

Advanced Technologies, Inc.

NASA's Horizontal Planar Near-Field Facility:

A Large-Scale, High-Accuracy System for Spaceborne Antenna Testing

DOMENIC BELGIOVANE, PH.D.1

JIM DOWNEY², BRYAN SCHOENHOLTZ², FELIX MIRANDA² EVAN BEERS¹, JAMES CAPUTO ¹

1. MVG-OATI, 2. NASA GLENN RESEARCH CENTER

MAY 20TH 2025

Near-Field Planar Scanner

Made for Space-Borne Antennas / Vehicle Mounted Antennas

SCANNER DIMENSIONS: 10M X 10M

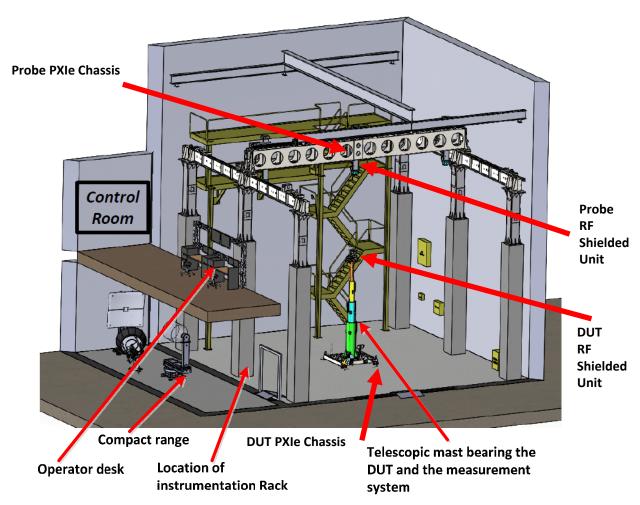
Technology

- Horizontal Planar Near-field Scanner:
 - > Better for deployable to prevent distortions to the parabolic shape.
 - Can drive in large vehicles for insitu-measurements for upperhemisphere measurements
 - > E.g. Lunar Vehicles or UAVs

Measurement capabilities

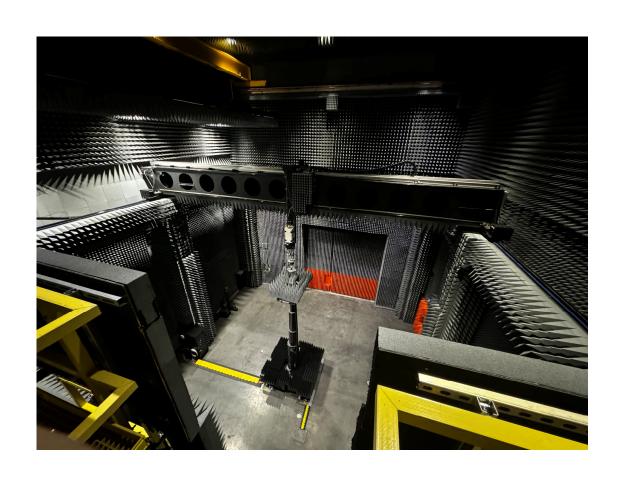
- > Gain
- > Beamwidth
- > Sidelobe levels
- Radiation pattern in any polarizations- (linear)
- Multi beam antenna measurement and calibration

- Directivity
- > 3D radiation patterns
- > Beam pointing properties
- Full payload testing
- > EIRP, G/T, IMD,
- > Pulsed Measurements
- > Gain Compression

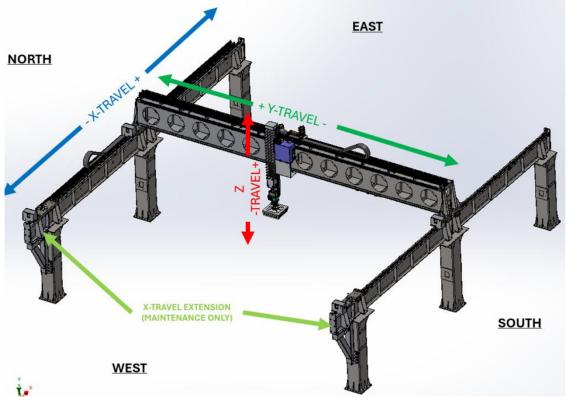

Frequency bands

1 to 110 GHz (and beyond?)

System Overview

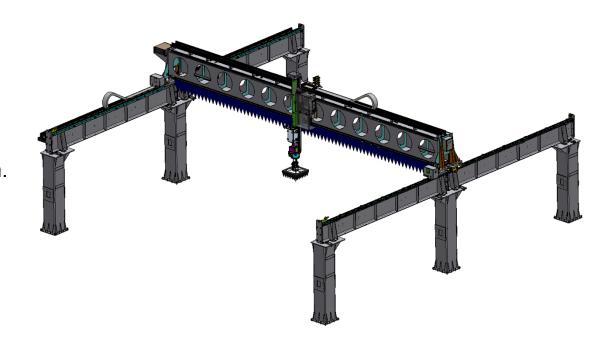


Pictures of the HPNF Facility

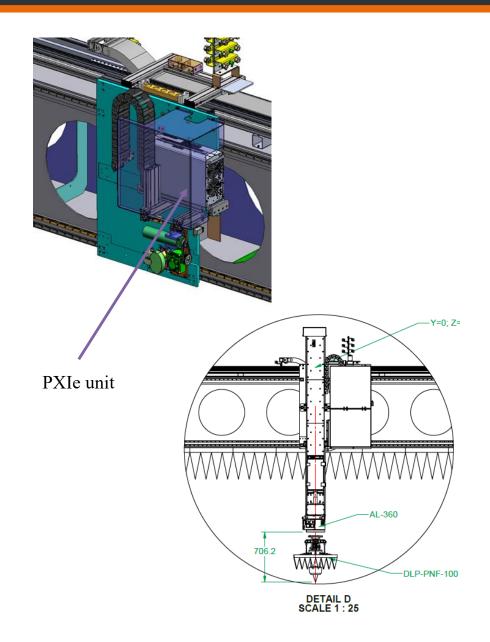


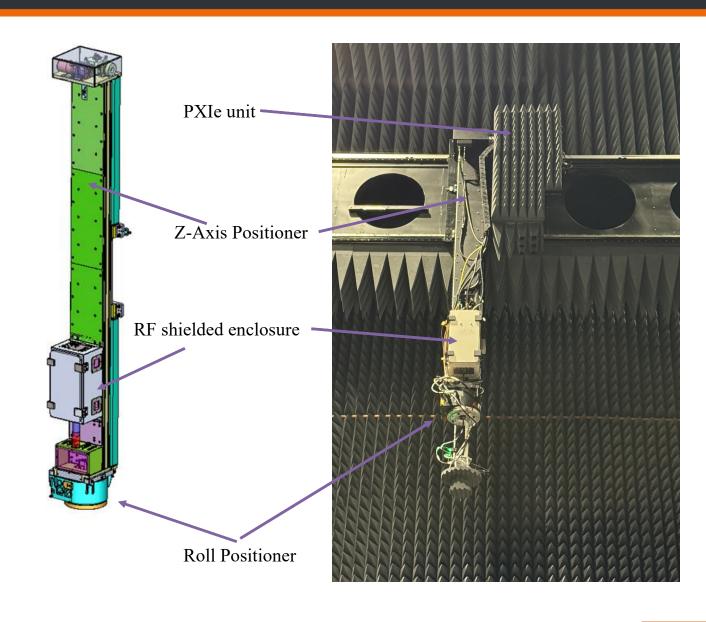
Structural Description

- The scanner is built from two X-axis linear slides and a Y-axis beam moving in the horizontal plane.
- The X-axis linear slide is constructed of two modular sections, which are securely mounted on six supporting masts fixed to the floor and are leveled to it as one integral unit.
- The Y-axis linear slide is mounted on top of the X-axis linear slides and moves along them.


The Y-axis carries a driven table on which the Z-Roll unit is mounted.

