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Why Use Hydrogen?

e Using hydrogen as a lift gas is not a novel concept. There are inherent risks
that can be mitigated or reduced that make the use of hydrogen feasible.
The lessons learned through historical use is invaluable.

* The cost of hydrogen is typically 5-10x less than helium and is readily
available worldwide (it can even be generated in remote locations which
greatly reduces the cost of transportation). This is the driving factor
towards the change in lift gas.

* There will be an approximate 8% increase in available lift which will likely
be offset for a need for additional ballast
O [2] BT-3812. Flight Information, Flights S-66 thru S-82 Using Hydrogen, Vol. 1. Tufts College.
Alvin Howell. 15JUL1953. Technical Report 3 Vol 1 Contract AF19(122)-63.

» “thermal unbalances” or radiation unbalances which cause the balloon to ascend or descend
separate from sunrise or sunset requires more ballast than for helium or ammonia

= Hydrogen has a higher thermal conductivity, specific heat capacity, and thermal diffusivity than
helium



* Before 1940s, most balloons used hydrogen as the lifting
gas. Helium was prohibitively expensive. Due to barrage
balloon use in the wars, the US began to produce and
stockpile helium as a matter of national priority.

* Since introduction of plastic balloons:
o Over 2000 identified scientific balloon flights using hydrogen
o Flights from 9 countries with 8 organizations

o NSBF/CSBF last identified balloon launch using hydrogen was in
1982

* Once helium became cheap enough, most/all organizations
moved to using it as a lift gas.

* In recent years, international partners sought return to
hydrogen before NASA considered it




1955 — Air Force Research Lab, 3 personnel severely burned by
molten polyethylene (shown is least injured).

1962 — UK, crewed balloon exploded and burned during
deflation after pulling rip panel, injuries unknown.

Late 1970s — Argentina Air Force, Balloon caught fire after
launch. No injuries.

1976 — CNES, Auxiliary balloon burst and straps in flight train
burned. No injuries.

1980 — CNES, Fire of inflation bench during test without balloon.
No injuries.

1980 — CSBF, Leak in diffuser ignited when diffuser placed in
inflation tube. No injuries.

1984- CNES, Fire in inflation sleeve. No injuries.
1988 — CNES, Balloon caught fire after launch. No injuries.

1992 — CNES, Fire at top of balloon that had no valve but a metal
plate with layer of foam. No injuries.

1999 — CNES, Balloon fire on launch pad after pause in launch
operations. No injuries.

2017 — World View, Balloon caught fire during passive abort. No
injuries but damage occurred to buildings due to overpressure.

Note: US and CNES data was most readily available and the success rate during these periods was still >90%




General Hazards

e High Pressure Risks
o Same as those for helium, mitigated through strict operational and training controls

* Not toxic but can cause asphyxiation
o Same as those for helium, mitigated by using in open air

* Hydrogen flame is not visible
If fire is suspected around fittings or in accessible area, a corn broom is effective for

detection
* Hydrogen has a wide flammability range (4-75% in air) and ignition energy can
be very low (17J)
o Mitigation through strict electrostatic discharge control methods and line purging with
pure nitrogen where feasible

* Flame and molten plastic from ignition/combustion event

ated through flame-resistant, anti-static coveralls (with gloves and potentially face

o Miti
shieFds or hoods) in addition to currently required hard hats, steel toes, eye and ear
protection

* Pressure wave from ignition/combustion event
o Calculate proper stand-off distances, limit personnel inside the hazard area
o Proper PPE for sound pressure levels and infrared exposure

O

These hazards are those that cause the most fear from personnel
without an intimate knowledge of the specific details of hydrogen
combustion events. The following slides work to broaden
understanding of the mechanisms and mitigations.
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Hydrogen Properties and Inherent Hazards

* Flammability Characteristics

o Extremely flammable with wide flammability range (4-75% concentration
in air) [5, 7]

= Buoyancy slightly mitigates this hazard by driving the flammable gas mixture i
upward at a rapid pace

o Minimal ignition energy required (0.02 mJ, 10x less than hydrocarbon
gases) [5, 7]

o Pure hydrogen exhibits more severe combustion behaviors than mixed
concentrations:

= Higher blast pressure and greater impulse
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= Larger flame size and more extensive damage potential [9] L ino, [4% Hy)
* Physical Properties Creating Risks - -
o Invisible flame and odorless gas complicates leak detection [5, 7] e e
o Hydrogen embrittlement can affect metal components over time [18] Source: [16] Ring, Stott, and Hales,
Potential f t it h idl | d th h Il Modeling the Risk of Fire/Explosion due
o Potential for spontaneous ignition when rapidly released through sma AT T e NS A R
orifice [5, 7] Interstage

o Convective and radiative heat transfer create hazards at varying
distances [8]



lgnition/Combustion Events

* Fire triangle
o ALL THREE COMPONENTS MUST BE PRESENT

* “Non-mass explosion, fragment producing”

* DoD 6055.09-M (Ammunition and Explosives
Safety Standard). Per that standard, hydrogen
is classified as Hazard Division 1.2 — “Non-
mass explosion, fragment producing”

o For each type of explosive, the hazards can be assessed
in four categories: firebrands, fragments, blast, and

Fuel

(Hydrogen)

thermal o
o For Division 1.2 hazards, the DoD standard states that Oxidizer Heat
fragments are the main hazard, with firebrands as the (Oxygen in Air) (Ignition Source)

secondary hazards

H, + O, ——> 2H,0 + Energy



Hydrogen burns in two modes

* Deflagration — flame travels through mixture at subsonic speeds

o This happens when an unconfined cloud of hydrogen-air mixture is ignited by a small
ignition source

Most likely o The flame will travel anywhere from ten to several hundred feet per sec.
o The rapid expansion of hot gases will produce a pressure wave

o Witnesses hear a noise (often loud) and feel a pressure wave that can damage
nearby structures

scenario

* Detonation — flame and shock wave travels together at supersonic speeds

o Often build up from ordinary deflagration in a confined or partly-confined mixture
(could happen inside the balloon or in folds, pockets of balloon)

o It takes a POWERFUL ignition source to produce a detonation in an unconfined
hydrogen-air mixture

o Pressure ratio across a detonation wave is about 20. When the wave strikes an
obstacle the wave is multiplied 2 to 3 times (so the ratio becomes 40 to 60)



Fire and Explosion Hazards

Per categories in DoD Ammunition and Explosives Safety Standard (DOD 6055.09-M)

Hydrogen: Classified as Hazard Division 1.2 — “Non-mass explosion, fragment producing”
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This slide was reproduced with permission of the author and contain video of hydrogen fires
Gerald Knoblach, Chairman and CEO of Space Data Corp — AIAA Balloon Sys TC Member
Erik Limpaecher, Chief Innovation Officer & Team Lead — Hydrogen Production Systems for Mach Industries



The Hindenburg Disaster

Primary hazard was firebrands, not hydrogen

Ehe New York Times ““The outer covering was much like sheets of Solid Rocket Motor grains.’ ...
Hydrogen May Not Have Caused The dope-impregnated canvas skins of 1930’s airships were chemically similar to the
Hindenburg's Fiery End rocket fuel used by the space shuttle’s solid boosters. ...Even the metal girders of
By Malcolm W. Browne the Hindenburg's inner framework were coated with a highly flammable substance”

- Addison Bain, head of NASA’s hydrogen program, in N.Y. Times, May 1997

12293 A.C.
Initial Hydrogen Explosion ° Subsequent Firebrand Hazard
(7 million cubic feet of H,) (doped fabric and painted girders)

This slide was reproduced with permission of the author and contain video of hydrogen fires
Gerald Knoblach, Chairman and CEO of Space Data Corp — AIAA Balloon Sys TC Member
Erik Limpaecher, Chief Innovation Officer & Team Lead — Hydrogen Production Systems for Mach Industries



<4 Al Overview

Atypical static shock from shoes on carpet, often felt as a mild
electric jolt, usually has a voltage between 2000 and 25,000

