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Runway configuration management deals with the optimal selection of runways and their

direction of operation for aircraft arrivals and departures. The configurations are chosen based

on the traffic, surface winds, and other meteorological conditions that are complex to model and

difficult to predict. In this paper, we develop the runway configuration assistance (RCA) tool, an

automated approach based on offline model-free reinforcement learning (RL) that provides

decision support for air traffic controllers (ATCos). The proposed tool processes historical data

of interest, including decisions made regarding the runway configuration, and their subsequent

outcome, to identify a policy that encourages good decisions. The policy search is guided by an

appropriately chosen weighted multi-objective utility function (e.g., based on maximizing traffic

throughput, minimizing transit times on the surface of the airport, and mitigating safety issues

such as go-arounds). The proposed tool is validated using data from two major US airports

based on performance metrics developed in collaboration with subject matter experts and is

compared against several baseline approaches such as the most frequent configuration chosen

by ATCos, supervised learning, and other RL-based approaches.

I. Introduction

Every airport, depending on the geometry of the runways and different directions they can operate on, have a set

of unique runway configurations that can be used for arriving and departing aircraft. The basic idea is to have

a headwind, since it helps with both the lift for take-off and braking for landing. The optimal setting of the runway

configuration depends on several factors such as the traffic load, meteorological conditions (e.g., wind direction and

speed, cloud ceiling, visibility), safety concerns (e.g., possibility of go-arounds due to excessive tail and/or cross winds),

and noise abatement procedures, controller staffing or other operational issues, runway surface conditions (e.g., wet

runway), and runway closures/construction. Once an airport is in an active runway configuration, choosing the optimal

time-window to switch the configuration to a different one is a crucial yet challenging task that the Air Traffic Controllers

(ATCos) and front-line managers (FLMs) deal with daily. Moreover, switching a configuration takes considerable time
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and ATCos need to determine the best time-window for changing the configuration with minimal disruptions based on

the traffic and weather forecast. This makes the decision-making more challenging as the forecast of traffic and wind

conditions are usually uncertain and change often.

A sub-optimal selection of the runway configuration, or poor timing of configuration changes, can result in significant

increase in taxi times for aircraft on the surface of the airport, unnecessary aircraft holding (in the air or on the ground,

causing significant delays), and undesired go-arounds for arriving traffic in the air. For example, Federal Aviation

Administration (FAA) reports that a maximum allowed crosswind and tailwind components are 25/15 and 10/10 knots

for dry/wet runways [1] (although these numbers can be different for different airports/runways or aircraft). Currently,

ATCos set the runway configurations based on the current and forecast data relating to traffic and meteorological

condition available to them. Due to different preferences and biases of human decision-making, this process may result

in subjective decisions and yield sub-optimal results, especially if the predicted outcomes are not realized. Moreover,

due to the high amount of uncertainty in the (weather) forecast, the stochastic decision-making requires an extensive

combinatorial search among all possible predicted outcomes to identify the optimal policy, which is difficult to perform

by human reasoning alone or by using a rule-based system. Furthermore, if an automated rule-based system can be

defined, it would be difficult to scale across airports in the National Airspace System (NAS), because each airport would

require a complete definition of such rule-based decision-making mechanism from scratch, and it would be subject to

change in operational settings (e.g., runway closures or construction).

As a result, there is a need for a data driven approach based on machine intelligence that can alleviate the complexity

of the decision-making and facilitates informed decision-making based on the abundance of available historical data

and decisions. This would also decrease the possibility of induced bias in the human decision-making and center

the rationale based on observed data in the past and forecast data in the near future. Furthermore, such automated

and intelligent approach would require minimal work to generalize to other airports across the NAS. A successful

development and deployment of such technology will have significant implications for the efficiency, productivity, and

safety of the operations at airports across the NAS and hence is the focus of this paper. It would decrease the workload

of the ATCo significantly and provide a decision-support for their complex tasks on an hourly basis; this is crucial

given the rise in the magnitude and complexity of airspace operations. Furthermore, it improves the efficiency of the

commercial traffic at airports, resulting in less delays, shorter taxi-times on the surface of the airports, fewer number of

aircraft performing go-arounds, fuel savings, and emissions. Lastly, it can improve the coordination between the FAA

and airlines.

II. Related Work
Recent studies have attempted to develop an automated and intelligent decision support tool for runway configuration

management (RCM). We categorize this literature into three main categories of (1) model-based control, (2) model-free
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control, and (3) data-driven supervised learning. It should be noted that both model-free control and data-driven

supervised learning can be categorized as model-free approaches, as they do not characterize or learn any model for the

dynamics of the system’s state [2].

The first category is the development of model-based control approaches, where a specific mathematical model is

built to represent the dynamics of the traffic and meteorological conditions and their effects on the choice of runway

configuration (modeling all variables affecting the system). Once such model is defined, different techniques can be used

to identify the optimal policy for selecting the runway configuration at each time interval. Examples of such techniques

are heuristic search [3, 4], discrete choice modeling [5], mixed integer programming [6], dynamic programming [7],

and queuing theory [8–10]. Model-based approaches are interpretable, since they learn a specific model for changes

in the traffic, meteorological conditions, and other influential factors in the decision-making. Moreover, they provide

guarantees on the near-optimality of obtained policy for the runway configuration. However, the performance of

model-based approaches and the associated guarantees are dependent on the accuracy of the learned model. Any

modeling error or simplification that are made to alleviate the complexity of the problem (e.g., assuming simplified

weather dynamics model [5]), can result in a poor performance in the operational setting, especially when the operational

data diverge from the model’s expectation. Furthermore, since the model characterization varies from airport to airport,

it is expensive to generalize this family of methods to other airports in the NAS. Due to these drawbacks, the model-based

control is not an appropriate method for the RCM problem posed in this paper, due to the complexity of characterizing

an accurate and realistic model for system dynamics.

