

Apollo Next Generation Sample Analysis (ANGSA) samples: Preliminary Examination of Double Drive Tube Samples 73001 and 73002 and Lessons Learned for Returning to the Moon with Artemis.

^{1,2,3}Juliane Gross, ¹Ryan A. Zeigler, ⁴Andrea B. Mosie, ⁴Charis Krysher, ⁴Scott A. Eckley, Richard A. Ketcham, ⁵Romy D. Hanna, ⁵David Edey, ⁴Jeremy J. Kent, ¹Francis M. McCubbin, ⁶Francesca McDonald, ^{6,7}Timon Schild, ⁸Paul G. Lucey, ⁸Lingzhi Sun, ⁸Abigail Flom, ⁹Rita Parai, ¹⁰Alex Meshik, ¹⁰Olga Pravdivtseva, ¹¹Noah E. Petro, ^{12,2}Charles K. Shearer, and the ¹³ANGSA Science Team.

¹Astromaterials Acquisition and Curation Office, NASA Johnson Space Center, Houston, TX, USA

²Lunar and Planetary Institute, Houston TX, USA

³The American Museum of Natural History, Dept. Earth and Planetary Sciences; New York, NY, USA

⁴GeoControl Systems Inc., Jacobs JETS Contract, NASA Johnson Space Center, Houston, TX, USA

⁵Jackson School of Geosciences, University of Texas, Austin, TX, USA

⁶European Space Agency, ESTEC, Noordwijk, Netherlands

⁷ now at European Space Resources Innovation Centre, ESRIC, Luxembourg,

⁸Department of Earth Sciences, Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Manoa, HI, USA

⁹Department of Earth, Environmental and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130 USA

¹⁰Physics Department, Washington University, Saint Louis, MO 63130, USA.

¹¹Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

¹²Dept. of Earth and Planetary Science, Institute of Meteoritics, University of New Mexico, Albuquerque, New Mexico 87131

¹³ Apollo Next Generation Sample Analysis (ANGSA) Science Team, <https://www.lpi.usra.edu/ANGSA/teams/>

Key points:

1. Curation plays a crucial part in all stages of the Artemis missions to return samples, to ensure the integrity, and maximize their scientific return.
2. Preliminary examination of 73001/2 represents the first modern dissection of an Apollo core and helps us prepare for Artemis samples return.
3. Samples returned from the surface and subsurface of the Moon during upcoming Artemis missions are critical for informing future exploration.

34 **Abstract:**

35 During the six Apollo missions, astronauts collected 2196 lunar samples, nearly all of
36 which have been studied over the past five decades. Six Apollo samples remained unexamined
37 until 2019, saved to be analyzed by the next generation of lunar scientists using advanced mod-
38 ern laboratory facilities. Now more than 50 years after Apollo, NASA is returning to the Moon
39 with Artemis and will return geologic samples from a different region of the lunar surface than
40 Apollo. Curation will play an instrumental role in helping to prepare for the safe return of these
41 valuable samples, ensuring their integrity during all stages of the missions, and thus maximizing
42 their scientific return. To prepare for the return of these samples, NASA initiated the Apollo
43 Next Generation Sample Analysis (ANGSA) Program to open previously unstudied samples in-
44 cluding unopened double drive tube 73002 and 73001 (also vacuum-sealed) from the Apollo 17
45 mission to the Taurus-Littrow Valley. The ANGSA program was designed to function as a low-
46 cost analog sample return mission and served as a testing ground to understand processes, update
47 techniques, and prepare for the preliminary examination (PE) for the to-be-returned lunar sam-
48 ples with Artemis. New and advanced curation techniques were developed and applied to support
49 the analyses of 73002/73001 during the PE. Furthermore, cutting-edge analytical instruments
50 such as X-ray Computed Tomography were utilized to aid in PE that were unavailable during
51 Apollo. These efforts are equipping the Artemis generation for future lunar missions and lessons
52 learned from PE of ANGSA samples will be directly applied to Artemis.

53

54 **Plain Language:**

55 During the six Apollo missions, astronauts collected 2196 lunar samples, nearly all of
56 which have been studied over the past 50 years. Six Apollo samples have been saved to be ana-
57 lyzed by the next generation of lunar scientists, using better and more advanced instruments.
58 Now more than 50 years after Apollo, NASA is returning to the Moon with Artemis to bring
59 back geologic samples from a different region of the Moon than Apollo. Curation will play an
60 instrumental role in helping to prepare for the safe return of these valuable samples. To prepare
61 for the return of these samples, NASA initiated the Apollo Next Generation Sample Analysis
62 (ANGSA) Program to open the previously unstudied samples including double drive tube 73002
63 and 73001 from the Apollo 17 mission to the Taurus-Littrow Valley. The ANGSA program was
64 designed as a low-cost analog sample return mission to test and update processes and techniques

65 for the preliminary examination (PE) in preparation of the soon-to-be returned samples with Artemis.
66 These efforts and lessons learned are equipping the Artemis generation for future lunar
67 missions and sample return from the Moon.

68

69 **Keywords:** Moon, Artemis, Apollo Next Generation Sample Analysis (ANGSA) initiative, curation,
70 preliminary examination, X-ray computed tomography, gas extraction, dissection, Apollo
71 73002, Apollo 73001, drive tubes.

72 1. Introduction

73 The 382 kg of returned samples from the six Apollo missions provided for the first time the
74 opportunity to study the Moon in detail with samples. From these samples we learned that the
75 Moon serves as a museum of planetary history for the Earth and inner solar system, recording
76 and preserving events that happened billions of years ago (e.g., Crawford et al., 2014, 2021).
77 Most if not all the returned samples represent either samples of the primary crust, additions made
78 to the crust, or modifications made to the crust (Figure 1) – the latter two are often referred to as
79 “secondary crust” – and serve as the cornerstone of our understanding for lunar and planetary
80 science (e.g., Gaddis et al., 2023; Elardo et al., 2023; Gaffney et al., 2023; Neal et al., 2023 and
81 references therein). Apollo samples are used to further our understanding of lunar and solar sys-
82 tem history and dynamics, including (Figure 2):

- 83 a) calibrating compositional information obtained by Earth-based telescopic observations
84 (e.g., Charette et al., 1974) and space craft remote sensing instruments in orbit or when
85 they fly past the Moon (e.g., Lucey et al., 1995, 1998, 2000a, 2006, 2017; Elphic et al.,
86 1998, 2000, 2002; Feldman et al., 1998, 2000; Lawrence et al., 1998, 1999, 2000; Green et
87 al., 2011; Grande et al., 2001; Prettyman et al., 2006; Athiray et al., 2013; Donnaldson-
88 Hanna et al., 2017; Sato et al., 2017; Naito et al., 2018; Swinyard et al., 2009; Jones et al
89 2020; Sun et al., 2021a);
- 90 b) calibrating the lunar crater counting curve by providing absolute ages of sampled surface
91 features (e.g., Hiesinger et al. 2000, 2003, 2010, 2011, 2012; 2023; Lucey et al. 2000b;
92 Nyquist et al. 2001; Gaffney et al. 2008);

93 c) providing porosity and density data to understand global gravity datasets such as those pro-
94 duced by the Gravity Recovery and Interior Laboratory (GRAIL) mission (e.g., Wieczorek
95 et al., 2013; Zuber et al., 2013; Kiefer et al. 2014);
96 d) revealing a variety of lunar evolutionary processes through sample petrology and geochem-
97 istry such as magma ocean evolution, volcanism, and core formation processes (e.g., Wood
98 1975; Simon et al., 1983, 1984; Hallis et al., 2010; Fagan et al., 2013; Gross et al., 2014;
99 2020; Gross and Joy, 2016; Elardo et al., 2023; Head et al., 2023; Gaffney et al., 2023);
100 e) identifying magnetic properties of samples to understand the interior structure of the Moon
101 including the life span of a lunar dynamo (e.g., Tikoo et al., 2012, 2017; Wieczorek et al.,
102 2023);
103 f) helping us recognize lunar meteorites (first meteorite recognized coming from the Moon
104 was Allan Hills A (ALHA) 81004) which are expanding our insights into regions not sam-
105 pled by Apollo (e.g., Treiman and Drake, 1983; Laul et al., 1983; Delano 1991; Joy et al.,
106 2023);
107 g) finding exogenic material within the Apollo collection that are shedding light on our solar
108 system dynamics including the timing and delivery of material to the Earth-Moon system at
109 different times in early solar system history (e.g., Day et al., 2006; Crawford et al., 2010;
110 Joy et al., 2012, 2020; Liu et al., 2015; Elsila et al., 2016; Benna et al., 2019; McIntosh et
111 al., 2020);
112 h) examining changes in solar wind particle production over the last 4.5 billion years (e.g.,
113 Nichols et al., 1994; Wieler 2016; McLain et al., 2021), and gaining insights into the loca-
114 tion within our galaxy through cosmic X-rays and galactic X-rays (e.g., Simpson 1983;
115 Eugster et al., 1984);
116 i) providing insights into exoplanet research (e.g., Saxena et al., 2019; Demidova & Badyu-
117 kov, 2023), and thus, enabling science that goes beyond our own solar system.

118 Furthermore, Apollo samples are used to develop a greater understanding of crew health and
119 performance on deep space missions, and for performing physical science investigations in the
120 unique lunar environment (e.g., Wagner, 2006; Khan-Mayberry, 2008; James and Khan-
121 Mayberry, 2009; Cain, 2010). Now more than 50 years after Apollo, NASA is returning to the
122 Moon with Artemis and will land the first woman, first person of color, and international partner
123 astronaut on the Moon and will return geologic samples from a different region of the lunar sur-

124 face than Apollo. Rock, regolith, and core samples to be returned from the surface and subsur-
125 face of the Moon during the upcoming Artemis missions are critical to multiple mission priori-
126 ties, including science, in situ resource utilization (ISRU), and for informing future exploration
127 and long-term Moon to Mars (M2M) goals. Curation will play an instrumental role in helping to
128 prepare for the safe return of these valuable samples, ensuring their integrity during all stages of
129 the missions, including their long-term storage after return, and thus, maximizing their scientific
130 return. As demonstrated by Apollo, Luna, and multiple robotic sample return missions from oth-
131 er destinations, careful and thorough sample curation of collected geologic samples returned to
132 Earth will continue to provide answers to critical science questions decades after they were col-
133 lected (e.g., Simon et al., 1982; Lentfort et al., 2021; Qian et al., 2021; He et al., 2022; Ito et al.,
134 2022; Fu et al., 2022; Dartois et al., 2023).

135 During the six Apollo missions to the Moon, 2,196 individual Apollo samples were collected
136 by the astronauts from the lunar surface and subsurface; nearly all of these have been studied to
137 various degrees over the past five decades of lunar science (e.g., Pernet-Fisher et al., 2019; Zei-
138 gler et al., 2019). However, six samples were preserved and remained unstudied, unopened, or
139 sealed prior to 2019, with the goal that a subset of these samples would be opened by the next
140 generation of lunar scientists to leverage the world's state-of-the-art laboratory facilities, and
141 thus, enable a multitude of sensitive analyses that were not possible at the time the samples were
142 returned. The six unopened and sealed samples include unsealed drive tube samples 73002 and
143 70012; sealed drive tube samples 73001 and 69001; sealed bulk soil sample 15014; and frozen
144 basalt sample 71036. Moreover, there was an additional collection of Apollo 17 core and shaded
145 soil samples (70001, 70002, 70003, 70004, 70005, 70006, 70180, 71036, 72320, and 76240) that
146 were initially processed under nominal laboratory conditions in an N₂ cabinet at room tempera-
147 ture, but placed into cold storage (-20°C) within one month of their return to Earth, and that have
148 remained largely unstudied since then.