° Ground|ng Requ”'ements volts. The energy in a static shock is not typically high enough to
) . . . . cause harm, but it can be unpleasant. The energy of a static
o Maintain entire system at same electrical potential [1, 4, 14, 15] shock is related to both the voltage and the charge. ¢
i i i i When pulling film from the roll NASA measured
o Connect and verify grounding system before operations begin [4] 108'30§b\’§v er'we faled and Hlapped f arognd
1 I 1 and rubbed it the highest reading was aroun
o Ground both sides qf conr)ectlons before brea.kmg ’Fhem [4] 3000 Vi handhery 220 ractecand o ven]
o Incorporate grounding points throughout the inflation system [6] controlled test conditions.
. . . The minimum ignition energy (MIE) for a
e Static Electricity Management D i1t Frtogeriai byl .
S . . ] typically around 0.017 to 0.02 mJ. This translates to
o Increase humidity to reduce electrostatic discharge risk [1, 12, 14] a spark voltage of roughly 2000 V. [22]

o Use conductive flooring in hydrogen operations areas [5, 7]
o Apply detergent-water solution to plastic surfaces to increase conductivity [4, 6]
o Consider design modifications to inflation system to reduce static generation [10]

* Personnel Static Protection
o Wear anti-static clothing, leg static dissipators, and conductive footwear [1, 12, 14]
o Use pure cotton or Nomex garments; avoid synthetic materials [1, 5, 7]
o Require fire-resistant coveralls with hoods for complete protection [1, 19, 20]
o Note increasing prevalence of synthetic blends in modern clothing necessitates careful
selection [19]



lgnition Source Control

e Spark Prevention
o Eliminate friction sparks (hard objects shearing upon contact) [5, 7]
o Prevent impact sparks through tool drop-protection measures [5]
o Control electrical equipment (use intrinsically safe devices) [5, 7]
o Implement remote control of gas shut-off valves [10]

* Exclusion Zones

o Historic 50-150 foot exclusion zone around hydrogen operations [5, 13]
= New zones based on blast effects are needed
= Various models are available but validation is needed through additional testing
= Test data shows overpressure of approximately 1.8kPa at close range for 100% hydrogen balloon (1 m3)

[9]
X Tes3t6r(1)g ag scale that matches planned operations (+ 5000 m?3) is ideal but challenging [11] literature maxes out
at m

o Prohibit smoking, flames, and hot objects near hydrogen [5, 3]

o No welding or cutting operations near hydrogen storage or handling [5]

o Respect safety distances during critical operations [10]

o IR exposure decreases predictably with distance from combustion event [8]

o IR exposure decay based on ground level distances provides guidance for minimum safe
distances [8]



Current NASA Launch Exclusion Areas
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Pre-Launch Danger Area — Essentially a hazard area with a circle centered around the two
big hazards — the spool/launch size and the mobile launch vehicle/hanging payload side
with parallel leg lines along the flight train. These danger areas limit personnel to only
those who are trained/properly attired. This danger area does not change no matter the
wind conditions, launch site, etc. The circles are 96 m radius. (see diagram)

Launch Limit Area — Essentially the limits of the driveable surface of the mobile launch
vehicle. The vehicle will only travel when the balloon is released from the spool (and most
likely, before the payload is released from the vehicle). This is highly dependent on launch
site, surface conditions, etc.

Launch Danger Area — A 152 m (500 ft) buffer around the launch limit area — matches the
dimensions and shape of the launch limit area. This is required because if the vehicle stops
at the end of the launch limit area, the still tethered balloon has change to impact items
further out (due to wind, etc).

Launch Hazard Area — This is to be sure that personnel are watched/managed away from
the flight line but at altitudes before the balloon has been confirmed to have a healthy
ascent. The launch hazard area is a circle at low winds (due to its variableness) and because
a cone as winds increase. Within the launch hazard area, people are asked to move inside
(shelter-in-place) (well, except in approved viewing areas) and roadblocks are set up for any
roads within the hazard area to prevent traffic from coming in.

Wind | Drift FOS | LHA Radius = LHA Shape
Speed | Distance (Drift Distance * FOS) + Buffer
(knots) | (feet)
2 503 1.5 1355 1t / 0.22 nmi/0.25 mi / 0.41 kmm 360° about launch direction
6 1509 1.5 2864 ft /0.47 nmi/0.54 mi/ 0.87 km +60° about launch direction
12 3018 1.5 5127 £t / 0.84 nmi/0.97 mi / 1.56 km +45° about launch direction
16 4024 1.5 6636 ft/ 1.09 nmi/1.25 mi/ 2.02 km +30° about launch direction
NOTE: This data assumes an abort or termination of the balloon at the spool or the launch 14

platform prior to the payload being released.