The above-mentioned drawbacks of model-based control give rise to the second category of methods called

model-free control, mainly based on Reinforcement Learning (RL) techniques [11], a key framework for sequential

decision-making problems. Model-free RL has been widely adopted and deployed in the aviation domain [12]. These

approaches usually learn a good policy by interacting with a simulation/operational environment and learn from the

feedback they receive as a consequence of their decisions. Popular methodologies in this category are Monte Carlo Tree

Search (MCTS) [13] and Q-learning [14, 15] that have been widely applied in different domains. Model-free RL is

generally easy to implement and efficient to scale. However, the online implementation of model-free RL has one major

drawback, which limits its applicability to safety critical systems. It needs a significant number of interactions (episodes

of making decisions and learning based on the feedback from the simulation/operational environment) to learn a good

policy. Moreover, to learn a good policy, such interactions need to balance between exploitation (making decisions

that optimizes the received long-term expected rewards), and exploration (making new and often risky decisions for

the sake of learning a better policy). As a result, these interactions can be costly, especially in application to safety

critical systems such as Air Traffic Management (ATM), since the algorithm tends to explore poor decisions when the

interactions are limited. Hence, majority of the online model-free RL techniques have been applied to domains such as

gaming [16] or aviation-specific applications where accurate simulators are available [12].
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With the significant rise in the size and quality of available data in ATM in recent years, and to address the major

drawback of online model-free RL, the third category of methods have focused on development of data-driven supervised

learning techniques. The main goal of methods in this category is to use the vast amount of available historical data and

learn to imitate the ATCo decision-making process with the least amount of error [17–20]. Since such approaches only

rely on historical data, it is easy to generalize them to airports across the NAS. However, these techniques suffer from

one fundamental drawback: since the policy optimization is designed to mimic the ATCo with the least amount of

error, they cannot identify and correct mistakes and/or inefficiencies in the historical decisions. In other words, their

predictions are not supported by any evidence of better outcomes (such as more efficient surface transit times or a

smaller number of go-arounds). Simply put, they learn to mimic the historical decisions, both good ones and bad ones.

A. Our Contribution

In this paper, we develop a solution to the RCM problem based on the family of offline model-free RL [21]. The

proposed solution combines the power of model-free RL with data-driven supervised learning and attempts to learn a

good policy by only relying on the historical data/decisions, while addressing the shortcomings of the above-mentioned

literature: (1) it addresses the shortcoming of model-based control (first category in the literature), as it does not rely

on learning a model of the environment and learns the policy directly from data; (2) the offline nature of the method

does not require further interactions with the simulation/operational environment and learns a policy solely based on

historical decisions, hence addressing the drawback of the second category in the literature (i.e., model-free control); and

(3) learning of the policy is supported by a well-defined utility function (also sometimes referred to as reward function),

that can differentiate good and bad decisions in the historical data, hence addressing the limitation of data-driven

supervised learning techniques (third category in the literature).

Although offline RL addresses majority of the drawbacks in the mentioned literature, there is a fundamental challenge

in their deployment, called distributional shift, that needs careful consideration. It happens when the policy that the

algorithm learns from historical data is significantly different with respect to the policy that was used (by the ATCos in

an operational setting) to collect the data (referred to as behavioral policy). This would result in the algorithm being

overly optimistic (and probably wrong) when exposed to Out-of-Distribution (OOD) data, a setting that is rare and not

well represented in the historical data, as well as situations that might be created by new operational procedures and are

not observed in historical data. For example, a runway that is historically solely utilized during specific wind conditions

is not available for a long period of time due to constructions. This would result in an OOD situation in practice.

Although classic offline RL approaches fail to address distributional shift, the recent developments in the field show

promise. A majority of the state-of-the-art offline RL algorithms deploy a mechanism to address this challenge, such as

constraining the policy optimization problem [22], deploying an ensemble approach [23], applying regularization to

avoid the excessive distribution shift from the behavioral policy [24], or learning a risk-averse policy [25]. These recent
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endeavors have allowed offline RL to be successfully deployed in real-world applications such as robotics and healthcare.

In this paper, we specifically implement a state-of-the-art offline RL algorithm called Conservative Q-Learning

(CQL) [24], to develop the Runway Configuration Assistance (RCA) tool. CQL uses a simple regularization technique

(explained in Section III.B) to alleviate the distributional shift in the policy. To validate the RCA tool, we use two years

of real-world data from two major airports in the US: Charlotte Douglas International Airport (CLT), as an example

of “less complex” airport, and Denver International Airport (DEN), as an example of “more comple” airport in the

NAS. As a point of comparison, we compare performance of the RCA tool with several baselines such as: (1) ATCo

preference: a simple policy that uses the most common decisions made by the ATCos in each state in the past; (2)

supervised learning: based on random forest that learns to mimic the ATCo with least amount of error [26] and serve

as a representative of data-driven approaches developed in the literature; and (3) an offline version of a popular Deep

Q-Network (DQN) algorithm [16], that would represent a brute force application of online RL method in an offline

setting without any underlying mechanism to alleviate the distributional shift in the learned policy.

In the remainder of the paper, we first share details of the implemented RCA tool, then we elaborate details of the

runway configuration operations at CLT and DEN, and finish with the findings and performance comparisons between

the RCA tool and the baseline methodologies.

III. Methodology
Runway configuration management by the ATCos can be viewed as a sequential decision-making process at specific

time intervals, 𝑡 (e.g., each lasting for a quarter of an hour). We model this problem as a Markov Decision Process (MDP)

[11], which is defined by a tuple (𝑆, 𝐴, 𝑓𝑇 , 𝑓𝑈). The controller (also referred to as agent throughout the paper) observes

the state of the environment at each time step, 𝑠𝑡 ∈ 𝑆, and selects what action (i.e., choice of runway configuration) is

appropriate for the current time interval, 𝑎𝑡 ∈ 𝐴. The state space includes all available data that affects the runway

configuration decision-making, such as arrival/departure traffic, wind conditions, meteorological conditions, and time of

the day. Once the action is implemented, the operational environment moves into the next time interval and a new state,

𝑠𝑡+1 ∼ 𝑓𝑇 (𝑠𝑡 , 𝑎𝑡 ), according to a model called transition function (also referred to as dynamics model), with domain

𝑓𝑇 : 𝑆 × 𝐴 → 𝑆. Moreover, the agent will observe a feedback related to the effect of her action in the operational

environment, also referred to as utility throughout the paper 𝑢𝑡 ∼ 𝑓𝑈 (𝑠𝑡 , 𝑎𝑡 ), according to a utility function with domain

𝑓𝑈 : 𝑆 × 𝐴 → R. The feedback or utility function can include traffic throughput, average transit times on the surface of

the airport, length of the queues forming on the taxiways, and number of go-arounds as a result of high winds. Although

the decision-making process for runway configurations is a continuous event, due to the fidelity of the available data, we

adopt a 15 minute time interval between 𝑡 and 𝑡 + 1. It should be noted that this might induce noise and/or error in the

deployment of the tool in real-time, however, it should not cause any disruptions as a decision-support tool for planning

purposes.
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Given all of the MDP definitions, the goal the agent (controller) is to find the optimal policy, 𝜋∗ : 𝑆 → 𝐴, that

maximizes the accrued utilities over the management time horizon, also referred to as the optimal value function:

𝑉∗ (𝑠𝑡 ) = max
𝜋

𝑓𝑈 (𝑠𝑡 , 𝜋(𝑠𝑡 )) + 𝛾
∑︁

𝑠𝑡+1∈𝑆
𝑝(𝑠𝑡+1 | 𝑠𝑡 , 𝜋(𝑠𝑡 ))𝑉 𝜋 (𝑠𝑡+1), (1)

where, 𝛾 ∈ [0, 1) is a discount factor, discounting future utilities to their net present value, and 𝑝(𝑠𝑡+1 | 𝑠𝑡 , 𝜋(𝑠𝑡 )) is

the probability of starting in state 𝑠𝑡 , taking action 𝜋(𝑠𝑡 ), and ending up in the state 𝑠𝑡+1 according to the transition

function 𝑓𝑇 . The optimal policy represents the runway configuration for each state (that can correspond to unique traffic

and wind conditions). On the other hand, the optimal value function measures the aggregate metrics (such as average

transit times, throughput, and go-arounds) of implementing the optimal policy over a certain period. If the agent has

full knowledge of all components of the MDP, then one can use dynamic programming [11] to find the optimal value

function, 𝑉∗ and associated optimal policy, 𝜋∗. This is one of the reasons that model-based approaches (described in

Section II) learn a representation of such transition and utility models. However, in many real-world applications such

as air traffic management, the transition (or dynamics) model is complex, and as a result not feasible to learn from

limited historical observations. Furthermore, any error introduced in learning the model, would affect the quality of

the policy obtained and its applicability in practice. As a result, our solution relies on a family of model-free control,

specifically the popular Q-learning algorithm [14, 15].

A. Q-learning: a model-free RL solution

Model-free RL algorithms such as Q-learning plan to learn the optimal policy, 𝜋∗, by only relying on the interactions

of the agent with the environment, i.e., observing state of the environment at time interval 𝑠𝑡 and deploying an action 𝑎𝑡 ,

and her observations from the environment, i.e., the next state 𝑠𝑡+1 and the utility 𝑢𝑡 . They do so by gradually learning

the optimal state-action value functions (also known as Q-values, hence the name of the algorithm) via an off-policy

temporal difference algorithm [11]:

𝑄(𝑠𝑡 , 𝑎𝑡 ) = (1 − 𝛼)𝑄(𝑠𝑡 , 𝑎𝑡 ) + 𝛼[𝑢𝑡+1 + 𝛾 max
𝑎∈𝐴

𝑄(𝑠𝑡+1, 𝑎)], (2)

where 𝛼 is the learning rate. It is called an off-policy algorithm because it directly approximates the optimal Q-value,

𝑄∗, independent of the policy being followed by the agent. As evident in Eq. (2), the Q-learning algorithm learns the

Q-values gradually by interacting with the environment and observing the outcome of the interactions. As a result, the

agent requires to interact with the environment for significant amount of time until the algorithm can approximate a

near-optimal policy. The exact number of required interactions to guarantee a near-optimal policy is hard to quantify

and is subjective depending on the complexity of the decision-making problem. In theory, in the case where each

state-action pair is observed an infinite amount of time, the Q-learning algorithm is guaranteed to converge to the
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optimal policy [11]. In practice, the higher the complexity of the runway configuration decision-making, the higher

number of interactions needed to learn a good policy. For example, as we will see later in the two case studies of this

paper, decision-making at DEN is much more complex than CLT, and as a result, would require significantly more

interactions. As a result, in the early period, where the number of interactions/observations are limited, the policy

obtained by the algorithm is usually far away from the optimal one and an agent using such a policy might make a lot of

mistakes. This attribute limits the direct application of Q-learning algorithm to safety-critical systems such as ATM.

Furthermore, the classical Q-learning algorithm stores the learned Q-values in a tabular form, which does not scale to

many real-world applications with large and unstructured state/action spaces.

Mnih et al. [16] proposed Deep Q-Network (DQN) that uses a non-linear function approximator such as neural

networks to estimate the Q-values instead of storing them in a tabular form. This innovation allowed the application of

the Q-learning algorithm to complex real-world problems with high-dimensional and unstructured state/action spaces.

In the DQN algorithm, gradient-based optimization methods are used to learn the parameters (weights and biases) of the

neural network, i.e., 𝜃, by minimizing the Mean Squared Error (MSE) between the Q-value estimates of the neural

network, 𝑄 𝜃 (𝑠, 𝑎), and the target Q-values, 𝑦, calculated based on the feedback from the environment:

𝑄 𝜃 = arg min
𝜃
E𝑠,𝑎,𝑢,𝑠′∼𝐷

[
(𝑄 𝜃 (𝑠, 𝑎) − 𝑦)2

]
, (3)

where, E is the expectation operator, 𝐷 represent the observed instances of one time-interval transitions (𝑠, 𝑎, 𝑢, 𝑠′), and

𝑦 is the target Q-value estimates that can be calculated as follows:

𝑦 = 𝑢 + 𝛾 max
𝑎∈𝐴

𝑄̂ 𝜃 (𝑠′, 𝑎), (4)

where 𝑠′ is the next observed state of the environment. As noted in the above definitions, two separate networks are

used to estimate the Q-values, 𝑄 𝜃 , and the target values, 𝑄̂ 𝜃 . This has been shown to improve the convergence of the

gradient-based optimization and faster learning of the Q-values [16]. Usually, the parameters of the Q-network, 𝜃, is

copied to the target network after each few iterations of the training or gradually through a soft-update.

