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Abstract—Large language models (LLMs) offer a powerful
platform and can leverage tools to extract relevant informa-
tion and provide recommendations for air traffic users. These
can range from classification of voluntary safety reports to
discovering shared successful corrective actions and creating
more accurate transcriptions of air traffic control conversations.
However, using LLMs requires leveraging the knowledge con-
tained in legacy aviation datasets, which can be time-consuming
and compute-intensive. This paper describes the creation of
DeBERTa-AT, a variant of the DeBERTaV3 model fine-tuned
on air traffic data. DeBERTa-AT continues pretraining using the
replaced token detection (RTD) pretraining task with gradient-
disentangled embedding sharing (GDES) to offer improved per-
formance and faster training convergence on downstream tasks
in the aviation field.

DeBERTa-AT is evaluated on two downstream binary clas-
sification tasks: aviation-specific constraint classification and
document classification, with text datasets created from let-
ters of agreement (LOAs). During downstream fine-tuning, im-
provements were shown in performance as compared with the
DeBERTaV3-base model with frozen embeddings. The results
show that models combined with sample-efficient continual pre-
training can offer substantially better results on domain specific
data when less training data is available.

Index Terms—DeBERTaV3, Replaced Token Detection, Pre-
training Techniques, Random Initialization

I. INTRODUCTION

Due to the large amount of natural language data used
in aviation, there has been growth in the application of
large language models (LLMs). Aviation industry stakehold-
ers, however, have specialized vocabulary, and there is strong
demand for high quality LLMs in the aviation domain, as seen
in section II. Additionally, regulatory constraints often prevent
aviation industry data from being made publicly available.
Training models such as those in the BERT family, of which
DeBERTa is a member, can require major compute. This work
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aims to train a highly effective foundation model for the
aviation domain, which could be used for faster and more
sample-efficient future fine-tuning or inference.

As shown with ELECTRA [3] and DeBERTa [1], using a
generative and discriminative model in tandem during pre-
training can greatly improve contextual representations of
tokens and can lead to improved performance on downstream
tasks as compared to training on masked language model-
ing (MLM) alone. This process is known as replaced token
detection (RTD). Furthermore, DeBERTaV3 [2] showed that
disentangling embedding sharing so that gradient updates flow
only from the generator to the discriminator model further
improves downstream performance and convergence speed.
The improved representations obtained using these pretraining
techniques can offer substantial gains in performance and
reduce the compute and time needed to train further down-
stream as new data is collected or new tasks arise. This work
demonstrates how to adapt RTD pretraining to a domain-
specific application. It could easily be used to train foundation
models in other technical domains as well.

Although ELECTRA and the different versions of DeBERTa
offer good performance on tasks like GLUE [10], they are
trained on general domains and do not include specialized
vocabulary present in the aviation domain. This work makes
the following contributions:

1) It demonstrates how to train DeBERTa-AT, a new
model that displays performance gains on aviation-specific
tasks when compared to DeBERTaV3-base. DeBERTa-AT is
a model fine-tuned using the ELECTRA pretraining objective,
also known as replaced token detection (RTD) and described
in Section III, on a corpus of aviation-specific text.

2) Extensive experiments validate the performance of the
fine-tuned model versus the base DeBERTaV3 model with
frozen embeddings to show the effect of RTD continual
pretraining on aviation-specific vocabulary.

3) The performance of DeBERTa-AT is evaluated on two
aviation-specific classification tasks, and strong results are
achieved in both cases.

II. RELATED WORK

The Aviation Safety Reporting System (ASRS), a voluntary
anonymous safety incident reporting system, was analyzed



using summarization, sentiment analysis and clustering to find
common corrective actions [6]. This used both generative mod-
els and those from the Bidirectional Encoder Representations
from Transformers (BERT) family of models [4]. These have
also been used to format aviation domain text to make it more
correct and interpretable by aviation domain experts [8]. Work
has been done to make aviation-specific BERT-variants such
as Aviation-BERT, which served as motivation for this paper
[7]. Although these techniques worked well, training using
standard BERT techniques is not as effective when training
data is scarce. To address this issue, we employ the more
sample-efficient RTD technique described in Section III.

Clark et al. [3] demonstrate how a generator and discrimi-
nator model can be used in tandem to further refine masked
language model representations. ELECTRA paved the way
for new, sample-efficient pretraining techniques. He et al.
[2] present DeBERTaV3, which uses gradient-disentangled
embedding sharing (GDES) and the RTD pretraining objective
described in Section III to further improve upon the original
DeBERTa paper. However, these models were trained on
general corpora such as Common Crawl!, Wikipedia®, and
the Book Corpus [9]. DeBERTa-AT uses the RTD pretraining
objective to improve domain-specific representations and is
trained on highly specialized aviation data. Like DeBERTaV3,
it uses GDES during training so that the generator shares its
refined embeddings but not the other way around, offering
greater performance and faster convergence.

