
Enhancing Air Traffic Management: A Latent
Representation Learning Approach

Saman Mostafavi
Metis Technology Solutions

Charles Ison
Oregon State University

Farzan Masrour Shalmani
Crown Consulting, Inc.

Krishna Kalyanam
NASA

Abstract—Efficient management of the National Airspace
System (NAS) relies heavily on strategic Traffic Management
Initiatives (TMIs), such as Ground Delay Programs (GDPs)
and Ground Stops (GSs), to balance fluctuating demand with
constrained airport capacity during adverse conditions. This
paper introduces a representation learning approach designed to
assist air traffic managers in identifying and retrieving similar
historical TMI events. Using autoencoder-based latent feature
extraction, our method jointly optimizes predictive accuracy of
TMI triggers while providing meaningful, interpretable repre-
sentations clustered in latent embeddings. Evaluations conducted
using data from three major airports in the New York Metro-
plex—JFK, EWR, and LGA—demonstrate improved scenario
clustering compared to traditional clustering and dimensional-
ity reduction techniques. Our methodology facilitates scenario-
driven recommendations, enhancing decision-making precision
and interpretability in TMI implementation.

Index Terms—Representation Learning, Traffic Management
Initiatives

I. INTRODUCTION

The aviation industry is undergoing significant transforma-
tions driven by technological advancements, increasing air
traffic demand, and operational complexities. According to
forecasts from the Federal Aviation Administration (FAA) [3],
general aviation hours flown in the United States are projected
to grow by approximately 0.7% annually over the next two
decades, with a total growth of 17.4% by 2044. This trend
shows variations across aircraft types, with jet aircraft hours
increasing at an average annual rate of 2.5%, while fixed-wing
piston hours are forecast to decrease by 0.8% annually. This
evolving demand landscape emphasizes the critical importance
of efficient operational management strategies that maintain
safety and effectiveness within the National Airspace System
(NAS). In response, aviation modernization initiatives such
as the FAA’s Next Generation Air Transportation System
(NextGen) and Europe’s Single European Sky ATM Research
(SESAR) have emerged, aiming to enhance airspace capacity,
operational efficiency, and safety.

Central to maintaining efficient operations in the NAS are
Traffic Management Initiatives (TMIs), strategic actions coor-
dinated by the FAA’s Air Traffic Control System Command
Center (ATCSCC). TMIs help manage demand and capacity,
particularly during adverse weather conditions or unexpected
disruptions. Two primary forms of TMIs are Ground Delay
Programs (GDPs) and Ground Stops (GSs). GDPs proactively
delay flights at their origin airports to manage anticipated
capacity constraints at destination airports, thus replacing

airborne delays with safer and more manageable ground-based
delays. In contrast, GSs implement immediate, temporary
restrictions on aircraft departures or arrivals, typically em-
ployed under urgent circumstances. Although TMIs effectively
mitigate disruptions, selecting their optimal parameters—such
as timing, duration, and geographical scope—remains chal-
lenging. Traditional decision-making methods rely heavily on
expert judgment derived from historical experiences, weather
forecasts, current traffic demands, and known constraints.
However, reliance on manual processes can lead to inefficien-
cies, such as unnecessary prolonged delays or premature ter-
mination of programs, both increasing operational disruptions
and the workload of air traffic controllers [5].

To address these challenges, recent research has lever-
aged advanced data-driven methodologies, particularly ma-
chine learning (ML) techniques. ML has demonstrated success
in aviation anomaly detection, integrating trajectory data, en-
vironmental factors, and system-level metrics to identify devi-
ations from standard operations [1], [11]. Typical anomaly de-
tection frameworks employ unsupervised learning approaches,
such as autoencoders or clustering algorithms, to uncover and
interpret operational anomalies [2], and to cluster and detect
events in aircraft trajectories [12]. However, these frame-
works often focus exclusively on detecting anomalies without
facilitating the retrieval of historically similar scenarios to
support proactive operational decisions. Similar challenges
in recommendation systems have been addressed in other
domains [8], using deep latent representations of multimedia
content while capturing implicit user-item relationships.

Motivation: Consider the scenario of an air traffic controller
faced with rapidly evolving weather events and operational
complexities. As part of a decision-making panel, the man-
ager must quickly analyze multiple streams of information,
including weather trajectories, traffic demand forecasts, and
current operational conditions, to determine appropriate TMI
actions. Currently, air traffic managers rely primarily on
personal experience and manual analysis of past events to
inform their decisions—a process that can be time-consuming
and subject to inconsistencies due to human limitations and
interpretive differences [5]. The availability of a decision-
support tool capable of querying current conditions and retriev-
ing historically similar scenarios—alongside detailed analyses
of how previous interventions unfolded—would substantially
streamline the decision-making process. Such a tool would



not only improve the accuracy and efficiency of operational
decisions but also serve as a valuable training resource,
enabling managers to examine past decision-making outcomes
and systematically refine their strategic judgment.

