

Crew Health and Performance Integrated Data System Platform (CHP-IDSP) Project

2025 Aerospace Medical Association Annual Scientific Meeting

CHP-IDSP Senior Human Factors Engineer

Dr. Amanda Smith (KBR) | 06.04.25

95th Annual Scientific Meeting Disclosure Information

- I have no financial relationships to disclose.
- I will not discuss off-label use and/or investigational use in my presentation.

- For the past 60 years, crew have relied on **80+ expert ground personnel** (and their data insights) to provide **real-time guidance**
- Exploration mission communication delays necessitate a paradigm shift from ground to onboard
- Crew will be more reliant on in-flight data to support new technologies, execute complex tasks, make time-critical decisions, and troubleshoot anomalies
- Constraints for exploration mission data include limited processing, storage, and channel capacity
- Ground personnel must **maintain situation awareness** of issues that may impact crew health and performance
- Currently data is spread across many systems and often requires cumbersome transfer and packaging; crew often cannot access this data

CHP-IDA's Goals for Exploration Missions

The Crew Health and Performance Integrated Data Service Platform (CHP-IDSP) is a cohesive back-end platform for acquiring, processing, storing, and distributing integrated CHP data from disparate sources for both crew and ground users.

Goals for Exploration Missions:

- To *integrate* CHP relevant data from disparate sources, systems, and applications to enable advanced analytics and support tools.
- To *provide a platform* for CHP application developers and authorized end users to access the data they need to meet specific mission needs.
- To synchronize CHP mission data, as part of the larger space mission architecture, across vehicles, habitats, and on the ground.

Crew Health and Performance (CHP) Domains and Data

CHP Flight Systems

Ground Ops

- Surgeon Support
- Procedures
- Mission Planning
- Risk Assessment
- Console Support

Countermeasures

- Exercise
- Nutrition
- Cardiovascular
- Immune
- Microbial ...

Behavioral Health

- Monitoring
- Team
- Workload
- Sleep
- Recreation

Medical Capability

- Clinical Care
- Imaging
- Laboratory
- Medication
- Dental

Environmental

- Air/Water
- Toxicity
- Radiation
- Acoustic
- Microbial

EVA Health

- DCS
- Performance
- Pre-breathe

- Domains depend on data to monitor crew health and performance and to characterize, mitigate, and reduce risks
- CHP data exists in many forms, each with different properties, including:
 - Event data
 - Time series data
 - Analysis results and reports
 - Descriptive and predictive analytics

- Photo, video, audio files
- Consumables and inventory
- Environmental data
- Sensor data

Deriving CHP Data Needs

Human-Centered Design Process

Research

Build a mental model of important activities, related data, transfer processes, inefficiencies, and pain points across user roles within each CHP domain.

- Crew Comments Database
- Procedures
- Interview domain SMEs

Task & Flow

Identify current data sources and data types to understand how information is transferred and consumed for successful task completion.

- Diagram ISS data flow across user roles
- Create task lists

Scenario & Core

Identify use cases that communicate how CHP-IDSP core platform services can enable new technologies and improve workflow.

- Select scenarios with stakeholder input
- Create hypothetical CHP-IDSP data flows and task lists

Develop & Demo

Support software
development and endto-end (E2E)
demonstrations through
gathering representative
data and prototyping.

- Incorporate representative data sets
- Utilize prototypes to communicate IDSP narrative
- Collaboration with xEHR