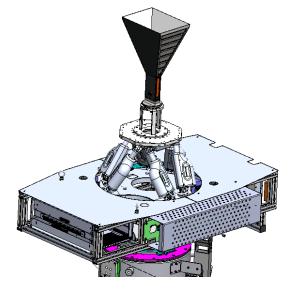
Horizontal Scanner – General


- Scanning Area & Motion
 - Scan area of 10m x 10m x 1.5m (X / Y / Z).
 - Probe mounting location has roll / polarization alignment.
 - Probe aperture can be located at a height of ~9.1m − ~7.6m.
 - Overall Dimensions: 13.64m x 13.25m x 12m



Parameter	X-axis	Y-axis	Z-axis	Polarization AXIS	
Travel range	10000mm	.0000mm 10000mm		360 deg	
Scan speed	250 mm/sec.	500 mm/sec.	10 mm/sec.	1rpm	
Load	N/A	N/A	80 Kg	N/A	
Resolution	0.001 mm	0.001 mm	0.003 mm	0.001 deg	
Accuracy (corrected)	+/- 0.06 mm	+/- 0.06 mm	+/- 0.06 mm	+/- 0.02 deg	
Planarity	0.035 RMS mm corrected				

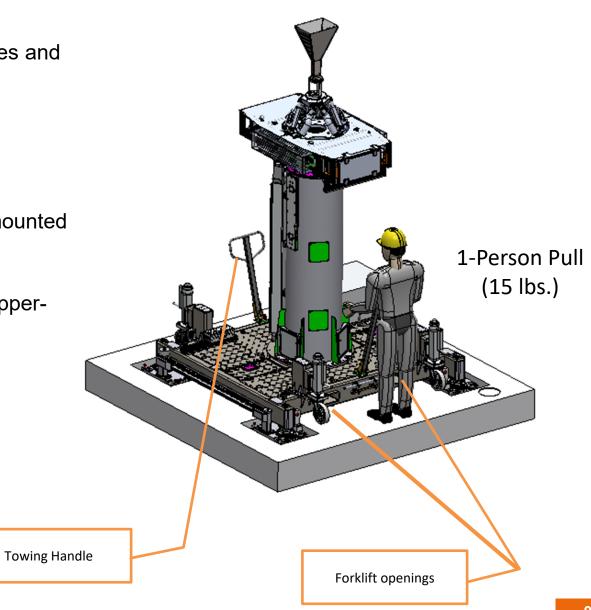
RF Unit Locations on Z-Axis




DUT Positioner– General

- DUT Mast has telescoping height from 3m to 6m
- Cart dimensions: 2m x 2m
- Top of the DUT Cart is a Symmetrie BREVA Hexapod used for precision DUT alignment
 - ✓ Sized to be able to support a group 3 drones (55 1320 lbs)
 - Precision alignment for mm-Wave measurements
- DUT mounting face/sides includes holes for SMR targets for DUT

alignment

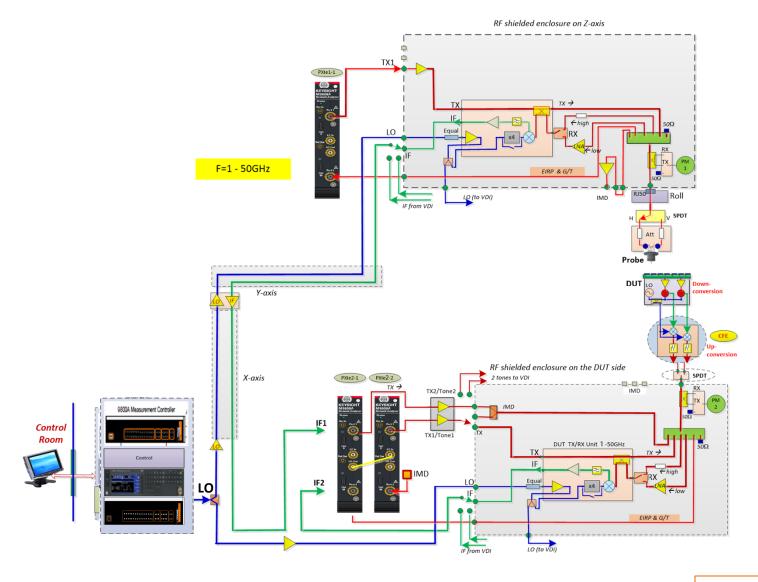


Moveable DUT Platform

- Positioner cart is pushed by hand over tapered locating features and lowered into testing position with jack wheels
- Allows for it to be moved in and out of the chamber
 - Repeatability: ~.02mm
- Allows for rolling in large antennas that cannot be otherwise mounted
 - Can drive in large vehicles for insitu-measurements for upperhemisphere measurements
 - E.g. Lunar Vehicles or UAVs

Integration and Utilization of Laser tracker

- A Laser tracker was used for initial alignment and positioner corrections (MV-Cor)
 - HNF scanner
 - Corrected X- Axis as a function (X,Y)
 - Corrected Y-Axis as a function (X,Y)
 - Correction of Z Planarity as a function (X,Y)
 - Roll Pointing aligned to scan plane
 - DUT Mounting
 - X,Y, Z rotation errors and translation
- Long term goal is to also allow for
 - Surface metrology aligned to the near-field data
 - For back projection of the data to Ideally correlate the defects
 - Characterization of parabolic surfaces
 - Directly mounting a laser scanner on the probe positioner mounts



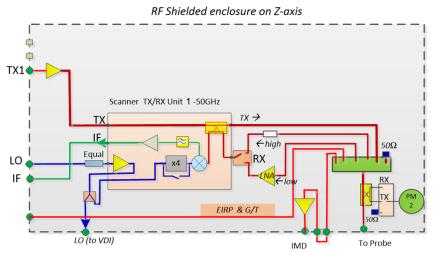
RF Subsystem

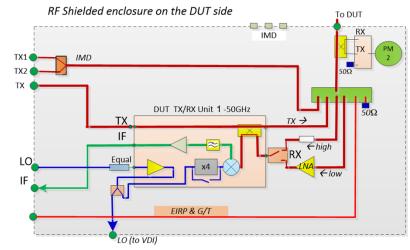
RF System Configuration (1-50GHz)

- Features a Dual PXI Architecture
 - 1 1 PXIe at the DUT and one on the Scanner
 - Direct RF 1-50 GHz
- Phase Coherency through an MXG located in a rack on the ground
- Shielded RF Enclosures
 - Down-convert test and reference signals to an IF
 - Multiplier is used for down-conversion above 20 GHz
- LO runs up from the rack through Scanner and DUT tower

