

NUCLEAR and EMERGING TECHNOLOGIES for SPACE

Update on Stirling Radioisotope Power Systems Development at NASA Glenn Research Center

Matthew D. Stang Tyler R. Steiner, PhD Daniel Goodell Ernestina Wozniak NASA Glenn Research Center

Contents

- Brief History of Static Radioisotope Power Systems
- Introduction of Dynamic Radioisotope Power
- Operation of a Free-Piston Stirling Convertor
- SRL Extended Operation Milestones
- Stirling Generator Testbed
- The Sunpower Robust Stirling Convertor (SRSC)
- Verification and Validation Testing of SRSC #4
 - Random Vibration
 - Acceleration
 - Thermal Cycling
- Additional Testing
- Conclusions

Brief History of Static Radioisotope Power Systems

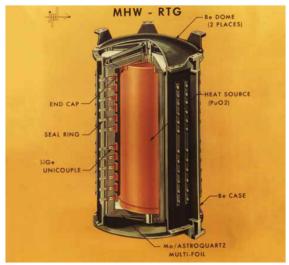
Radioisotope Thermoelectric Generators (RTGs)

First Mission: 1961

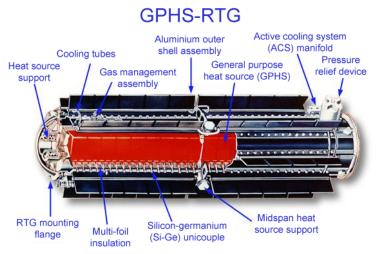
Total Launched = 35 units

Power: 2.7 We - 157 We

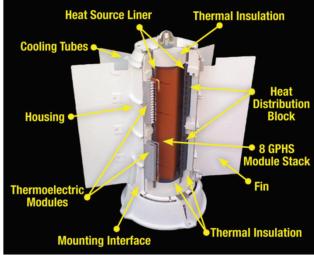
General-Purpose Heat Source (GPHS) RTGs


> First Mission: 1990 Efficiency: 6.7%

Specific Power BOL: 5.3 We/kg


Multi-Mission Radioisotope Thermoelectric Generators (MMRTGs)

First Mission: 2011 Efficiency: 6%


Specific Power BOL: 2.8 We/kg

Section View of a GPHS-RTG (Galileo/Ulysses model) (DOE/NASA/JPL)

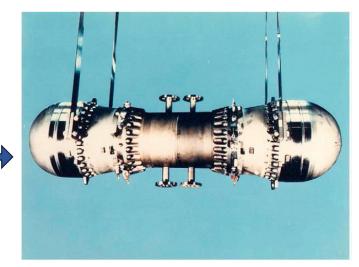
Model of an MMRTG (NASA)

Introduction of **Dynamic** Radioisotope Power

Many Missions Demand:

- Increased Overall Efficiencies
- Higher Reliability and Redundancy
- Less Fuel Required
- Flexibility in Many Environments

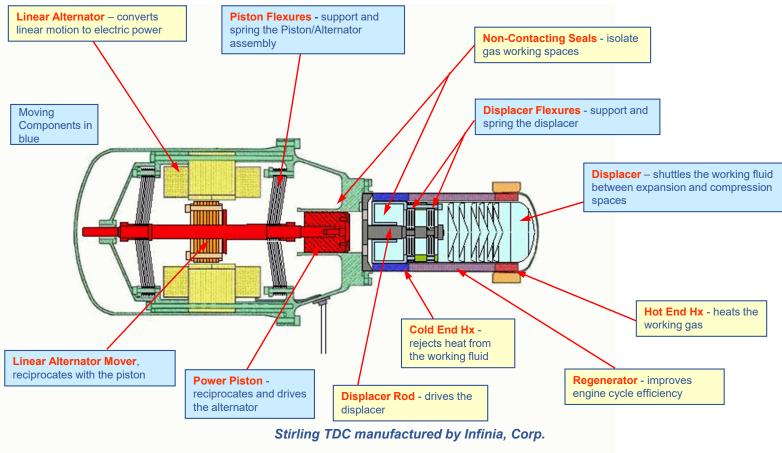
So, development began in the 1970s and on →



The Space Power Demonstration Convertor (SPDE) – 1987

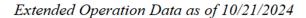
Power Output: 25 kWe

Brayton Rotating Unit (BRU) System Test at ATF – 1972


Power Output: 10 kWe

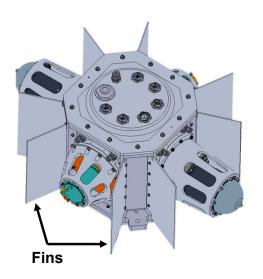

Dynamic Radioisotope Power - Stirling Conversion

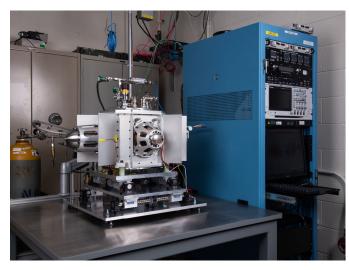
Operation Cycle of Free-Piston Stirling Convertors