|
rational Controls

Ope

Pre-Operation Planning
o Develop detailed procedures specific to operation scale [4, 10]
o Calculate required hydrogen volume and prepare emergency response plan [4]
o Train personnel thoroughly on procedures and emergency responses [10]
o Layout site to maximize safety, considering prevailing winds and access routes

[6]

Equipment Design Considerations

o Evaluate alternatives to traditional equipment components:
= Modified inflation bench system to avoid gas containment
= Two-gas approach: starting with helium to safely hold valve [10]
o Incorporate or modify destruct cords and safety lines for emergency deflation

[6]

Monitoring and Detection
o Utilize hydrogen gas detectors throughout operational area [5, 7]
o Perform continuous inspection during inflation to check for leaks [4]
o Monitor weather conditions, particularly wind speed and direction [4]
o Use appropriate pressure gauges and flow meters to track inflation progress [6]

Emergency Response
o Establish clear evacuation procedures and assembly points [5, 7]
o Train staff on appropriate fire response techniques [4, 5]

o Document and analyze potential overpressure effects to determine safe setback
distances [11]

o Implement balloon destruct mechanisms for emergency situations [6]




* Hardware and Process Improvements
o Addition of control operations to test system tightness
o Reinforcement of purge and drain operations
o Implementation of leak detectors and fail-safe valves

o Modification of the valve on balloon envelope top (and other
electronics)

o Consideration of hybrid gas approach (helium start, hydrogen
finish) [10]

o Redesign systems for automation, remove humans from the hazard |0+
area %

o Strict ESD controls

* Material Selection
o Ground cloths to protect balloon from surface irregularities [6]

o Appropriate inflation tubes with consideration for static and
operational needs

o Proper selection of diffusers and inflation equipment [6, 21]

o Review of all materials for static generation properties [1, 7, 14]
o Hydrogen-safe (non-embrittled materials)

o Proper PPE selection 16



Management and Sustainability

» Key Safety Factors
o Thorough training of operational team members
o Maintenance of safety measures and equipment

o Strict adherence to established procedures

= NASA values safety highly and BPO and CSBF both have internal and external safety
personnel that push for continuing education and monitoring of processes

o Careful analysis of any proposed changes [10]

* Long-Term Considerations
o Implement appropriate management supervision for hydrogen operations

o Analyze all modifications before implementation to verify safety is
maintained

o Ensure sustainability of safety culture and knowledge transfer [10]
o Document lessons learned from tests and operations [6, 21]



™ Is It Worth The Risk?

* Given costs for mitigations and the need to still use helium we could see a 50%
cost savings for lift gas for a domestic campaign

* Risks can be mitigated but not eliminated, however numerous changes to
technologies reduces risk significantly!

o Apply the three axioms for hydrogen safety [5]: adequate ventilation, leak prevention,
elimination of ignition sources
o In addition, implement: proper PPE, leak detection and fire detection, safety procedures

o At least two barriers or safeguards SHALL be provided to prevent a given failure from
mushrooming into a disaster. For instance: one safeguard against spillaﬁe might be a leak
detector which automatically shuts off the flow; a second might be a shield to protect other
equipment and a safe shelter for personnel

* In all of the incidents noted earlier with plastic balloons, to date, only one of
them had injuries and it was largely due to laxness around proper use of PPE.

* Industry has pushed for new uses for hydrogen since 1999 such as fuel cells in
cars, etc. The industry/infrastructure to support hydrogen use is more robust and
the safety procedures required have improved as well.




4 sl Ongoing Barriers / Next Steps

* Modifying public perception

* Process changes add complexity which may increase launch time and
reduce launch attempts

* There are still several unknown unknowns in this process which will
take testing, research and implementation to discover

* |Ignition tests with volumes larger or equal to current operations to
verify which models are best for calculating appropriate exclusion
zones (also called set-back distances and hazard areas)

* Developing detailed CONOPS for nominal launch and various launch
abort scenarios

* Publication of the detailed hazard analysis and approval by all parties



Thank You

Hydrogen Working Group Members

* International Working Group
o Includes international space agencies:
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e United States

O

Department of TransportationC}DOT): Regulates the transportation of hazardous materials, including hydrogen, via road, rail, and air
through its Pipeline and Hazardous Materials Safety Administration (PHMSA).