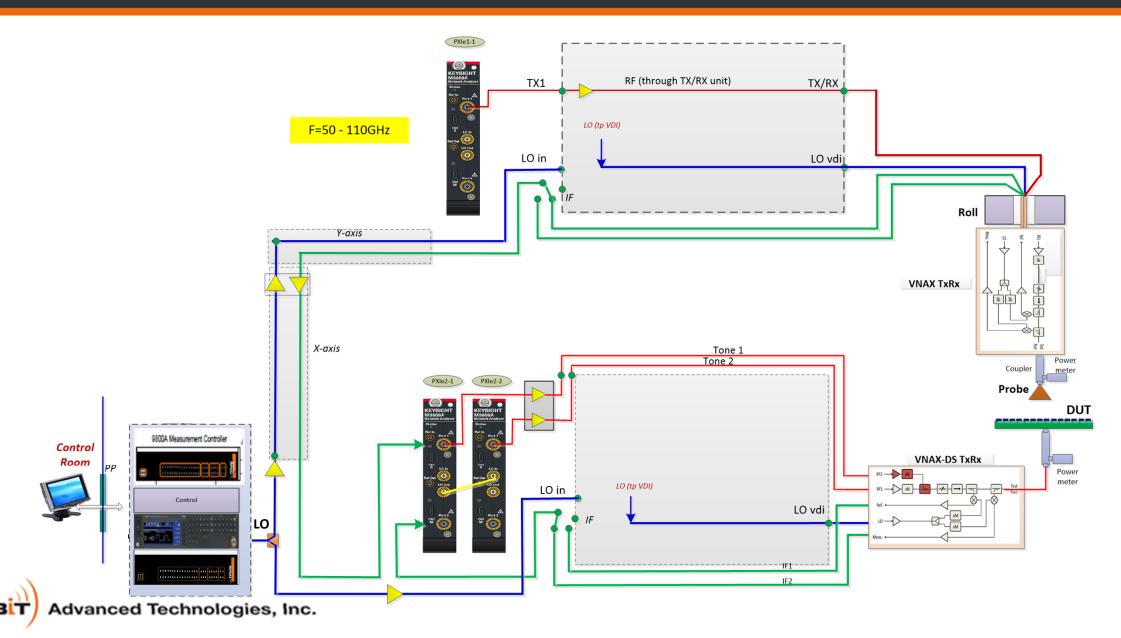
PXIe Chassis

- 2x M9010A 10-Sot PXIe Chassis
 - Keysight M9808A-200 100 kHz to 53 GHz PXIe Vector Network Analyzer
- System will include (2) Chassis
 - **■** DUT Chassis, configured with (2) M9808A modules
 - Probe Chassis, configured with (1) M9808A module
 - Spectrum Analyzer Hardware/Software
 - Intermodulation Distortion (IMD) Software
 - Pulse Modulation Hardware and Software



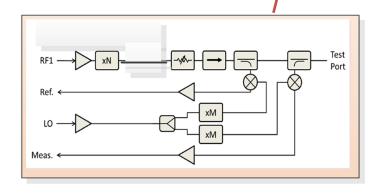


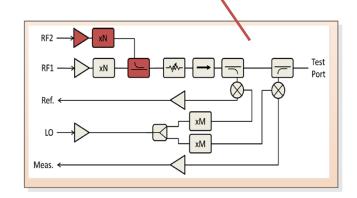
RF Shielded Enclosures



Shielded enclosure Specification				
Frequency Range	0.5-50 GHz			
Shielding effectiveness	-80dB @ 1-10 GHz -65dB @ 10-50 GHz			
Dimensions	500/250/200 mm			
Input power	24V DC			

RF System Configuration (50-110GHz)





✓ VDI Frequency Extender Modules

#	Freq Band	Probe Side	DUT Side	Required in Addition	Comments
1	V (50-75GHz) WR15	TxRx WR15VNATxRxM	TxRx-DS WR15VNATxRxM-DS	V281CS WR15 to 1mm(F) adaptor	
2	E (60-90GHz) WR12	TxRx WR12VNATxRxM	TxRx-DS WR12VNATxRxM-DS	E281CS WR12 to 1mm(F) adaptor	TxRx-DS with
3	W (75-110GHz) WR10	TxRx WR10VNATxRxM	TxRx-DS WR10VNATxRxM-DS	W281CS WR10 to 1mm(F) adaptor	attenuator

Power Sensors

- Integrated power sensors for RF and mmWave Modes
 - Utilized for EIRP and G/T measurement modes.
- Alternatively, the PXI can be used in Spectrum Analyzer mode if more sensitivity is needed, but required a manual setup.

		Unit	P/N	Probe side	DUT side	Description	Comments	
2	2	Power sensor 10MHz- 54GHz	U2056XA	1	1	Average power - 70+20dBm	U2056XA-100 Connector 1.85mm Accuracy: +/-0.24dB @50GHz	
[1	Power sensor DC- 120GHz	U8489A	1		Thermocouple, -35+20dBm	U8489A-200 Connector 1.0mm Accuracy: 7.6% @110GHz	** ** *** *** **** **** ***** ****** ****

HNF Nearfield Probes

Each probe assembly includes:

- Mechanical drawing
- AEP Absorber Collar
- Standoff cage and mounting plate
- Probe pattern correction coefficients (CST generated)
- Gain calibration at UPM
- Simulated Probe Correction Files

P/N	Freq (GHz)	Freq. Band	Polarization	Connector	
DLP-PNF-100	0.8 - 2.0	L	Dual Linear	3.5mm (f)	
DLP-PNF-200	2.0 - 4.5	S	Dual Linear	3.5mm (f)	4000000
DLP-PNF-400	4.0 - 8.0	С	Dual Linear	3.5mm (f)	
DLP-PNF-800	8.0 - 18.0	Ku	Dual Linear	3.5mm (f)	ALCONO SAN
DLP-PNF-1800	18.0 - 40.0	Ka	Dual Linear	2.92mm (f)	
DLP-PNF-3300	33.0 - 55.0	Q	Dual Linear	2.4mm (f)	
OEW5000	50.0 - 75.0	WR15	Single Linear	w/g	
OEW6000	60.0 – 90.0	WR12	Single Linear	w/g	
OEW7500	75.0 - 110.0	WR10	Single Linear	w/g	THE RESERVE OF THE PERSON OF T

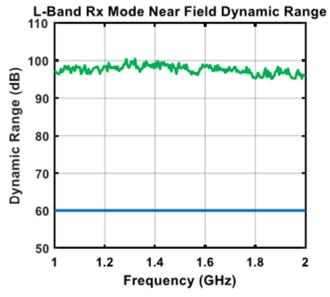
Measurements Below 50 GHz are dual Polarized

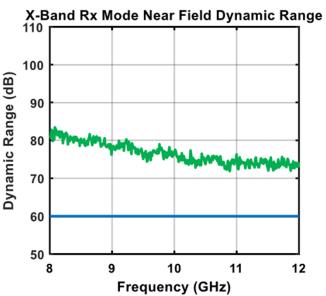
mmWave Bands must rotate the roll axis of the probe

I HNF Reference Antennas

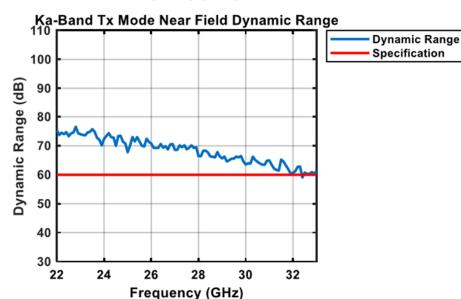
- Each SGH assembly includes:
 - Mechanical drawing
 - AEP Absorber Collar
 - Standoff cage and mounting plate
 - On-axis gain calibration performed at NPL

P/N	Freq (GHz)	WG Band	Connector
SGH112	1.12 – 1.7	WR650	N (f)
SGH170-A	1.7 – 2.6	WR430	N (f)
SGH260	2.6 – 3.95	WR284	N (f)
SGH395	3.95 – 5.85	WR187	N (f)
SGH585	5.85 - 8.2	WR137	N (f)
SGH820	8.2 – 12.4	WR90	N (f)
SGH1000	10.0 – 15.0	WR75	SMA (f)
SGH1240	12.4 – 18.0	WR62	N (f)
SGH1800	18.0 – 26.5	WR42	SMA (f)
SGH2200	22.0 – 33.0	WR34	2.9mm (f)
SGH2650	26.5 – 40.0	WR28	2.9mm (f)
SGH3300	33.0 – 55.0	WR22	w/g
SGH5000	50.0 – 75.0	WR15	w/g
SGH6000	60.0 – 90.0	WR12	w/g
SGH7500	75.0 – 110.0	WR10	w/g