Chest Pain Scenario Research

Key Takeaways

Inefficiencies and Pain Points

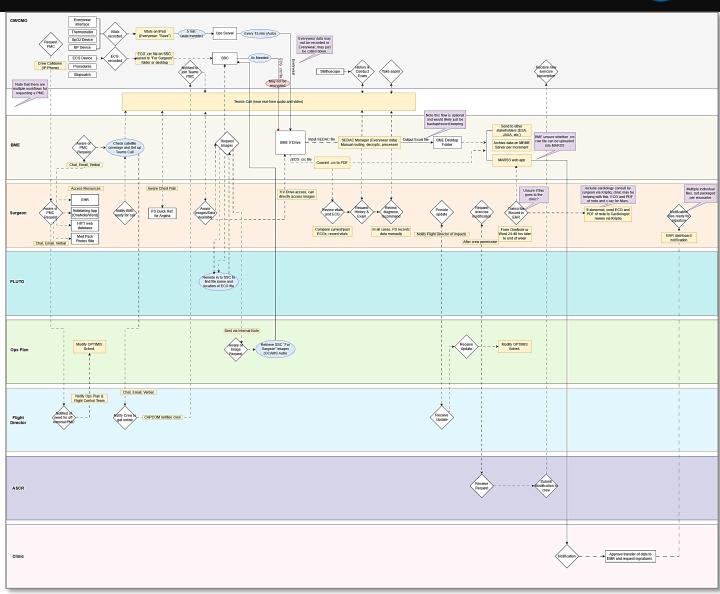
- Manual data collection and transfer using different protocols (space to ground)
- Verbal (call-down) transfer of information by crew to flight surgeon on the ground
- Flight surgeons often record this information in external application (e.g., OneNote, Word) for later transcription
- Biomedical Engineers (BMEs) follow manual data retrieval, decryption, formatting, analytics, correlation, packaging, and archiving process
- BMEs manually disseminate data to stakeholders using different protocols

Lack of Situation Awareness

- Crew do not have access to medical information onboard (i.e., EHR)
- Ground is not always aware that medical data exists and is ready for download, review, and ingesting into the clinic EHR, especially for unscheduled events

Multiple data sources and types

- Equipment (thermometer, blood pressure, SpO2, ECG, stethoscope, labs)
- Sensors (discrete, tabular), survey/form, imagery, audio files, historical data, messages



Chest Pain Scenario Research

Current ISS Chest Pain Data Flow

- Understanding current processes helps identify gaps for exploration
- Successful resolution requires awareness and collaboration between many roles
- Many manual processes
- Accurate assessment relies on near real-time communications
- Data post-processing can delay record completion

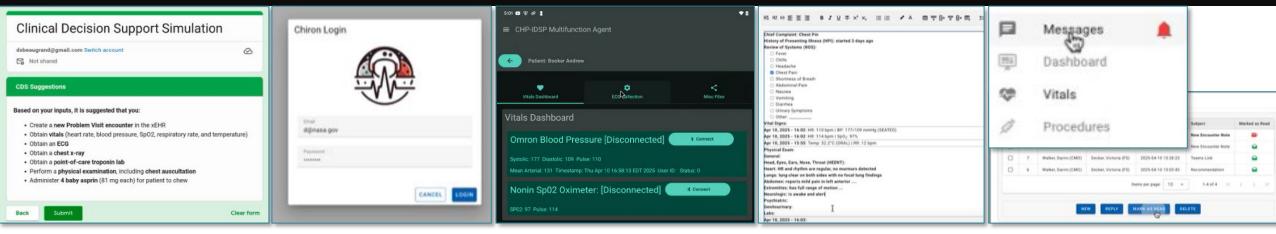
Chest Pain Scenario Summary & CHP-IDSP Capabilities

Capabilities

Data Ingestion & File Management

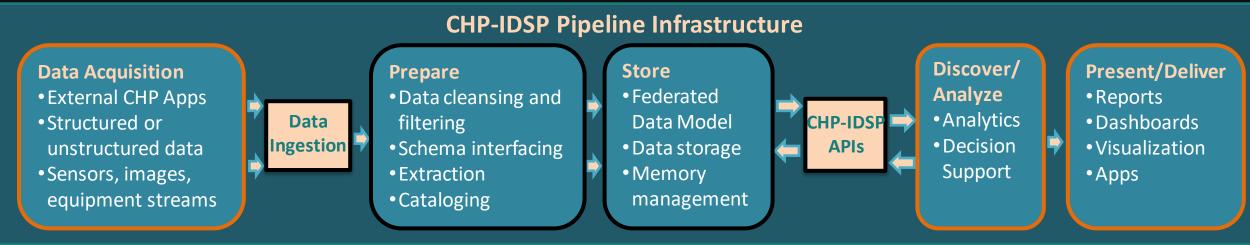
- Schedule & Prioritize Data Synchronization
- Notifications & Messaging

