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Electrified aircraft propulsion systems require lightweight and
highly efficient powertrain components including motors.
Superconducting rotor coils can help enable such high-
performance motors, but keeping the superconductors at the
required cryogenic temperature is a challenge. NASA's 1.4 MW
High Efficiency Megawatt Motor (HEMM) solves that problem
by integrating a rotating pulse-tube cryocooler into the shaft.
The cryocooler acoustic section is driven by a linear motor. This
paper reports modeling, building, and testing a second version
of that motor. Results reported here show significant
improvements over the first version but also reveal remaining

deficiencies.
Linear Motor Key Requirements
<100 mm Peak output force /00 N
+13 mm Operating frequency 56 Hz

Outer diameter
Output movement range

Electromagnetic Design Improvements
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High Efficiency Megawatt Soft Stop

The V1 linear motor had several electromagnetic design issues
that were improved for the V2 motor:

* |ncreased thickness of outer iron to reduce saturation

* Increased segmentation of the inner iron to reduce iron

- "’/ i

losses

Inner iron showing radial slice segmentation ' emanent magnet segmentation
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» Increased segmentation of the o 72V FE. e o .
permanent magnets to reduce |penveres msmes | o
eddy current losses -

» Increased permanent magnet gaor S
grade to offset reduced magnet 200
volume due to gaps between o
segments oo | | | |

DC current [A]

Force vs current at center position
for various magnet configurations
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In the center position, the measured output force was 46%

lower than modelled in FEA. Measuring the magnetic field

generated by the magnet plunger in air revealed two issues:

1. Each magnet segment was magnetized along a single axis
rather than radially

2. The magnets were not fully magnetized, indicating that
insufficient field was applied during magnetization or that
demagnetization occurred at some point

The original, V1, plunger was nearly fully magnetized but also

magnetized along a single axis rather than radially. With the V1

plunger installed, measured force was about 11% below the

force modelled with parallel magnetization and 26 % below the

original design target. The V1 plunger was used for all future

tests.
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Colormaps of modeled force magnitude vs current and position. The black
circles indicate operating points used during resonant operation.

FEA modeling of the motor shows significantly degraded output
force due to iron saturation made worse by parallel
magnetization, particularly for displacements greater than 11
mm.

Paper ID: 7112

Dynamic Operation Results

We successfully operated at resonance (defined as force and

velocity being in phase) over a range of frequencies and
displacements. Testing was repeated with and without the

piston installed. All testing was done unloaded.
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Unloaded motor performance at resonance.

Experimental, resonan ce
2.5Vrms, experimental
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12Vrms, experimental
23.8Vrms, experimental
29.5Vrms, experimental |
31 Vrmms, experimental

| The resonant frequency changes
| depending on the displacement magnitude

' due to nonlinear flexure stiffness and other
| system nonlinearities.
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Numerical modeling showed:
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and experimental results.

Conclusion

The V2 linear motor for the HEMM cryocooler performed
significantly better than the V1 motor despite some setbacks
along the way.

More detailled FEA modeling guided design changes to
reduce losses and improve performance.

Magnetic field measurements revealed that the magnets had

parallel magnetization rather than radial, N
degraded performance.

Dynamic testing showed controllable resonant and off-
resonant operation.

Numerical modeling of the motor showed that cubic stiffness
alone does not explain the nonlinear resonant behavior of

the system.

resulting
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