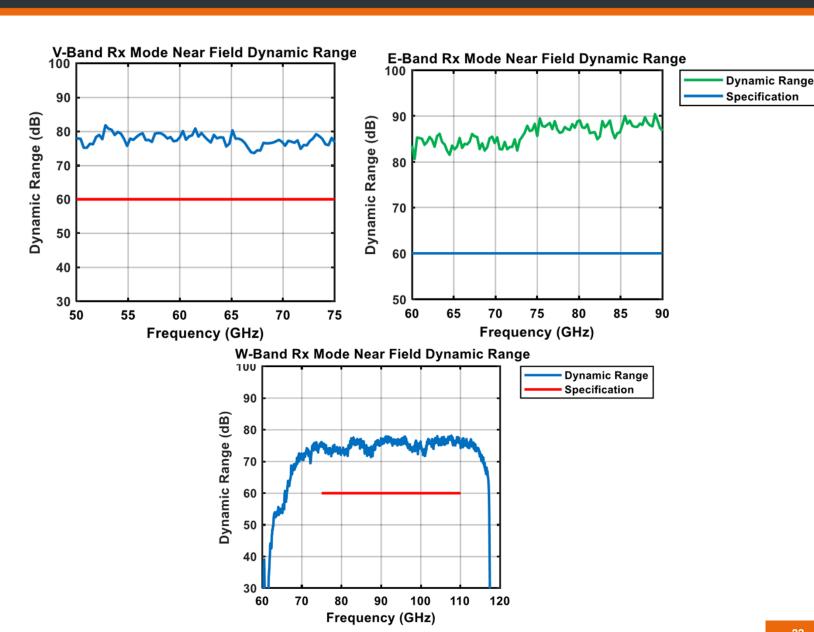



System Performance

RF Mode Dynamic Range Measurements



- Sample Dynamic Range Measurements taken Over the Air
 - Data taken at boresight coordinates X=0,Y=0
 - 50 Frequency sweeps performed
 - RMS of Signal and Noise computed.
 - 1 KHz IFBW
- With DLP Probes and SGHs
 - L-Band
 - S-Band
 - X-Band
 - Ka-Band
- System Requirements for nearfield dynamic range were >60 dB.
 - Stepped attenuator used to prove system is linear.



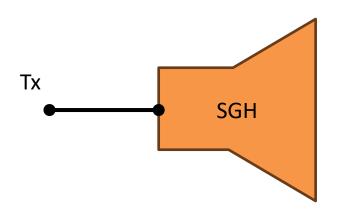
RF Mode Dynamic Range Measurements

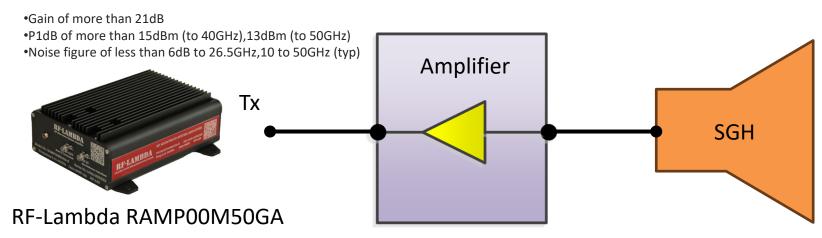
- Sample Dynamic Range Measurements taken Over the Air
 - Data taken at boresight coordinates X=0,Y=0
 - 50 Frequency sweeps performed
 - RMS of Signal and Noise computed.
 - 1 KHz IFBW
- With OEW Probes and SGHs
 - V-Band
 - E-Band
 - W-Band
- System Requirements for nearfield dynamic range were >60 dB.

Special Test Modes

Special Test Modes

- **|** EIRP
- **G**/T
- Gain Compression Testing
- **/** IMD
- Pulsed RF
- Park & Probe

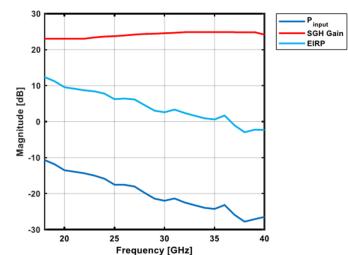



Active DUT measurements

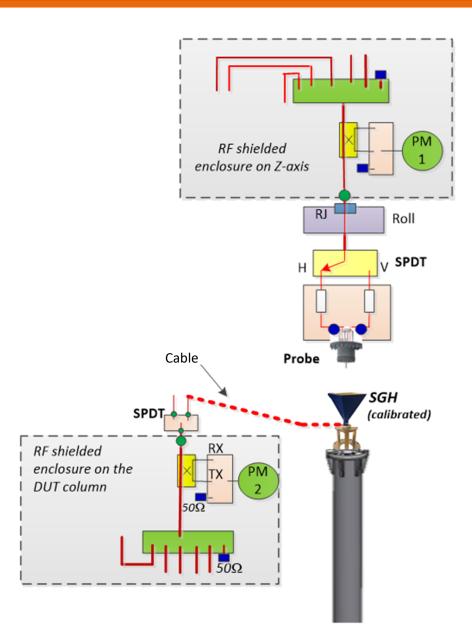
- The following tests will be performed:
 - Active Antenna patterns for G/T, and IMD
 - Note: Pulsed RF, EIRP and Gain Compression do not require the Amplifier
 - Separable Antenna (SGH and Amplifier required)
 - Ka-Band SGH2200 (22 33 GHz)

Case 1: Gain Reference Baseline

Case 2: Active DUT

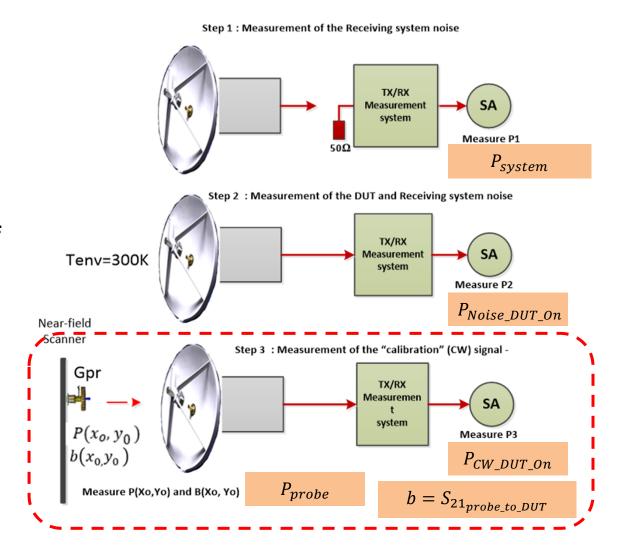

EIRP measurements

- NF to FF far-field transform is used to determine the DUT Gain
- Input power is computed by either:
 - Direct Connection of the Cable with PXI in SA mode
 - Required cable to calibrated out
 - Power Meter measurement at PM2
 - Requires calibration path through the coupler.


EIRP is computed as:

$$EIRP = G_{DUT} P_{in}$$

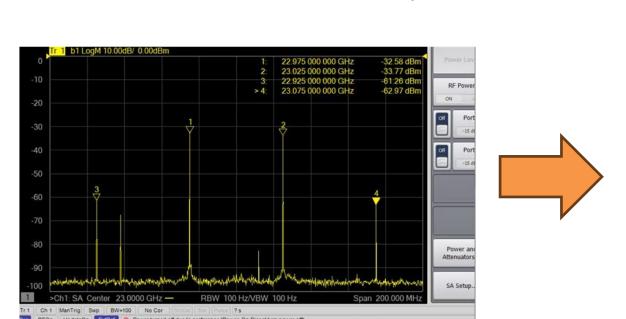
Example EIRP Measurement at Ka-Band using an SGH 2200