Although DQN addresses one drawback of the classical Q-learning, they both only work well in online fashion,

where the agent can interact with the environment (operational or simulation) for a significant amount of time and learn

a good policy by receiving feedback on her interactions. However, in many real-world applications, building an accurate

simulator of the real operational environment is expensive or impractical and experimenting in the actual operational

environment is impossible. As a result, the agent can only rely on the historical data (historical decisions made and

feedback received) to learn a good policy, i.e., offline RL. However, as described in Section II.A, direct application of

these approaches in an offline setting have not been successful [21]. In this paper, we deploy a recently developed offline

RL algorithm, Conservative Q-Learning, that has shown significant success in real-world deployments [24].
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B. Conservative Q-learning: an offline RL solution

Conservative Q-learning (CQL) [24] addresses the main challenge of offline RL (i.e., distributional shift, discussed

in Section II.A) by regularizing the estimates of the Q-values by the neural network. This additional regularization

technique keeps the estimates of the Q-values for the unlikely actions (based on historical data) low, hence it lower-bounds

the optimal Q-function. Due to learning the lower-bound for the optimal Q-function, 𝑄∗, a policy chosen based on the

learned function will be conservative and take less risky actions. The optimization objective of the CQL algorithm is

defined as follows,

𝑄 𝜃 = arg min
𝜃

𝛼E𝑠∼𝐷

[
log

∑︁
𝑎

exp(𝑄 𝜃 (𝑠, 𝑎)) − E𝑎∼ 𝜋̂𝛽 (𝑎 |𝑠) [𝑄 𝜃 (𝑠, 𝑎)]
]
+

1
2
E𝑠,𝑎,𝑢,𝑠′∼𝐷

[
(𝑄 𝜃 (𝑠, 𝑎) − 𝑦)2

]
,

(5)

where 𝐷 represent the historical data, each instance corresponding to a one time-interval transition (𝑠, 𝑎, 𝑢, 𝑠′), generated

by an unknown behavior policy 𝜋𝛽 (𝑎 | 𝑠) used to collect the data (e.g., the policy used by ATCo in setting the runway

configurations). Also, 𝜋̂𝛽 represents the estimated behavior policy based on observed historical data, and 𝑦 is the target

Q-values (similar to Eq. (4)) defined as 𝑦 = 𝑢 + 𝛾 max𝑎∈𝐴 𝑄̂ 𝜃 (𝑠′, 𝑎). There are three terms in Eq. (5), the first two

terms serve as the regularization terms with 𝛼 governing weights associated with them: the first term (log-exponential

of Q-values) minimizes the Q-values in general, while the second term maximizes the Q-values under data distribution

based on estimated behavior policy 𝜋̂𝛽 (this is used to obtain a tight lower-bound on the optimal Q-function, 𝑄∗). The

last term is the standard MSE error between the learned Q-values and the target Q-values similar to the Eq. (3).

The regularization technique designed in the CQL algorithm (the first two terms in Eq. (5)) guides the Q-network to

learn a lower-bound on the optimal Q-values, which prevents the over-estimation of Q-values that is common in offline

RL due to exposure to OOD data and function approximation error. For further details on the theoretical details of the

CQL algorithm, refer to [24]. Now that we have reviewed details of the proposed method, in the next section, we design

the runway configuration management problem as an MDP and specify its different components, e.g., state and action

spaces, and the utility function.

IV. Runway Configuration Management
The overall flowchart for developing the runway configuration assistance (RCA) tool is illustrated in Figure 1.

Among the many features that affect the runway configuration, we solicited Subject Matter Expert (SME) - retired

ATCos opinion to select the most influential features to include in the state and action spaces. Additionally, we used

their feedback to define the utility function. We use two main sources of data: FAA’s Aviation System Performance
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Metrics (ASPM) reports and NASA’s Sherlock Data Warehouse to extract the relevant features. Most of traffic related

data is collected from ASPM, while the weather and meteorological data is collected from METeorological Aerodrome

Reports (METARs) processed by Sherlock, and safety related data (such as go-arounds) are collected from Sherlock

data warehouse.

Fig. 1 The overall flowchart of development of the RCA tool.

A. State space

We define the state space, 𝑆, based on four features: (1) hour of the day, (2) wind direction, which we discretize into

eight unique states as depicted in Figure 2 (left panel), (3) wind speed, discretized into six unique states depending on

the intensity of the wind, as depicted in Figure 2 (right panel), and (4) the meteorological conditions which is binarized

into two unique states of Visual flight rules (noted as V) and Instrument flight rules (noted as I) depending on the

visibility and the cloud ceiling. State V represent good/normal conditions while state I represent low-visibility and

non-optimal conditions.

https://aspm.faa.gov/
https://sherlock.opendata.arc.nasa.gov/sherlock$_$open/
https://www.aviationweather.gov/metar
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Fig. 2 This figure shows the descretization of wind direction into eight unique states (left) and the wind speed
into six unique states (right).

Fig. 3 Airport runway diagrams for CLT (left) and DEN (right).

B. Action space

The set of actions, 𝐴, available to the CQL agent and/or the ATCo are defined based on the used runway configurations

at two airports that are focus of this study, i.e., Charlotte Douglas International Airport (CLT) and Denver International

Airport (DEN). Figure 3 shows the runway diagrams for CLT (left panel) and DEN (right panel).
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Fig. 4 This figure shows correlation of selected configuration with wind direction and wind speed at CLT for
year 2019.

CLT is an example of a major airport with less complex runway configuration options in the NAS. It has three parallel

runways and a short diagonal one that is rarely used. There are two major configurations at CLT, the North-bound

flow and the South-bound flow. In the North flow, runways 36L, 36C, and 36R are the main used runways for arrival

and departure, while in the South flow, the opposite directions of these runways, i.e., runways 18R, 18C, and 18L, are

used by the air traffic. As a result, the main decision in setting the runway configuration is to use one of these flows

depending on the traffic load, weather, and meteorological conditions as well as noise abatement procedures. It should

be noted that noise abatement procedures are not explicitly encoded in the model currently, however, the model can

learn the preferred configurations as they are more utilized in normal operating conditions. Figure 4 shows that the

runway configuration decision at CLT is heavily influenced by the wind direction and speed, when wind is blowing from

North, the North configuration is preferred and vice versa. Each data point in the figure shows the direction with respect

to the North that the wind is blowing from, and the speed is noted as the distance from the center of the diagram. The

intensity of the color for each point represents the amount of historical data available for the specific wind condition, the

higher the intensity, the more represented in the historical data. It should be noted that when the wind is calm (typically

less than 10 knots), the North and South configurations are used interchangeably to maintain stability of the airport

operations (by simply keeping the previous configuration) and to respect airline preferences due to proximity of terminal

gates to the used runways, etc. Overall, the historical data has shown that the North configuration is the preferred one at

CLT by the ATCo (used on average 61% of times).

