtained 15-minute and
daily average discharge data from CIREN from their internal stream gauge network. Of the 35 stream gauges
provided, we focused on stream gauges 05710012-5 and 05710001-K, both of which are placed within the
Maipo River main channel and are located approximately 1.4 kilometers downstream and 1.5 kilometers
upstream of El Manzano respectively (Figure Al). By combing the records from these gauge stations, we
were able to capture flooding events from January 2021, June 2023, and August 2023. It is important to note
that for the June 2023 event, the gauges only captured the daily average data, given that the intense flood
waters blew out both gauges between June 23 and 24. We also used 30-meter Shuttle Radar Topography
Mission terrain data (NASA JPL, 2000), as well as a polygon shapefile of land cover classifications for the
entire Metropolitan Region provided by CIREN.

3.1.2 Radar Dataset

We obtained 10-meter Sentinel-1A C-band Synthetic Aperture Radar (C-SAR) data from the European Space
Agency. NASA’s Alaska Satellite Facility Distributed Active Archive Center (ASF DAAC) hosts open-access
EO data products and specifically processes and distributes SAR datasets. We used ASF’s Data Search Vertex
portal to acquire Level — 1 Ground Range Detected (GRD) High-Resolution Dual-Polarization data. We
filtered our search to the Metropolitan Region and image captured dates between January 24 — February 2,
2021, and June 12 — 27, 2023. We chose these dates to find before and after images of the January 29, 2021,
and June 23, 2023 flood events. We filtered our data further to select files that were dual polarized (vertically
transmitted and vertically received signals + vertically transmitted and horizontally received, or VV + VH), in
ascending and descending orbit directions, and with a beam mode of Interferometric Wide. These filters
resulted in images for January 26, 2021; February 1, 2021; and June 12 & 26, 2023 (Table 1).

3.1.3 Optical and Multispectral Datasets

We downloaded a 30-meter Landsat 8-9 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS)
Collection 2 Level 2 Science Products provided by the United States Geological Survey (USGS) through the
Earth Explorer platform. We selected imagery for pre-flood (August 6) and post-flood (August 30, 2023)
dates, focusing on the study area (Table 1). Additionally, we downloaded satellite images from Sentinel-2
Multispectral Instrument (MSI) Level 2A with a 10-meter spatial resolution and 32-bit Float TIFF from the
ESA through Copernicus Open Access Hub. We selected the images to assess the January 29, 2021, and
August 23, 2023, flood events. The images we selected for pre-flood and post-flood analysis were from
January 13 and February 2, 2021, as well as August 6 and 26, 2023 (Table 1).



Table 1

Earth observations utilized for this project.

Platform and

Image Capture

Acquisition

Sensors Parameters Processing Level Dates Methods
Landsat 8-9 Surface reflectance, Collection 2, Level 2 August 6and 30, USGS Earth
OLI/TIRS 30-meter 2023 Explorer
Sentinel-1 C- SAR | Ground Range Level 1 January 26, February | ASF DAAC Data

Detected (GRD) 1,2021; June 12 and | Search Vertex
radar backscatter, 26,2023
10-meter data
Sentinel-2 MSI Surface reflectance, | Level 2A January 13, February | Copernicus Browser
10-meter 2, 2021,
August 6and 20,
2023
Shuttle Radar Radar backscatter, DEM February 11t - 20t | NASA Earth Data
Topography 30-meters 2000
Mission
3.2 Data Processing
3.2.1 HEC-RAS

To set our processing extents, we chose a model reach along the Maipo River (Figure A2) between stream
gauge 05710001-K on the upstream end and approximately 4 kilometers upstream of where Highway 79
crosses the Maipo River on the downstream end. We chose this model reach because we used flow data from
05710001-K in the model runs, as well as at the same time wanted to avoid the hydraulic control exerted by
the bridge at Highway 79 on the flooding extents.