Contribution: This research proposes a representation learn-
ing framework specifically designed to retrieve historical TMI
events similar to current operational scenarios. Our method
employs an autoencoder-based [7] latent representation learn-
ing approach jointly optimized for predictive accuracy and
interpretable representations clustered in latent embeddings.
Using comprehensive data from the major New York Metro-
plex airports—John F. Kennedy International Airport (JFK),
Newark Liberty International Airport (EWR), and LaGuardia
Airport (LGA)—we demonstrate significant improvements in
scenario clustering and retrieval compared to traditional di-
mensionality reduction techniques, including Principal Com-
ponent Analysis (PCA) and Uniform Manifold Approximation
and Projection (UMAP) [10]. By integrating representation
learning directly into the TMI decision-making processes,
our methodology enhances decision precision, clarity, and
operational insight. This approach empowers air traffic man-
agers to make more informed, timely, and effective decisions,
ultimately improving the resilience and operational efficiency
of the NAS.

II. METHODOLOGY

A. Data Preprocessing

Employing the same data gathering and preprocessing tech-
niques described in our previous work [9], historical air
traffic data and weather records from three major New York
Metroplex airports (JFK, EWR, LGA) during 2017-2025 was
collected for representation learning. The sources for this data
includes:

• Terminal Aerodrome Forecast (TAF): Four synoptic
weather forecasts per day, parsed into hourly fields in-
cluding visibility, ceiling, wind direction, and speed.

• Traffic Management Initiative (TMI) Records: Com-
prehensive records of Ground Delay Programs and
Ground Stops with timestamps, and primary cause clas-
sifications.

• Aviation System Performance Metrics (ASPM): Hourly
operational metrics including arrival and departure
counts, taxi times, and delay statistics.

• Notices to Airmen (NOTAMs): Structured information
on runway closures and airport-specific restrictions, en-
coded as binary indicator variables.

• Airspace Flow Programs (AFP): Hourly metrics quan-
tifying airborne holding associated with TMIs.

• Flight Cancellation Logs
Specific features were then selected from each source

using feedback from ATCs on which data most influences
TMI decisions. In total, 14 input features were selected and
include arrival rates, a eastward wind component, a northward
wind component, ceiling, visibility, weather condition
intensity, mist, fog, rain, showers, snow, thunderstorms, and

FeaturesForecast data (eight hours)Past data 
(two hours)

Time Step! + 8…! + 1!! − 1! − 2
Arrival TrafficScheduled (ASPM)Actual (ASPM)

Wind condition

TAFMETAR
Cloud ceiling

Visibility

Meteorological condition

Each data instance is 11	×	14-dimensional time series

Fig. 1: Data structure with 2 hours of past data, 8 hours of
forecasted data, and examples features pulled from METAR,
TAF, and ASPM.

vicinity conditions. We denote each feature respectively as:
(arr , wind east , wind north, ceiling , visibility , −, +, BR,
,FG , RA, SH , SN , TS , VC ). Each feature is also cleaned
to remove outliers, handle missing values, and normalized to
zero mean and unit variance to ensure balanced contribution
to the model. The wind components are also are computed
using wind speed Vs and wind direction Vd:

wind east = −Vs × cos (Vd ×
π

180
) (1)

wind north = −Vs × sin (Vd ×
π

180
) (2)

Then the preprocessed features are concatenated into a
unified feature tensor X ∈ RN×D, where N represents the
total number of hourly timesteps and D denotes the combined
feature dimensionality, which is 14 for the features discussed.
See Figure 1 for an example concatenation using 2 hours of
past observations and 8 hours of forecasted events. During data
preprocessing we store 24 hours of past data for each TMI
event, but treat the number of past hours as a configurable
training hyperparameter.

Finally, to enable supervised learning within our proposed
representation learning architecture, we label each TMI event
X with the recorded TMI-cause one-hot encoding vector
y ∈ N5. Although there are 16 distinct TMI-causes recorded
over the 2017-2025 data timespan, only 5 causes are populated
to the one-hot encoding based on ATC feedback. The TMI-
causes of interest include: wind, thunderstorms, snow/ice, low
ceilings, and other. All TMI-causes not included in the first
four causes are consolidated in the ”other” category. It is also
possible to have two TMI-causes for a single TMI event if both
a GS and GDP occurred. For conflicting causes, we defaulted
to first to a weather cause and then fallback to the GDP cause
if the conflict still persists. This consolidation helps focus
on causes of most interest to ATCs and helps reduce class
imbalance. Selecting TMI-cause instead of TMI-scenario was
based on the intuition that TMI-causes encode more relevant
operational information. Consider two TMI-events that share
the same TMI-scenario, for example GDP→GS, but one event
is caused by wind and the other low ceilings.