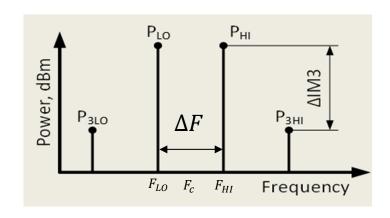


OTA G/T Testing

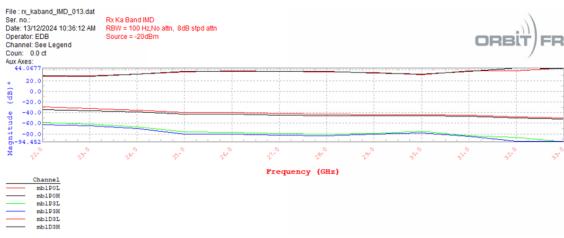
- ☐ Perform NF Acquisition
 - □ Perform NF-to-FF Transform: *FF(K)*
- \square Use b_o finder to get peak-near field x_0, y_0
 - \square Store $b(x_0, y_0)$ value from near-field data
- Move Probe into (x_0, y_0) position, collect Probe Side Power Meter Measurement $(P_{pr}(x_0, y_0))$ (RF Source is ON)
 - □ Power meter measurement assumes it is calibrated through the coupler path properly with a correction table.
 - ☐ Transmit amp should have low harmonic content.
- □ Collect Measured DUT received power with Spectrum Analyzer (*P3*) (**RF Source is ON**)
- □ Turn RF source off, collect DUT (and test equipment) noise power with Spectrum Analyzer (P2)
- □ Turn DUT power off (or connect a load to the SA input), collect noise power of test equipment with Spectrum analyzer (P1).
- ☐ Compute G/T metric
 - □*B* = 1 Hz, *k* = 1.380649 × 10−23 joule per kelvin
 - $\square M_{G/T} = 1$ (or can be measured, optionally)

$$G/_{T} = \frac{kB}{M_{G/T} \cdot P_{pr}(x_{o}, y_{0})} \cdot \frac{1}{b^{2}(x_{0}, y_{0})} \cdot (\frac{P_{3} - P_{2}}{P_{2} - P_{1}}) \cdot FF(K)$$



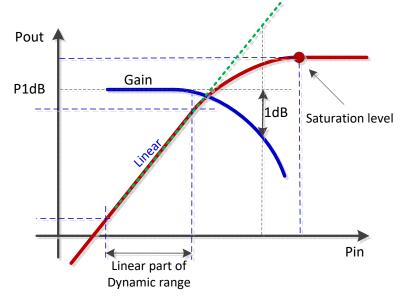


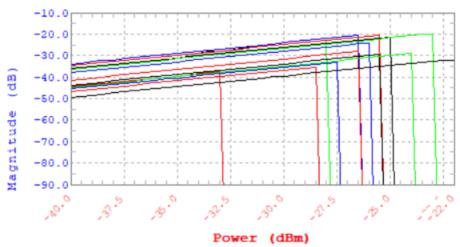
Intermodulation Distortion (IMD) Mode



- ∆IM3 using OTA measurements can be performed using the Dual PXI-Setup
 - DUT PXI using IMD Mode
 - Scanner PXI in SA mode
- These measurement can be performed in two modes:
 - Swept Frequency, Fixed Delta
 - Swept Delta, Fixed Center Frequency

Swept Data Reported in 959 Spectrum

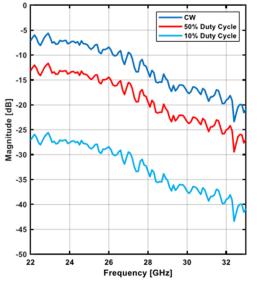


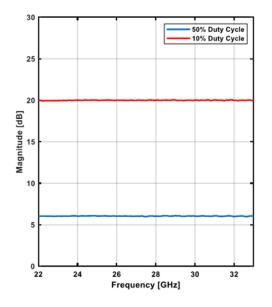

■ Gain Compression (P1dB) Parameter

- Gain Compression is performed by sweeping the input power of the DUT until a compression point is hit.
 - Power increment and compression point is specified by the user.
- Data collection is automated using 959 Spectrum
 - Power sweeps are conducted to find compression point
 - The Next frequency is measured

Swept Data Reported in 959 Spectrum

Frequency (GHz)	IP1dB
21	-26.5
22	-28
23	-26.5
24	-25.5
25	-25
26	-23
27	-26
28	-26.5
29	-25.5
30	-24
31	-27.5
32	-28.5

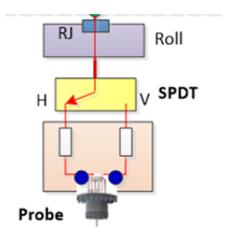

Pulsed RF Mode



- Pulsed RF can be performed in two ways
 - With PXI internal pulsing Hardware
 - Test and Reference Paths are both pulsed
 - Due to down conversion hardware.
 - External Pulsing Switch with PXI as pulse modulator
 - Test Path Pulse, Reference Path is not.

Description	Typical
Minimum pulse width	200 ns
Minimum pulse period	1 µs
Maximum pulse period	10 s

Example Boresight Measurement Showing Duty Cycle Hits Due to Pulsing



Park and Probe Mode

- Primarily for active antenna array calibrations
- Probe moves to designated X,Y Coordinate and performs test
- Each X,Y coordinate has a list of unique DUT coordinates
 - This enables the measurement unique DUT states
 - Probe parks over an active antenna element
 - Cycles through the phase shifter or attenuator states
 - Moves to next element and does an repeats

Uncertainty Analysis

Uncertainty Analysis Overview

- Uncertainty Analysis was Conducted at 8 Different frequency bands at the following frequencies
- Uncertainty based on NIST nearfield18-term error model [3] and IEEE STD 1720
- Values computed inside the valid angle

Band	Frequency Band	OTA Test Frequency	Source Frequency	DUT	Probe	Uncertainty Main Beam (2σ)	Uncertainty -30 dB SLL (2σ)
L	1-2 GHz	1.5 GHz	1.5 GHz	SGH112	DLP-PNF-100	-	-
S	2-4 GHz	3 GHz	2.5 GHz	SGH260	DLP-PNF-200	±0.277	±1.379
С	4-8 GHz	5.5 GHz	5 GHz	SGH395	DLP-PNF-400	±0.230	±0.997
Ku	8-18 GHz	8.5 GHz	8.5 and	SGH820	DLP-PNF-800	±0.444	±1.060
		15 GHz	15 GHz			±0.410	±0.706
Ка	18-40 GHz	23 GHz	23 and	SGH2650	DLP-PNF-1800	±0.442	±0.855
		30 GHz	30 GHz			±0.519	±1.562
Q	33-50 GHz	40 GHz	40 GHz	SGH3300	DLP-PNF-3300	-	-
V	50-75 GHz	60 GHz	10 GHz	SGH5000	OEW5000	±0.388	±0.994
W	75-110 GHz	90 GHz	15 GHz	SGH7500	OEW7500	±0.426	±1.315

✓ Uncertainty Analysis Overview (1 – 110 GHz)

- Probe Calibrations (1-4) and DUT calibrations (5,6)
 - Analysis based on UPM calibration data
- Alias (8) and Truncation (9)
 - Processing Errors due sampling and scan size
- Positioner Errors (10,11)
 - Laser tracker data used to perturb ideal data to run through the transform
- Probe-DUT Coupling Room Reflections (12)
 - 1/4 wavelength offsets DUT offset from Probe
- Receiver Linearity (13)
 - Boresight Roll Method and Attenuator Checks

#	Uncertainty Term	Method of Evaluating
1	Probe relative pattern	Analysis, Probe Calibration Data
2	Probe polarization ratio	Analysis, Probe Calibration Data
3	Probe gain measurement	Analysis, Probe Calibration Data
4	Probe alignment error	Analysis, Mechanical SAT
5	Normalization constant	Analysis, SGH calibration data
6	Impedance mismatch factor	Analysis
7	DUT alignment error	Analysis, Hexapod Specs
8	Data point spacing (aliasing)	Measurement
9	Measurement area truncation	Measurement
10	Probe x, y-position errors	Analysis, Mechanical SAT
11	Probe z-position errors	Analysis, Mechanical SAT
12	Multiple reflections (probe/DUT)	Measurement
13	Receiver amplitude nonlinearity	Measurement
14	System phase error due to receiver	Analysis from RF FAT
	phase errors, flexing cables/rotary joints, and temperature effects	Drift Measurements
15	Receiver dynamic range	Measurement
16	Room scattering	Measurement
17	Leakage and crosstalk	Measurement
18	Repeatability /Random errors in	Measurement
	amplitude/phase	

✓ Uncertainty Analysis Overview (1 – 110 GHz)

- System Phase Errors (14)
 - Drift testing
- Receiver Dynamic Range (15)
 - Boresight Dynamic range measurements
- Chamber Scattering (16)
 - Fixed DUT offset from Probe with ¼ movement of probe and DUT Mast
- Leakage/Cross Talk (17)
 - Near-Field Scan with terminated cable that attaches to DUT
- Repeatability/Random Errors (18)
 - Back-to-Back measurement taken.

