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USING ONE-DIMENSIONAL SIGNAL FEATURES FOR
IMAGE-BASED LUNAR SKYLINE RECOGNITION

Christopher Land; Paul D. McKee] Siddarth Kakii Jacob Sullivan®

As lunar surface exploration becomes a higher priority there is increased need
for methods of lunar surface navigation. Autonomous navigation (i.e., without
reliance on human operators or other assets) will become essential for safe and ro-
bust surface operations without overburdening Surface Communications and Nav-
igation (SCAN) resources. A recent development in this field is the utilization
of the visible skyline for localization, either by comparison to pre-rendered sky-
lines or to skylines rendered in real-time. This requires a fast and accurate way to
compare two skylines (rendered and observed) and to rank skyline similarity.

This work develops a novel one-dimensional (1D) signal feature. This is the
lower-dimensional analog of familiar 2D image features, often used in image pro-
cessing and computer vision. This signal feature is then used in the context of
finding common points between disparate sets of skyline points, which are ex-
pressed as sets of corresponding azimuth and elevation angle pairs. This feature
can be used to rank the similarity between skylines rendered at different locations
on the lunar surface. It is shown that this technique is less computationally expen-
sive and has higher accuracy when compared to other skyline similarity metrics.
Finally, these 1D features are demonstrated in the context of a full surface naviga-
tion simulation using Apollo 17 images and data.

INTRODUCTION

More and more spacecraft are traveling to the lunar surface for science and exploration. This
number will only increase as the Artemis program advances. Any mission in which a landed vehicle
moves appreciably from its landing site (i.e., a rover) will need to navigate on the lunar surface. This
could take the form of determining relative distance and direction to a nearby waypoint, referred
to here as “local navigation,” or finding one’s global position on the lunar surface (e.g., latitude
and longitude), referred to here as “global navigation.” The ability to do so autonomously—that
is, without reliance on Earth-based ground stations or other lunar surface or orbital assets—will
provide increased redundancy and can help alleviate strain on already overtaxed systems. In the
case of human lunar surface exploration, this capability could be a matter of crew safety. This is
especially so under loss-of-communication scenarios.

The method of lunar surface navigation pioneered during the Apollo program, which was compar-
atively primitive due to cost and schedule constraints,! can be greatly improved upon using modern
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technology and techniques. The Apollo Lunar Roving Vehicle (LRYV, a.k.a. “Moon Buggy”) had no
global navigation capability, and relied on integrating data from a gyroscope and wheel encoders
to estimate distance and direction to the lander.> Engineers at NASA’s Jet Propulsion Laboratory
(JPL) have been working on surface navigation techniques for the Mars rovers for decades. These
largely rely on stereo image processing and computer vision for hazard detection and avoidance, as
well as visual odometry.>= Several methods of lunar surface navigation have been developed since
the Apollo days, and several more are still under development today.® If current trends continue,
lunar surface navigation by a rover will almost certainly leverage one or more optical cameras.

One method of surface navigation which has seen recent development is the utilization of the
observable skyline for localization.””!? This technique relies heavily on the uniqueness of the vis-
ible skyline at a particular point. The relationship between the shape of the observed skyline and
an observer’s position is highly nonlinear—one cannot perform localization directly from skyline
data. Rather, one must leverage pre-rendered skylines at known locations or some form of on-
board capability to render the expected skyline at the current location. This dichotomy leads to two
skyline-based navigation paradigms: coarse and fine skyline navigation. In the coarse case, skylines
can be pre-rendered from Digital Elevation Map (DEM) data at pre-determined waypoints near a
region of a planned traverse. A rover can then take an image or series of images (to construct a
panorama) and compare the observed skyline to the pre-rendered skylines for closest match, thus
finding the nearest waypoint. In the fine sense, a skyline can be rendered from a DEM on-board
using an initial guess of the vehicle pose. Points on the expected and observed skylines can be
correlated, and the rover pose can be updated by solving the perspective-n-point (PnP) problem.
These steps are repeated until the pose solution converges to satisfaction. Both the coarse and fine
skyline-based navigation techniques rely on the ability to correlate points between skylines, which
are readily expressed as corresponding azimuth and elevation angle pairs. This essentially amounts
to a one-dimensional signal correspondence problem.

This work develops novel one-dimensional (1D) signal features which can be employed for sky-
line comparison. These are analogous to familiar two-dimensional (2D) image features such as
SIFT,!' SURF,'? ORB,"* KAZE,'"* and BRISK." The features described in this work utilize a
SIFT-like difference-of-Gaussians approach to identify features, and perform a local polynomial
fit of skyline points around each feature to develop a corresponding feature descriptor. It is ob-
served that these 1D features will have applications outside of lunar surface navigation whenever
one wants to compare two signals. It is further observed that these are not the first or only 1D signal
features. Substantial work has been done towards developing 1D convolutional neural networks for
processing biomedical signals (e.g., ECG) and other similar applications.'®:!” There has also been
prior work on developing 1D features for signal processing,'® ! even in the field of vision-based
navigation.?? Researchers have also considered the application of 2D features to images of signal
plots.?! Of these, the closest work to that described in this manuscript is that of Xie and Beigi, !
who developed SIFT-like signal features and angle-based descriptors. In contrast, horizon-based
navigation does not require scale-invariant features—it is reasonable to assume that skylines can be
expressed in terms of absolute azimuth and elevation angles, meaning that rendered and observed
skylines will have the same scaling (but perhaps different sampling density).