149 To prepare for Artemis and the return of new lunar samples, NASA initiated the Apollo Next
150 Generation Sample Analysis (ANGSA) Program for multi-generational consortium studies using
151 the unopened, and unstudied Apollo samples. ANGSA served as a testing ground to understand
152 curation processes, update techniques, and prepare for the preliminary examination (PE) of new-
153 ly returned samples with Artemis. It was designed to function as a low-cost analog sample return

mission in which the consortium used cutting edge techniques to address primary science goals from the Apollo mission. For ANGSA 1.0, nine Principal Investigators (PIs) were selected to study frozen samples and the double drive tube samples 73001 and 73002: Jessica Barnes (University of Arizona), Kate Burgess (Naval Research Laboratory), Barbara Cohen and Natalie Curran (co-PIs; NASA Goddard-GSFC), Darby Dyar (Mount Holyoke College/PSI), Jamie Elsila-Cook (NASA GSFC), David Blake, Richard Walroth, and Jeff Gillis-Davis (co-PIs; NASA Ames, NASA Ames, Washington University St. Louis, respectively), Alex Sehlke (NASA AMES), Charles Shearer (University of New Mexico), and Kees Welton (University of California Berkeley) (for more details see Shearer et al., 2022; Shearer et al., 2024). These PI's led teams of scientists tackling various aspects of Apollo 17 samples but worked together as a larger consortium to attempt to connect the seemingly disparate studies into a coordinated effort. Lessons learned from this effort will help us better prepare for the upcoming return of samples from the Artemis mission.

The first step in the ANGSA sample analyses was the Preliminary Examination (PE) of the samples. PE of returned lunar samples is a science-enabling activity only, and thus, distinct from science (Figure 3) and represents the initial step for ensuring the careful preservation of lunar materials for future research (McCubbin et al., 2019). Prior to PE, basic characterization of these samples took place to document exactly how they existed when their containers were opened (Figure 3). PE involves documenting and characterizing the samples sufficiently to produce an initial sample catalog with sufficient information about the samples that scientists can use it to select and request the most applicable samples for their own research studies. PE ends once the initial sample catalog is released, but extended examination (either through work within the curation office, or ongoing PI studies) results in updates to the sample catalog and is an ongoing process that lasts as long as there are lunar samples remaining in the collection. In addition, when conducting PE, it is critical to find a balance between sample characterization and not conducting scientific research that should be PI-led and completed at a later date. This balance needs to be optimized to minimize unnecessary sample consumption due to a lack of detailed information in the catalog (e.g., using a sample that doesn't contain the necessary components) while still enabling unexpected discoveries within the samples during scientific studies.

183 Preliminary Examination for 73002 started prior to the COVID-19 pandemic with selected
184 members of the consortium study, but the curation lab was shuttered at the start of the pandemic
185 in mid-March, 2020; after the Apollo curation facility partially reopened in August/September of
186 2020, PE was performed on 73002 and 73001 with the curation team only. These initial steps in
187 the processing of the core drive tubes represent the first modern dissection of an Apollo core and
188 allow us to prepare for Artemis samples and their return to Earth. Here we focus on the physical
189 history, the process of physical dissection, gas extraction, and the initial characterization of sam-
190 ples 73001 and 73002. The data presented here are the results of the preliminary examination of
191 the samples. Processing of the frozen samples in a N₂-purged environment, including new basalt
192 71036, will be reported elsewhere.

193 **2. Physical history of double drive tube 73001/73002**

194 The first steps of preliminary examination for crew-collected and returned samples takes
195 place long before they are collected. For 73001 and 73002, the Apollo 17 astronauts Eugene A.
196 Cernan and Harrison H. Schmitt gathered as much data as possible about the lunar surface from
197 where the samples are gathered, including photographs, crew descriptions, and context images of
198 the core location (Feist et al., 2017; <https://apolloinrealtime.org/17/?t=144:30:37>).

199 **2.1 Collection of 73001/73002 on the lunar surface**

200 Apollo samples 73001 and 73002 were collected in a double drive tube (Allton, 1989) on the
201 presumed landslide deposit on the floor of the Taurus-Littrow Valley, at the rim of Lara Crater
202 and the surface expression of the Lee-Lincoln Scarp during the second Extra Vehicular Activity
203 (EVA) of the Apollo 17 mission (Schmitt et al., 2017). Each drive tube is a hollow, thin-walled
204 aluminum tube, 35 cm long with an inner diameter of 4.1275 cm. These tubes are threaded to-
205 gether to form a 70 cm long tube that was hammered into the surface by Apollo 17 astronaut
206 Cernan to record and preserve any potential subsurface stratigraphy and to collect any gasses that
207 may have been emanating from the lunar interior along the Lee-Lincoln scarp. The lower drive
208 tube had a stainless-steel edge magna-formed to the end of it to act as a drill bit that would help
209 drive the tubes into the lunar subsurface more easily (Allton, 1989). After the double drive tube
210 was removed from the lunar subsurface, a small amount of the core material from the bottom of
211 the lower drive tube, 73001, fell out of the core during the recovery process before a Teflon cap

212 could be attached (Butler, 1973). The double drive tube was then separated into two 35 cm long
213 drive tubes by unscrewing them. An unknown amount of material fell out of the bottom of the
214 upper drive tube, 73002, during the securing process on the lunar surface (Butler, 1973). Drive
215 tube with sample 73002 was unsealed, meaning it was just closed, and unbagged. In contrast, the
216 bottom half of the double drive tube, containing sample 73001, was placed in a secondary stain-
217 less-steel tube that had a metal knife edge seal (Indium-Silver alloy), known as a core sample
218 vacuum container (CSVC) (Allton, 1989); no additional material was lost during this process
219 than the material lost during removal from the subsurface. This CSVC was sealed under vacuum
220 on the lunar surface and each individual drive tube sample was secured in the Apollo Lunar
221 Sample Return Container #2 (ALSRC or short Sample Return Container [SRC] aka “rock box”)
222 (Butler, 1973). ALSRCs were sealable boxes machined from blocks of aluminum and lined with
223 woven aluminum as padding (York mesh), and once filled were sealed on the lunar surface for
224 the trip back to Earth. Other samples, such as rocks, rake samples, and regolith samples, were
225 placed in Teflon bags, closed, and stored in sample collection bags (SCB) which were carried by
226 the astronauts. After launch from the surface and prior to transfer of the SCB's from the Lunar
227 Module (LM) to the Command Module (CM), each SCB was put into a Beta cloth decontamina-
228 tion bag to keep the lunar dust adhering to the outsides of the return container from dirtying the
229 inside of the Command Module. Only the samples in sealed containers (ALSRCs, the CSVC,
230 and the Special Environment Sample Container- SESC) were not exposed to spacecraft and ter-
231 restrial atmospheres during transit to Earth and recovery on Earth (Butler, 1973). Most of the
232 non-sealable containers (such as SCBs) were tightly closed, but circulation of spacecraft atmos-
233 pheres was probably enhanced by de-pressurization and re-pressurization on the Moon and in
234 space (Butler, 1973).

235 **2.2 Recovery and transport to the Lunar Receiving Laboratory (LRL)**

236 After splashdown, the command module was recovered and loaded on the recovery ves-
237 sel U.S.S. Ticonderoga and the sample return containers were retrieved from the command mod-
238 ule. Although conditions of both ALSRCs and most of the decontamination bags was nominal,
239 one of the Beta cloth decontamination bags, stowed on the floor of the command module, was
240 completely soaked as it lay for 10 hours in 1/4 inch of water (Butler, 1973). It is unclear if the
241 water was from condensation inside the CM or sea water that splashed into the module during

242 crew recovery. Thus, after recovery from the CM, all the SCB's were removed from the decon-
243 tamination bags and all the return containers were individually bagged in two layers of Teflon
244 bags and one polyethylene bag, which were heat sealed in an isolated work area on the recovery
245 vessel that had filtered air. These bagged containers, along with the ALSRCs, were then placed
246 in padded crates and transported to the Lunar Receiving Laboratory (LRL) at NASA Johnson
247 Space Center (JSC) by aircraft, arriving in Houston within 24 hours of splashdown.

248 **2.3 Handling and storage in the lunar curation facilities on Earth**

249 On receipt of the containers in Houston, the exterior of ALSRC #2 was cleaned, and a
250 pressure of 28 microns Hg (i.e., 2.8×10^{-2} torr) was measured, which suggested it was mostly
251 successfully sealed on the lunar surface (lunar surface pressure $\sim 10^{-12}$ torr). The ALSRC was
252 then moved into the sample nitrogen atmosphere processing (SNAP) line for opening.

253 **2.3.1 Sample 73002**

254 Sample 73002 was removed from the ALSRC inside the nitrogen purged processing cab-
255 inets, its mass by difference recorded (430 g), and triply sealed in Teflon bags within that envi-
256 ronment. The bagged sample was taken to a medical X-ray scanning facility at JSC in early 1973
257 to image the material inside the tube. The radiographs showed the length of the regolith material
258 within the tube was approximately 23.5 cm, though numerous void spaces were also observed
259 (Figure 4). After these scans, the still-bagged 73002 drive tube was placed into special storage
260 within the nitrogen purged cabinets at JSC and left untouched. Eventually 73002 was one of the
261 samples transferred for storage in nitrogen purged cabinets at the Apollo remote storage facilities
262 at Brooks Airforce Base (1976-2002) and White Sands Test Facility (2002-2019).

263 In the spring of 2019, the sample was returned to Johnson Space Center (transported
264 bagged with a nitrogen atmosphere) in preparation for the ANGSA program and stored in a ni-
265 trogen purged cabinet within the lunar vault. In the fall of 2019, the Teflon bags surrounding
266 73002 were briefly opened within the Apollo nitrogen purged processing cabinets and the mate-
267 rial within the tube was more securely immobilized using a specially designed materials compli-
268 ant tool; this resulted in the overall length of the regolith material being compacted to ~ 20 cm
269 (based on whole core XCT scanning; see section (2) below). The sample was then triply resealed
270 in Teflon bags. Sample 73002 was transported to the High-Resolution X-ray Computed Tomog-

271 raphy (XCT) facility at The University of Texas at Austin (UTCT) in October 2019 where a se-
272 ries of XCT scans were performed on the bagged sample (see section (1) below) (Figure 4). Up-
273 on completion of the XCT scans, the sample was returned to secure nitrogen-purged storage in
274 the lunar vaults until the sample was extruded and processed starting in November of 2019 (see
275 section (3) below).

276 **2.3.2. Sample 73001**

277 Upon return to Earth, sample 73001 (in the unopened CSVC) was removed from the ALSRC
278 inside the nitrogen purged processing cabinets, mass (by difference) was recorded (809 g), and
279 then the CSVC was sealed within a large outer vacuum container (OVC) made of stainless steel
280 with an aluminum gasket that was pumped down to $\sim 10^{-2}$ Torr, which was then, in turn, sealed
281 inside two large Teflon bags. The OVC was placed in special low-vibration nitrogen purged
282 storage in the lunar curation facility. In the spring of 1976, it was suspected that the valve on the
283 OVC was leaking, so the valved flange was removed, replaced with a new valved flange, and the
284 OVC was again pumped down to an atmospheric pressure of 10^{-2} Torr. All this work was carried
285 out inside the nitrogen purged cabinets to avoid contamination with terrestrial air. After the OVC
286 repair, 73001 sat inside its never opened CSVC, repaired OVC, and two outer Teflon bags, un-
287 disturbed in low vibration nitrogen purged storage in the lunar vaults for 46 years until it was
288 removed for gas extraction, XCT analysis, and extrusion/dissection, and thin section preparation
289 starting in March of 2022.