#	Uncertainty Term	Method of Evaluating
1	Probe relative pattern	Analysis, Probe Calibration Data
2	Probe polarization ratio	Analysis, Probe Calibration Data
3	Probe gain measurement	Analysis, Probe Calibration Data
4	Probe alignment error	Analysis, Mechanical SAT
5	Normalization constant	Analysis, SGH calibration data
6	Impedance mismatch factor	Analysis
7	DUT alignment error	Analysis, Hexapod Specs
8	Data point spacing (aliasing)	Measurement
9	Measurement area truncation	Measurement
10	Probe x, y-position errors	Analysis, Mechanical SAT
11	Probe z-position errors	Analysis, Mechanical SAT
12	Multiple reflections (probe/DUT)	Measurement
13	Receiver amplitude nonlinearity	Measurement
14	System phase error due to receiver	Analysis from RF FAT
	phase errors, flexing cables/rotary joints, and temperature effects	Drift Measurements
15	Receiver dynamic range	Measurement
16	Room scattering	Measurement
17	Leakage and crosstalk	Measurement
18	Repeatability /Random errors in	Measurement
	amplitude/phase	

Sample Uncertainty Analysis Results (2σ Results)

Uncertainty Analysis at 5 GHz

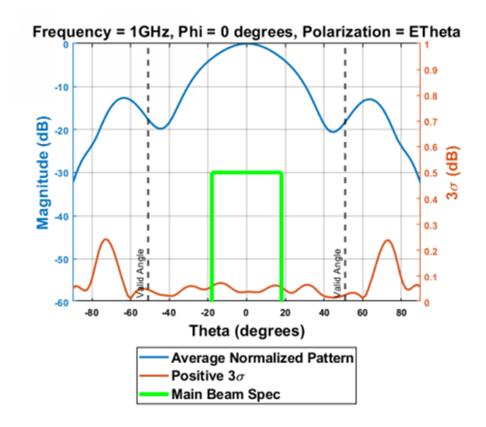
Term #	Term Name	ΔGain[dB]	Main Beam [dB]	Side-lobe@-30 [dB]	Side-lobe@-45 [dB]	Side-lobe ESS [dB]	Source of Data
Free	quency/Polarization		5	GHz Eф Polarization			
1	Probe Relative Pattern	N/A	N/A	±0.30	±0.45	N/A	Probe Calibration Data
2	Probe Polarization Ratio	NE	N/A	±0.002	±0.196	N/A	Probe Calibration Data
3	Probe Gain Measurement	±0.13	N/A	N/A	N/A	N/A	Probe Calibration Data
4	Probe Alignment Error	N/A	NE	±0.009	±0.012	N/A	Mechanical SAT
5	Normalization Constant	±0.12	N/A	N/A	N/A	N/A	SGH Calibration Data
6	Impedance Mismatch Factor	±0.138	N/A	N/A	N/A	N/A	Analysis
7	DUT Alignment Error	N/A	±0.001	±0.002	±0.012	-102.000	Hexapod Specifications
8	Data Point Spacing (Aliasing)	±0.008	±0.040	±0.190	±1.020	-63.090	Measurement
9	Measurement Area Truncation	±0.002	±0.193	±0.309	±1.608	-58.833	Measurement
10	Probe x,y-position errors	NE	±0.003	±0.027	±0.153	-79.991	Mechanical SAT/Analysis
11	Probe z-position errors	±0.003	±0.004	±0.016	±0.091	-84.533	Mechanical SAT/Analysis
12	Multiple Reflections (Probe/DUT)	±0.040	±0.068	±0.549	±2.713	-53.715	Measurement
13	Receiver Amplitude Nonlinearity	±0.026	N/A	N/A	N/A	N/A	Measurement
14	System Phase Error	NE	NE	±0.003	±0.015	-100.348	Measurement
15	Receiver Dynamic Range	N/A	NE	NE	±0.002	-120.188	Measurement
16	Room Scattering	±0.028	±0.050	±0.595	±2.916	-52.981	Measurement
17	Leakage and Crosstalk	±0.001	±0.001	±0.029	±0.112	N/A	Measurement
18	Random Errors	±0.012	±0.052	±0.420	±2.137	-56.090	Measurement
	Total Error	±0.230	±0.220	±0.997	±4.389		

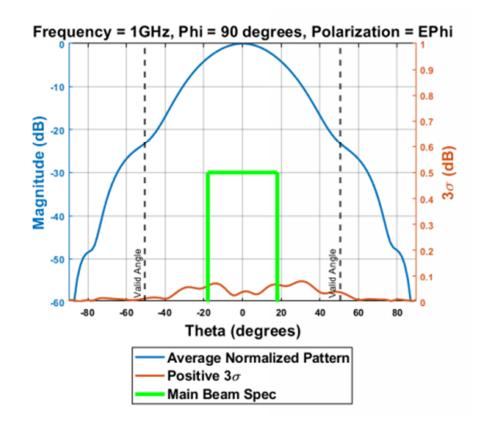
Uncertainty Analysis at 90 GHz

Term #	Term Name	Δ Gain [dB]	Main Beam [dB]	Side-lobe@-30 [dB]	Side-lobe@-45 [dB]	Side-lobe ESS [dB]	Source of Data
Freq	uency/Polarization	90 GHz Eφ Polarization					
1	Probe Relative Pattern	N/A	N/A	±0.30	±0.45	N/A	Probe Calibration Data
2	Probe Polarization Ratio	NE	N/A	±0.007	±0.116	N/A	Probe Calibration Data
3	Probe Gain Measurement	±0.31	N/A	N/A	N/A	N/A	Probe Calibration Data
4	Probe Alignment Error	N/A	NE	±0.010	±0.016	N/A	Mechanical SAT
5	Normalization Constant	±0.15	N/A	N/A	N/A	N/A	SGH Calibration Data
6	Impedance Mismatch Factor	±0.129	N/A	N/A	N/A	N/A	Analysis
7	DUT Alignment Error	N/A	±0.001	±0.001	±0.008	-105.688	Hexapod Specifications
8	Data Point Spacing (Aliasing)	±0.013	±0.053	±0.285	±1.493	-59.540	Measurement
9	Measurement Area Truncation	±0.006	±0.066	±0.160	±0.865	-64.596	Measurement
10	Probe x,y-position errors	±0.014	±0.056	±0.389	±1.989	-56.789	Mechanical SAT/Analysis
11	Probe z-position errors	±0.006	±0.016	±0.044	±0.243	-75.957	Mechanical SAT/Analysis
12	Multiple Reflections (Probe/DUT)	±0.216	±0.185	±1.086	±4.854	-47.516	Measurement
13	Receiver Amplitude Nonlinearity	±0.009	N/A	N/A	N/A	N/A	Measurement
14	System Phase Error	±0.013	±0.020	±0.060	±0.335	-73.111	Measurement
15	Receiver Dynamic Range	N/A	NE	±0.003	±0.014	-100.802	Measurement
16	Room Scattering	±0.044	±0.046	±0.311	±1.620	-58.762	Measurement
17	Leakage and Crosstalk	±0.002	±0.093	±0.176	±0.913	N/A	Measurement
18	Random Errors	±0.024	±0.019	±0.413	±2.102	-56.25	Measurement
Total Error (RSS)		±0.426	±0.236	±1.315	±5.569		