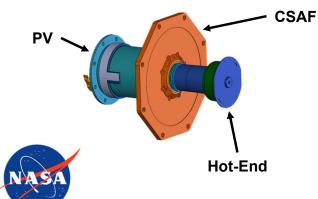


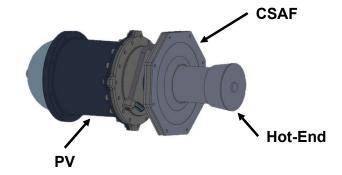
Extended Operation Milestones

_					
	Unit	Hours	Years	Cycles (E	3)
	TDC #13	154,872	17.7	45.4	Word Record!
	TDC #14	105,616	12.1	31.0	•
	TDC #15	152,573	17.4	44.9	Word Record!
	TDC #16	152,573	17.4	44.9	Word Record!
	ASC-0 #3	121,978	13.9	45.8	Word Record!
	ASC-L	79,541	9.1	29.3	•
	ASC-E3 #4	59,360	6.8	21.8	
	ASC-E3 #9	45,404	5.2	16.7	
	SES #2	47,666	5.4	14.0	0
	SRSC #1	13,903	1.6	5.0	
	SRSC #2	20,077	2.3	7.2	
	SRSC #3	17,359	2.0	6.2	
	SRSC #4	11,278	1.3	4.0	
	FISC #1	10,058	1.1	3.0	
	FISC #2	13,163	1.5	3.9	





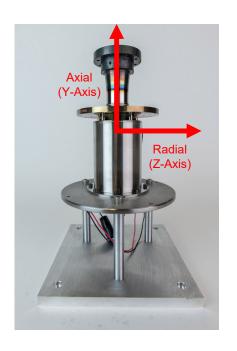




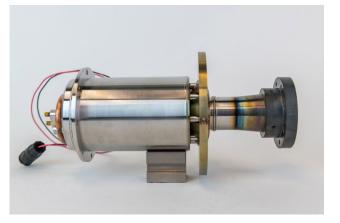
Stirling Generator Testbed

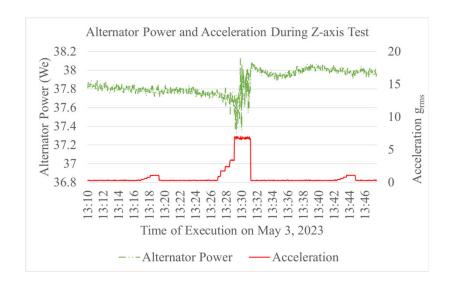
First Operation at Steady-State Baseline Condition

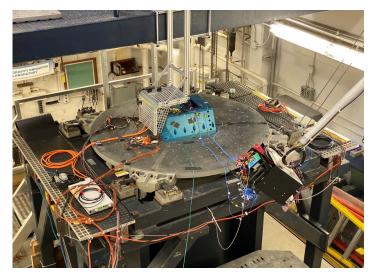
Parameter	1A	1B	2A	2B	Units
Avg. Hot- End Temp.	501.5	497.9	496.4	497.4	°C
Avg. CSAF Temp.	62.0	63.4	69.4	68.0	°C
Avg. PV Temp	57.3	55.9	49.7	47.0	°C
Heat Collector Plate Temp.	545.7	-	-	-	°C
Piston Amplitude	2.8	2.9	3.6	3.6	mm
Alt. Power	22.8	23.3	19.2	19.0	\mathbf{W}_{e}
Charge Pressure	-	-	348.8	347	psia
Frequency	10	1.3	78	.4	Hz
Avg. Fin Root Temp.		54	.6		°C
Avg. Fin Tip Temp.		48.3 25.5			°C
Ambient Temp.					°C
Avg. Heat Source Temp.	609.4			°C	
Heater Power	500.8			W	
Total Power Output	84.3		W_{e}		
Gross Efficiency	16.8		%		
Housing Pressure	23.3			psia	



Sunpower Robust Stirling Convertor


SRSC #4 Design Parameters at Nominal Operation				
Mass (no interfaces)	2.0	Kg		
Net Heat Input	250	W (Thermal)		
Power Output	64	W (Electric)		
Conversion Efficiency	26	%		
Operating Frequency	99.6	Hz		
Max Hot-End Temperature	700	°C		
Max PV-Side Temperature	185	°C		
Max Cold-End Temperature	175	°C		
Design Life	17	Years		