Beltagy et al. [11] present SciBERT, a model pretrained
using the same configuration as BERT on highly technical
scientific literature. This paved the way for domain-specific
pretrained models that could be fine-tuned more easily and
effectively downstream for uses in similar domains. While
DeBERTa-AT employs a similar technique of fine-tuning a
pretrained model on domain-specific data, SCiIBERT employed
traditional masked language modeling, an older technique.
DeBERTa-AT instead uses the more effective and sample-
efficient RTD training method, which works when data is
scarce and offers a starting point for future fine-tuning in the
aviation domain.

Wei et al. [13] show that the way random initialization
occurs can have a major impact on convergence. The most
common methods mentioned are to randomly initialize weights
from a normal or a uniform distribution. Depending on use
case, one distribution can lead to better performance when
converging. Simply changing the distribution type was shown
to be ineffective in the case of DeBERTa-AT, which displays
a high degree of sensitivity to randomization. Instead, its fine-
tuning process employs a large number of trials with varying
random seeds to demonstrate variability due to differences in
initialization parameters and to determine the path towards
optimal performance, offering more coverage of the hyperpa-
rameter space.

Saxe et al. [12] investigate the effect of weight initialization
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and other nonlinear learning parameters on the performance of
linear deep neural networks. They find that when the weight
initialization matrix is orthogonal, training time is depth-
independent, which shows that the right random initialization
values obtained from a random seed can have a major effect
on speed of convergence. While novel, this technique applies
more readily to simpler models that are initialized from scratch
and do not include pretrained weights. DeBERTa-AT uses
pretrained embeddings and rigorous selection of a random seed
showed more demonstrable gains in performance.

Narkhede et al. [14] discuss various schemes for parameter
initialization and evoke the importance of such considerations
on convergence speed and results. In addition to discussing
both random and data-driven weight initialization, they dis-
cuss hybrid initialization approaches which blend both. These
include using standard deviation or n-gram embedding values
farthest from 1 when choosing the range of values for weights.
They further adjust weight matrices to obtain orthonormal
values, which shows promise in improving the accuracy and
convergence of recurrent neural networks (RNNs). DeBERTa-
AT draws inspiration from the idea of orthogonality, but it
operates in the domain of pretrained models and continual
pretraining, where the vast majority of weight matrices cannot
be initialized from scratch. The most effective technique was
shown to be combining random seed trials with frozen embed-
dings meant to contain a high density of encoded information
(which approaches the full rank of an orthogonal matrix).

Makkuva et al. [15] assess the effect of initialization dis-
tributions on the convergence of a single layer transformer
model. They prove via multiple theorems that data properties
and parameter initialization play a significant role in the
convergence of transformer models. The model considered
is a single-layer transformer. The authors conclude that full
rank initialization converges to low rank, as does starting with
a rank 1 matrix; both extremes lead to local minima, and
conjoining proper randomization techniques with a data-driven
approach can prevent poor convergence. However, it is not
possible to get the most of these techniques when weights
have already been pretrained. DeBERTa-AT instead makes
use of similarly inspired data-driven techniques (preserving
pretrained embeddings) and randomization techniques (a set
of random seed trials) to ensure conditions are optimal for
effective and efficient convergence near global optima. The
strong results demonstrate the effectiveness of this method.

III. METHODS

Encoder Models In the context of this work, an encoder
model is defined as a model that uses only the encoder
portion of the traditional encoder-decoder transformer model.
A prime example of this is the BERT [4] family of models,
all of which operate using a self-attention mechanism [16].
In other words, a model can access information about all the
tokens in a sentence simultaneously when making decisions,
such as classifications. Encoder models train rich contextual
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representations of tokens that are passed into them. With
BERT, this is traditionally achieved via masked language
modeling [4], where a portion of the input tokens are removed
and the model is tasked with predicting the most likely tokens
to fill the gaps.