(a)
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Fig. 2: Comparison of autoencoder architectures: (a) Standard
Variational Autoencoder with encoder and decoder compo-
nents; (b) Modified Autoencoder with an additional classifier
component enforcing contextual similarity in the latent space.

B. Representation Learning Framework

Neighbors-based methods are considered non-generalizing
machine learning techniques, as they rely on ’remembering’
all historical data rather than deriving abstract models. In
contrast, Representation Learning aims to transform complex
data into simpler, more interpretable forms, facilitating better
understanding and analysis.

Our Representation Learning Model employs a deep
learning framework, specifically utilizing a Variational
Autoencoder (VAE) [7] and Long Short-Term Memory
(LSTM) [4] hybrid architecture. This allows us to encode
high-dimensional, sequential, historical data into a meaningful,
low-dimensional latent space that preserves essential patterns
and relationships.

Variational Autoencoder Architecture
VAE architectures are typically constructed using an en-

coder and decoder, which can be seen in Figure 2(a). The role
of each component is as follows:

1. The encoder Eϕ : X → Z maps high-dimensional input
data x ∈ X to a lower-dimensional latent representation z ∈
Z , parametrized by ϕ.

2. The decoder Dθ : Z → X reconstructs the original input
from the latent representation, parametrized by θ.

The encoder outputs the parameters of a probability distri-
bution (in our case Gaussian) from which the latent vector z
is sampled:

qϕ(z|x) = N (z|µϕ(x), σ2
ϕ(x)) (3)

Fig. 3: LSTM VAE Architecture

This probabilistic mapping enables the model to capture
uncertainty in the latent representation and helps smooth
interpolation between separated classes in the latent space.
Because of these characteristics, VAE models have been used
previously for generative machine learning tasks by sampling
from the latent space and using the reconstruction decoder
for generation.

Classification Decoder
To enhance the abstraction capabilities of our model, we

also incorporate supervised regularization that obligates the
model to also predict the cause of the TMI. This approach
helps differentiates between patterns by identifying whether
a snapshot results in a Ground Delay Program (GDP) or a
Ground Stop (GS) due to thunderstorm, wind, snow, or other
factors.

Our modified architecture, which we call ALFRD, extends
the standard VAE by integrating a second classification
decoder, as shown in Figure 2(b). The classifier Cψ : Z → Y
maps latent representations to TMI cause classifications
y ∈ Y , parametrized by ψ. By training the second decoder
simultaneously, the encoder is guided to map input data in a
manner that both reconstructs the original data and preserves
information required for TMI-cause prediction.

Multi-objective Loss
To further encourage TMI-cause differentiation in the latent

space, we also included triplet marign loss as an optimization
term during training. The total loss function is then formulated
as:

Ltot = αLrecon + βLKL + δLpred + γLtriplet (4)

Where:
• Lrecon = 1

n

∑n
i=1 ||xi−x̂i||2 represents the mean squared

error between the original inputs xi and their reconstruc-
tions x̂i = Dθ(zi).



• LKL = DKL(qϕ(z|x)||p(z)) denotes the Kullback-
Leibler divergence between the learned latent distribution
and a prior distribution p(z), typically a standard normal
distribution N (0, I).

• Lpred = − 1
n

∑n
i=1 yi log(Cψ(zi)) corresponds to the

cross-entropy loss for predicting the TMI cause from the
latent space.

• Ltriplet =
∑n
i=0

∑
p∈C

∑
n/∈C max(dist(ai, p) −

dist(ai, n) + m, 0) where ai represents a given anchor
point within the the training set, p represents a positive
point within the same class set C as ai, n represents
a negative point within a different class from ai, and
m represents an acceptable margin for the distance
difference.

• α, β δ and γ are weights that balance the contributions
of each optimization term.

By jointly optimizing for reconstruction accuracy, TMI-
cause prediction, preserving a Gaussian distribution in the
latent space, and TMI-cause differentation in the latent
space, our model performs effective non-linear dimensionality
reduction while preserving operationally relevant structures
in the data.