On the other hand, DEN is an example of an airport with (complex) multiple runway configuration settings. As
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depicted in Figure 3 (right panel), it has six runways, among which four of them (34L/16R, 34R/16L, 35L/17R, and

35R/17L) are North/South bound while the other two runways (7/25 and 8/26) are East/West bound. As a result, there

are more combinations of runways that can be used for arrival/departure by the ATCo. Based on our comprehensive

analysis of the data for years 2018 and 2019, and feedback from SMEs, eleven major configurations are identified, as

reported in Table 1. For example, for the configuration named N/NEW, North-bound runways (34R/L and 35R/L) are

used for both arrival and departure, while runways 8 (East-bound) and 25 (West-bound) are used only for departure.

Table 1 Major runway configurations for DEN.

Configuration [Arr/Dep] Arrival Runways Departure Runways Usage Frequency [%]

SE/SE 16R/L, 17R/L, 7, 8 16R/L, 17R/L, 7, 8 18.8

S/S 16R/L, 17R/L 16R/L, 17R/L 15

N/NEW 34R/L, 35R/L 34R/L, 35R/L, 8, 25 14.5

S/SEW 16R/L, 17R/L 16R/L, 17R/L, 8, 25 12.6

N/N 34R/L, 35R/L 34R/L, 35R/L 12.3

NE/NE 34R/L, 35R/L, 7, 8 34R/L, 35R/L, 7, 8 11.7

NW/NW 34R/L, 35R/L, 25, 26 34R/L, 35R/L, 25, 26 8.6

SW/SW 16R/L, 17R/L, 25, 26 16R/L, 17R/L, 25, 26 3.4

E/E 7, 8 7, 8 1.6

NS/EW 34R/L, 35R/L, 16R/L, 17R/L 8, 25 1.2

W/W 25, 26 25, 26 0.3

Figure 5 shows the heatmap of changes in the runway configurations at DEN by the ATCo in one year. The rows

show the flow (configuration) at each time interval and the columns show the flow at the next time interval. The

diagonals of this matrix represent no changes in the configuration and as they represent the majority of the data (cases

where the configuration does not change from one time interval to the next), we have masked them in this figure for

better illustration of the flow changes and its complexity. A majority of the flow changes are intuitive, for example the

configuration SE/SE transits to either S/S or S/SEW a majority of the time, depending on the changes in the operational

conditions. However, we also observe sudden major changes in the configuration often at DEN, for example switches

between NE/NE to SE/SE or N/N to S/S. This sudden shift could be due to major shifts in the wind conditions and/or

changes in operational procedures.
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Fig. 5 This heatmap illustrates the frequency of configuration changes at DEN made by the ATCo and the
complexity of the decision-making process.

C. Utility function

We define the utility function based on the combination of factors that are affected by the decisions made by ATCo

about the runway configurations, as well as the invaluable feedback from the SMEs. It is defined as follows,

𝑢𝑡 = 𝜆𝜈𝑡 − 𝜇𝜏𝑡 − 𝛽𝑐𝑡 ,𝑔𝑎 − 𝜂𝑐𝑡 ,𝑚𝑔𝑎 − 𝜁I[𝑎𝑡 ≠ 𝑎𝑡−1] (6)

Where, 𝜈𝑡 is the traffic throughput (incoming and outgoing) at time interval 𝑡, 𝜏𝑡 is the average transit times on

the surface of the airport, 𝑐𝑡 ,𝑔𝑎 is the number of aircraft performing a single go-around, 𝑐𝑡 ,𝑚𝑔𝑎 is the number of

aircraft performing multiple go-arounds, and I[𝑎𝑡 ≠ 𝑎𝑡−1] is the indicator function which is equal to 1 if the runway

configuration switches from time interval 𝑡 − 1 to 𝑡 and 0 otherwise. The last term models the inertia of the agent in

changing the configurations too often to improve the stability of the decisions made by the RCA tool. 𝜆, 𝜇, 𝛽, 𝜂, and 𝜁

are the weights associated with each term. We perform hyper-parameter tuning (as described in Section V.B) to find
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the best combination of weights for the utility function, but depending on the airport and the operational procedures,

the weights can be tuned according to the experts knowledge as well. The factors included in Eq. (6) were identified

by SMEs as being the most important factors that quantify the efficiency of a runway configuration selection policy.

A good policy usually results in higher traffic throughput and lower excessive transit times on the surface, while also

reducing number of go-arounds for arriving aircraft.

In the next section, we will first define the performance metrics to validate the RCA tool against baseline methods,

then discuss the main findings of the study, and finish with pointing out the challenges of the developed RCA tool as

potential directions for future research.

V. Results and Discussion

A. Performance metrics and baseline methods

We compare the performances of different methods according to two metrics: (1) agreement with historical decisions

(noted as Agreement in the figures): for this metric, we show how often each method’s prediction, 𝑎̂, agrees with the

historical decisions made by the ATCo, 𝑎̄, i.e.,
∑

𝑗=1,...,𝑁 I[ 𝑎̂ 𝑗=𝑎̄ 𝑗 ]
𝑁

, where 𝑁 is the number of data in the testing set, and

I[𝑎̂ 𝑗 = 𝑎̄ 𝑗 ] is the indicator function which is equal to 1 if 𝑎̂ 𝑗 and 𝑎̄ 𝑗 are identical and 0 otherwise. We quantify this

as both average agreement across the different configurations as well as the confusion matrix that shows the level of

agreement for each configuration separately; and (2) violation of obvious decisions (noted as Violation in the figures):

for this metric, we identify landing and take-off scenarios that exceeds the tailwind component of 15 knots as a violation,

based on the feedback from the SMEs and estimate what percentage of times each method violates such cases, i.e.,∑
𝑗=1,...,𝑁 I[𝑊𝑗,tail≥15 | 𝑎̂ 𝑗 ]

𝑁
, where 𝑊 𝑗 ,tail is the tailwind component according to the predicted runway configuration by each

model, 𝑎̂ 𝑗 , 𝑁 is the number of data in the testing set, and I[𝑊 𝑗 ,tail ≥ 15 | 𝑎̂ 𝑗 ] is the indicator function which is 1 if the

tailwind component is equal to or greater than 15 knots, and 0 otherwise. For example, in the case study of CLT, if

the wind is blowing strongly (more than 15 knots) from North, if an algorithm suggests the South configuration, it is

considered a violation.