DeBERTaV3 In this work, the model selected is DeBER-
TaV3, from the BERT family. DeBERTaV3 is a bidirectional
transformer encoder model based on the BERT architecture. It
offers two enhancements to BERT: disentangled attention (DA)
and an enhanced mask decoder [1]. Unlike previous models
that use a single vector to represent both word content and
the position of words in a sequence, DeBERTaV3 separates
these into a semantic vector and a positional encoding vector
that represents the relative positions of each token in the
sequence. When attention scores are computed, this is done
in two distinct matrices—one for the word content and one
for relative word position. Like BERT, DeBERTaV3 uses
masked language modeling (MLM) during pretraining. Since
the disentangled attention only accounts for relative positions
of tokens, absolute positions are handled by an enhanced mask
decoder, which accounts for the absolute position of tokens in
the decoding layer. An additional innovation in training for all
DeBERTa models is the use of the RTD pretraining objective.

RTD Pretraining ELECTRA [3] is a model trained in a
two-step process: In the first step, a generator model is trained
on the MLM objective, with 15% of tokens randomly masked
in each iteration. During this process, the generator learns to
predict which tokens are likely to occur given the surrounding
context. In the second step, a separate discriminator model is
trained to detect which tokens have been replaced via masked
language modeling. This pretraining method shows significant
gains compared to models trained on MLM alone. The RTD
architecture and steps are shown in Figure 1 below. DeBERTa-
AT is trained using this method on aviation-specific data. Work
done on ELECTRA also showed that performance further im-
proved when the adversarial relationship between the generator
and discriminator was softened and embeddings (the first three
layers of each model) were shared between the two. This
work replicates a specific type of embedding sharing called
gradient-disentangled embedding sharing, originally detailed
in the DeBERTaV3 paper.

Gradient-Disentangled Embedding Sharing (GDES)
A major improvement with DeBERTaV3 was gradient-
disentangled embedding sharing. In the original ELECTRA
paper, updates to embeddings were shared from the generator
to the discriminator and then back again in the other direction.
This allows for alignment between the two models during
training, but it also leads to a tug-of-war dynamic in which
the generator tries to bring similar embeddings together while
the discriminator tries to pull embeddings apart in order to
detect words that don’t belong. This pushes the embeddings
in different directions and slows down training.

1) To investigate these issues, the DeBERTaV3 authors
[2] compare three embedding techniques: Embedding
sharing is identical to the original ELECTRA paper
method, where embeddings are shared between both

models in both directions. This presents the aforemen-
tioned difficulty of competition between the generator
and the discriminator during training.

2) No embedding sharing is when the generator and
discriminator each maintain separate embeddings during
training. This prevents the tug-of-war but raises a new
problem: the generator and discriminator can move in
different directions, reducing the effectiveness of the
final model.

3) Gradient-disentangled embedding sharing (GDES)
GDES shares embeddings from the generator to the
discriminator but not in the other direction. When the
generator refines representations with MLM, the embed-
ding layers are copied to the discriminator model so the
generator has a hold on how token types are represented
in the embedding space. Meanwhile, the discriminator
updates other layers to coincide with new representations
provided by the generator in each batch.

GDES is shown in the DeBERTaV3 paper to greatly im-
prove both convergence speed and the performance of the final
model when compared with the other two methods [2].

Corpus The training corpus for this work was built from
FAA Letters of Agreement (LOAs). The documents formalize
operations between airspace users across the National Airspace
System (NAS), which provides an excellent source of aviation
terminology to use for continual pretraining. The LOAs are
agreements between two or more airspace users and cover
many different types of operations in many regions. This
variety provides a large amount of formal but natural language
that captures the breadth of aviation terminology, which serves
as the basis for the RTD pretraining task. Section IV provides
the details for how this training corpus was processed for use
with RTD continual pretraining.

IV. EXPERIMENTAL SETUP

Pretraining Dataset The LOAs are stored in portable
document format (PDF) and the corpus contains 7,497 LOA
PDFs. These PDFs were processed into structured JavaScript
Object Notation (JSON) files containing the raw text using
Amazon’s Textract service.* The raw text was gathered for
each LOA document and tokenized. The DeBERTaV3 model
is limited to input sequences of 512 tokens but many of the
tokenized LOA documents exceeded this length. In order to
utilize the entirety of the pretraining data and avoid truncation,
the preprocessed documents were divided into a 500 token
sliding window with an overlapping stride of 50 tokens. This
chunking process resulted in 38,442 pretraining documents of
the correct size to be used in the training of DeBERTaV3,
as described in Section V-B. These training documents were
divided using an 90%/10% split into training and validation
sets for use in the RTD task. This validation set was used to
track the RTD performance per epoch during the fine-tuning
process.

“https://docs.aws.amazon.com/textract/latest/dg/what-is.html
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V. PRETRAINED DEBERTAV3 VARIANTS
A. DeBERTaV3

The weights used are pretrained weights from the
DeBERTaV3-base model® released by Microsoft in the original
DeBERTaV3 paper [2]. The vocabulary used is the base vocab
for DeBERTaV3-base and served as the basis for fine-tuning to
the aviation domain using the pretraining dataset as described
in the following section.