290 **3. Initial characterization and preliminary examination (PE) of samples 73002 and 73001**

291 Sample 73002 was the first Apollo drive tube sample to be opened in over 25 years. There-
292 fore, all the equipment that was needed for the extrusion and dissection process had to be locat-
293 ed, cleaned, assembled, and tested (including procurement of replacement parts where needed)
294 over a period of ~ 12 months. A similar process was undertaken to renovate and rebuild the entire
295 core vacuum impregnation and curing devices for making continuous core thin sections at the
296 end of the dissection process. In addition to the hardware upgrades, the procedures for sample
297 dissection had to be reviewed and modernized, which included building a full-sized cabinet
298 mock-up and extensive testing with analog samples (Krysher et al., 2020). The preliminary ex-
299 amination (PE) of sample 73002 began in November of 2019 and concluded in December of
300 2021 (25 months). The protracted nature of the PE was almost entirely due to laboratory access

301 issues related to the COVID-19 pandemic. The PE of sample 73001 began in March of 2022 and
302 concluded in October 2022 (~7 months). The steps in the PE process, and the detailed work within
303 in each PE step, were similar for samples 73001 and 73002; the only notable exception was the
304 gas-extraction process that was necessary for sealed sample 73001, but not for unsealed sample
305 73002. PE steps included:

306 • 73001: (1) XCT scan of bottom portion of the drive tube; (2) Gas Extraction; (3) Whole
307 Core XCT; (4) Extrusion and Dissection of Regolith Materials; (5) XCT of >4 mm indi-
308 vidual particles
309 • 73002: (1) N/A; (2) N/A; (3) Whole Core XCT; (4) Extrusion and Dissection of Regolith
310 Materials; (5) XCT of >4 mm individual particles

311 **3.1 PE Step 1: XCT scan of bottom part of the drive tube 73001 prior to gas extraction.**

312 Prior to piercing and extracting gas from the CSVC that held the 73001 drive tube, an XCT
313 scan of the bottom portion of the CSVC was collected to confirm the state and location of the
314 Teflon cap attached to the bottom of the 73001 aluminum drive tube, to measure the space be-
315 tween the CSVC bottom and the Teflon cap of the drive tube, and to verify the stainless steel
316 wall thickness of the CSVC. The scan was performed out at the Astromaterials X-ray Computed
317 Tomography Laboratory at Johnson Space Center using a Nikon XTH 320 system with a 225 kV
318 rotating reflection target source at 215 kV, 153 μ A, and a 32.57 μ m/voxel resolution. This in-
319 formation was essential to confirm that the European Space Agency had accurately designed and
320 constructed the piercing tool needed for gas extraction (McDonald et al., 2022; Schild et al.,
321 2022).

322 **3.2 PE Step 2: Gas extraction of 73001**

323 As part of the ANGSA program, the gas in both the 73001 OVC and CSVC was extracted
324 (Figure 5). The OVC had an external valve in place to help facilitate gas extraction, but the
325 CSVC did not have an external valve. Thus, the CSVC had to be pierced to extract the gas (simi-
326 lar to a keg being tapped). Gas extraction was achieved using two bespoke pieces of equipment
327 that were specifically built for the ANGSA project: (1) a gas extraction manifold built by the
328 Team at Washington University in St. Louis led by Drs. Alex Meshik, Olga Pravdivtseva, and

329 Rita Parai; (2) a piercing device built by a team at ESA led by Dr. Francesca McDonald. Gas was
330 extracted from the OVC and CSVC using differential pressure between those containers and the
331 gas extraction manifold, which typically achieved pressures in the mid 10^{-9} Torr range (unless
332 otherwise noted). The gas extraction manifold originally had eight ~2-liter stainless steel bottles
333 and two 50 cm³ stainless steel bottles attached to it for storing the extracted gas; a ninth ~1-liter
334 stainless steel bottle was also added to the system before the extraction was completed (Figure
335 5a). See Table 1 for a summary of all gas samples acquired.

336 Two separate gas extractions from the OVC were done (Figure 5). The initial OVC extraction
337 was done with a background manifold pressure of 4×10^{-6} Torr, an equilibration time of 15
338 minutes (all equilibration times are 15 minutes unless otherwise stated), and the gas was expanded
339 into one 2-liter bottle and one 50 cm³ bottle. The equilibration pressure observed on gas sample
340 OVC1 was 28 Torr. Just prior to acquiring gas sample OVC1, a system blank was collected
341 under the sample conditions (e.g., similar background manifold pressure and equilibration time).
342 The second OVC extraction was collected into one 2-liter bottle with a background manifold
343 pressure of 5×10^{-8} Torr; the gas for OVC2 was passed through a tube sitting in a water ice bath
344 during extraction (Figure 5a). The equilibrated pressure on OVC2 was 7 Torr.

345 After the OVC gas extraction was completed, the OVC was placed back into the N₂-purged
346 curation cabinets, the OVC was opened, the CSVC was removed from the OVC, and the CSVC
347 was sealed within the piercing tool (Figure 5b). The piercing tool was then removed from the N₂-
348 purged cabinets and connected to the gas extraction manifold (Figure 5c). The piercing tool was
349 then pumped down by the gas extraction manifold prior to piercing the CSVC to remove the N₂
350 cabinet gas in the piercing tool. During the pump down of the piercing tool over the course of
351 ~48 hours, we were unable to achieve a manifold pressure lower than 10^{-6} Torr, whereas we
352 could achieve a vacuum of 10^{-9} Torr in the manifold when the piercing tool was isolated. The
353 residual gas analyzer (RGA) analysis of the gas being pumped out of the piercing tool appeared
354 to be nearly pure N₂ gas and showed no evidence for atmospheric contamination of the system,
355 nor did multiple He-leak checks of the piercing tool and extraction manifold show evidence of an
356 external leak. Thus, it was decided that there was a slow leak of the CSVC bleeding gas out into
357 the piercing tool.

358 The CSVC "leak gas" was accumulated within the piercing tool for ~24 hours and then col-
359 lected into one 2-liter bottle with a background manifold pressure of 10^{-9} Torr (CSVC Leak Gas
360 1). This process was repeated under almost identical conditions to collect an additional 2-liter
361 bottle of gas as CSVC Leak Gas 2. In both cases, the observed equilibration pressure in the col-
362 lection bottle for the leak gas samples was ~0.2 Torr. After the CSVC leak gases were collected,
363 the piercing tool was isolated from the manifold, the piercing mechanism on the piercing tool
364 was successfully used to pierce the bottom of the stainless steel CSVC (making a ~2 mm hole),
365 and a first gas extraction from the pierced CSVC was collected in two 2-liter bottles and one 50
366 cm³ bottle (CSVC1) with an equilibration pressure of 4.6 Torr. A second longer gas extraction
367 (CSVC extraction 2) was performed with an equilibration time of 10.75 days, with a final equili-
368 bration pressure of 3.2 Torr. Finally, the gas extraction manifold was used to pump down the
369 CSVC/piercing tool to a pressure of 2×10^{-7} Torr. The piercing tool with the pierced CSVC in-
370 side was then closed off for 6 days so that the remaining gas from the CSVC could expand into
371 the piercing tool, and a final CSVC extraction 3 was collected into a single 2-liter bottle with a
372 final equilibration pressure of 5×10^{-4} Torr.

373 The two 50 cm³ bottles of gas (OVC1; CSVC1) were subsampled and portions of each dis-
374 tributed for preliminary analyses to ANGSA Team members Dr. Zachary Sharp at the University
375 of New Mexico and Dr. Rita Parai at Washington University in St. Louis. Dr. Sharp's results
376 showed that the vast majority of gas within both the OVC and CSVC is N₂, and thus there is little
377 evidence for laboratory atmosphere contamination within the samples. The $\delta^{15}\text{N}$ value of -4.4‰
378 relative to air, generally consistent with the gas used in our N₂ purged cabinets but suggesting
379 that ¹⁴N has preferentially leaked into the system from the cabinet. The CSVC sample has a low-
380 er absolute concentration of N₂ than the OVC sample (98.3% vs. 99.9%), suggesting that some of
381 the H₂O, H₂, and Ar within the CSVC could be indigenous to the sample, although some of
382 the H₂ would have exsolved from the stainless steel over the years of storage (e.g., Rezaie-Serej
383 and Outlaw, 1994). Similarly, Dr. Parai's results for major gas phases measured by RGA showed
384 that N₂ was the dominant gas (presumably curation cabinet gas), with measurable CO₂ and H₂
385 gas (likely exsolved from the stainless steel containers), and no evidence of significant contami-
386 nation of the OVC or CSVC gas from laboratory air. Although there was some evidence of a ter-
387 restrial component in some of the noble gas measurements from the CSVC-1 sample, there was
388 also clear evidence of a solar wind component apparent in both the Ne and Ar isotopes. For more

389 details on the results see Parai et al. (2022) and Sharp et al. (2022). Currently, all nine 1-liter or
390 2-liter bottled gas samples listed in Table 1 are attached to the gas extraction manifold, which is
391 being maintained at low 10^{-9} Torr pressure (Figure 6). Each bottle is double valved with a "be-
392 tween valve" volume of ~ 37 cm 3 so that requesting PIs can bring their own pre-conditioned gas
393 sample bottles for allocation of gas samples.

394 **3.3 PE Step 3: Whole core XCT scanning**

395 Prior to extruding the regolith material from drive tubes 73001 and 73002 (see section 3.4 be-
396 low), each sample was scanned by XCT at the University of Texas High-Resolution X-ray Com-
397 puted Tomography (UTCT) Facility (Figure 7; Zeigler et al., 2021, 2022; Ketchum et al., 2022;
398 Eckley et al., this volume). This was done to: (1) facilitate non-destructive, rapid detection of
399 minerals, lithic clasts, and void spaces within the drive tubes in order to identify any potential
400 complications during the extrusion or dissection process; (2) determine the pre-extrusion length
401 of the tube to better inform the overall sampling depth of the core; and (3) to establish a perma-
402 nent record of any potential stratigraphy and clast locations prior to extrusion – and thus the loss
403 of such record –, for more in-depth studies after PE was concluded. The pre-extruded length of
404 the 73001 core was measured at 34.9 cm and the pre-extruded length of the 73002 core was
405 measured at 20.1 cm based on the XCT scans.

406 Prior to the whole core scan at UTCT, the bottom of the 73001 CSVC was scanned again as
407 well as the top of the 73001 CSVC by XCT at NASA JSC (Figure 8) after the gas extraction. The
408 bottom scan was done with the same settings as the pre-gas-extraction scan and the top scan was
409 done at 215 kV, 179 μ A, and a 38.5 μ m voxel size. The purpose of these preliminary “engineer-
410 ing” scans were to: (1) characterize the nature of the piercing hole at the bottom of the tube and
411 to evaluate the effectiveness of the piercing tool; (2) determine if the Teflon cap, which secures
412 the lunar soil when the aluminum drive tube is removed from the CSVC, was damaged; (3) con-
413 firm that the regolith at the top of the core was properly immobilized; and (4) image the In-Ag
414 metal-knife edge seal on the CSVC prior to opening in case this information was needed for fu-
415 ture tool design (e.g., Artemis). The scan of the bottom of the 73001 CSVC confirmed that the
416 piercing tool worked as intended (Figure 8b), the hole made by the piercing device was large
417 enough to permit gas to freely flow (orange arrow in Figure 8b), and that the Teflon cap on the

418 bottom of the 73001 aluminum drive tube was undamaged and securely in place (dark yellow
419 arrows in Figure 8b). The scan of the top of the 73001 CSVC however, showed that the tube was
420 overfilled, and thus the part of the tube apparatus designed to keep the regolith in place (the
421 keeper) was not properly seated in the tube (Figure 8a). Instead of deploying and pushing the
422 keeper inside the drive tube (with an inner diameter of 4.1275 cm), where its prongs catch the
423 walls and lock in place (blue arrows in Figure 8a), thus restraining the regolith from moving, the
424 keeper sat on the widest part of the drive tube with a diameter of 4.415 cm, too wide for the
425 prongs to come into contact with the walls (Figure 8a). The screw of the CSVC sealing mecha-
426 nism was the only element holding the keeper, and thus the lunar regolith, in place. Therefore,
427 instead of removing the drive tube from the CSVC before the transport to UTCT for XCT scan-
428 ning as initially intended, the CSVC was left intact so that 73001 could be safely transported and
429 its stratigraphy could be preserved. With this new initial information, a modified extrusion plan
430 was derived to ensure sample integrity during the extrusion process with a compromised keeper
431 in place, while the sample was being scanned at UTCT. These initial scans of the top and bottom
432 of the CSVC were critical in the successful piercing, gas extraction, whole-core scanning, and
433 extrusion of 73001.