In order to quantify the performance of the CQL algorithm developed as the RCA tool in this paper, we compare

its performance against three baseline methods: (1) ATCo preference (noted as ATCo in figures): a simple policy

that uses the most common decisions made in each state by the ATCo in the past; (2) supervised learning (noted as

supervised in figures): based on random forest that learns to mimic the ATCo with least amount of error [26] and

serve as a representative of data-driven approaches developed in the literature; and (3) an offline version of a popular

Deep Q-Network (DQN) algorithm [11], that would represent a brute use of online RL approaches in the offline setting

without any underlying mechanism to alleviate the challenges of offline RL. We obtained ATCo preference policy by

selecting the most common action taken by the controllers in the past for each unique state (unique combination of wind

14



direction, wind speed, hour of the day, and meteorological condition).

B. Implementation details

We obtained and processed 2018 and 2019 calendar year data for both CLT and DEN and divided them randomly

into training (60%), validation (20%), and testing (20%) sets. We used the above-mentioned metrics (agreement and

violation) to perform hyper-parameter tuning using training and validation sets to identify values of hyper-parameters

(reported in Table 2) that result in optimum performance. For each of the hyper-parameters listed in the table, we

performed a grid search between the minimum and maximum values reported.

Table 2 The minimum, maximum, and optimal values of hyper-parameters.

Hyper-parameter Min Max CLT DEN

𝛼 in Eq. (5) 5 1000 500 500

Mini-batch size 10 100 20 100

Discount factor 𝛾 in Eq. (2) 0.9 0.99 0.9 0.9

Optimizer’s learning rate (Adam) 10−4 10−3 10−4 10−4

𝜆 in Eq. (6) 1 10 1 1

𝜇 in Eq. (6) 1 10 5 5

𝛽 in Eq. (6) 1 100 10 10

𝜂 in Eq. (6) 1 100 10 5

𝜁 in Eq. (6) 1 10 1 1

Once the final hyper-parameters are selected, we have trained the best model on the combination of the training

and validation sets. The results presented in this section are based on the application of the best model out of the

hyper-parameter tuning on the testing set (an unseen set of data during training and hyper-parameter tuning). Both

Q-network and target Q-network are fully-connected feed-forward neural network with input shape equal to the number

of features in the state space, two hidden layers each with 100 neurons and ReLU activation, and output layer with

shape equal to the number of actions. This architecture was chosen aligned with most of the literature in offline RL,

and we did not perform any hyper-parameter tuning for the architecture of the neural network. All of the training are

done with 50,000 episodes each containing one random sample mini batch from the historical data. Each training (with

50,000 episodes, each containing one random mini batch of size 100 transitions) takes about 43 seconds for CLT and 70

seconds for DEN on an Apple MacBook Pro (with M2 Max Chip and 96GB of memory) and the use of the trained
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model in a testing is real-time. The pseudo-code for implementation of the CQL algorithm is depicted in the Figure 6.

Fig. 6 Pseudo-code for implementation of the CQL algorithm.

Lines 1-4 in the pseudo-code are initializing the memory for saving samples of the historical data, weights of the

Q-network, as well as the hyper-parameters of the model (e.g., mini-batch size, discount factor, etc). Then, in line 5, we

start a loop that for each episode of training, we sample a random mini-batch of the transitions from historical data (line

6) and (1) calculate the target Q-values, explained in Eq. (4) (line 7), (2) calculate the bellman loss, explained in Eq. (3)

(line 8), (3) calculate the CQL loss, explained in Eq. (5) (line 9), and (4) calculate the total loss as a weighted average of

the bellman loss and the CQL loss (line 10). Finally, we perform a gradient step on the weights of the Q-network (lines

11-12).

C. Performance evaluation

Figure 7 illustrates the achieved performance by each of the methods according to the two performance metrics

(i.e., agreement and violation) discussed in Section V.A. Let us first start with the ATCo preference (noted as ATCo

in the figure). The average agreement percentage for this policy is 81.6% for CLT and 53.7% for DEN, which shows

the great variations in the controller’s decision-making. If the controllers always made the same decision in the same

specific wind conditions in the historical data, these numbers would be 100%. Lower level of agreement for DEN shows

the significantly higher complexity of runway configuration management compared to a simpler airport such as CLT.

Supervised learning (noted as supervised in the figure) performs better than just relying on the most common action

(i.e., ATCo preference policy) and achieves the average agreement percentage of 88.2% and 60.7% for CLT and DEN,

respectively. Although supervised learning achieves great performance, specially at CLT, there are multiple reasons
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why it cannot achieve complete agreement with historical decisions. Some of the reasons are: (1) complexity of the

decision-making process and variability among historical (human) decisions, and (2) other factors affecting the decision

on the runway configuration (such as operational procedures or airline preferences) that are not present in the dataset.

The latter reason is more significant under calm wind scenarios.

Fig. 7 This figure compares the performance of CQL (green) with the DQN (yellow), ATCo preference (red),
and supervised learning (purple) for both CLT and DEN.

Supervised learning is designed to mimic the controller’s historical decisions with least amount of error. As a result,

it can serve as an upper bound for the agreement metric that any of the methods can achieve. The reason for this is that

this approach learns to repeat the decisions of the controllers, both good ones and bad ones. However, the RL-based

approaches (i.e., DQN and CQL), rely on the feedback (utility) to estimate which decisions were good and which ones

were bad. As a result, they learn to only repeat the good ones and replace the bad decisions with the ones that show a

higher utility. As depicted in the figure, CQL performs well compared to the ATCo preference and supervised learning

at average agreement percentage of 77.4% and 46.9% for CLT and DEN, respectively. This performance is superior to

the offline version of popular DQN approach that only achieves 55.8% and 4.6% for CLT and DEN, respectively. All

algorithms except DQN achieve low percentages of violation metric, and CQL achieves lower violation percentages
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compared to the supervised learning approach. CQL does not violate any cases for CLT, and only 0.38% of cases for

DEN, compared to 0.07% (CLT) and 0.7% (DEN) for the supervised approach. DQN fails at finding a good policy

that will not violate obvious decisions for the runway configuration, resulting in a significant number of violations.

This is one of the important take-aways that has been emphasized by previous literature in the RL community as well

[21, 24], which states that popular and high-performing online RL algorithms are not guaranteed to (and most often fail

at) performing well in an offline setting.