We constructed the hydraulic model using HEC-RAS v. 6.6 (U.S. Army Corps of Engineers, 2024b), which
required the development of a geometry file, flow file, and plan file. We created the geometry file within RAS
Mapper, a GIS interface embedded within the larger HEC-RAS model. After setting the RAS Mapper
coordinate system to UTM 19 South, we converted the 30 m data from a GEOTIFF to an HDF file using

RAS Mapper’s terrain import workflow and brought it into the map. We used a shapefile of the study area to
assign the perimeter for the geometry file. From there, we generated a regular 2-D model grid with a uniform
cell size of 9.29 m?2. To refine the grid and align the grid cells with the river channel, we drew break lines
along the river thalweg and the tops of the right and left channel overbanks. Additionally, we drew refinement
regions around mountainous portions of the model and notable promontories. The uniform cells intersecting
the break lines and refinement regions were both realigned and refined to smaller cell sizes to better impart
the topographic complexity onto the model grid. We handled small additional grid refinements on a cell-by-
cell basis. This refinement effort results in a model grid comprising 31,141 cells ranging in size from neatly
1680 m? to 8.3 m?, with smaller area grid cells concentrated heavily within the channel and along the right and
left overbanks.

To further parameterize the geometry file, we brought the clipped land cover data into the RAS Mapper as a
land cover layer. The purpose of the land cover layer is to associate the land cover classification’s
cotresponding Manning’s n value with the model grid. Manning's n is a parameter that represents the sutface
roughness associated with a given land cover type. These values typically range from 0.01 to 0.1, with lower
values indicating smoother surfaces and higher values indicating rougher surfaces. With a smooth surface,
flood water tends to flow faster and not stack as high, whereas on a rougher surface, flood water tends to
instead slow down and stack higher. Manning’s n values were chosen for each land cover type (Table A2).
Since Manning’s n values associated with each land cover type are unavailable, we obtained analog land cover
types and associated them with our land cover data. Analogs were chosen using Manning’s n classifications
presented in Chow (1959).



Having created the geometry and flow files, we established plan files for the January 2021 and August 2023
events. Plan files are where model simulation parameters such as processing window and run tolerances are
established, which, when combined with the information created in the flow and geometry files, create an
entire hydraulic simulation run. To create the plan files for our flood events, we established both temporal
and processing constraints. Regarding temporal constraints, we set computation windows and intervals for
the January 2021 and August 2023 events (Table A1l). We chose these simulation windows to provide ample
buffer around the peak flows recorded by the stream gauges. In addition to setting the computation window,
our team set the computation interval at five seconds. We selected this computation interval after multiple
run attempts, we found it to optimize avoiding numerical instability when running our hydraulic simulation.
This keeps the time for a simulation to complete within an hour. Lastly, we chose to run our hydraulic
simulations using the diffusion wave approach. When using the diffusion wave approach, the conservation of
momentum equation is approximated as minor terms that describe flow advection and flow turbulence. The
influences of the Coriolis effect are disregarded when running the model (U.S. Army Corps of Engineers,
2024a). By disregarding these terms and electing to use the diffusion wave approach, we optimized our model
run time without significant losses in model accuracy.

3.2.2 Sentinel-1 SAR

Sentinel-1 GRD SAR data contains inherent geometric and radiometric distortions due to the interaction of
radar signals with Earth’s terrain and the side-looking angle of the sensor. We applied a radiometric terrain
correction (RTC) to the SAR imagery within the ASF DAAC’s Data Search Vertex Portal to overcome these
distortions. The portal has a feature called On-Demand RTC, which uses cloud computing and GAMMA
software to generate analysis-ready products. There are various processing options on the On-Demand RTC
feature, and the ASF provides an ArcGIS Story Map as a guide when making these selections (Kristenson,
2020). First, we set the backscatter coefficient to gamma-nought, as this is the preferred setting for most GIS
applications. Next, we set the scale of the backscatter output to decibels, allowing for greater differentiation
among dark and light pixels. We opted to match the images to the On-Demand RTC’s default GLO-30
Copernicus DEM to improve the quality of the RTC calculations. Finally, we set the pixel spacing to 10-
meters, as a finer-resolution provides much more surface feature details and is closer to the original spatial
resolution of Sentinel-1 SAR data. After we made our RTC-processing selections, we submitted the images to
the On Demand Products processing queue. Once the products were available for download, we imported
the GEOTIFFs as rasters into ArcGIS Pro, version 3.3.2. We then used the Extract by Mask tool and a
polygon shapefile representing a 4-mile buffer of the Maipo and Mapocho rivers to extract the raster to a
focused area of interest.