434 The whole core XCT scans from 73001 were taken through the stainless steel of the CSVC,
435 the aluminum drive tube, and three Teflon bags in which the CSVC was sealed within the nitro-
436 gen purged atmosphere of the JSC curation processing cabinets. The whole core XCT scan of
437 sample 73002 was taken through the aluminum drive tube that had also been triply bagged in
438 Teflon within the nitrogen purged processing cabinets (Figure 7). Both samples were scanned at
439 UTCT using a Feinfocus FXE 225.48 microfocal X-ray source and a 2048x2048 Perkin Elmer
440 XRD 1621 N ES flat panel detector. To achieve maximum spatial resolution, the NSI Subpix™
441 capability was used, in which four overlapping data sets are gathered with half-pixel vertical and
442 horizontal offsets of the detector, virtually doubling the detector size to 4096x4096. Sample
443 73002 was scanned mounted vertically in a plexiglass tube, with X-rays at 180 kV and 180 μ A
444 and pre-filtered with 0.72 mm Al. Sample 73001 was mounted similarly, however X-ray energy
445 was increased to 190 kV and 180 μ A with no filter.

446 Data were acquired as a series of six (73002) and nine (73001) individual cone-beam volume
447 scans, with overlap (~500 slices) to aid in stitching them together to create a continuous data set

448 for each core. The voxel resolution on all scans was 12.9 microns. There are 27,600 slices in the
449 finished 73001 scan and 15,800 slices in the finished 73002 core scan. Each individual scan was
450 corrected for uneven beam and isometric distortion in Z using a linear rescale for both CT value
451 and geometry across Z (i.e., per-slice basis; central slice used as geometric standard). The differ-
452 ent scans were then geometrically matched (rigid translation and rotation). For the initial distri-
453 bution of data from 73002, CT values in each scan were rescaled (second degree polynomial) to
454 match the spot directly ‘below’ (e.g., scan 2 matched to scan 1, etc.). Seams between scans were
455 then blended using a gradual linear combination of 9 (73002) and 80 (73001) overlapping slices
456 centered at the matching reference slice. The CSVC, as well as the stainless-steel bit embedded
457 in the 73001 Al-drive tube both caused considerable artifacts in the initial XCT data, and great
458 effort was made to develop specific corrections for those effects; these corrections led to further
459 processing of the 73002 scans to maximize data consistency for subsequent image analysis (see
460 Ketcham et al., 2022 and Eckley et al., this volume, for more detail).

461 The fly-through videos of both the whole core 73001 and 73002 scans (at down-sampled res-
462 olution of 51.6 $\mu\text{m}/\text{voxel}$), as well as fly-through videos of the engineering scans taken at the top
463 and bottom of the 73001 CSVC (38.5 $\mu\text{m}/\text{voxel}$) can be found in Appendix 1 on the lunar cura-
464 tion website (https://curator.jsc.nasa.gov/lunar/angsa_catalog.cfm). In these videos, the bright-
465 ness of different phases are a result of the attenuation of X-rays by that phase, which is a func-
466 tion of the density and average atomic number of the phase, as well as X-ray energy. Brighter
467 phases have higher density and/or atomic number. Although it does not represent the same phe-
468 nomenon, the effect is very similar to that observed in back-scattered electron images. Although
469 XCT scans do not provide primary mineralogical information, for lunar samples, the relative
470 brightness of phases almost always follows the sequence (increasing brightness): void space, sil-
471 ica phases; feldspar; pyroxene; olivine; FeTiCr oxide; Fe sulfides; FeNi metal and stainless steel.
472 There can be overlap between adjacent phases in this list, especially for phases which have con-
473 siderable Mg-Fe substitutions (e.g., pyroxene and olivine).

474 **3.4 Step 4: Physical dissection process**

475 **3.4.1 Extrusion process**

476 The extrusion and dissection of both 73001 and 73002 took place in the core processing cab-
477 inet in the pristine Apollo sample laboratory facility. Sample 73002 was processed first, from
478 November 2019 till December 2021, and sample 73001 was processed from March 2022 till June
479 2022. The cabinet, equipment, and tools used during extrusion and dissection were cleaned using
480 our in-house cleaning facility following our standard protocols prior to each sample. The only
481 exception was that all materials to be introduced into the core processing cabinet were entirely
482 bagged in Teflon (normal Apollo sample processing uses nylon bags for tools and consumables).
483 Three separate Si-metal and one baked-out Al-foil witness materials were deployed in the core
484 cabinet for each dissection prior to insertion of any equipment, kept out during the entire process,
485 and preserved after PE finished, as a record of the exposure history of the initial processing of
486 the core samples.

487 The standard Apollo sample processing procedures are designed to minimize all types of
488 contamination into the Apollo processing cabinets, but they were developed with inorganic
489 cleanliness foremost in mind. One of the primary goals of the ANGSA program was to measure
490 the organic components of 73001 and 73002 (i.e., Elsila et al., 2024). To minimize the introduc-
491 tion of organic or biologic materials into the cabinet during processing, extra care was taken
492 when introducing new materials into the processing cabinet: (1) the airlock was cleaned out with
493 alcohol wipes every third time it was used (cleaning the airlock every third time proved to mini-
494 mize organics, and additional cleaning did not improve cleanliness levels); and (2) an additional
495 smock and nitrile gloves were worn on top of the normal clean room gear. The core processing
496 cabinet was monitored for microbial contamination prior to loading each core and after the dis-
497 section was completed (and the core removed). The cabinet airlock and core room flooring were
498 tested once a month during the dissection process to understand biological contamination in the
499 vicinity as well. The testing results showed that the cabinet remained abiotic throughout the ex-
500 trusion and dissection of 73001 and 73002 (Regberg et al., 2021; Elsila et al., 2022, 2024).

501 The extrusion (Figure 9) and dissection process for core samples 73001 and 73002 occurred
502 in several steps, and was identical for both core samples, except for step 1 below, which was on-
503 ly necessary for 73001 (because it was in a CSVC).

504 1. Sample 73001 was removed from the CSVC. During the process of removing the sample,
505 a small amount of material fell out of the very bottom of the drive tube. This material
506 was preserved as “interval 67”, representing the lowermost ~0.5 cm of the 73001 core.

507 2. The ends of the drive tubes were removed, and special end effectors were added to aid
508 with the extrusion process. These modified drive tubes were then mounted into extrusion
509 hardware (Figure 9c) that was aligned with a receptacle, and slowly extruded from the
510 drive tube into the receptacle, which consisted of an aluminum base that has removable
511 aluminum plates, with a quartz top (Figure 9d). The post extrusion length of 73001 was
512 33.1 cm and the post extrusion length of 73002 was 18.5 cm.

513 **3.4.2 Physical dissection:**

514 After extrusion into the receptacle (Figure 9), the aluminum base with the extruded core
515 and quartz top (Figure 9b) were carefully lifted onto the dissection table, and the quartz top was
516 removed from the core. Because the regolith was in contact with the aluminum core tube and
517 quartz top, the first step in the dissection process is to “de-rind” the core. This is achieved by re-
518 moving the outmost 1-2 mm of material to expose the underlying pristine material (Figure 10).
519 De-rinding was done in 5 cm intervals.

520 Each core was dissected in three passes: Pass 1, Pass 2, and Pass 3 (Figure 10). A pass
521 accounts for approximately 1/4 of the material in the core (a pass is about 1 cm “tall”). Each pass
522 was subdivided into intervals that are each 0.5 cm wide, starting with the side of the core that
523 was closest to the lunar surface. Each interval represents a unique depth within the core, and the
524 same interval in different passes represents the same depth (i.e., Pass 1, interval 27 and Pass 2,
525 interval 27 are from the same depth beneath the lunar surface). 73002 has a total of 37 intervals,
526 while 73001 has a total of 67 intervals. After each pass was dissected down to plate level (Figure
527 11), two plates were removed from the table so that the core stuck out ~1 cm above plate level
528 again (Figure 11a). The sides were then de-rinded to expose the pristine material, and the pass
529 dissected afterwards in the same manner as the previous pass (Figure 11b).

530 The material removed from each interval in Pass 1 and Pass 2 were collected onto a pan
531 and sieved into <1 mm fines and >1 mm particles. The >1 mm particles were manually subdivid-
532 ed into the following size fractions: 1-2 mm; 2-4 mm; 4-10 mm; and >10 mm particles (Figure

533 11c). All particles were sorted into their respective size fraction onto a Teflon pad and photo-
534 graphed from multiple angles and different lighting conditions to best capture their shape and
535 color shade, although nearly all particles are mostly or entirely obscured by adhering dust. All
536 particles >4 mm (352 total) were individually triple bagged in Teflon (Figure 11c) and scanned
537 by XCT at NASA JSC (see section 3.5 below). Pass 3 is considered the most chemically clean
538 portion of the core since it was the farthest from the tube, and thus, the intervals in Pass 3 were
539 not sieved, though particles >10 mm were removed using stainless steel tweezers.

540 Each size fraction from each interval was given a unique subsample number, placed in-
541 side individual stainless steel and Teflon containers, and weighed. The mass of each subsample
542 is recorded in the Apollo sample database. The subsamples are in stainless steel racks that are
543 sealed in Teflon Bags and stored in the nitrogen purged Apollo sample cabinets. An inventory
544 spreadsheet was created (Figure 12) that contains the general information of each pass and each
545 interval including: (1) dissection date; (2) depth of the interval within each core; and (3) total in-
546 terval mass. In addition, the spreadsheet contains: (1) the number of particles in each (>1 mm)
547 size fraction; (2) the mass of each size fraction; (3) the percent of sample mass per size fraction;
548 (4) the parent number of each size fraction; and (5) the individual information about each particle
549 that was >10 mm (e.g., if XCT scanned, its individual weight, name/number, origin, etc.) (Figure
550 12). The inventory spreadsheets for 73002 and 73001 can be found on the Lunar Curation Web-
551 site, Appendix 2 (https://curator.jsc.nasa.gov/lunar/angsa_catalog.cfm).

552 Detailed photographs and notes were taken to document the dissection process (Figure
553 13). The Processing photographs can be found on the Lunar curation Website, Appendix 3
554 (https://curator.jsc.nasa.gov/lunar/angsa_catalog.cfm). Variations in core properties were noted
555 and recorded (Figure 13a), such as changes in grain size, color, compactness, looseness, friabil-
556 ity, clast locations, etc. For 73002 Pass 1, detailed sketches were made for each dissection inter-
557 val and later digitized (Figures 12, 13), for later passes in 73002 only rough sketches were taken
558 but not digitized, and in 73001 this step was omitted due to time constraints. At the end of each
559 dissection pass, the full core was photographed with a colored chart to create a permanent record
560 of each dissected surface and best capture any changes. The images taken during the dissection
561 of core samples 73001 and 73002 as well as the processing notes taken during the dissection of

562 core sample 73002 can be found on the Lunar Curation Website, Appendix 3 & 4
563 (https://curator.jsc.nasa.gov/lunar/angsa_catalog.cfm).

564 During the dissection process, several non-standard dissection procedures were imple-
565 mented such as time-sensitive sampling for organics and bulk D/H ratio measurements on Pass 1
566 of both 73001 and 73002 (i.e., they were dissected “out of order”) (Elsila et al., 2022a,b; Sharp et
567 al., 2022; Welton et al., 2022), and mm-scale subsampling of a portion of the top two intervals
568 on Pass 3 of 73002 (Welton et al., 2022).

569 **3.4.3 Multispectral analyses of 73001/73002**

570 After de-rinding and after each pass (1-3) was dissected down to plate level, multispectral
571 measurements of 73002 and 73001 were taken by placing a spectrometer built at the University
572 of Hawaii on top of the core cabinet (Sun et al., 2021b). The cabinet glass is comprised of boro-
573 silicate, so spectral measurements are limited to visible and near-infrared (400-2500 nm) wave-
574 lengths. This multispectral imager comprised a monochrome imaging camera, a 6-position mo-
575 torized filter wheel equipped with 6 narrow band interference filters, lenses, and light source.
576 The center wavelengths of the six filters were: 415 nm, 570 nm, 750 nm, 900 nm, 950 nm, and
577 990 nm. These wavelengths share some of the bands used by the Clementine UVVIS camera, the
578 Lunar Reconnaissance Orbiter Camera Wide Angle Camera, and the KAGUYA Multiband Im-
579 ager and allow for direct comparison of the dataset produced from the core to datasets produced
580 from orbital observations of the lunar surface. Both cores 73002 and 73001 were scanned at a
581 spatial resolution of 60 μm after each pass. This process required the Apollo lab to be darkened
582 for the time it took to scan the dissected core surface, so that the only light source came from the
583 multispectral imager itself.