Figure 8 shows the confusion matrices for the performance of CQL algorithm on the testing data for both CLT and

DEN. The actual configuration (class) represent the historical decisions made by the controllers and is shown on the

y-axis, while the predicted configuration by CQL is shown on the x-axis. Numbers on the diagonal elements of the

matrix shows correct predictions (agreement between CQL and historical decisions), while the off-diagonal elements

depict the number of confusions instances where CQL and historical decisions disagreed upon. In the case of DEN, a

majority of the disagreements are among very similar configurations. For example, in the case of S/S configuration, a

majority of the times that CQL disagrees with the historical decisions is in prediction of SE/SE (63.5%) instead of S/S,

which are very similar configurations. Another example is the confusion of the algorithm between NE/NE and N/NEW

configurations. This is partly due to the present class imbalance in the data as noted in Table 1 and can be improved by

additional data collection and training of the model with larger amounts of data. Moreover, the use of class balancing

techniques such as over-sampling and/or under-sampling can potentially improve performance of the model, however, it

is out of the scope of this paper and will be investigated in the future.
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Fig. 8 Confusion matrices for the performance of CQL for CLT (left) and DEN (right).

It should be noted that the disagreements between the ATCo and the RCA tool cannot always be categorized as a

mistake by the tool. For example, in investigating some of these disagreements in the case of CLT (the off-diagonal

elements in Figure 8), one major pattern was identified by the help of SMEs as the quick wind change scenario. In such

cases, the wind direction and/or speed changes abruptly and drastically for a short period of time, and then returns to the

original values after few minutes. Figure 9 shows an example of such case for CLT. It shows the runway configuration

chosen by the ATCo (Config), the meteorological conditions (MC), cloud ceiling in 1000 ft (Ceiling), visibility in miles

(Vis), wind direction based on degrees from North, and wind speed in knots.

As it can be seen from the figure, the wind changes from a calm wind from the North to a strong wind from the

South for a short period of time (30 to 45 minutes) before switching back to North. The ATCos do not react to this quick

and transient change in the wind conditions and keep the configuration at North due to inefficiency of quick switches in

the runway configuration. However, the RCA tool selects South configuration for both time slots of 17:00 and 17:15.

Looking more closely at the reasons for the RCA tool switching the configuration showed that in all cases in the training

data where the conditions (both wind and meteorological conditions) were similar to those two time slots, the ATCo

selected South configuration. As a result, the RCA tool was biased to select the South configuration.

A potential remedy to this problem, and a direction of our future research is to include features based on the forecast

of meteorological and wind conditions in the state space of the RCA tool, so that the algorithm is able to identify such
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scenarios of quick changes in the wind conditions and make more intuitive decisions aligned with the ATCo.

Fig. 9 An example of quick changes in wind conditions at CLT.

D. Policy comparisons

Figure 10 illustrates the learned policy by the CQL algorithm compared to the ATCo preference for CLT (top panel)

and DEN (bottom panel). The location of each point on the circle shows the wind direction (degrees from North),

while the distance from the center of the circle indicates the wind speed (in knots). Since the hour of the day and

meteorological conditions are not specifically structured in the graph, you can see multiple action choices for each unique

combination of wind direction and speed. We can clearly see that in the case of CLT, both policies result in North/South

configuration when the wind is blowing from North/South respectively. This is expected based on our understanding of

favorable wind conditions and the simplicity of the airport surface at CLT. There are also several overlap areas that

the North and the South configurations are used interchangeably. Most of these cases correspond to the calm wind

conditions (typically less than 10 knots), as well as cases where the wind is blowing from East and/or West, where the

choice of configuration is influenced by operational preferences (stability of the configuration, airline preferences, noise

abatement procedures, etc.). On the other hand, the visualized policy at DEN reveals greater complexity. Although the

trends of major actions used in each unique state is similar among the two policies, their differences are more significant

than the simpler case of CLT. For example, we can visually see that most of disagreement between the two policies at

DEN are when the wind direction is around South to Southwest, where the ATCo preference is to mostly use the S/S

configuration, while CQL alternates between S/S and two other counter-intuitive configurations of NE/NE and N/N.
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One reason for this could be that there are less representative historical data with this state/action combination and

further data collection could improve the CQL policy.

Fig. 10 This figure visually compares the ATCo preferred policy and CQL learnt policy for CLT (top) and DEN
(bottom).

E. Forecast scenarios

Figure 11 illustrates two examples of how the CQL approach can be deployed in the operational settings to help

ATCo, compared to the baseline methods. In each scenario, the first data instance is representing the current state at

DEN (current weather is reported from METAR and current traffic is from ASPM), while remaining instances of data

are based on the 12-hour forecast data, where the forecast of weather is reported from NOAA’s Localized Aviation MOS
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Program (LAMP) and the schedule of arriving and departing traffic is extracted from ASPM. We selected these two

scenarios as examples of simple (scenario 1) and complex (scenario 2) operational setting based on the number of times

the configurations need to be changed in the next 12-hour period.

Let us first focus on scenario 1: this scenario happens on February 13th, 2019, at 11AM, where the current wind

is blowing from the East, with a medium intensity (10-15 knots), and the current meteorological condition is visual,

meaning it is clear. The rest of the data instances show how wind direction, wind speed and the meteorological conditions

(elements included in the state space) are forecasted for the next 12 hours. On the top panel, the recommendation of each

algorithm for the optimal runway configuration to be used is illustrated. As you can see, CQL algorithm agrees with both

supervised learning and ATCo preference policy most of the time, with slight disagreements in similar configurations.

As depicted in the forecast data, the wind direction is switching from E/NE/N directions to the S/SW direction at around

7PM and picks up intensity around 9PM. We can observe that all the algorithms (except DQN, which completely fails at

finding a reasonable policy) suggest the runway configuration to be switched to S/S and other similar configurations of

SE/SE and S/SEW. The bottom panel in the same graph shows the expected volume of incoming and outgoing traffic

at DEN. This visualization panel can be used in real-time by the controllers to identify the optimal time-window to

switch the configurations given the upcoming change in the wind conditions. For example, given that the volume of

traffic peaks at around 6-8PM, it might be wise to switch the configuration at a window before 6PM, that would allow a

smoother transition of the operations and less amount of delays and/or excessive taxi times. It should also be noted that

this visualization panel will be updated as time evolves and more accurate data about the changes in the weather are

obtained.
https://vlab.noaa.gov/web/mdl/lamp
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Fig. 11 This figure shows how the recommendation of the CQL algorithm can be deployed in the operational
setting and visualized for ATCo.