3.2.3 Normalized Difference Water Index from Landsat and Sentinel-2

The Normalized Difference Water Index (NDWI) is an index that helps identify water bodies, utilizing the
spectral reflectance values of vegetation and water (McFeeters, 1996). It is a crucial tool for monitoring
flooding (Gao, 1996). Water absorbs neat-infrared light and reflects green light, resulting in higher NDWI
values (>0) for water bodies and lower values (<0) for land and vegetation. We used Landsat 8-9 and
Sentinel-2 imagery because their multispectral sensors provide high spatial resolution and specific spectral
bands useful for NDWI calculations, particularly the green and near-infrared (NIR) bands (Masek et al.,
2020). To process the images for NDWI calculation in ArcGIS Pro version 3.3.1, we created a mosaic of the
images to cover the entire study area and clipped the raster to the Metropolitan Region.

Furthermore, we applied cloud and snow masking techniques to Landsat and Sentinel imagery. For the
Landsat images, we used the Quality Assessment Tool from the Landsat Quality Assessment ArcGIS
Toolbox (Arab et al., 2024) to identify the pixels corresponding to clouds, specifically cloud shadow, high
cloud shadow confidence, dilated cloud, cloud, and snow. We then used the Extract by Mask tool to isolate
the areas marked as clouds and snow from the imagery to remove potential sources of error in the NDWI
calculation. For the Sentinel 2 data, we used the Scene Classification product at a 20-meter resolution, which



includes maps of cloud and snow probability and detection (Louis, 2021). We applied the Extract by Mask
tool to extract these areas from the imagery.

With the Raster Calculator tool, we calculated NDWI. This index is derived using the green and the near-
infrared bands from the Landsat 8-9 and Sentinel-2 imagery (Equation 1). The Raster Calculator tool
generated a new raster layer that distinguished water bodies from land and vegetation.

Green - NIR
NDWI = ———— (1)
Green+NIR
3.3 Data Analysis

3.3.1 HEC-RAS

Once our model simulations ran to completion, we extracted summary statistics, evaluated how floodplain
width changed with elevation, and compared the resulting floodplain width to a reported floodplain
delineation provided by CIREN. We obtained summary statistics during peak flow periods, including max
discharges, max velocities, max depth, and both max and mean floodplain widths. For both evaluating
floodplain width changes with elevation and comparing the model floodplain delineation against the reported
delineation, we measured every 200 meters along the model reach. These measurements include the elevation
and width of the modeled floodplain and reported floodplain. We then evaluated how the modeled floodplain
widths compare with the reported floodplain widths and if we could discern any trends with elevation.

3.3.2 Log Difference Between Backscatter 1 alues from Sentinel-1 SAR

To analyze the flood extent of each event with SAR data, we calculated the log ratio of pixel values from the
two pre- and post-flood images. We used the Calculate Log Difference Tool from the Alaskan Satellite
Facility's ASF_Tools ArcGIS Toolbox (Kennedy et al., 2024). The Calculate Log Difference Tool requires the
raster inputs to be in a power scale. Since we downloaded our RTC data in decibels, we had to first use the
Scale Conversion Tool from the Toolbox to convert from units of decibels to power. To calculate the log
difference, we referenced the ASF's Log Difference Tool StoryMap (Kristenson, 2020). We used the vertically
polarized backscatter VV band from the pre- and post-flood rasters, as this mode is best for visualizing
changes in surface water due to its sensitivity to surface roughness and soil moisture.

The resulting output raster has pixels with values representing a change in backscatter over time. Positive
values depict increased backscatter, while negative values represent decreased backscatter or flooding. The
output raster defaults to a grayscale stretch symbology, which can be challenging to interpret. To better depict
the difference, we changed the symbology of the raster to "Classify" and created five classes. We manually set
the class breaks based on the dataset's standard deviations, with the values ranging from two standard
deviations below and above the mean. We chose a color scheme where shades of blue represented negative
values, red represented positive values, and yellow represented middle values with no change. With this
updated symbology, we could see distinct color changes between the pre- and post-flood products.

3.3.3 Difference in NDW1I from Landsat and Sentinel-2

To detect flooding, we highlighted the changes in NDWI between the pre- and post-flood images. We used
the Raster Calculator tool to subtract the post-flood water pixel values from the pre-flood water pixel values.
The resulting NDWI Difference raster showed the differences in surface water after the flooding event. We
applied this methodology to our processed Landsat 8-9 and Sentinel-2 data to assess water content changes
during the January 2021 and August 2023 flood events. Positive values represented increased water coverage
after the flood, suggesting flood-prone regions, while negative values represented areas where water coverage
decreased or regions that were flooded but had dried out as the water receded.