584 In addition to the scans after each pass, 73001 offered a unique opportunity to spectro-
585 scopically examine soils that have been curated differently (stored under vacuum) than other
586 drive tube samples from the Moon. To assess the state of water or hydroxyl in this sample that
587 may represent the state of hydration on the lunar surface, 73001 was scanned via Fourier Trans-
588 form Infrared (FTIR) spectroscopy. After the last multispectral measurement of pass 3, and im-
589 mediately prior to removal of 73001 from a nitrogen environment for epoxy impregnation and
590 thin section production, a portable FTIR spectrometer (with a spectral range from 2 to 14 μm)

591 was used to collect spectra from the dissected surface inside the nitrogen purged curation cabi-
592 net. Spectral measurements were made (1) shortly after introducing the spectrometer into the
593 cabinet, (2) the next day, and (3) three hours after the pristine cabinet was vented to room air.
594 For details and results, see Sun et al. (2021) and Lucey et al. (2023).

595 **3.4.4 Continuous core sections**

596 After dissection was complete, the last portion of core remaining in the dissection table
597 (about 1/4 of the overall core material) was taken to the Apollo thin section laboratory and im-
598 pregnated with a mixture of Araldite-506 epoxy (resin), aminoethyl piperazine (hardener), and
599 butyl glycidyl ether (thinning agent and curing retardant) (Figure 14). Impregnation was done at
600 a vacuum pressure of 3 torr to allow full penetration around the core's submicron dust particles
601 and expel the gases formerly present within the core. The purpose of this process is to preserve a
602 record of the stratigraphy of the core and the location and orientation of particles within the core.
603 The epoxy also helps to stabilize the core and avoid fragmentation, crumbling, and plucking dur-
604 ing cutting and polishing, as well as to fill few void spaces that were left behind from larger
605 clasts that partially extended into this last ~1/4 of the core and were removed during the prior dis-
606 section process. After the epoxy mixture was added and bubbles stopped coming out of the core,
607 the vacuum was released, and the core was transferred to an incubator where it cured for several
608 weeks under low humidity (< 35 %) at 45 °C (Figure 14a). Following the complete cure, the
609 epoxy impregnated regolith material was removed from the dissection plate (Figure 14b) and a
610 secondary epoxy layer was added around the core to encapsulate and protect it more fully (Fig-
611 ure 14c). This secondary encapsulation epoxy did not include any added butyl glycidyl ether and
612 instead incorporated diamino-p-menthane as a reaction catalyst. The silicone mold used for this
613 secondary encapsulation included a scale and orientation markings to aid in precise cutting of the
614 core at a later point. The secondary encapsulation cured for another 2 days and was then sawn in
615 half along the long axis of the core, using ethanol as the cutting fluid. One of the two halves was
616 then further sawn into 4 to 5 cm long potted butts (4 potted butts for 73002; 8 potted butts for
617 73001) using the previously added scale (Figure 14d). Two sets of continuous standard rectangu-
618 lar thin sections, with a standard thickness of 30 microns, were made down the length of the core
619 for both 73001 (= 16 thin sections) and 73002 (= 8 thin sections) using these potted butts. The

620 left-over material of the potted butts can support several additional thin sections per potted butt
621 and are curated for future thin section needs of the core.

622 **3.5. Step 5: Individual particle XCT**

623 Each of the >4 mm particles in 73001 and 73002 that were separated, and triple bagged in
624 Teflon as part of the dissection process (see details in 3.4.2 above) were individually scanned via
625 XCT at NASA JSC using a Nikon XTH 320 with a 180 kV W transmission target source. 132
626 particles were scanned from 73002 at x-ray energies ranging from 90-155 kV and 18-39 μ A and
627 resolutions from 2.8-20.6 μ m/voxel. 220 particles were scanned from 73001 at x-ray energies
628 ranging from 90-145 kV and 33-37 μ A and resolutions from 2.8-22.6 μ m/voxel. For each parti-
629 cle the following data were produced: (1) a fly-through video; (2) a description of the main fea-
630 tures in the particle, recorded in the data table (Lunar Curation Website, Appendix 5:
631 https://curator.jsc.nasa.gov/lunar/angsa_catalog.cfm); and (3) a preliminary lithologic classifica-
632 tion (Figure 15) based on the features observed. The particles of 73002 and 73001 fall into the
633 following preliminary lithologic categories, respectively (Figure 15, 16a,b): agglutinates (n_{730002}
634 = 6; n_{730001} = 1); anorthosites (n_{01} = 1); granulites (n_{01} = 2); impact melts (n_{02} = 5; n_{01} = 2); impact-
635 melt breccias (n_{02} = 42, n_{01} = 115); high-Ti basalts (n_{02} = 9; n_{01} = 28); low-Ti basalts (n_{02} = 4; n_{01}
636 = 3); regolith breccias (n_{02} = 62; n_{01} = 64); and soil breccias (n_{02} = 2; n_{01} = 1). In addition to the
637 main lithologic category, an attempt was made to recognize some sub-groups of particles that
638 shared similar characteristics, primarily among the impact-melt breccias (e.g., the poikilitic il-
639 menite group). Because the lithologic determinations were made using only the XCT infor-
640 mation, they are not intended to be (1) the final determination of the lithology of each fragment,
641 but rather serve as a guide for investigators to request particles for follow up analysis; and (2)
642 overly specific, placing samples into broad lithologic categories based primarily on suspected
643 mineral abundances, with less weight given to other factors (e.g., texture). See Table 2 for more
644 details about the classifications. The fly-through videos of each scanned particle can be found on
645 the Lunar Curation website, Appendix 6 (https://curator.jsc.nasa.gov/lunar/angsa_catalog.cfm).
646 See Eckley et al. (this volume) for more details on XCT scans of the particles.

647 **4 Discussion**

648 **4.1 Timeline of physical dissection of 73002 and 73001**

649 Dissecting a core takes time. It depends on multiple factors, including but not limited to the
650 physical properties of the core, its compaction, the training of the processors, external events
651 (e.g., pandemic with associated restricted access to laboratories), unexpected challenges, hard-
652 ware delivery (e.g., clean dissection tools), length of the core, processing days, disturbances in
653 the lab, etc. Individual intervals are 0.5cm in width and take between 20 - 40 min of careful and
654 meticulous dissection depending on the physical behavior of the core (e.g., if there is a lot of
655 slumping it takes longer). The collected regolith then gets sieved, which takes about 5 min; the
656 >1 mm clasts are then picked up from the sieve with tweezers and carefully transferred onto a
657 Teflon Disk and sorted into different size fractions. The picking and sorting process depends on
658 the quantity of clasts in each interval but on average takes an additional 10 - 15 min. Afterwards,
659 the dissected core surface as well as the sorted clasts are photographed and documented using
660 different lighting conditions and different image angles to capture the true nature of the regolith.
661 The photo-documentation process takes up to 15 min. After documentation is finished, each size
662 fraction is placed inside its own sample container, counted, weighed, the weight documented,
663 and then placed inside a core rack. The counting/weighing process takes about 15 min per size
664 fraction. The >4 mm particles are weighed individually and then triple bagged in Teflon bags, a
665 process that takes about 25 min per particle. Thus, dissecting an individual interval can take up to
666 3 hours. This does not include the documentation, transcribing, annotating, digitizing of all notes,
667 images, entering information into the databases, and completing internal curation forms to track
668 the handling history of all samples during dissection, transfer, allocation, and storage, an overall
669 process that can take up to 2 days per interval. With these processing times and documentation, it
670 takes about 6-8 months to carefully dissect a core.

671 **4.2 Data connectivity and importance**

672 Documentation during the preliminary examination, during the extended examination, and dur-
673 ing long term curation is an extremely crucial process to maximize the scientific return of the
674 samples. Documentation includes notes, sketches, annotated images, weights, and instrument
675 data such as XCT scans during PE and extended PE, as well as the handling history of the sam-
676 ples while in transit to or from the various laboratories used for PE, inside instruments (such as
677 XCT scanner, Secondary Electron Microscope) and ultimately while with principal investigators

678 at their respective facilities. To track all the different data products generated during ANGSA
679 PE, numerous data tracker/recording systems were created that are tailored to each type of data
680 being hosted and that are all linked to each other through an internally consistent naming scheme
681 (Figure 12). These trackers include:

- 682 1) Images, that contains PE images generated during processing to document the dissection pro-
683 cess. Images are sorted into different passes, respectively. Full core images with a colored bar
684 and a scale were taken at the end of each dissection interval under various lighting conditions
685 to best capture color and color variation within the dissected core surface.
- 686 2) Particle images, which includes images of the clasts sorted into different size fractions on the
687 Teflon disk with a scale. These particles were photographed from several different angles and
688 lighting conditions to capture their shape and color more accurately.
- 689 3) XCT particle data; this data includes representative 2-D slices and full XCT videos of all >
690 4mm clasts. This information was used for classification of particles.
- 691 4) An inventory excel spreadsheet, which includes information about each interval in each pass
692 per sample. Information captured in this inventory includes interval dissection dates, interval
693 information such as pass, interval number, interval size, depth, and total mass; number of
694 clasts per size fraction in each interval; mass of each size fraction; percentage of mass per size
695 fraction; parental numbers of all > 4 mm particles and each size fractions; all > 4 mm clast
696 names, their individual mass, and whether the particle was XCT scanned or not.
- 697 5) Notes and dissection sketches of each interval for 73002, pass 1 & 2 and notes only for 73002
698 pass 3 and all of 73001. These data record changes and characteristics within the core that
699 might be otherwise missed, such as the feeling of compactness during physical dissection,
700 slumping/collapsing behavior of core/intervals, identity of curation personnel and visitors pre-
701 sent, weight of size fraction per interval (recorded for redundancy), any clast characteristics
702 noteworthy such as size, shape, coloration, “sparkle”; behavior of the soil during sieving (aka
703 stickiness), etc.

704 These data products are all linked to each other through an internally consistent naming scheme
705 that allows one to easily track each particle and any information pertaining to the particles within
706 each interval (Figure 12). These linked datasets provide the scientific community with an easy

707 and consistent record from which to select the best and most appropriate material for their re-
708 spective studies. As such, the particles in the particle images data products are labeled sequen-
709 tially starting with A for the first particle, B for the second, etc., which is tracked with the same
710 identifier in the inventory excel spreadsheet. The 2D image slice file and 3D video files of the
711 XCT scans of all > 4 mm particles are named with the same sample numbering scheme (Figure
712 12).

713 **4.3 Grain size analyses with depth**

714 The inventory data tracker/recorder allows for fast and easy comparison of different characteris-
715 tics with depth of the core such as horizons in which clasts could be concentrated. Data from
716 pass 1 and pass 2 data for 73002 and 73001, respectively, were combined to show any potential
717 variations or concentration horizons with depth. Pass 3 was not included as those passes are con-
718 sidered chemically clean, and thus, were not sieved. Therefore, no grain size analysis exists for
719 pass 3 in 73002 and 73001 except for >10 mm clasts. While some intervals contained fewer large
720 particles, no systematic trend could be detected (Figure 17). Analyses of the grain size (<1 mm,
721 1-2 mm, 2-4 mm, 4-10 mm, and >10 mm) volumes per depth interval did not show any concen-
722 tration horizons or otherwise preferred orientation (Figure 17).