Scenario 2 represents a more complex setting, where the wind conditions change three times in a short span of

time. This scenario represents February 5th, 2019, at 6AM at DEN. As can be seen, the current wind is North bound

with a very low intensity, but the meteorological condition is instrument flight rule (I), meaning that the visibility

and/or cloud ceiling are low. However, the wind is forecasted to switch to SE, S, and then SW direction in the next

few hours while picking up intensity at around 10AM. It then again is switching to NW/W direction at round noon
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with increasing intensity and then it switches back to SE/S around 5PM. All of algorithms (except DQN that fails) are

suggesting the use of N/NE-bound configurations for the first few hours despite the forecasted change in the wind. This

is because the intensity of the wind is low for the first few hours and changing the configuration suddenly might result in

inefficient operations. Another reason for staying in the same configuration could be due to the non-ideal meteorological

conditions. However, as the conditions are changing to visual and the wind intensity is forecasted to increase, all of the

approaches suggest a switch to S/SEW configuration around 9-11am time-interval and then another switch to NW-bound

configuration around noon, with a final switch to SE-bound configurations around 5PM. Controllers can identify optimal

time-windows for the switches based on the projected volume of the traffic to minimize potential delays in such chaotic

days.

These two scenarios illustrate just two of many examples of how the RCA tool can be utilized in the operational

setting to enhance the decision-making of controllers about runway configurations at airports across the NAS.

F. Limitations of the RCA tool

The RCA tool, i.e., implementation of the CQL algorithm for runway configuration management with SMEs in the

loop, addresses a majority of the existing gaps in the literature (detailed in Section II), however, it comes with its own

challenges that can be addressed in the future direction of research. One challenge, as mentioned in Section II.A, is the

exposure to the Out-Of-Distribution (OOD) data, which is an active area of research in offline RL. An integration of a

simple rule-based mechanism (with the help of SMEs) to deal with such scenarios that would assure the safety and

validity of the model’s prediction is an example remedy to this challenge. It also emphasizes the importance of having

SMEs in the loop in any use cases of AI/ML in safety critical systems, such as air traffic management.

Another challenge for all data-driven methods (e.g., model-free control, supervised learning, etc.) is the class

imbalance that is usually present in most real-world problems. For example, among the major configurations at DEN

(as depicted in Table 1), the top six configurations are used 85% of times and are well-represented in the historical

data, while the other five are much less used (although being as important). As a result, a data-driven approach would

naturally emphasize the good performance for those configurations and might ignore the minority configurations (for

example the RCA tool performs poorly for SW/SW and NS/EW configurations as depicted in Figure 8). This class

imbalance might also be different from airport to airport. Although we did not focus on this aspect in this paper, it is an

important direction for further improvement of the tool in the future.

Lastly, a challenge for most of the data-driven approaches is to quantify the optimality and the stability of the solution

obtained (such as the ones obtained by the RCA tool and/or supervised learning), without access to the underlying

model governing the system’s dynamics. Further research needs to focus on how to perform verification and validation

of such data-driven tools in application to safety critical systems without the availability of a simulation environment.
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VI. Conclusions
This paper outlines the details of the development and validation (using real-world historical data) of a runway

configuration assistance (RCA) tool. The specific algorithm deployed in this work, conservative Q-learning (CQL),

uses a simple mechanism to conservatively estimate the optimal Q-function, resulting in learning a policy that is safe

when exposed to out-of-distribution data. This feature addresses one of the fundamental challenges of offline RL, the

distributional shift, and allows its application to real-world safety critical systems.

We specifically implement CQL to enhance the decision-making process of air traffic controllers (ATCo) in runway

configuration management. Several highly uncertain and variable factors such as wind, meteorological conditions and

air traffic volume affect such decision-making processes. We process and fuse several data sources to obtain all relevant

information for the RCA tool including FAA’s ASPM data, NASA’s Sherlock data warehouse (reduced flight data format

and events data), and NOAA’s LAMP data. Two airports across the National Airspace System (NAS) are selected for

comprehensive validation: Charlotte Douglas International Airport (CLT) as a representative airport with simple runway

configurations, and Denver International Airport (DEN) as a representative airport with a complex runway configuration

setting (as depicted in Figure 5).

We compare performance of the deployed CQL algorithm against several baselines such as ATCo preferred policy,

supervised learning (based on Random Forest), and offline implementation of a popular online RL algorithm, Deep

Q-Network (DQN). The deployed RCA tool, i.e., CQL algorithm, performs outstanding in both airports achieving

77.4% (CLT) and 46.9% (DEN) agreement with historical decisions (Figure 7). This is lower than supervised learning

by only 10.8 percentage-points (pp) (CLT) and 13.8pp (DEN), considering that the main goal of supervised learning is

to mimic the historical decisions with least amount of error. ATCo preferred policy only agrees with the historical

decisions 81.6% (CLT) and 53.7% (DEN) of the times which shows how variable the ATCo decision-making is.

Furthermore, the confusion matrix (Figure 8) for DEN shows that a majority of the disagreements are among similar

runway configurations and further data processing and/or data balancing techniques might improve its performance.

Another important finding illustrates the weakness of brute deployment of popular online RL algorithms, such as

DQN, in an offline setting. The DQN algorithm fails to learn a good policy for both airports and achieves poor results

according to the performance metrics (Figure 7). This emphasizes the importance of regularization techniques used in

the CQL algorithm or other state-of-the-art offline RL methods. On the other hand, CQL is able to learn a policy that is

safe, resulting in less than 0.07% (CLT) and 0.7% (DEN) violation of obvious decision scenarios (Figure 7), and agrees

with the ATCo preferred policy significantly (Figure 10). This is a desired outcome in offline RL, since the ATCo policy

was the policy that was used to collect the historical data (also called the behavior policy in the literature), and the goal

of offline RL is to learn a policy that does not deviate from the behavior policy significantly (such deviation is called

distributional shift).

Lastly, we illustrate how the RCA tool can be used in a real-time operational environment to enhance the decision-
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making of the ATCo (Figure 11), by visualizing the prediction of configuration changes based on the weather forecast

and the scheduled air traffic. These visualizations will allow the ATCo to identify the optimal time-interval to change

the runway configurations that would result in less disruptions to the operations and less transit times on the surface of

the airport (less delays). Furthermore, we summarize the existing challenges of the RCA tool proposed in this paper and

identify important avenues for further explorations in this area and as examples of future directions of this work.
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