LSTM Modifications to VAE Architecture
The encoders and decoders for VAEs are typically con-

structed using feed-forward neural networks, but because the
TMI data has temporal structure, we opted to test architec-
tures with inductive biases for sequential data. Specifically,
we tested recurrent neural networks (RNNs), gated recurrent
united (GRUs), LSTMs, and Transformers as mechanisms for
encoding and decoding the TMI data. The best performing
architecture was the LSTM and an example visualization of
the LSTM enhanced VAE can be seen in Figure 3.

Each D dimensional hourly time-step from the length N
sequence in the TMI data is passed as input into each LSTM
cell. Then the output from each LSTM cell is then take as a
lower-dimensional embedding E < D. This means the latent
space Z ∈ RN×E maintains the same sequential structure,
while shrinking the data dimensionality at each time-step.

Training
During training, 6 months of data was withheld for model

validation, and 1 year of data was withheld for model testing.
Precisely, the training start-date is January 1st, 2017 and the
training end-date is October 11th, 2023. The validation start-
date is October 12th, 2023 and the validation end-date is April
12th, 2024. The testing start-date is April 13th, 2024 and the
testing end-date is April 13th, 2025.

The LSTM enhanced VAE architecture was implemented
and trained using the PyTorch [13] machine learning library.
The encoder and reconstruction decoder are constructed us-
ing LSTMs with a hidden dimension of 64 and an output
of 4 dimensional embeddings. The classification decoder is
implemented as a two layer feed-forward neural network with
rectified linear unit (ReLU) activations.

Gradient updates are performed with the multi-objective loss
function from Eq. 4 using an Adam optimizer [6], a batch
size of 256, and a learning rate of 0.0001 for 80 epochs. The
optimization terms are weighted as follows: α = 10, β = 0.1
δ = 10.0 and γ = 100.0. Finally, we used 2 hours of past
air traffic data and weather conditions during training, so each
input tensor has dimension 11× 14.

III. RESULTS

We evaluated the efficacy of our representation learning
approach using four methods: visual analysis of the latent
space, classification decoder performance on the latent space,
and k-nearest neighbor classification performance on the latent
space. and k-nearest neighbor historical event retrieval. Each
of these evaluations was performed using an entire year of
data that was withheld from the model during training.

A. VAE Training

See Figure 4 for the training cross-entropy loss, training
reconstruction loss, training contrastive loss, and training KLD
loss. Similarly, see Figure 5 for the corresponding validation
losses.

B. VAE Classification Testing Results

See Figure 6 for the VAE classification decoder testing
confusion matrix. The model has an accuracy of 66.80%.

C. Latent Space Visualization

In our exploration of the latent space, we utilize the UMAP
algorithm [10] to perform dimensionality reduction and visu-
alization. In Figure 7, the UMAP algorithm is applied to the
untransformed TMI testing data to generate a two dimensional
embedding. While some TMI cause related structure is visible,
the results are noticeably improved when we first use the

(a) (b)

(c) (d)

Fig. 4: VAE Training Losses



VAE to generate the latent space and then apply UMAP. The
results in Figure 8 shows improved clustering and reveals
underlying patterns that correspond to similar operational
characteristics. These patterns demonstrate that points sharing
similar causal factors are positioned in proximity within this
reduced-dimensional space, significantly enhancing our ability
to identify meaningful relationships.

D. KNN

The KNN algorithm identifies similar historical events by
minimizing a distance function between a query event q and
historical events hi:

Nearestk(q) = argmink{d(q, hi)|hi ∈ H} (5)

where d(·, ·) represents a distance metric, H is the set
of historical events, and argmink returns the k events with
smallest distance values.

Our baseline implements a specialized KNN algorithm
incorporating domain-specific distance metrics tailored for
TMI operational data analysis. This approach combines a
temporally-weighted Euclidean distance for continuous fea-
tures—applying a non-linear weighting function that prior-
itizes current conditions (weight=1.0) while systematically
discounting forecast accuracy with increasing temporal dis-
tance—with Jaccard distance for categorical features to ac-
count for discrete operational states.

See Table 1 for a comparison of KNN classifier testing
accuracies using different data types and distance metrics. The
custom KNN operating on the latent data achieves the highest
accuracy of 65.03%. Then see Figure 9 for the custom KNN
classifier’s confusion matrix on the testing latent data.

(a) (b)

(c) (d)

Fig. 5: VAE Validation Losses

Fig. 6: VAE Testing Confusion Matrix

Fig. 7: Original Data UMAP

Fig. 8: VAE Testing Latent Space UMAP



Fig. 9: KNN Latent Confusion Matrix

E. Historical Event Retrieval

Air Traffic Controllers frequently leverage historical prece-
dents when making operational decisions. This practice of
referencing similar past scenarios provides valuable context
for current decision-making processes. We formalize this as
a k-nearest neighbors (KNN) retrieval problem and explore
various approaches to enhance retrieval quality.