723 **4.4 Compaction within the core**

724 Samples 73001 and 73002 were compacted several times from collection on the lunar surface to
725 the end of extrusion within the Curation Facility at NASA JSC. The first time the regolith within
726 the drive tubes were compacted took place on the lunar surface during/after collection. During
727 the placement of the keeper, which keeps the regolith securely in place, the crew used a thin
728 stainless steel ram rod to push the keeper down into the drive tubes, and thus, compact and im-
729 mobilize the regolith for transport and transit from the lunar surface to the curation facility at
730 NASA JSC. 73002 was compacted a second time before it was transported to the UTCT facility
731 for XCT scanning, by using the ram rod to push the keeper further into the drive tube. This was
732 done to mitigate any potential loosening of the keeper that could have occurred over its 50+
733 years life span and to immobilize the regolith within the drive tube so that no stratigraphic in-
734 formation would be lost since it was known that some void space was present within the 73002
735 drive tube based on the medical X-ray images that were taken in 1973 (Figure 4). Tightening the

736 keeper was carried out within the nitrogen atmosphere inside the curation gloveboxes. 73001 was
737 not further compacted as the keeper was not deployed correctly on the lunar surface, and thus,
738 the drive tube had to be transported and XCT scanned while situated within the CSVC. Both
739 sample 73001 and 73002 were compacted one last time during the extrusion process. Using the
740 original dataset produced by the XCT scan of the cores, the location of clasts within the drive
741 tube at different depths was measured prior to the extrusion process and then compared to the
742 location of the clasts after the extrusion process by measuring their location within the dissected
743 intervals. To do so, the distance of the center of each clast was measured in relation to the top
744 and bottom of the drive tube. Figure 18 shows the relative displacement of the clasts within
745 73002; Figure 19 shows the relative displacement of clasts within 73001. For both cores, most of
746 the compaction seems to have occurred around larger clasts and in the direction of the extrusion
747 (bottom of core towards top of the core); however, a less strong and opposite directed compac-
748 tion force seemed to also have taken place during the extrusion process at the top of the drive
749 tube, most likely caused by friction between the regolith, the follower clam from the extrusion
750 apparatus, and the receptacle onto which the core was extruded (Figure 18,19). Furthermore,
751 73002 was compacted more compared to 73001 as apparent by the greater relative displacement
752 of clasts within that core.

753 **4.5 Sampling depth of the double drive tube**

754 Images from the lunar surface show that double drive tube sample 73001/2 was fully hammered
755 into the lunar surface at Station 3 of Apollo 17 landing site, and therefore sampled lunar regolith
756 to a depth of 70.6 cm into the South Massif landslide area known as the “light mantle deposit” in
757 the Taurus Littrow Valley (Wolfe et al., 1981). Due to complications during the separation of the
758 upper (73002) and lower (73001) portions of the drive tube, not the entire 70.6 cm regolith col-
759 umn made it back to Earth. Although 73002 was originally full, and thus, sampled from 0-35 cm
760 deep within the lunar regolith, astronaut Cernan saw material fall out of the drive tube before the
761 Teflon containment cap could be put on the bottom of 73002. He observed that 73002 was only
762 about 2/3 full based on how far the ramrod was able push the “keeper” down into the drive tube
763 to immobilize the core for transport. This 2/3 estimate was confirmed by medical X-ray scans
764 during the PE of 73002, which showed there to be ~23.5 cm of material in the 73002 core, which
765 included considerable observed void space (Butler et al 1973). Thus, the material in the 73002

766 core likely represents a depth interval from 0 cm extending down to 20-23 cm depth, meaning
767 that 12-15 cm of material was lost out of the 73002 drive tube bottom on the lunar surface.
768 73001, the bottom half of the double drive tube, came home completely full, and thus likely con-
769 tains material from 35-70 cm beneath the lunar surface. These observations are consistent with
770 various geochemical and isotopic data sets (see Sun et al., 2021a,b; Shearer et al., 2022, 2024).

771 **5 Lessons learned from ANGSA that feed forward to Artemis.**

772 Returning to the Moon with Artemis to collect and return lunar samples from a different re-
773 gion than Apollo, will enable discoveries of processes thus far unknown and enable a slew of
774 new science including the opportunity to test hypotheses. Sample curation will play a critical part
775 in all the different stages of the Artemis missions to return these valuable samples safely, ensur-
776 ing their integrity, and thus maximizing their scientific return for centuries to come. The lessons
777 learned from PE of ANGSA samples as well as recently returned samples from other bodies such
778 as Bennu (OSIRIS-REx) can be directly applied to Artemis. Below are some of the valuable les-
779 sons learned from ANGSA that can be directly applied to PE for Artemis III:

780 (1) Extensive practice with mock-up gloveboxes as well as analog samples contained in
781 flight-like hardware is crucial for successful sample processing. This practice will nor-
782 malize the movements and motions required during sample handling and minimize the
783 risk of sample integrity loss, and subsequent science loss, and therefore facilitate nominal
784 processing of returned samples. Practice includes building and operating curation equip-
785 ment, interfacing of geology sample containers with existing curation equipment, and
786 communication with other processors and curators during PE.

787 (2) Having flight spares of geology sample containers and/or access to structural drawings of
788 the hardware so that they can be duplicated with less expensive 3-D printed mockups are
789 crucial for practice, interfacing with existing curation equipment and for determining the
790 correct order of operations during PE that will minimize risk and mitigate any loss of
791 sample integrity.

792 (3) More than four hours per day in the lab doing PE is not sustainable for any individual and
793 will introduce mistakes that could lead to science loss due to the increased mental and
794 cognitive workload under stress in a cleanroom environment. Furthermore, meticulous

795 documentation must be part of PE and curation, including documenting the environment
796 that each sample will see at any given point (e.g., during transfer). Adequate time needs
797 to be allotted to update the data records for each sample, enter information into internal
798 databases, annotate images, transcribe notes and sketches, etc. The amount of time needed
799 for documentation and database upkeep outside the cleanroom is about equal to the
800 amount of time needed inside the cleanroom for a given sample-processing task.

801 (4) Multiple trained curation personnel are needed in the clean room during PE to work on
802 important processing and documentation tasks. Redundancy will minimize human error
803 and maximize PE time (e.g., illegible handwriting, transposed numbers, etc.)

804 (5) Science team participation during PE is extremely valuable for the science team as it
805 highlights steps during PE and serves as a learning experience for those who don't work
806 within curation daily. However, ANGSA demonstrated that training new science team
807 members on a weekly or every-other-week time schedule (pre-pandemic) will slow the
808 PE process down by 40%, posing a risk to any time-sensitive measurements that rely on
809 rapid processing and allocation and posing a risk to producing the PE catalog within the
810 required amount of time. Reducing training times by establishing a small, pre-designated
811 PE team that could be integrated with curation prior to sample return, could be part of the
812 pre-return practice exercises, and who can stay for the designated time under which PE is
813 to be carried out could circumvent these risks.

814 (6) Dissecting individual core samples takes 6-8 months at a minimum. Dissection during
815 hurricane season could disrupt the process and can affect sample integrity if not handled
816 carefully. Preliminary Examination for most sample return missions is a period of 6
817 months after which the initial sample catalog is released. These timelines require that
818 core dissection is not part of PE, instead it is a process that will occur during the extended
819 examination phase. Consequently, the initial sample catalogs for Artemis will include
820 undissected core samples that will not likely be available for request until after they are
821 dissected and added to the sample catalog during extended examination.

822 (7) To carry out non-routine specialized measurements (such as gas extraction) in a timely
823 manner, instrument and laboratory developments need to take place and be tested and

824 validated prior to sample return, and thus funding needs to be distributed sufficiently ear-
825 ly to accommodate these timelines.

826 (8) Taking extra measures to clean the airlock after every third use, using extra protection
827 (e.g., smock over bunny suit, and extra nitril gloves), proved to minimize organic and mi-
828 crobial contamination. Tests carried out before ANGSA started showed that cleaning the
829 airlock more often didn't minimize contamination levels any further than after every third
830 use, but cleaning it less often than every third use increased the risk of contamination.
831 Furthermore, the airlock and sample processing environment should be monitored for in-
832 organic, organic, and biological contamination on a regular basis.

833 (9) The use of X-ray computed tomography (XCT) has proven invaluable before and during
834 the processing and preliminary examination of ANGSA samples 73001 and 73002. XCT
835 scanning not only provides (I) a permanent record of the stratigraphy prior to extrusion, it
836 also provides (II) the sample processors with information about potential pitfalls (e.g.,
837 void spaces, fractures, etc.) that they might encounter during the extrusion and dissection
838 process, and thus, lowering the mental and cognitive workload by reducing stress of the
839 unknown; and (III) it adds context for dust-coated rock fragments without compromising
840 their sample integrity.

841 (10) The initial scans of the bottom and the top of the drive tubes (especially those
842 within sealed containers) are critical in the assessment of tool usages (e.g., piercing tool,
843 keeper), and thus the successful piercing, gas extraction, whole-core scanning, and extru-
844 sion.

845 (11) Multispectral imaging is a non-destructive, contamination-free technique for pris-
846 tine samples if the measurements are carried out exterior to the glovebox through a glass
847 top or observation port. Multispectral imaging can represent a quick and convenient tool
848 for preliminary examination of soils to assess the degree of space weathering and obtain
849 compositional information (i.e., FeO, TiO₂). However, while this information can provide
850 important guidance for sample dissection, allocation, and distributions, the line between
851 sample science that should be carried out by sample PIs and basic characterization of the
852 sample for the initial PE catalog is not always clear and must be defined in an approved
853 sample curation plan as outlined in NASA Procedural Requirement (NPR) 7100.5.

854 For decades Apollo has loomed large over new members of the lunar science community. Once
855 again, the lessons of Apollo inform a new generation, and that new generation is now better pre-
856 pared for the upcoming era of lunar surface exploration.

857

858 **Acknowledgements:**

859 The information in this paper represents just a portion of the overall ANGSA program effort.
860 While there are too many people to list everyone by name, we'd like to draw special attention to
861 a few. We'd like to thank the other 8 science PIs whose teams came together to make the overall
862 project such a success: Jessica Barnes, Kate Burgess, Barbara Cohen and Natalie Curran, Darby
863 Dyar, Jamie Elsila, Jeff Gillis-Davis, Alex Sehlke, and Kees Welton. Many members of the sci-
864 ence team came into the lab to aid with the PE process including: Cari Corrigan, Barbara Cohen,
865 Francesca McDonald, Jessica Barnes, Zoë Wilbur, Michelle Thompson, James McFadden, Kun
866 Wang, Natalie Curran, Michael Cato, and Chris Yen. A special thanks is needed for Judy Allton
867 and her tireless efforts as we prepared to open the first core in >25 years, as well as the many
868 clean-room technicians and electromechanical technicians within the curation office who enabled
869 our work by keeping our equipment and labs clean and in working order. Finally, we'd also like
870 to thank Jeff Grossman, Sarah Noble, and Kathleen Vander Kaaden from NASA Headquarters
871 for the funding, organization, and oversight on the project over the past few years.

872 **Data Availability Statement**

873 The data for this work is presented in Tables and Figures in the manuscript. In addition, all the
874 data can be found in form or excel sheets, image files, XCT videos, etc. are publicly available
875 from the lunar curation website in the form of Appendix 1-6 at
876 https://curator.jsc.nasa.gov/lunar/angsa_catalog.cfm.

877

878 **References:**

879 Allton, J.H. (1989). Catalog of Apollo lunar surface geological sampling tools and containers.
880 *JSC-23454 pp 97; Curator's Office*; NASA Lyndon B. Johnson Space Center;
881 <https://curator.jsc.nasa.gov/lunar/catalogs/other/jsc23454toolcatalog.pdf>.

882 Athiray, P.S., Narendranath, S., Sreekumar, P., et al. (2013). Validation of methodology to de-
883 rive elemental abundances from X-ray observations on Chandrayaan-1. *Planetary Space Sci.*
884 75, 188–194. <https://doi.org/10.1016/j.pss.2012.10.003>.

885 Benna, M., Hurley, D.M., Stubbs, T.J., Mahaffy, P.R., Elphic, R.C. (2019). Lunar soil hydration
886 constrained by exospheric water liberated by meteoric impacts. *Nat Geosci* 12:333–338

887 Butler, P. (1973). Lunar sample information catalog, Apollo 17. MSC 03211; NASA Lyndon B.
888 Johnson Space Center; <https://curator.jsc.nasa.gov/lunar/lsc/73001.pdf>.

889 Cain, J.R. (2010). Lunar dust: the hazard and astronaut exposure risks. *Earth, Moon, and Plan-
890 ets*, 107(1), 107-125.