4. Results
4.1 Analysis of Results
4.1.1 HEC-RAS Flood Simulation



Once we ran our HEC-RAS models for the January 29, 2021, and August 23, 2023, events, we obtained flood
models that we could sample spatially and temporally within our simulation windows. For both simulations,
we gathered maximum and average summary statistics for key flooding parameters, including velocity,
discharge, depth, and floodplain width (Table 2). Maximum values were obtained by visualizing the peak
discharge timestep within each simulation and identifying the maximum values from the associated parameter
surface. The average floodplain width was obtained by averaging floodplain width measurements during the
flood maximum every 200 meters (Figure A3) along the model reach. The January 29, 2021, flood event
produced larger maximum values compared to the August 23, 2023, flood event (Table 3). This is driven by
the maximum discharge observed for the January 2021 event being 76.6 m3/s higher than the August 2023
event. This larger January 2021 discharge, combined with the fact that the underlying model geometry did not
change between model simulations, resulted in all the other flood parameters for the January 2021 event
being larger than the August 2023 flood parameters.

Table 2
Hydranlic Model Simulation Summary Table
Statistic January 29, 2021, Simulation | August 234, 2023, Simulation
Max Obsetved Velocity (m/s) 23.0 15.7
Max Observed Dischatrge (m3/s) 495.1 418.5
Max Observed Depth (m) 6.2 6.0
Max Floodplain Width (m) 185.7 119.3
Average Floodplain Width (m) 89.2 56.8

In addition to summarizing key model parameters, we also evaluated how our modeled floodplain width
changed with elevation along our model reach. Understanding how floodplain width varies with elevation is a
key partner concern, so we created a scatter plot showing how the model floodplain widths for January 2021
and August 2023 flood events varied along the model reach (Figure 2). The linear trend lines plotted for both
models show that the floodplain width generally decreases as elevation increases. This trend is reasonable as
the riparian environment of our model transitions from more of an alluvial floodplain to a more inter-
mountain environment along the model reach. We calculated R-squared values, a measure of linear fit that
varies between 0 and 1, for both trend lines and found that the R-squared values are close to 0 for both
simulations. These low R-squared values indicate that the linear relationship between floodplain width and
river elevation is not strong. Therefore, we can say that floodplain widths do appear to decrease with
clevation, but that elevation alone is not the principal driver of this trend.



2021 and 2023 Model Floodplain Width with Elevation

200
o : ® Jan-2]
g . . e ® Aug-23
_ 140 . =t
= me oo R2=10.03 e
g 120 TR /
< 100 t,...... ........... i ———
5 ..~..: . ‘.}. i — e WY
8 2 i eesens “ ....... & ..~V:. ”.z.:
3 © “b q,.:‘.. .::o =~
° ®
20 .~ : Rk
0
600 650 700 750 800

Elevation (m)

Figure 2. Scatter plot showing how floodplain width varies with elevation along the model reach for the
January 29, 2021, and August 23, 2023, flooding simulations

In addition to evaluating how modeled floodplain widths varied with elevation, we also wanted to compare
our model results to any reported floodplain extents for either of our storm events. CIREN provided our
team with a reported floodplain extent for the August 23, 2023, flooding event, created during emergency
management operations shortly after the flooding occurred. After making an initial visual comparison (Figure
A4), we summarized the maximum, minimum, and average floodplain width differences at our 200-meter
measuring points for both the reported and our modeled floodplain widths (Table A3). With this we found
that our model significantly underpredicts the reported floodplain. Unfortunately, because the nature of how
the reported floodplain was delineated was not disclosed, we could not identify why there is such a significant
difference between what our model predicts and what the reported floodplain delineation suggests. Finally,
we plotted our 200-meter sampled widths for the reported and modeled flooding extents against each other
to better understand how the reported floodplain width varies with elevation (Figure 3). Interestingly, from its
linear regression, the reported floodplain width tends to increase with elevation despite transitioning to a
more mountainous riparian environment as elevation increases. However, like the modeled results, the low R-
squared value of this trend means that the linear relationship fits the data pootly and that elevation alone is
not the driver for the observed trends in the reported floodplain width.
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400
- s Reported
B < ® Model
€ 300 i
° %
i Se
= 250 : E¥e—A
76
o : R2=0.08 ,¢'ss o .
£ 200 e oo ° . o ° i e Ty ok LR
Boasoll om o W e oA %
8 ..... o '.....:.. .o .. .o . ® f'.:
£ 100 - § vy, DA SUS AR A N o oo Wy
L S NP A L .... Y
50 oo Spee Po 2p "\ SRS agey
o R2 = 0.08 1
600 650 700 750 BO0