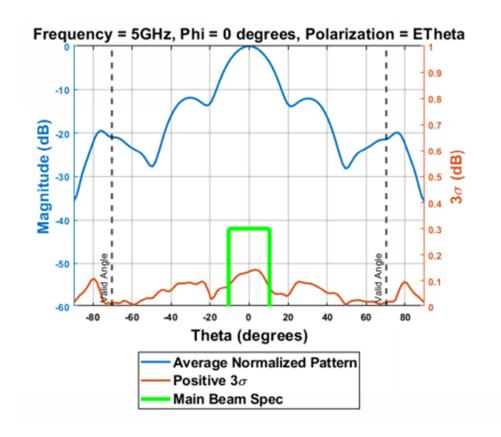
Antenna Gain Measurements

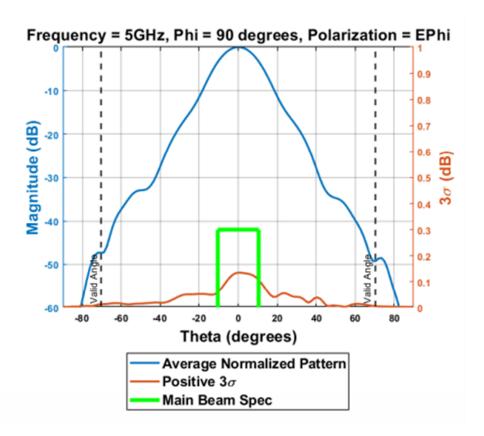
Antenna Gain Measurement Accuracy

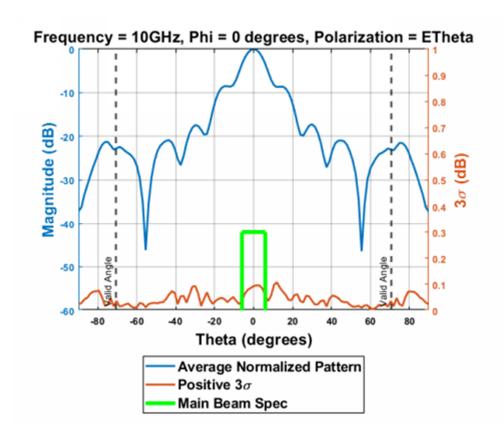


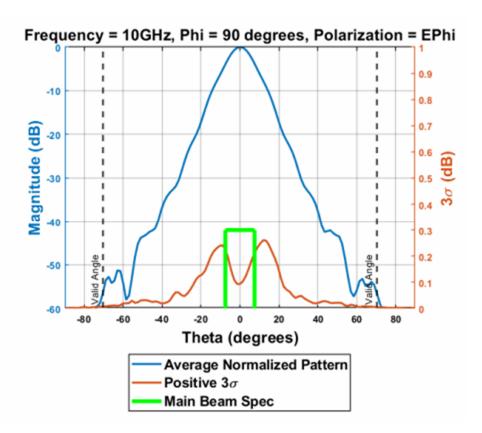

- 5 antenna measurements were taken at 1/8 wavelength Z-axis steps at each band
 - A mean of the 5 patterns was taken to determine the "Truth"
 - 3σ STD taken within the 3dB mean with was taken to determine a main beam metric
- Worst Case values for reported for Theta/Phi polarizations and band overlaps
 - Statement of work had a requirement to measure the 3σ gain accuracy
 - Compared 2σ values from the uncertainty analysis with the 3σ from the gain accuracy measurements
 - 3σ (99.7% confidence) should fall within the 2σ (95.4% confidence) interval

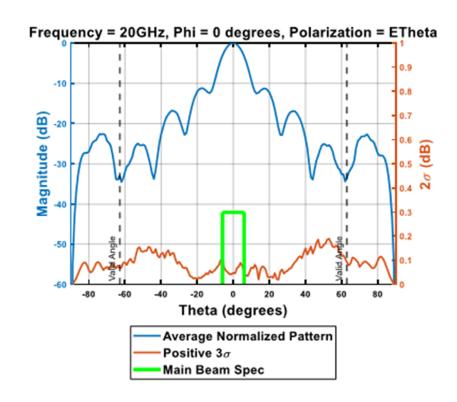
Band	Frequency Band	OTA Test	Source	DUT	Probe	Uncertainty	Main Beam Gain	Main Beam
		Frequency	Frequency			Main Beam	Accuracy	Gain Accuracy
						2σ [dB]	2σ [dB]	3σ [dB]
L	1-2 GHz	1.5 GHz	1.5 GHz	SGH112	DLP-PNF-100	-	±0.089	±0.133
S	2-4 GHz	2.5 GHz	2.5 GHz	SGH260	DLP-PNF-200	±0.277	±0.095	±0.142
С	4-8 GHz	5 GHz	5 GHz	SGH395	DLP-PNF-400	±0.230	±0.095	±0.143
X	8-12 GHz	8.5 GHz	8.5 GHz	SGH820	DLP-PNF-800	±0.444	±0.061	±0.092
Ku	12.5-18 GHz	15 GHz	15 GHz	SGH1240	DLP-PNF-800	±0.410	±0.125	±0.187
Ka	18-40 GHz	23 GHz	23 GHz	SGH2650	DLP-PNF-1800	±0.442	±0.110	±0.165
		30 GHz	30 GHz			±0.519	±0.029	±0.348
Q	33-50 GHz	40 GHz	40 GHz	SGH3300	DLP-PNF-3300	-	±0.102	±0.153
V	50-75 GHz	60 GHz	10 GHz	SGH5000	OEW5000	±0.388	±0.102	±0.263
W	75-110 GHz	90 GHz	15 GHz	SGH7500	OEW7500	±0.426	±0.178	±0.267