Authentication & Authorization


Scenario

- Prior to the mission, CHP-IDSP ingests and stores relevant crew medical information onboard.
- A crewmember presents with chest pain. The crew medical officer (CMO) enters details of the complaint into a **Clinical Decision Support** (CDS) tool and receives a suggested course of action.
- The CMO logs in to the xEHR and creates a new patient encounter, which then notifies the flight surgeon of an emergency.
- CHP-IDSP ingests and transfers vitals (blood oxygen level, heart rate, blood pressure) and ECG data into the xEHR.
- The CMO manually enters temperature and respiratory rate, and reviews past medical history, current medications, and allergies in the xEHR.
- **CHP-IDSP** ingests and transfers **audio files**, captured with a stethoscope, during the CM's physical exam. The CMO records the findings as **encounter notes** in the xEHR.
- The CMO signs and submits the patient encounter and sends a message to the Flight Surgeon (FS).
- CHP-IDSP syncs the vehicle data to the ground.
- The FS receives the message and notification of the new chest pain encounter.
- The FS logs in to the xEHR, reviews the data and notes, and amends the encounter to provide recommendations for follow-up monitoring and treatment.
- CHP-IDSP syncs the ground data to the vehicle.
- The CMO receives a notification of the updated information.

Chiron Integration Example



- In 2024, CHP-IDSP began integration with the exploration EHR (xEHR), Chiron
- CHP-IDSP provides the capability to ingest and transfer data into Chiron
- Human-in-the-loop (HITL) proof-of-concept demonstrations were conducted in the CHP-IDSP test bed at Johnson Space Center
 - Participants completed representative tasks (e.g., data collection, transfer, messaging)
 - All data and files relevant to the encounter were packaged to the event
 - The demonstration showcased sync and notifications between vehicle and ground instances of CHP-IDSP and Chiron

Chiron Chest Pain Scenario Integration Example

CHP-IDSP services provided:

- Ingestion, initial processing, and automatic storage of vitals, ECG data
- CHP-IDSP Application Programming Interface (API) to manage and transfer data to Chiron
- Integration of data accessible by authorized users
- Automatic sync between vehicle and ground instances of CHP-IDSP and Chiron
- Messaging and automatic notifications

Chest Pain Scenario Featured CHP-IDSP Benefits

- The chest pain scenario is off-nominal event that currently combines many types
 of data, involves multiple end user roles, requires near real-time communication,
 manual transfer and data correlation, and lacks notifications
- Impact with CHP-IDSP may be studied using models, demonstrations, and HITL tests
- Benefits with a CHP-IDSP include:


Capability	Increased Efficiency	Increased Accuracy	Decreased Workload	Increased Awareness
Automated Data Ingestion and File Management	Х	Х	X	X
Data Synchronization	X	X	Х	
Automated Transfer to Authorized Personnel	Х	X	Х	
Notifications and Messaging	Х		Х	Х

The **Crew Health and Performance Integrated Data Architecture (CHP-IDSP)** is a cohesive *backend platform* for *acquiring, processing, storing,* and *distributing* integrated CHP data from *disparate sources* for *both crew* and *ground users*.

- CHP-IDSP is a *Path-to-Flight* project, developing a *low initial cost* reference implementation
- Discover and prove out concepts on the ground, using human-centered methods
- Establish a foundation for a flight technology demonstration using CHP-IDSP
- Provide IDSP technology to the CHP community

- Steve Duran, Project Manager, NASA JSC
- Darrius Garrett, Project Manager, KBR Human Health and Performance Contract
- Dennis Beaugrand, Senior Software Engineer, Alidyne
- Melissa Lyons, Systems Engineer, Alidyne
- Michele Beaugrand, Project Engineer, Alidyne
- Austin White, Software Engineer, Alidyne
- Cornelya Howard, Software Engineer, KBR
- Jeff Holland, Software Engineer, Alidyne
- Braeden Conrad, Test Bed Lead, NASA JSC

Thank You!

amanda.l.smith-1@nasa.gov

