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Introduction: The Moon has undoubtedly been transformed by impact cratering, with much of the lunar surface 

consisting of an impact gardened regolith. The micro-scale processes of lunar space weathering – a combination of 

both irradiation and impacts – has been the focus of many recent studies, but largely centered on micrometeorite 

irradiation. Here we present new spectroscopic analyses of shock recovery experiments on plagioclase with a 

composition (An92) consistent with what is found in the lunar samples. This is important because previous shock 

studies on feldspar have been conducted on less-calcic plagioclase [1] and primarily used for X-Ray and optical 

analyses. Our work is particularly relevant to recent and upcoming remote sensing missions which use visible and 

infrared spectroscopy [e.g., 2]. 

Methods: We conducted shock experiments on the Stillwater Complex, Montana, anorthosite is a medium grained 

(~2-6 mm) anorthosite comprised of highly calcic plagioclase grains (An92) [3,4]. Starting material consisted of two 

suites: slices of the rock which preserve mineral fabrics, and powders designed to simulate the porous nature of the 

lunar regolith. Samples were cut into circular slices roughly 4 mm in radius and ~1 mm thick to comply with the 

experimental set-up. The particle size making up the powders is approximately 30 m. Experiments are ongoing, 

using the flat-plate accelerator at the Experimental Impact Laboratory at NASA JSC. Ultimately, a range of shock 

pressures between 3 and 70 GPa will be covered. As of the time of abstract submission, we have recovered 11 samples: 

6 from the powders and 5 from the slices.  

Results: The powdered samples show an overall difference in spectral shape, which is expected when switching 

between fine particulate and solid/slab samples (as the post-shock samples are now compressed into slabs). These 

effects include the flattening of the region from 2000-1300 cm-1, the increase in band depth for the reststrahlen band 

region (~1200-900 cm-1), and the loss of the transparency feature near 850 cm-1.  

After accounting for the changes due to particle size/slab, we can see some of the changes caused by the shock 

pressures. With increasing pressure, there is a loss of the distinct peaks seen at 1850, 1800 and 1600 cm-1, a shift in 

the Christiansen feature position from ~1300 to ~1250 cm-1, and a shift from 2 reststrahlen band features to a broader 

1 in both the 1200 and 500 cm-1 regions. The observed changes in spectral features are what we would expect to see 

as the crystalline structure is disrupted with increasing pressures. 

For shocked slices, the post-shock spectrum shows a shift in both position to longer wavenumbers (shorter 

wavelengths) and band depth (weaker and broader, though still two peaks) of the major features. The increase in slope 

in the 2000-1300 cm-1 region is also detectable at this (relatively) low shock pressure of 10 GPa.  

 

 
Example comparison of a slice, shocked to 10 GPa. C1a and C1b are front and back of the pre-shock slices. 
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