891 Charette, M.P., McCord, T.B., Pieters, C. and Adams, J.B. (1974). Application of remote spec-
892 tral reflectance measurements to lunar geology classification and determination of titanium
893 content of lunar soils. *Journal of Geophysical Research*, 79(11), pp.1605-1613.

894 Crawford, I.A. and Joy, K.H. (2014). Lunar exploration: opening a window into the history and
895 evolution of the inner Solar System. *Philosophical Transactions of the Royal Society A:
896 Mathematical, Physical and Engineering Sciences*, 372(2024), p.20130315.

897 Crawford, I.A., Fagents, S.A., Joy, K.H. and Rumpf, M.E. (2010). Lunar palaeoregolith deposits
898 as recorders of the galactic environment of the Solar System and implications for astrobiolo-
899 gy. *Earth, Moon, and Planets*, 107, pp.75-85.

900 Crawford, I.A., Joy, K.H., Pasckert, J.H. and Hiesinger, H. (2021). The lunar surface as a record-
901 er of astrophysical processes. *Philosophical Transactions of the Royal Society A*, 379(2188),
902 p.20190562.

903 Dartois, E., Kebukawa, Y., Yabuta, H., Mathurin, J., Engrand, C., Duprat, J., Bejach, L., Dazzi,
904 A., Deniset-Besseau, A., Bonal, L. and Quirico, E. (2023). Chemical composition of carbo-
905 naceous asteroid Ryugu from synchrotron spectroscopy in the mid-to far-infrared of Haya-
906 busa2-returned samples. *Astronomy & Astrophysics*, 671, p.A2.

907 Day, J.M.D., Floss, C., Taylor, L.A., Anand, M., Patchen, A.D. (2006). Evolved mare basalt
908 magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of Ant-
909 arctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007. *Geo-
910 chim Cosmochim Acta* 70:5957–5989

911 Delano, J.W. (1991). Geochemical comparison of impact glasses from lunar meteorites
912 ALHA81005 and MAC88105 and Apollo 16 regolith 64001. *Geochim Cosmochim Acta*
913 55:3019–3029

914 Demidova, S.I., and Badyukov, D.D. (2023). Peculiarities of the Extraterrestrial Basalts of the
915 Solar System with Reference to the Exoplanet Science: a Brief Review. *Geochemistry Inter-
916 national* 61.5 (2023): 453-467.

917 Donaldson Hanna, K.L., Greenhagen, B.T., Patterson III, W.R., Pieters, C.M., Mustard, J.F.,
918 Bowles, N.E., Paige, D.A., Glotch, T.D. and Thompson, C. (2017). Effects of varying envi-
919 ronmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner ther-
920 mal infrared observations of the Moon. *Icarus*, 283, pp.326-342.

921 Eckley, S.A., Zeigler, R.A., Ketchum, R.A., Edey, D., Hanna, R.D., Gross, J., O’Neal, E.,
922 McCubbin, F.M., Shearer, C.K., and the ANGSA Science Team (this volume; in review).
923 Characterization of Apollo Drive Tube Samples 73001 and 73002 by X-ray Computed To-
924 mography. *Journal of Geophysical Research: Planets, Special ANGSA volume*, in review.

925 Elardo, S.M., Pieters, C.M., Dhingra, D., Donaldson Hanna, K.L., Glotch, T.D., Greenhagen,
926 B.T., Gross, J., Head, J.W., Jolliff, B.L., Klima, R.L., Magna, T., McCubbin, F.M., Ohtake,
927 M. (2023). The evolution of the lunar crust. *Rev Mineral Geochem* 89:293–338

928 Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al. (1998). Lunar Fe and Ti abundances: com-
929 parison of lunar prospector and Clementine data. *Science* 281 (5382), 1493–1496.
930 <https://doi.org/10.1126/science.281.5382.1493>.

931 Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al. (2000). Lunar rare earth element distribution
932 and ramifications for FeO and TiO₂: lunar prospector neutron spectrometer observations. *J.
933 Geophys. Res.: Planets* 105 (E8), 20333–20345. <https://doi.org/10.1029/1999je001176>.

934 Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al. (2002). Lunar prospector neutron spectrometer constraints on TiO₂. *J. Geophys. Res.: Planets* 107 (E4).
935
936 <https://doi.org/10.1029/2000je001460>, 8–1.

937 Elsila, J.E., Aponte, J.C., Dworkin, J.P., Glavin, D.P., McLain, H.L., Simkus, D.N. and ANGSA
938 Science Team (2022a). Trace Levels of Volatile Organic Compounds and Cyanide in the
939 Apollo 73002 Core Sample. In *Lunar and Planetary Science Conference* no.53; p. 1212.

940 Elsila, J.E., Aponte, J.C., Dworkin, J.P., Glavin, D.P., McLain, H.L., Simkus, D.N. and ANGSA
941 Science Team (2022b). Organic Compounds and Cyanide in the Apollo 17 ANGSA Samples.
942 In *Apollo 17-ANGSA Workshop* (Vol. 2704, p. 2015).

943 Elsila, J.E., Callahan, M.P., Dworkin, J.P., Glavin, D.P., McLain, H.L., Noble, S.K. and Gibson
944 Jr, E.K. (2016). The origin of amino acids in lunar regolith samples. *Geochimica et Cosmochimica Acta*, 172, pp.357-369.

945

946 Elsila, J.E., Aponte, J.C., McLain, H.L., Simkus, D.N., Dworkin, J.P., Glavin, D.P., Zeigler,
947 R.A., McCubbin, F.M. and ANGSA Science Team (2024). Soluble organic compounds and
948 cyanide in Apollo 17 lunar samples: Origins and curation effects. *Journal of Geophysical Research: Planets*, 129(4), p.e2023JE008133.

949

950 Eugster, O., Eberhardt, P., Geiss, J., Grögler, N., Jungck, M., Meier, F., Mörgeli, M., Niederer,
951 F. (1984). Cosmic ray exposure histories of Apollo 14, Apollo 15, and Apollo 16 rocks. *Proc
952 Lunar Planet Sci Conf* 14:498–512

953

954 Fagan, A.L., Neal, C.R., Simonetti, A., Donohue, P.H., & O'Sullivan, K.M. (2013). Distinguishing
955 between Apollo 14 impact melt and pristine mare basalt samples by geochemical and tex-
956 tural analyses of olivine. *Geochimica et Cosmochimica Acta*, 106, 429-445.

957

958 Feist, B., Slater, S., and Bennet, C. (2016) Apollo in real time: Apollo 17;
959 <https://apolloinrealtime.org/17>.

960

Feldman, W.C., Barraclough, B.L., Maurice, S., et al. (1998). Major compositional units of the
959 moon: lunar prospector thermal and fast neutrons. *Science* 281 (5382), 1489–1493.
960 <https://doi.org/10.1126/science.281.5382.1489>.

961 Feldman, W.C., Lawrence, D.J., Elphic, R.C., et al. (2000). Chemical information content of lu-
962 nar thermal and epithermal neutrons. *J. Geophys. Res.: Planets* 105 (E8), 20347–20363.
963 <https://doi.org/10.1029/1999je001183>.

964 Fu, X., Yin, C., Jolliff, B.L., Zhang, J., Chen, J., Ling, Z., Zhang, F., Liu, Y. and Zou, Y. (2022).
965 Understanding the mineralogy and geochemistry of Chang'E-5 soil and implications for its
966 geological significances. *Icarus*, 388, p.115254.

967 Gaddis, L.R., Joy, K.H., Bussey, B.J., Carpenter, J.D., Crawford, I.A., Elphic, R.C., Halekas,
968 J.S., Lawrence, S.J., Xiao, L. (2023). Recent exploration of the Moon: Science from lunar
969 missions since 2006. *Rev Mineral Geochem* 89:1–51.

970 Gaffney, A.M., Borg, L.E., Depaolo, D.J., Irving, A.J. (2008). Age and isotope systematics of
971 Northwest Africa 4898, a new type of highly depleted mare basalt. *Lunar Planet Sci*
972 34:#1877

973 Gaffney, A.M., Gross, J., Borg, L.E., Donaldson Hanna, K.L., Draper, D.S., Dygert, N., Elkins-
974 Tanton, L.T., Prissel, K.B., Prissel, T.B., Steenstra, E.S., van Westrenen, W. (2023). Mag-
975 matic evolution I: Initial differentiation of the Moon. *Rev Mineral Geochem* 89:103–145

976 Grande, M., Browninga, R., Waltham, N., et al. (2001). The D-CIXS X-ray mapping spectrome-
977 ter on SMART-1[J]. *Planet. Space Science* 51 (6), 427–433. <https://doi.org/10.1007/978-94->
978 010-0800-6 15.

979 Green, R.O., Pieters, C., Mouroulis, P., Eastwood, M., Boardman, J., Glavich, T., Isaacson, P.,
980 Annadurai, M., Besse, S., Barr, D. and Buratti, B. (2011). The Moon Mineralogy Mapper
981 (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit
982 measurements, science data calibration and on-orbit validation. *Journal of Geophysical Re-
983 search: Planets*, 116(E10).

984 Gross, J., Joy, K.H. (2016). Evolution, lunar: From magma ocean to crust formation. In: *Ency-
985 clopedia of Lunar Science*. Cudnik B (Ed) Springer International Publishing

986 Gross, J., Treiman, A.H., Mercer, C.N. (2014). Lunar feldspathic meteorites: constraints on the
987 geology of the lunar highlands, and the origin of the lunar crust. *Earth Planet Sci Lett*
988 388:31–328

989 Gross, J., Hilton, A., Prissel, T.C., Setera, J.B., Korotev, R.L., Calzada-Diaz, A. (2020). Geo-
990 chemistry and petrogenesis of Northwest Africa 10401: a new type of the Mg-Suite Rocks. *J*
991 *Geophys: Planets* 125:1–24

992 Gross, J., Krysher, C., Mosie, A., Zeigler, R.A., McCubbin, F.M. and Shearer, C. (2021) Prelim-
993 inary Examination Process of Apollo Core 73002-Insights and Lessons Learned From ANG-
994 SA for Future Sample Return Missions. In *Lunar and Planetary Science Conference* 52; p.
995 2684.

996 Gross, J., Mosie, A., Krysher, C., Eckley, S.A., Zeigler, R.A., McCubbin, F.M., Shearer, C.K.
997 and Angsa Science Team (2022) Processing Apollo Core Sample 73001/2—Insights from
998 ANGSA to Prepare for Future Sample Return Missions to the Moon and Beyond. In *Apollo*
999 *17-ANGSA Workshop* (Vol. 2704, p. 2012).

1000 Hallis, L.J., Anand, M., Greenwood, R.C., Miller, M.F., Franchi, I.A., and Russell, S.S. (2010).
1001 The oxygen isotope composition, petrology and geochemistry of mare basalts: evidence for
1002 large-scale compositional variation in the lunar mantle. *Geochimica et Cosmochimica Acta*,
1003 74(23), 6885-6899.