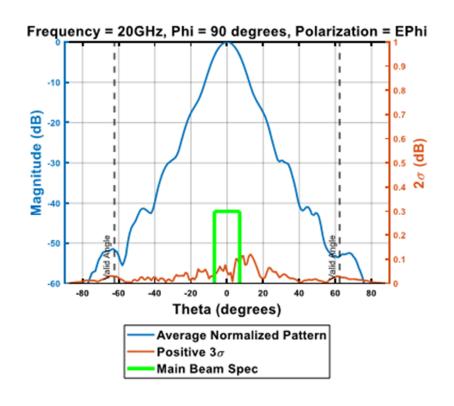


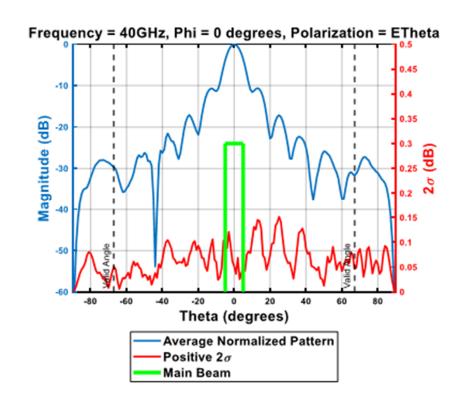


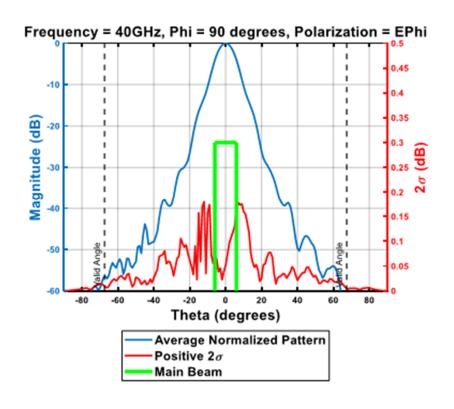


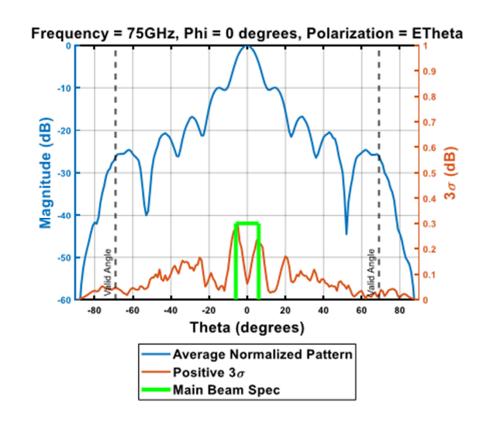


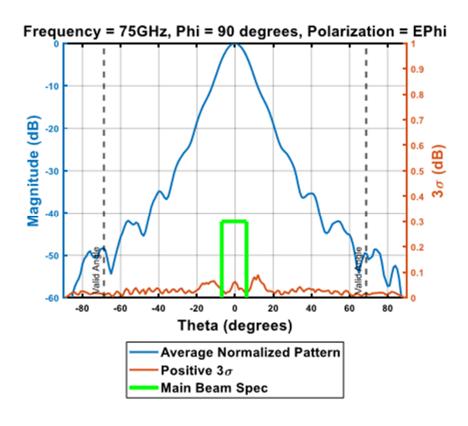


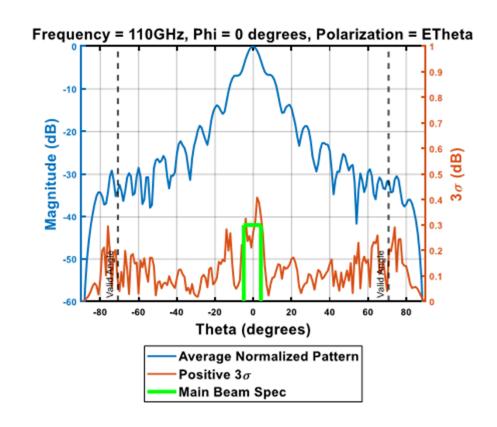


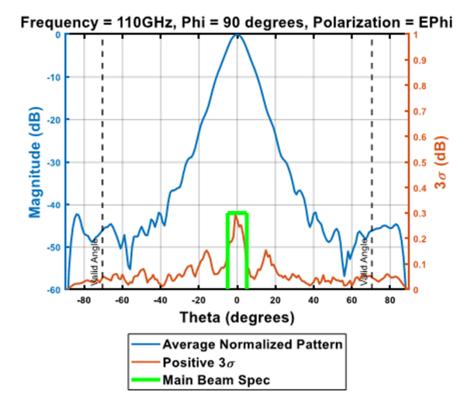






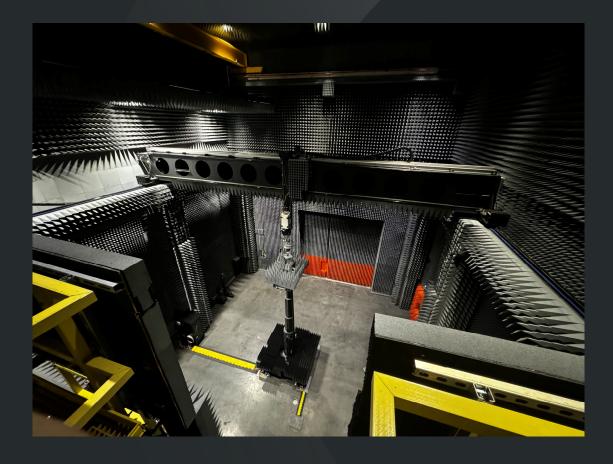






Summary and Conclusions

- NASA Commissioned a Large HPNF Measurement Facility
 - 10 m x 10 m Scan plane
 - 1 − 110 GHz
 - Antenna Gain Measurements and Radiation Patterns
 - Special Test modes
 - EIRP, G/T, IMD, Gain Compression, Pulsed Mode, Park and Probe
- Antenna Range is capable of measurement of very large antennas
 - DUT mast can be removed to allow for very heavy payloads on the floor
- Higher Frequency VDI units can further extend the maximum frequency range
- Future work can include integration of k-corrections for improvement on the measurement accuracies


References

- 1. IEEE Std 1720-2012 "Recommended Practice for Near-Field Antenna Measurements"
- 2. Cutshall, et, al (2022). A New Valid Angle Equation for PNF Measurements. 1-6. 10.23919/AMTA55213.2022.9955005.
- 3. A. G. Repjar, A. C. Newell, M. H. Francis "Accurate Determination of Planar Near-Field Correction
- 4. Parameters for Linearly Polarized Probes", IEEE Transactions on Antennas and Propagation, vol. 36, no. 6,
- 5. June 1988
- 6. A. C. Newell, R. D. Ward and E. J. McFarlane "Gain and Power Parameter Using Planar Near-Field Techniques", IEEE Transactions on Antennas and Propagation, vol. 36, no. 6, June 1988
- 7. F. Jensen, A. Frandsen, "On the number of modes in spherical wave expansion", AMTA Symposium, October 2004, Stone Mountain, GA, USA
- 8. MV-Plane User Manual
- 9. MV-Holography User Manual
- 10. MV-Echo User Manual

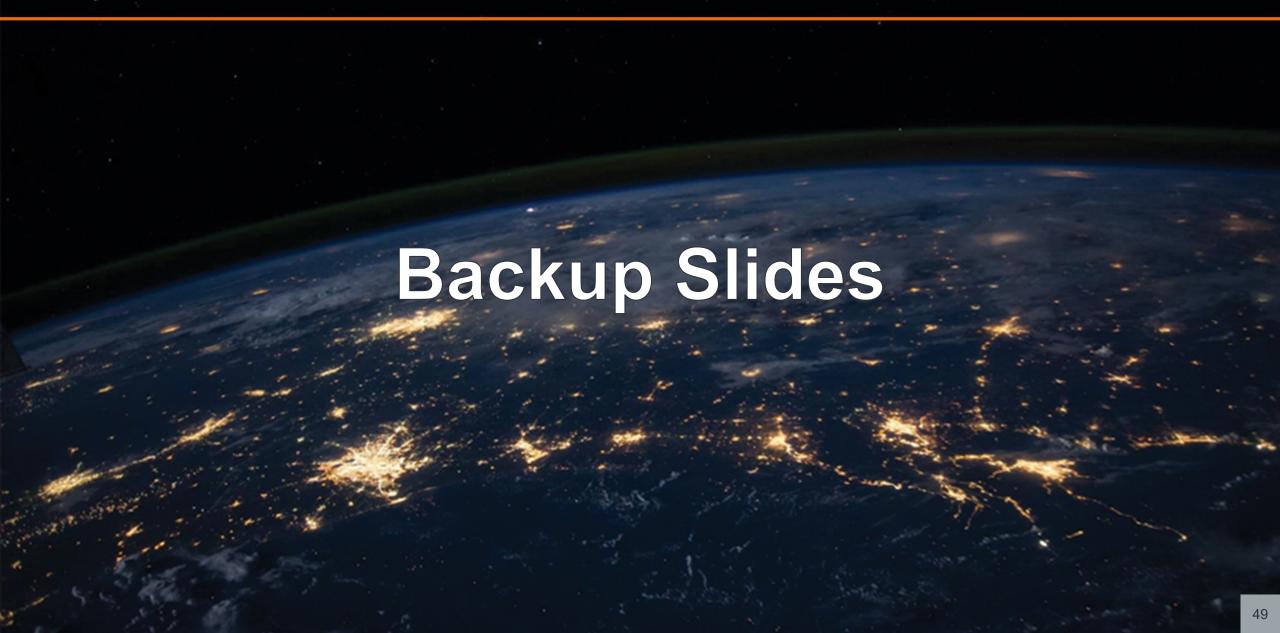
Thank you Questions?

ORBIT Advanced Technologies, Inc.

Domenic Belgiovane, Ph.D.

Principal Systems Engineer | Pre-Sales Support

Orbit Advanced Technologies, Inc. A Division of Orbit/FR, Inc.


650 Louis Drive, Suite 100

Warminster, PA 18974

Mobile: +1 419 231 3838

www.mvg-world.com