Elevation (m)

Figure 3. Scatter plot showing how floodplain width varies with elevation along the model reach for the
reported (green) and modeled (blue) August 23, 2023, flood



4.1.2 Backscatter Log Difference Maps from Sentinel-1 SAR

After calculating the log difference of backscatter values per pixel, our final output was a Backscatter Log
Difference Map for the January 29, 2021 (Figure 4; Figure B1), and June 23, 2023, flood events (Figure B2).
Water typically returns a weak backscatter value to the sensor due to its smooth surface, whereas surfaces
with rougher features return a higher backscatter value (Hong et al., 2015). We presumed that blue pixels in
the Log Difference Map are waterbodies or areas with standing flood water since these areas experienced a
significant decrease in backscatter values between the pre- and post-flood dates. Areas showing increased
backscatter values may be soil with higher moisture content or a result of the double-bounce effect. This
phenomenon occurs when vertical features like urban buildings or vegetation intercept the return signal from
waterbodies, and due to the side-looking nature of SAR sensors, results in higher backscatter value for water
(Liao et al., 2020). There are additional steps that one can take to reduce the influence of the double-bounce
effect from the results; however, we were limited to the 10-week project duration. The Log Difference Map
for the June 2023 flood event showed more blue pixels, or areas of decreased backscatter, compared to the
January 2021 result; however, the double-bounce effect is still evident. Vegetation seasonality or inundated
vegetation could increase the backscatter value in the river corridor, and the magnitude and timing of the
flood event could drive the greater change signals observed in the June flood event.

Change in Backscatter Value

Decrease Increcse

1
C Jkilometers

Figure 4: Map showing the log difference of backscatter values derived from 10-meter Sentinel-1 SAR
datasets. Areas of increased backscatter are shown in red and decreased backscatter in blue between January
26, 2021, and February 1, 2021. The areas in dark blue are presumed to be standing water resulting from the

flood.

4.1.3 NDWI1 Difference Maps from Landsat and Sentinel-2

The results obtained from the NDWTI calculation highlighted areas with significant changes in water content
by comparing pre- and post-flood NDWI maps. NDWI values ranged from —1 to +1, with higher positive
values (dark blue) indicating more water content. The comparison between pre- and post-flood NDWI maps
for the August 2023 event revealed higher values in the NDWI, particularly in areas such as the Maipo River
and urban regions, suggesting that these areas experienced prolonged wet conditions after the flood event

(Figure 5).
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Fggure 5. a) Pre- flood NDWI rnap (August 6) and b) post ﬂood ND\WI map (August 26) for the August 2023
flood event, using Sentinel-2 MSI, 10-meter resolution imagery.

We observed similar results in the NDWI Difference Maps obtained from both Landsat 8-9 OLI and
Sentinel-2 MSI (Figure C1). However, the NDWI Difference Map from Sentinel-2 showed a narrower range
of NDWI values (from -1.1 to 1.2), while the map obtained from Landsat provided a wider NDWI range
(from -1.6 to 1.2). These differences could be due to differences in spatial resolution between the sensors:
Sentinel-2 MSI generally offers higher spatial resolution (10 meters) for key bands used in the NDWI
calculation, such as band 3 and band 8, which are useful for monitoring vegetation health and agriculture. In
contrast, Landsat 8 and Landsat 9 provide 30-meter resolution images and is best for assessing vegetation and
land cover.

Another factor to consider is the different image capture dates used for the analysis. For example, the data
from Sentinel-2 corresponds to the period of August 6 to August 26, 2023 while for Landsat, the images were
taken from August 6 to August 30, 2023. This variation in the timing of the image captures could have
influenced the NDWI change range, as the amount of standing water in the areas may have changed over
time. Another factor that could have influenced the NDWI range is the presence of clouds and snow in the
images and the atmospheric correction and cloud masking procedures applied.