Problem Context: Consider a Ground Delay Program (GDP)
scenario caused by a thunderstorm, as depicted in Figure 10.
In this situation, wind speed is forecasted to increase from
6 mph to 20 mph over the next three hours (f1, f2,..., f8
represent hourly forecasts), accompanied by a directional shift.
Simultaneously, arrival rate capacity is expected to decrease
significantly, with thunderstorm activity predicted, represented
by the categorical feature ’TS’. To make informed traffic man-
agement decisions, controllers benefit from examining similar
historical weather patterns and their operational outcomes.

Figure 11 demonstrates the efficacy of this approach by
illustrating the centroid and variance of the five most similar
historical events when applied to the exemplar scenario in
Figure 10.

Representation Learning Approach: Our proposed enhance-
ment transforms the complex, multi-dimensional TMI data
into a structured latent space before applying standard KNN.
This approach eliminates manual feature engineering and
weighting, allowing the representation learning model to auto-

KNN Results
Data Type Distance Metric Accuracy
Latent (ours) Custom 65.03%
Original Custom 59.79%
Latent Euclidean 61.81%
Original Euclidean 53.38%
UMAP Euclidean 49.70%
Latent Dynamic Time Warping 61.96%
Original Dynamic Time Warping 53.32%

TABLE I: Performance comparison of representation learning
on TMI data using KNN. Our latent space method is bench-
marked against PCA and UMAP, showcasing superior pattern
recognition and efficiency.

Fig. 10: Example of Raw Data: The blue area highlights
time-series data (continuous feature), while the red indicates
categorical features.

Fig. 11: Example of Similarity Analysis for a GDP caused by
thunderstorm: The red line shows current scenario status. The
blue line shows average of top-5 similar historical events. The
shaded blue shows variance of top-5 similar historical events.

matically identify and prioritize the most operationally relevant
patterns.

We benchmark our representation learning approach against
two additional dimensionality reduction techniques—Principal
Component Analysis (PCA) and Uniform Manifold Approx-
imation and Projection (UMAP)—each followed by standard
KNN in the reduced space. Table 1 summarizes the compara-
tive performance across all four approaches, demonstrating our
method’s superior ability to capture operationally meaningful
similarities while maintaining computational efficiency.

IV. CONCLUSION AND FUTURE WORK

This paper introduced an representation learning approach
for identifying and retrieving historical Traffic Management
Initiative (TMI) events to support air traffic management
decision-making. By employing a specialized autoencoder
architecture with joint optimization objectives, our method-
ology successfully transforms complex operational and me-



teorological data into meaningful latent representations that
preserve critical temporal patterns and causal relationships.
Experimental evaluation using data from New York Metroplex
airports (JFK, EWR, LGA) demonstrates that our approach
significantly outperforms traditional methods in scenario clus-
tering and retrieval accuracy, providing air traffic managers
with more precise and interpretable historical precedents.

The representation learning framework developed in this
research systematically addresses the challenges of high-
dimensional, heterogeneous TMI data while maintaining oper-
ational relevance. By incorporating classification-guided latent
space organization, our model effectively disentangles com-
plex causal factors underlying TMI events, enabling more
nuanced similarity assessment than direct feature compari-
son. This capability proves particularly valuable for complex
weather-related scenarios where subtle pattern recognition can
substantially improve operational response.

Several promising directions for future research and devel-
opment have been identified:

• Conditional Variational Models: We are exploring con-
ditional variational autoencoder architectures to enable
explicit conditioning of the latent space on specific op-
erational parameters, further enhancing the precision of
historical event retrieval for targeted operational contexts.

• Cross-Airport Pattern Recognition: Expanding our
framework to identify and leverage similar weather-
related patterns across geographically or operationally
similar airports could enable transfer learning between
facilities with limited historical data.

• Human-in-the-Loop Evaluation: Development of an
interactive decision support interface that incorporates
domain expert feedback to refine the similarity metrics
and representation space based on operational utility and
interpretability.

• Temporal Attention Mechanisms: Integration of
attention-based architectures to better capture the relative
importance of different time periods in the evolution of
TMI events, potentially improving the model’s focus on
operationally critical moments.

Through ongoing refinement of these representation learn-
ing methods, we aim to develop a decision-support system that
seamlessly integrates historical analogs, real-time operational
data, and controller expertise to inform TMI deployment.
Such a system has the potential to increase the efficiency,
consistency, and effectiveness of strategic traffic management
in the National Airspace System, especially under adverse
conditions.
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