Qualification-Level Random Vibration

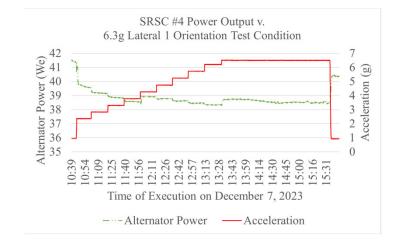
Purpose:

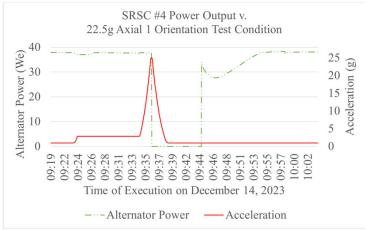
- Simulate Launch Sequences at B.O.M.
- Random Vibration of 7.7 grms in 3 axes

Configured for Z-axis testing at the GRC Structural Dynamics Laboratory

Parameter	Pre-Vibration	Post-Vibration	Difference	
SRSC #3	55.2	55.9	0.6	
Alternator Power (W)	33.2	55.8 0.6		
SRSC #4	56.3	55.3	-1 0	
Alternator Power (W)	30.3	55.5	-1.0	

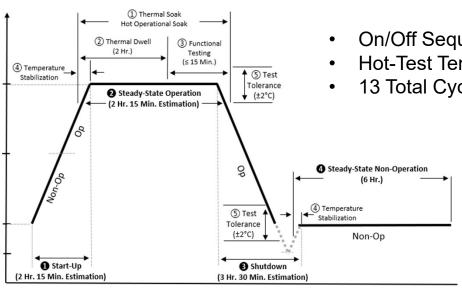
Qualification-Level Static Acceleration Testing



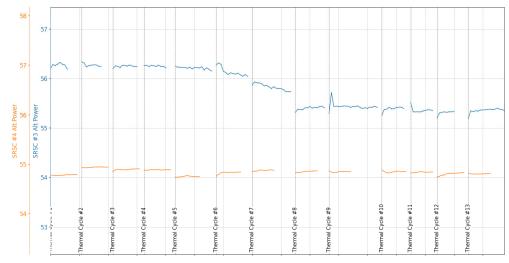

Testing Simulates:

- Launch Loads
- Reentry into Planetary Atmosphere
- Spin Stabilization During Cruise

Parameter		Post-Static Acceleration	Difference
SRSC #3 Alternator Power (W)	55.5	55.7	0.2
SRSC #4 Alternator Power (W)	55.7	55.3	-0.4



Qualification-Level Thermal Cycling



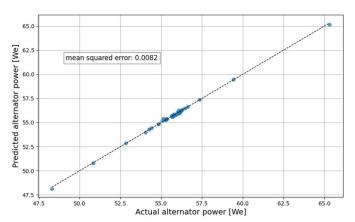
Parameter	Pre-Thermal Post-Thermal		Difference	
- гагашетег	Cycling	Cycling	Difference	
SRSC #3	55.8 55.9		0.1	
Alternator Power (W)	33.6	33.9	0.1	
SRSC #4	55.2	55.1	-0.2	
Alternator Power (W)	55.3	55.1		

Purpose:

- On/Off Sequences During Generator Processing
- Hot-Test Temps & Cold-Test Temps
- 13 Total Cycles

(Dr. Tyler Steiner - "RelevantEnvironmentDemonstrationsofSunpowerRobustStirlingConvertorsforRadioisotopePoweredMissions")

Additional Testing


Preliminary Assessment of Measurement Accuracy of SRSC Instrumentation and Data Systems in the SRL

- Baseline: SRSC Operating at Extended Operation
- Purpose: Determined Sources That Dominate Overall Inaccuracies
- 22 Parameters Measured

Initial Findings			
Thermocouples	+/- 3°C		
Heater Voltage	+/- 0.4 V		
Heater Current	+/- 0.02 A		
Position	+/- 0.04 mm		
Charge Pressure	+/- 5 psig		
Acceleration	+/- 0.009 g		
Convertor Power Output	+/- 2.0 W _e		

SRSC Sensitivity Study

- Baseline: SRSC Operating at Extended Operation
- Purpose: Quantify Response of Parameters to Controlled Perturbations to Then Create a Predictive Equation for Power Output
- 39 Operating Points Measured
- Allows Easy Comparison Between Actual and Theoretical Convertor Power

Conclusions and Ongoing Work

SRL's Mission:

- Furthering the advancement and TRL of:
 - Stirling Convertors
 - Controllers
 - Generators
- Tailored Testing to Component, Subsystem, and Systems Level

Ongoing Work:

- SRSC #5 Beginning V&V Testing
- Stirling Generator Testbed Continued Campaign
- Controller Development

SRSC #5