4.1.4 Comparison of Sentinel-2 MSI and Sentinel-1 SAR Flood Extent Maps

We compared the results of the NDWI Difference Map and Backscatter Log Difference Map over the
confluence of the Maipo and Mapocho Rivers for the January 29, 2021 flood event (Figure D1). Sentinel-2
MSI and Sentinel-1 C-SAR offer a moderate 10-meter spatial resolution, providing similar levels of detail for
observing the landscape. While both outputs allow us to see the river channel to some extent, the channel is
more distinct in the NDWI Difference Map, while the Backscatter Log Difference Map has higher
backscatter values along the uplands, likely due to wet soil and the double-bounce effect. Differences in flood
detection between the sensors can be due to collection dates and sensor limitations. For example, Sentinel-2
MSI imagery is affected by cloud cover, which can obscure observations. In contrast, Sentinel-1 C-SAR can
penetrate clouds, providing data regardless of weather conditions.

4.2 Errors & Uncertainties

4.2.1 HEC-RAS

We ran the HEC-RAS model using diffusion wave equations instead of full shallow water equations or full
momentum. This choice involves removing parameters in exchange for shorter run times and improved
model stability. By making this choice, the result is less accurate than one derived using full momentum.
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The model also only has a single upstream boundary condition, and the topography does not change during
the simulation. Our models did not account for additional tributary flows or surface runoff from the
surrounding landscape. Additionally, the flows encountered for the flood events modeled are almost certainly
erosive, resulting in the channel changing dynamically as the flood progressed. Dynamically modifying the
underlying topo during a model run to get a more accurate floodplain extent is beyond the known capabilities
of the HEC-RAS model. Finally, we did not account for several hydraulic control factors, namely bridges and
dams. Because we did not have accurate measurements for these structures combined with the limited time
frame to put these models together, bridges and dams along the model reach were not modeled. These
structures would undoubtedly act as hydraulic controls, directly impacting how the floodplains are delineated.

4.2.2 Sentinel-1 C-SAR

Using SAR to detect flood waters and surface water changes has limitations that could have impacted the
accuracy of results. First, we found that the learning curve for SAR data processing was very steep, given the
10-wecek term of the project. We had difficulties processing the data in ArcGIS Pro because of licensing
constraints, so we ultimately decided to process our imagery through the Alaska Satellite Facility's Data
Search Portal. Regarding temporal resolution, we found that the return time of Sentinel-1 C-SAR did not
always align with the dates of peak flooding, which affected data availability. Additionally, the time between
image capture dates and peak flooding varied, which could have affected the analysis. While SAR's 10-m
resolution shows detailed sutface features, the spatial resolution may not be adequate to capture the rivet's
geomorphology and the narrow size of the pre-flood river channels. Furthermore, topography influences the
radar's return signal. For example, mountain slopes commonly cause shadowing and impact the brightness of
features. Vertical features like vegetation, urban buildings, and mountains can influence the double-bounce
effect, causing inaccurate sensor readings.

4.2.3 NDWI from Landsat and Sentinel-2

The NDWI index is sensitive to the presence of vegetation, sediment loads and soil moisture. This sensitivity
can result in misclassification of water bodies, especially in urban and densely vegetation areas. Additionally,
spatial resolution of satellite images can lead to potential inconsistencies in water delineation. Lower
resolution of imagery can reduce the ability to detect small water bodies. Furthermore, atmospheric

conditions such as clouds, snow and seasonal variations can obscure water bodies and potentially impact the
NDWT calculations.

5. Conclusions

5.1 Interpretation of Results

We resolved flood extents, evaluated flood trends with elevation, and compared methods using different
sources of EOs for flood mapping in the Metropolitan Region. We found that hydraulic modeling is a
feasible method for characterizing riverine floods when incorporating discharge observations from stream
gauges. Hydraulic modeling can predict flood characteristics such as velocity, peak discharge, depth, and
floodplain width. We analyzed these characteristics for different flood events (January 2021 and August 2023)
and determined that the January 2021 extent was larger due to higher discharge. We compared the simulated
floodplain widths with reported floodplain widths and found the HEC-RAS extents were consistently smaller.
We determined that the hydraulic model’s flood extent decreased with elevation, which contrasts with the
reported floodplain trend.