Occupational Safety and Health Administration (OSHA ): Ensures safe working conditions which include the storage and handling of
hazardous gases like hydrogen.

National Institute of Standards and Technology (NIST): Provides guidelines on safety standards for hydrogen.

Department of Energy (DOE): Through the Hydrogen and Fuel Cell Technologies Office, the DOE conducts research and provides guidelines
on hydrogen safety.

= Hydrogen and Fuel Cell Safety (HFCS) Website - A resource provided by the DOE's Hydrogen and Fuel Cell Technologies Office, offering information on safety,
codes, and standards relevant to hydrogen technologies.

Center for Hydrogen Safety (CHS): An initiative of the American Institute of Chemical Engineers (AIChE) dedicated to promoting hydrogen
safety and supporting the safe development, handlinF, and use of hydrogen across various industries. Provides resources, training, and best
practices for hydrogen safety and engages with the global hydrogen community to enhance safety protocols and standards.

National Fire Protection Association (NFPA) - - An international nonlprofit organization focused on eliminating death, injury, property loss,
and economic loss due to fire, electrical, and related hazards. Develops and publishes codes and standards for fire safety, including those
relevant to hydrogen.

= NFPA 2: Hydrogen Technologies Code provides comprehensive requirements for the design, installation, and operation of hydrogen systems to minimize fire
and explosion hazards.

= NFPAS55: Comcj)ressed Gases and Cryogenic Fluids Code includes guidelines for the storage, use, and handling of compressed gases, with specific sections
addressing hydrogen safety.

* European Union

European Union Agency for the Cooperation of Energy Regulators (ACER): Ensures the application of EU energy regulations which include
hydrogen as an emerging energy carrier.

European Union Regulation on the Classification, Labelling and Packaging (CLP): Part of REACH, this regulation ensures the safe handling
and labeling of hazardous materials including hydrogen.

European Hydrogen Safety Panel gEHSP): Part of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU), focuses on hydrogen safety and
provides recommendations for safety measures and practices.

Hydrogen Europe: A representative body of the hydrogen and fuel cell sector in Europe which also focuses on safety aspects.
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* International Agencies

o International Organization for Standardization (ISO): Develops and publishes international standards, including those related to the safe
handling and transportation of hydrogen (e.g., ISO/TR 15916:2004 Basic considerations for the safety of hydrogen systems).

o Intlernational Energy Agency (IEA): Works on global energy policies and includes a focus on hydrogen as part of future sustainable energy
solutions.

o United Nations Economic Commission for Europe (UNECE): Through the Global Forum for Road Traffic Safety (WP.1) and Inland Transport
Committee, it develops international regulations that include transport of hazardous materials like hydrogen.

o International Association for Hydrogen Safety (HySafe): Works on advancing hydrogen safety by promotin% and co3ating research and
development. Collaborates internationally to develop guidelines and best practices for safe hydrogen applications.
* Japan

Qﬁzﬂ_ ﬁ o Ministry of Economy, Trade and Industry (METI): Oversees hydrogen safety through its Agency for Natural Resources and Energy and
m—— ensures safety standards for the hydrogen economy.

o High Pressure Gas Safety Institute of Japan (KHK): Provides safety regulations and certifications for the use and handling of high-pressure
gases including hydrogen.
Australia
o Department of Industry, Science, Energy and Resources (DISER): Oversees hydrogen policies and safety regulations.
o Standards Australia: Develops standards that include guidelines for hydrogen safety.

Canada
o Canadian Standards Association (CSA Group): Develops safety standards for hydrogen technologies and systems.
o Natural Resources Canada (NRCan): Focuses on hydrogen as part of the country's energy strategy and includes safety considerations.

o Canadian Hydrogen and Fuel Cell Association (CHFCA): Provides guidelines and standards for hydrogen safety in Canada and promotes safe
practices within the industry.




Hydrogen Database Flights

. ; : * Sources:
This database lists hydrogen balloon flights for o Balloon TechnoloE I AT

plastic free balloons including an indicator for = Moby Dick flight records

success or anomaly and notations of any injuries. = Japanese conference reports
= NCAR flight records,
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