This manuscript will detail the coarse skyline navigation process, which consists of (1) image
processing, (2) skyline stitching to produce a panorama, (3) skyline rendering using DEM data, and
(4) skyline comparison. Focus will be given to the development of a new 1D signal feature and its
application to solving the challenges in skyline comparison. It is demonstrated that the 1D feature



technique can find common points in overlapping images taken at the same location (the sorts of
images that can be stitched into a panorama), and it is demonstrated that the 1D feature can find
common points between observed and rendered skylines at the same location. It will be shown that
this navigation technique can find the nearest waypoint for a given set of Apollo 17 surface images
and associated Taurus Littrow Valley DEM.

COARSE SKYLINE NAVIGATION

This section details the method of coarse skyline navigation, which stands in contrast to the fine
skyline navigation described in Reference 8. The premise is to compare observed skylines (e.g.,
from a single image or an ensemble of images combined into a panorama) to a set of skylines
which are pre-rendered using DEM data at a set of known waypoints. The observable skyline
functions like a fingerprint—one cannot determine a person’s identity from their fingerprint alone,
but their identity can be found by a fingerprint database search. Similarly, a lost rover on the Moon
can determine the waypoint whose skyline is closest to its own, provided that the local terrain is
sufficiently unique and feature-rich and there is a robust method of scoring skyline similarity. This
technique is particularly well-suited for a lost-on-the-Moon filter re-initialization problem, and is
less useful during nominal surface operations (wherein a fine skyline navigation technique finds
utility). Before proceeding, it is observed that the 1D features detailed in this manuscript are useful
not only for coarse skyline navigation, but can help solve the skyline-DEM point correspondence
problem inherent in fine skyline navigation.®
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Figure 1. Image processing is performed to extract horizon points, which are con-
verted from pixels to angle pairs.

Coarse skyline navigation consists of four steps: (1) image processing to find skyline points, (2)
image stitching to produce a skyline panorama, (3) a priori offline skyline rendering from DEM
data, and (4) skyline comparison. The first three can be done in any order, but the fourth step must
happen last. Image processing begins by scanning each column in the image vertically from top
to bottom, looking for a sudden change from dark to bright. If desired, sub-pixel edge finding
techniques?® 2?3 can be used for improved performance. Depending on lighting conditions and other
image artifacts, some of the horizon pixels may, in fact, be spurious returns. It is recommended
to use image processing techniques such as connected components, dilation, and erosion to find a
single continuous set of horizon pixels. When finished, there should be only one skyline pixel per
each column in the image. These can then be converted from pixel coordinates to unit vectors in the
camera frame by solving the reverse mapping problem,?* and these unit vectors can be used to find
corresponding azimuth and elevation angles for all the points. In this work, azimuth is defined as



a horizontal angle which is zero along the camera boresight and positive to the right, and elevation
is a vertical angle which is zero along the camera boresight and positive up. This image processing
process is shown on an Apollo 15 lunar surface image in Fig. 1.

There are three methods to arrive at a panoramic skyline. The first is to combine images to form a
panorama, then to process the panoramic image as a whole to find skyline points. Compared to the
other methods, this is slower and more computationally expensive, and can introduce warping or
other image stitching artifacts. The second is to find the skyline points in image A, find the skyline
points in image B, and use skyline comparison techniques (detailed below) to find how best these fit
together. This is the fastest technique, but is the most sensitive to noisy data, and can fail altogether
if the skyline is sufficiently feature-poor. The third approach is a hybrid of the first two. Find
matching image features (e.g., SIFT) in image A and image B, and then solve Wahba’s problem
to find the rotation between images. Then, transform the image B skyline angles into the image A
frame (or vice versa). This method leverages a feature-rich foreground, and ultimately arrives at a
360-degree panorama of skyline azimuth and elevation angles.
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Figure 2. Normalized cross-correlation can be used to detect matching regions of sim-
ilar skylines, but is less well-suited to skyline comparison when the observer position
is unknown.

Skyline comparison is performed in angle space rather than pixel space in this work. This does
away with any idiosyncrasies introduced by a particular camera’s intrinsic and distortion parameters.
As such, skyline rendering does not involve generating a synthetic image of the skyline, but rather
computing azimuth and elevation angles that would be seen by an observer at a particular location
and orientation. This can be done by placing an observer point on a DEM, then finding and returning
the highest terrain height (or the terrain height that produces the highest elevation angle) along each
azimuth scan line. Such rendering can be done by brute force (i.e., compute bearing angles to every



point in the DEM, then skim along the top and keep only the angles corresponding to the skyline),
or by a more efficient binary search for the skyline point (and corresponding elevation) along each
azimuth, or through ray tracing.