Optical and radar datasets can also aid in flood extent analysis. By generating pre- and post-flood maps and
calculating changes in NDWI and backscatter values, we identified areas of increased water within the
floodplain, indicating inundation as opposed to permanent water bodies. We noticed distinct areas of
standing water, particularly around the river, demonstrating that both NDWI and Log Difference calculations
are effective in visualizing floods. However, these methods were prone to error. Challenges included a lack of
available imagery around flood dates and the sensors’ limited resolutions. The SAR imagery was prone to
shadowing and the double-bounce effect, which can result in false positive areas of backscatter and decreased
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detection of water. Due to these limitations, these products may be more suitable as supplemental materials
rather than primary diagnostic tools for floodplain estimation.

5.2 Feasibility & Partner Implementation

We found hydraulic modeling to be a feasible method for predicting flood characteristics. CIREN can
enhance the hydraulic model by incorporating local conditions and observations to improve the accuracy of
their simulations. HEC-RAS allows for modeling bridges and culverts, adding in surfaces that represent soils
and percent imperviousness, and supports grading the underlying topography to get a more accurate terrain,
all of which would increase the accuracy of the model. Additionally, establishing more stream gauges and
incorporating them into the model as boundary conditions would better capture tributary flows, resulting in
more accurate flooding extents. CIREN could run their models using the full momentum equations for flow
as opposed to the diffusion wave approach, which trades processing time for delineation accuracy.

HEC-RAS can potentially replace hand delineating floodplains in short order. We found that constructing a
2-D hydraulic model that captures the bulk flooding characteristics of an event can be accomplished in a few
hours, while refining the model can take days to implement. Once the model is constructed, CIREN can
quickly update it with the new discharge data as floods occur, run a diffusion wave simulation, and quickly
produce a flooding extent for the event. This flooding extent can be readily exported from HEC-RAS as a
shapefile for use in CIREN’s other floodplain management workflows.

Both radar and optical data analysis are feasible methods for flood monitoring and assessment, with
limitations. Accuracy may be affected by temporal limitations, cloud cover, snow, dense vegetation,
topography, and backscatter effects. Due to these limitations, it may be more beneficial for our partners to
use these methods as supplemental data for floodplain analysis, instead of basing floodplain extent from this
data alone.

CIREN has experience with remote sensing methods, including SAR analysis. CIREN’s remote sensing
specialists can explore our methods and build upon them using local data. For example, if partners assess
flood extents using the Log Difference in backscatter, they should consider the possibility of the double-
bounce effect. To determine which areas are false positives due to double bounce, partners should cross-
reference the Log Difference maps with land cover maps from the same time, which will allow them to
identify areas with rough surfaces, indicating true increases in backscatter, and areas with vertical features
such as vegetation and trees, indicating a potential double-bounce effect.

By adopting the hydraulic modeling and remote sensing techniques discussed herein, CIREN can better
anticipate flood extent before floods happen and visualize those extents with high fidelity. These tools can be
used together, allowing CIREN to further refine their understanding of the hydraulic characteristics in play
that exacerbate flood damages within the Metropolitan Region. Additionally, these methods produce clear
flooding visualizations that will help CIREN communicate flooding risks with their partners and the public.
Future remote sensing and hydraulic modeling work performed by CIREN may generate new insights and
lead to data-driven policies that protect Chileans, their property, and the region’s natural resources.
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7. Glossary

ASF DAAC - Alaska Satellite Facility Distributed Active Archive Center

Backscatter - A measurement of the waves that reflect back to the satellite after it emits a signal
Double-Bounce Effect — A phenomenon that occurs when a weak signal is reflected by water, but vertical
features like urban buildings or vegetation intervene and "double-bounce” the original backscatter signal,
resulting in a higher backscatter value

Earth observations — Satellites and sensors that collect information about the Earth’s physical, chemical, and
biological systems over space and time

HEC-RAS- Hydrologic Engineering Center's River Analysis System; used to create a two-dimensional
hydraulic model of flood events

Manning’s n— A parameter that represents the surface roughness associated with a given land cover type
NDWI — Normalized Difference Water Index