B. DeBERTa-AT

As mentioned in sections I and II, this paper describes
the creation of DeBERTa-AT from the original DeBERTaV3
base model using the same RTD process [3] from the orig-
inal work’s pretraining objective. The HuggingFace Pytorch
Trainer is used to train DeBERTaV3 on the selected corpus
from the original DeBERTaV3-base configuration file, with
pretrained weights loaded. As in the ELECTRA paper, a
generator and discriminator model are instantiated for use in
an adversarial-like setting. While the generator trains to fill
in masked tokens, the discriminator is tasked with detecting
which tokens were replaced and which are part of the original
text. For training with a generator and discriminator, two
distinct models are instantiated with the same DeBERTaV3
checkpoint, one for each task. Although the original ELEC-
TRA work [3] indicates that a smaller generator can be used
to speed up training, it was found for this use case that the best
performance is achieved when the generator and discriminator
are identical. The casing used is the standard casing imple-
mented in the DeBERTaV3 default tokenizer. Training was
accomplished using a single Nvidia H100 Tensor Core GPU
on the NASA Advanced Supercomputing Cluster. Training the
DeBERTa-AT model in this setup takes a total of 30 hours
for 90 epochs. All models are saved using the HuggingFace
Trainer API with corresponding bin, Safetensor, and tokenizer
files. This makes them compatible with transformers library
AutoModel classes. All models are implemented in PyTorch.
The full fine-tuning process is described in section VI.

VI. FINETUNING DEBERTAV3

Hyperparameters are selected using a shallow grid search
and take inspiration from similar masked language model and

Shttps://huggingface.co/microsoft/deberta-v3-base

sequence modeling training setups such as those found on
HuggingFace® 7 8. Furthermore, as discussed in section VIII,
a set of 804 trials is performed to investigate the performance
and variability when starting from different random seeds.

For the generator model, an AutoModelForMaskedLan-
guageModeling is instantiated, as well as a data collator for
masked language modeling with the mask probability set to
0.1. For the discriminator model, an AutoModelForTokenClas-
sification is loaded with the number of labels set to 2. This
enables a binary classification for each token that decides
whether that token was replaced. For the classification tasks,
the transformer library AutoModelForSequenceClassification
model head is used with two labels, which passes linear output
from the classification layer into a softmax layer.

The maximum sequence length is 500 for all but one
classification task described in section VI-A. All tasks use
a weight decay of 0.01, betal of 0.9, beta2 of 0.999 and the
PyTorch implementation of AdamW as the optimizer. Training
is performed for 30 epochs, with learning rates scaling up from
2e-06 to 2e-05. For each task, the validation set is used in order
to determine the best performing hyperparameters and random
seed. The best learning rate for training is determined to be
2e-06.

A. Tasks

Two aviation-specific tasks were selected for the chosen
experiments in order to evaluate if the fine-tuning process
improves results on domain tasks. These tasks were derived
from the efforts to digitize LOAs and represent use cases
for LLMs within the natural language technical documents
[17]. If improvement is shown on these tasks, DeBERTA-AT
demonstrates utility within the aviation domain. Both tasks are
binary classification tasks and the labeled data is drawn from
LOAs that were held out from the pretraining dataset which
is then divided into a 70%/20%/10% train/validation/test split.
The two tasks are:

1) Document classification

2) Constraint classification

Document classification is a two-class classification process
that divides documents into ‘civil’ or ‘not-civil’ documents.

Ohttps://huggingface.co/docs/transformers/en/tasks/masked_language_modeling
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8https://huggingface.co/docs/transformers/en/tasks/token_classification



‘Civil’ documents are those whose signatories are all public

entities like the FAA while ‘not-civil’ documents have one 0901 8

or more signatories who are non-public airspace users such as 0.85

private companies. A set of 493 LOA documents were labeled E \ ] ] \
by a subject matter expert (SME) and the counts of each class 50 N R e
can be seen in Table 1. This task came about because of the g 0751

work to digitize LOAs focused on these civil LOAs [17] and ; w0l o L o

training NLP models to classify documents is important for o 8
the automation of this step. 0637

0.60

TABLE I ossd  ©
COUNT OF DOCUMENT CLASS LABELS o
le-6 ‘Base le-6 Fm‘e-tuned 2e-6 ‘Base 2e-6 F\n‘e-tuned
Total documents | Civil | Not-civil Learning Rate
493 222 271

