

# Amargosa Basin Ecological Conservation

Evaluating the Health of the Mesquite Bosque in the Amargosa Basin using Earth Observations

Gabrielle Shen, Alondra Gallegos, Simon Ng, Peter Blatchford (Analytical Mechanics Associates)

# Western Honey Mesquite





Western Honey Mesquite
(Prosopis glandulosa var.
torreyana) holds cultural
importance to the
Timbisha Shoshone

# **Community Concerns**



Altered hydrology from increased development threatens mesquite bosque health and the habitat of the endangered Amargosa Vole





## **Partners**

- Timbisha Shoshone Tribe
- U.S. Fish & Wildlife Service, Southern
  Nevada Fish and Wildlife Office, Partners
  for Fish and Wildlife Program
- Friends of the Amargosa Basin
- California Department of Fish and Wildlife
- National Park Service, Death Valley National Park







# **Study Area**

#### **Regional Map**







#### Area of Interest #1

Furnace Creek Province

Timbisha Shoshone Tribal Land

Focus of this study

#### Area of Interest #2

Vole Habitat

# **Project Objectives**

Use NASA Earth observations to create:









In order to:



Aid effective strategies for water conservation and mesquite bosque restoration



Investigate potential causes for changes, such as increased development

# Study Period: June 1984 - December 2024



Historical Vegetation Health Change

Recent Vegetation Health Change

Soil Moisture Map

Land Subsidence

# Earth Observations: Data Acquisition



# **Methodology Overview**





# Methods: Data Processing

#### Example Sentinel-2 data





## Results: Landsat Historical NDVI, 1984–2024



## Results: Difference from Median NDVI, 1984–2024



## Results: Landsat Historical NDVI, 1984–2024



+0.001

Rate of Change

-0.001

### NDVI Rate of Change by Pixels

- Over 40 years, near the golf course and a central pocket decline
- A southern pocket shows increasing health



# Results: Change in Vegetation Health, 2017–2024





- Sandy soilMesquite
- Mesquite accumulating sand mounds



- Crusty, powdery, clayey
- Possibly more saline
- Older mesquite

# Results: Evapotranspiration (ET)



- Evapotranspiration (ET) is the total release of water from the land surface to the atmosphere
- Estimates total **transpiration** & evaporation from surface temperature data
- **Higher ET** indicates active vegetation using available water
- **Lower ET** can signal plant stress or reduced water availability

2 km

# Results: Evapotranspiration (ET)



Basemap Credits: Esri, USGS



2 km

Results: Evapotranspiration (ET)





## Results: Soil Moisture

July Median Soil Moisture (2015–2024)



Soil Moisture Yearly July Anomaly





## Results: Sentinel-1 Land Subsidence







Correlation Coefficient = 0.31 (out of 1)

Land subsidence has a weak-moderate correlation with change in mesquite health, but doesn't completely explain decreasing mesquite health.

# Results: Amargosa Vole Habitat

















## **Errors & Uncertainties**







Spatial Resolution

Groundwater Hydrology







## Conclusions

## Partner Implementation:



**Identify** areas of healthy and troubled mesquite to inform conservation efforts



**Access** a historical record of mesquite health change



**Utilize** land subsidence as a tool to understand groundwater change



**Visualize** temporal changes in soil moisture throughout the watershed

## Feasibility:



**Detect** and **monitor** changes in mesquite bosque health



**Assess** how changes in groundwater availability drive mesquite health change



# Acknowledgements

#### **Science Advisors**

Vicky Espinoza (NASA JPL, California Institute of Technology)

**Brandi Downs** (NASA JPL, California Institute of Technology)

Matthew Bonnema (NASA JPL, California Institute of Technology)

**Benjamin Holt** (NASA JPL, California Institute of Technology)

#### **NASA DEVELOP Program**

Caroline Baumann (NASA DEVELOP – JPL Lead)

#### **Partners**

**Cameron Mayer** (Friends of the Amargosa Basin)

**Christina Manville** (U.S. Fish and Wildlife Service)

#### Timbisha Shoshone Tribe

**Austin Roy** (California Department of Fish and Wildlife

#### **Special Thanks**

**Rick McNeill** (National Park Service, Death Valley NP)

**Susan Sorrells** 





## Appendix: Landsat vs Sentinel-2 time series

Pixel Comparison, Sentinel-2 vs Landsat







Sentinel-2 and Landsat NDVI rate-of-change 2017–2024 comparison shows strong correlation between Landsat and Sentinel-2

But Landsat image is ~1.5x lower value than Sentinel-2



# Appendix: dNDVI vs. Land Subsidence

Pixel Comparison, dNDVI vs Subsidence



Coefficient of
Correlation (R) indicates
a weak-moderate
positive correlation
between land
subsidence and NDVI
slope



# Appendix: Sentinel-2 NDVI, 2017-2024



- Generally decreasing NDVI in central red area
- Band of increasing NDVI in blue polygon

 Largely decreasing NDVI along streambeds

# Earth Observations Sentinel-1 InSAR



#### Interferometric Synthetic Aperture Radar

- Surface deformation
- Land subsidence
- Copernicus, 20 m resolution

## Sentinel-2 MSI



#### **Multi-Spectral Instrument**

- Normalized Difference Vegetation Index (NDVI)
- Copernicus, 10 m resolution

## **Earth Observations**





## Landsat 4-5

#### Thematic Mapper (TM)

- NDVI/Land Cover Change
- USGS EarthExplorer
- 30 m resolution
- 1984 2013



## Landsat 8

#### Operational Land Imager (OLI)

- NDVI/Land Cover Change
- USGS EarthExplorer
- 30 m resolution
- 2014 2024

## Landsat 9

#### Operational Land Imager (OLI)-2

- NDVI/Land Cover Change
- USGS EarthExplorer
- 30 m resolution
- 2021 2024

Image Credits: NASA

## **Earth Observations**

## **SMAP**

 Soil Moisture Active Passive

Root Zone Soil Moisture:
 0–100 cm depth

- National Snow & Ice Data Center
- 9 km resolution

Image Credits: NASA



- Ecosystem Spaceborne Thermal Radiometer Experiment on [the International] Space Station
  - Evapotranspiration
    - AppEEARS
    - 70 m resolution

**ECOSTRESS** 