NIR - Near Infrared band

OLI - Operational Land Imager

RAS Mapper - A GIS interface embedded within the HEC-RAS model, used for visualizing model results
and constructing a two-dimensional model grid

RTC - Radiometric Terrain Correction

SAR - Synthetic Aperture Radar

Thalweg — the line or curve of lowest elevation within a watercourse, synonymous with channel centerline
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9. Appendices
Appendix A: Hydranlic Model
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Figure A1. Location map of CIREN’s stream gauges 05710012-5 and 05710001-K used in the HEC-RAS
model. Basemap credits: Esti, TomTom, Garmin, Foursquare, METT/NASA, USGS
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Figure A2. HEC-RAS 2-D model study area along the Maipo River. The model captured the river stretch
between Highway 79 in the west and stream gauge 05710001-K in the east. Basemap credits: Esti, TomTom,
Garmin, Foursquare, METT/NASA, USGS

Table Al
Temporal constraints set for the HEC-RAS modl.
Flood Event Date and Time (start) | Date and Time (end) | Computation Interval
January 29, 2021 January 27, 2021 February 1, 2021 5 seconds
12:00am 6:00am
August 23, 2023 August 18, 2023 August 24, 2023 5 seconds
8:00 am 12:00am
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Table A2

Manning’s n Valnes used in 2-D hydranlic model based on land cover data provided by CIREN.

. . Analog Manning’s n Class .
CIREN Classification (Chow, 1959) Manning's n
Areas Artificiales Cement, Near Sutface 0.011
Areas Desprovistas de Vegetacion Excavated Channel, Egrth Winding, No 0.025
Vegetation
Floodplain with Trees, Tree Stumps, Heavy
Bosques Growth and Sprouts 0.06
Cuerpo de Agua Water 0.02
Humedales Floodplain, Pasture, No Brush, High Grass 0.035
Plantacién Forestal Floodplain, Trees, Cleared Land with Tree 0.04
Stumps, No Sprouts
Praderas y Matorrales Floodplain, Brush, Scattered Bursh, Heavy 0.05
Weeds
Terreno Agricola Floodplain, Culﬂvsg:;ip?reas, Mature Field 0.04

Fignre A3. Map of sampling points every 200 m along the Maipo River, Southeast of Santiago
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Figure A4. Typical floodplain width rnpaisn between the odeled (blue) Ast 23, 2023, floodplain
extent and the reported (green) floodplain extent provided by CIREN

Table A3.
Summary of measured floodplain extent differences between the modeled Angust 23, 2023 floodplain and the reported floodplain
provided by CIREN. 1V alues obtained by subtracting the modeled width measurements from the reported measurements

Reported vs Modeled August 23, 2024 Floodplain Differences

Maxcimum Difference (1) 310.5
Minimum Difference (m) 15.4
Average Difference (m) 106.4
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Appendix B: Backscatter Difference Maps
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Figure BT: Map of the log difference in backscatter values across the Metropolitan Region (a) and stretches of
the Maipo River (b, c, d). All images are representative of the January 29, 2021 flood event. Basemap credits:
ESRI, TomTom, FAO, NOAA, USGS
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Figure B2. a.) Map of the Metropolitan Region and b.) Map of a curve of the Maipo River. Both images show
the log difference in Sentinel-1 SAR backscatter values for the June 23, 2023 flood event. Basemap credits:
ESRI, TomTom, FAO, NOAA, USGS
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Appendix C: NDWT Difference Maps of the Metropolitan Region
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Figure C1: NDWI Difference Map using 10-meter Sentinel-2 MSI data (A) and NDWI Difference Map using
30-meter Landsat 8-9 data (B). Areas in blue indicate an increase in water content after the flood event, while

areas in red shows decrease in water content. Basemap credits: Esti, HERE, Garmin, USGS
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Appendix D: Maps Comparing Sentinel-2 MSI and Sentinel-1 SAR Methods For VVisualizing Flooding
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Fignre D1: Map showing the change in NDWI values along the Maipo River, derived from Sentinel-2 MSI 10-

meter imagery (A) and map showing the change in backscatter values, derived from Sentinel-1 SAR 10-meter

imagery (B). In both figures, blue pixels indicate bodies of water. Basemap Credits: Esri, TomTom, Garmin,
Foursquare, METI/NASA, USGS
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