Fig. 2. Document classification accuracy comparison by learning rate

Secondly, constraint classification is the process of iden-
tifying which portions of an LOA contain constraints on an

airspace user’s trajectory, e.g., a limit on an aircraft’s altitude i I —?—
at a certain navigational point. 499 individual LOA lines from 087 ‘ | | | T
222 LOAs were reviewed by a SME and labeled as containing
a constraint or not and the resultant labels can be seen in Table 0.6 1 ©
II. This classification task also supports the work laid out for
LOA constraint classification [17]. Y 4l
TABLE II 02
COUNT CONSTRAINT LINE LABELS ’
Total lines | Constraint | Not-constraint 00 o
499 129 370 ' , . . :
le-6 Base le-6 Fine-tuned 2e-6 Base 2e-6 Fine-tuned
Learning Rate
VII. FROZEN DEBERTAV3 EMBEDDINGS Fig. 3. Document classification F1 comparison by learning rate

In a similar fashion to the SciBERT paper [11], the first
three layers of the base model are frozen when training an
initial classifier for each task. This allows for a baseline to be 0.5 | °
obtained from the DeBERTaV3 general domain embeddings
for comparison with the fine-tuned variant. Hyperparameter
settings are replicated from section VI and results are provided
for the best performing learning rates.

0.90

Accuracy

0.85

VIII. RANDOM SEED TRIALS

In order to further explore the hyperparameter space and 0.80 1
gauge variability to quantify the probability of improving - o
performance on the chosen classification tasks, a total of ° °
804 random seed trials are run, one for each seed in the ‘ ‘ ‘ ‘

le-6 Base le-6 Fine-tuned 2e-6 Base 2e-6 Fine-tuned
range {0..200}. This experiment is repeated for each selected Leaming Rate
learning rate. Average accuracy and F1 scores are presented
across all seeds and the best performing seed and its results Fig. 4. Constraint classification accuracy comparison by learning rate
are shown in section IX.

Sensitivity to Random Initialization Due to gradient TABLE Il
instability, ultimate model performance is contingent upon DOCUMENT CLASSIFICATION BEST SCORES
the selection of a suitable random seed during initialization.

0.75 4 (o]

Model Learning Rate | Accuracy F1
Furthermqre, due to round-off far.rors, eYen the same s§§d ca.n DASC 2004 Te-0d 086 085
produce different results. To mitigate this, full determinism is Base Te-05 0.909 0.905
enabled by setting the determinism flag when setting the seed, Fine-tuned 2e-06 0.909 0.917

at the expense of training speed.
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TABLE IV
CONSTRAINT CLASSIFICATION BEST SCORES

Model Learning Rate | Accuracy F1
DASC 2024 le-04 0.94 0.91
Base 1e-05 0.96 0.916
Fine-tuned 2e-06 0.97 0.936
IX. RESULTS

The performance of this model, visible in Figures 2, 3, 4,
and 5, and Tables IV and III, improves upon previous work [5],
which utilized less complex transformer models as seen in the
tables. Document classification shows less separation between
base DeBERTaV3 and the fine-tuned DeBERTa-AT than was
seen in constraint classification, as illustrated by Figures 2 and
3. This is possibly due to the information needed to distinguish
civil vs. non-civil documents being more general and present
in a general English corpora than the distinction in the other
classification task. However, there is still an increase in the F1
score for the best performing model as shown in Table 1. This
shows that there is information gained by the RTD process
even if it is not as pronounced.

These results demonstrate how in the aviation domain,
training newer, more advanced models using sample-efficient
pretraining techniques can offer better results, particularly
when less data is available. This work set out to train a highly
effective foundation model for future downstream fine-tuning
in the aviation domain and this was accomplished using the
selected methods. It also outlines the process to adapt RTD
pretraining to a domain specific application. This process could
therefore be replicated in additional non-aviation technical
domains or with additional domain specific documents.

X. CONCLUSION

This paper showed the benefits of creating DeBERTa-AT by
continual pretraining of the DeBERTaV3 model using aviation
data. It demonstrated the utility of DeBERTa-AT and how it
can provide a better basis for aviation domain tasks than LLMs
trained only on general language corpora.

Future work to further improve performance on avia-
tion domain tasks may include experimentation with other
DeBERTa variants such as DeBERTaV3-large, additional
hyperparameter-tuned versions, a distilled version, or addi-
tional task-specific models. Given the cost and resources
required to train such a model, the ultimate goal is to make
available the techniques to replicate this work to stakeholders
who work in aviation, so that they are able to train foundation
models for future aviation and air traffic—related tasks. The
techniques could also be applied outside of the aviation
domain in other technical fields that use large amounts of
domain-specific technical language.
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