The overall effectiveness of this navigation technique is very sensitive to the method of skyline
comparison that is employed. Perhaps the most obvious comparison method is normalized cross-
correlation—sweeping observed over expected skylines at various azimuth offset angles to find an
orientation at which the two fit together like puzzle pieces. Indeed, this is well-suited to finding an
observer’s orientation when comparing a single image to a rendered skyline at that same location,
as is illustrated in Fig. 2. In such a situation, there is a correct answer—an azimuth offset at which
the two skylines will “agree.” It was demonstrated that for Image AS17-133-20256 taken on Apollo
17 on EVA 2 at Station 4, the observed skyline almost perfectly matches a patch of the rendered
skyline.

In other cases, normalized cross-correlation does not work well. When comparing two panoramic
skylines rendered at different locations, we need a comparison method that scores a match more
poorly as the actual distance between the two observer locations becomes greater. There should be
a region of convexity around each waypoint within which that waypoint skyline is the best match
for the observed skyline, but this is not always true with normalized cross-correlation. Normalized
cross-correlation often returns a better match to a skyline rendered kilometers away simply by co-
incidence. Suppose an observer begins moving in a straight line towards a mountain range in the
distance. Skyline features such as peaks and valleys will move away from the center of projection at
different rates (points near the edge of the field-of-view will move faster due to perspective). After
only a few hundred meters of traverse, the new skyline will score very poorly in terms of overall
shape similarity to the original skyline, but all the same features will be present. Thus, a method of
skyline comparison is needed that tracks features in a skyline.

SIGNAL FEATURES

This manuscript introduces novel one-dimensional signal features which can be used to assess
the similarity between two lunar skylines. This comparison method is more robust to nonlinear
deformation than normalized cross-correlation is. Signal features, like image features, consist of
feature detection and feature description. These features use a SIFT-like Difference-of-Gaussians
(DoG) approach to find points of interest in the skyline signal. Once a skyline has been extracted
from the original image, it is convolved with a 1D Gaussian kernel to produce a smoothed signal—
analogous to a blurred image. The difference between the original and the smoothed signal is taken,
and prominent peaks and valleys in this differenced signal are considered for points of interest. This
is repeated multiple times at different smoothing factors to find features of different scales in the
signal. This feature extraction process is illustrated for an Apollo 17 lunar surface image in Fig. 3.

Next, these points of interest must be described in such a way that the same point can be detected
and matched in different signals. A region of interest is drawn around the feature point, and the
whole signal is rotated such that the start and end points of the window have the same elevation (or
y-value). Then, a polynomial is fit to the resulting signal, and the coefficients of this polynomial are
arranged into a feature descriptor vector. Later, when comparing features, the Euclidean distance
between descriptor vectors is taken as a similarity score.

The efficacy of these features is first demonstrated by finding the same skyline points in terrain
images with visible overlap. Image AS17-145-22171 and image AS17-145-22172 were taken at the
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Figure 3. An image is processed to find horizon points, and the ‘‘horizon signal” is
processed to find keypoints using differences- of-Gaussians.

same location on Apollo 17, and there is some rotation between images. Sufficiently many images
of this type can be used to construct a panorama, but we will focus on these two. Both images were
processed to find skyline points, and corresponding points were found between images, as shown in
Fig. 4. This demonstrates that skylines can be matched between two images using 1D features.

Forward work will include demonstrating the ability to match rendered skylines to image skylines
using these same features, and using these features to assign a “similarity score” to two skylines.
Then it can be demonstrated that a panoramic image taken anywhere in the Taurus Littrow Valley
will be a best match to the nearest rendered waypoint.

CONCLUSION

This work introduces a novel 1D signal feature. This was developed for use in the context of
coarse lunar skyline navigation, but is also applicable to fine lunar skyline navigating, and any of
a myriad of other signal processing applications (e.g., biomedical signal monitoring, and vibration
analysis). The coarse skyline navigation pipeline is detailed, and it is discussed how the signal
features out-perform normalized cross-correlation for skyline comparison. Forward work, to be
completed between the submission of this extended abstract and the final publication, will consist
of fully integrating these signals into an end-to-end coarse skyline navigation simulation. It will be
demonstrated that the coarse skyline method using 1D features can find the nearest waypoint in the
Taurus Litrow Valley for several images taken by astronauts Cernan and Schmidt. This navigation
method can help in future extraterrestrial surface exploration by crewed or autonomous rovers, and
would be instrumental in a lost-on-the-surface scenario.
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Figure 4. Successive images of the lunar surface with overlapping terrain are pro-
cessed to find corresponding horizon points.
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