1004 He, Q., Li, Y., Baziotis, I., Qian, Y., Xiao, L., Wang, Z., Zhang, W., Luo, B., Neal, C.R., Day,
1005 J.M. and Pan, F. (2022). Detailed petrogenesis of the unsampled Oceanus Procellarum: The
1006 case of the Chang'e-5 mare basalts. *Icarus*, 383, p.115082.4

1007 Head, III J.W., Wilson, L., Hiesinger, H., van der Bogert, C., Chen, Y., Dickson, J.L., Gaddis,
1008 L.R., Haruyama, J., Jawin, E.R., Jozwiak, L.M., Li, C., Liu, J., Morota, T., Needham, D.H.,
1009 Ostrach, L.R., Pieters, C.M., Prissel, T.C., Qian, Y., Qiao, L., Rutherford, M.R., Scott, D.R.,
1010 Whitten, J.L., Xiao, L., Zhang, F., Ziyuan, O. (2023). Lunar mare basaltic volcanism: Vol-
1011 canic features and emplacement processes. *Rev Mineral Geochem* 89:453–507

1012 Hiesinger, H., Jaumann, R., Neukam, G., Head, J.W. (2000). Ages of mare basalts on the lunar
1013 nearside. *J Geophys Res* 105:29239–29276

1014 Hiesinger, H., Head, J.W., Wolf, U., Jaumann, R., Neukum, G. (2003). Ages and stratigraphy of
1015 mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. *J*
1016 *Geophys Res* 108(E7):5065

1017 Hiesinger, H., Head, J.W. III, Wolf, U., Jaumann, R., Neukum, G. (2010). Ages and stratigraphy
1018 of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size–
1019 frequency distribution measurements. *J Geophys Res* 115:E03003

1020 Hiesinger, H., Head, III J.W., Wolf, U., Jaumann, R., Neukum, G. (2011). Ages and stratigraphy
1021 of lunar mare basalts: A synthesis. *Geol Soc Am Spec Pap* 477:1–51

1022 Hiesinger, H., van der Bogert, C.H., Pasckert, J.H., Funcke, L., Giacomini, L., Ostrach, L.R.,
1023 Robinson, M.S. (2012). How old are young lunar craters? *J Geophys Res (Planets)*
1024 117:E00H10

1025 Hiesinger, H., van der Bogert, C.H., Michael, G., Schmedemann, N., Iqbal, W., Robbins, S.J.,
1026 Ivanov, B., Williams, J.-P., Zanetti, M., Plescia, J., Ostrach, L.R., Head, III J.W. (2023). The
1027 lunar cratering chronology. *Rev Mineral Geochem* 89:401–451

1028 Ito, M., Tomioka, N., Uesugi, M., Yamaguchi, A., Shirai, N., Ohigashi, T., Liu, M.C., Green-
1029 wood, R., Kimura, M., Imae, N. and Uesugi, K., (2022). Hayabusa2 returned samples: a
1030 unique and pristine record of outer Solar System materials from asteroid Ryugu.

1031 James, J.T., and Kahn-Mayberry, N. (2009). Risk of adverse health effects from lunar dust expo-
1032 sure. *The human research program evidence book*, 317-330.

1033 Jones, B.M., Aleksandrov, A., Dyar, M.D., Hibbitts, C.A., Orlando, T.M. (2020). Investigation
1034 of water interactions with Apollo lunar regolith grains. *JGR planets* 125, e2019JE006147;
1035 <https://doi.org/10.1029/2019JE006147>.

1036 Joy, K.H., Zolensky, M.E., Nagashima, K. Huss, G.R., Ross, D.K., McKay, D.S., Kring, D.A.
1037 (2012). Direct detection of projectile relics from the end of the lunar basin-forming epoch.
1038 *Science* 336:1426–1429

1039 Joy, K.H., Crawford, I.A., Curran, N.M., Zolensky, M.E., Fagan, A.F., Kring, D.A. (2016). The
1040 Moon: An archive of small body migration in the solar system. *Earth Moon Planets*
1041 118:133–158.

1042 Joy, K.H., Tartèse, R., Messenger, S., Zolensky, M.E., Marrocchi, Y., Frank, D.R., Kring, D.A.
1043 (2020). The isotopic composition of volatiles in the unique Bench Crater carbonaceous chon-
1044 drite impactor found in the Apollo 12 regolith. *Earth Planet Sci Lett* 540:116265

1045 Joy, K.H., Gross, J., Korotev, R.L., Zeigler, R.A., McCubbin, F.M., Snape, J.F., Curran, N.M.,
1046 Pernet-Fisher, J.F. and Arai, T. (2023). Lunar meteorites. *Reviews in Mineralogy and Geo-
1047 chemistry*, 89(1), pp.509-562.

1048 Ketcham, R.A., Hanna, R.D., Edey, D.R., Zeigler, R.A. and Eckley, S.A. (2022). Acquisition and
1049 Processing of X-Ray CT Whole-Core Data for Apollo Samples 73001 and 73002. *Apollo 17-
1050 ANGSA Workshop*, Vol. 2704, p. 2044.

1051 Khan-Mayberry, N. (2008). The lunar environment: Determining the health effects of exposure
1052 to moon dusts. *Acta Astronautica*, 63(7-10), 1006-1014.

1053 Kiefer, W.S., Macke, R.J., Britt, D.T., Irving, A.J. and Consolmagno, G.J. (2014). The density
1054 and porosity of lunar impact breccias and impact melt rocks and implications for GRAIL
1055 gravity modeling of the Orientale impact basin structure. *Geophys. Res. Lett.*, 41, pp.5771-
1056 5777.

1057 Krysher, C.H., Mosie, A.B., Gross, J., Zeigler, R.A., McCubbin, F.M. and Allton, J.H. (2020).
1058 Adventures in Lunar Core Processing: Timeline of and Preparation for Opening of Core
1059 Sample 73002 for the ANGSA Program. In *Lunar and Planetary Science Conference* 51, p.
1060 2989 (No. JSC-E-DAA-TN77641).

1061 Laul, J.C., Smith, M.R. and Schmitt, R.A. (1983). ALHA 81005 meteorite: Chemical evidence
1062 for lunar highland origin. *Geophysical Research Letters*, 10(9), pp.825-828.

1063 Lawrence, D.J., Feldman, W.C., Barraclough, B.L., et al. (1998). Global elemental maps of the
1064 moon: the lunar prospector gamma-ray spectrometer. *Science* 281 (5382), 1484–1489.
1065 <https://doi.org/10.1126/science.281.5382.1484>.

1066 Lawrence, D.J., Feldman, W.C., Barraclough, B.L., et al. (1999). High resolution measurements
1067 of absolute thorium abundances on the lunar surface. *Geophys. Res. Lett.* 26 (17), 2681–
1068 2684. <https://doi.org/10.1029/1999gl008361>.

1069 Lawrence, D.J., Feldman, W.C., Barraclough, B.L., et al. (2000). Thorium abundances on the
1070 lunar surface. *J. Geophys. Res.: Planets* 105 (E8), 20307–20331.
1071 <https://doi.org/10.1029/1999JE001177>.

1072 Lentfort, S., Bischoff, A., Ebert, S., & Patzek, M. (2021). Classification of CM chondrite brecci-
1073 as—Implications for the evaluation of samples from the OSIRIS-REx and Hayabusa 2 mis-
1074 sions. *Meteoritics & Planetary Science*, 56(1), 127-147.

1075 Liu, J., Sharp, M., Ash, D., Kring, D.A., Walker, R.J. (2015). Diverse impactors in Apollo 15
1076 and 16 impact melt rocks: Evidence from osmium isotopes and highly siderophile elements.
1077 *Geochim Cosmochim Acta* 155:122–153

1078 Lucey, P.G., Blewett, D.T., Hawke, B.R. (1998). Mapping the FeO and TiO₂ content of the lunar
1079 surface with multispectral imagery. *J. Geophys. Res.: Planets* 103 (E2), 3679–3699.
1080 <https://doi.org/10.1029/97je03019>.

1081 Lucey, P.G., Blewett, D.T., Jolliff, B.L., (2000a). Lunar iron and titanium abundance algorithms
1082 based on final processing of Clementine ultraviolet-visible images. *J. Geophys. Res.: Planets*
1083 105 (E8), 20297–20305. <https://doi.org/10.1029/1999je001117>.

1084 Lucey, P.G., Taylor, G.J., Malaret, E. (1995). Abundance and distribution of iron on the moon.
1085 *Science* 268 (5214), 1150–1153. <https://doi.org/10.1126/science.268.5214.1150>.

1086 Lucey, P.G., Blewett, D.T., Taylor, G.J., Hawke, B.R. (2000b). Imaging of lunar surface maturi-
1087 ty. *J Geophys Res: Planets* 105:20377–20386

1088 Lucey, P., Greenhagen, B., Hanna, K.D., Bowles, N., Flom, A., Paige, D. (2021). Christiansen
1089 feature map from the lunar reconnaissance orbiter diviner lunar radiometer experiment: im-
1090 proved corrections and derived mineralogy. *J. Geophys. Res.*
1091 <https://doi.org/10.1029/2020JE006777>.

1092 Lucey, P.G., Greenhagen, B.T., Song, E., et al. (2017). Space weathering effects in Diviner Lu-
1093 nar Radiometer multispectral infrared measurements of the lunar Christiansen Feature: Char-
1094 acteristics and mitigation. *Icarus* 343–351. <https://doi.org/10.1016/j.icarus.2016.05.010>.

1095 Lucey, P., Korotev, R.L., Gillis, J.J., et al. (2006). Understanding the lunar surface and space-
1096 moon interactions. *Rev. Mineral. Geochem.* 60 (1), 83–219.
1097 <https://doi.org/10.2138/rmg.2006.60.2>.

1098 Lucey, P.G., Sun, L., Flom, A.J., Chertok, M.A., Zeigler, R.A., Gross, J., Shearer C.K. and Ang-
1099 sa Science Team (2023). Infrared Spectroscopy of Apollo 17 Core 73001: Implications for
1100 Lunar Surface Water. *Lunar and Planetary Science Conference*, 54; LPI Contributions, 2806,
1101 1591.

1102 McCubbin, F.M., Herd, C.D., Yada, T., Hutzler, A., Calaway, M.J., Allton, J.H., Corrigan, C.M.,
1103 Fries, M.D., Harrington, A.D., McCoy, T.J. and Mitchell, J.L. (2019). Advanced curation of
1104 astromaterials for planetary science. *Space Science Reviews*, 215, pp.1-81.

1105 McDonald, F., Schild, T., Bamsey, N., Apolloni, M., Biella, R., Butenko, Y., Dowson, A., Eck-
1106 ley, S., Gross, J., Jolliff, B. and Lindner, R. (2022). A unique lunar gas extraction event as
1107 part of the ANGSA Program and the lessons learned for a new generation of sample return
1108 missions. *Copernicus Meetings* No. EPSC2022-1117.

1109 McIntosh, E.C., Day, J.M.D., Liu, Y., Jiskoot, C. (2020). Examining the compositions of im-
1110 pactors striking the Moon using Apollo impact melt coats and anorthositic regolith breccia
1111 meteorites. *Geochim Cosmochim Acta* 274:192–210

1112 McLain, J.L., Loeffler, M.J., Farrell, W.M., Honniball, C.I., Keller, J.W. and Hudson, R. (2021).
1113 Hydroxylation of Apollo 17 soil sample 78421 by solar wind protons. *Journal of Geophys-
1114 ical Research: Planets*, 126(5), p.e2021JE006845.

1115 Naito, M., Hasebe, N., Nagaoka, H., et al. (2018). Iron distribution of the moon observed by the
1116 Kaguya gamma-ray spectrometer: geological implications for the south pole Aitken basin,
1117 the Orientale basin, and the Tycho crater. *Icarus* 310, 21–31. <https://doi.org/10.1016/j.icarus.2017.12.005>.

1119 Neal, C.R., Gaddis, L.R., Jolliff, B.L., Lawrence, S.J., Mackwell, S.J., Shearer, C.K., Valencia,
1120 S.N. (2023). New Views if the Moon 2. Reviews in Mineralogy and Geochemistry, Vol. 89.
1121 Series editor: Ian P. Swainson; Mineralogical Society of America, Geochemical Society. IS-
1122 SSN 1529-6466.

1123 Nichols Jr, R.H., Hohenberg, C.M. and Olinger, C.T. (1994). Implanted solar helium, neon, and
1124 argon in individual lunar ilmenite grains: Surface effects and a temporal variation in the solar
1125 wind composition. *Geochimica et cosmochimica acta*, 58(2), pp.1031-1042.

1126 Nyquist, L.E., Bogard, D.D., Shih, C.-Y. (2001). Radiometric chronology of the Moon and Mars.
1127 In: The Century of Space Science. Springer, Dordrecht, p 1325–1376

1128 Parai, R., Rodriguez, J., Patzkowsky, S., Solari, N., Woody, K.A., Meshik, A., Pravdivtseva, O.,
1129 Jolliff, B.L., Shearer, C.K., Sharp, Z.D. and Cassata, W. (2022). Noble Gas Isotopes in the
1130 Apollo 17 73001 Core Sample Vacuum Container Gas. In *Apollo 17-ANGSA Workshop* (Vol.
1131 2704, p. 2028).

1132 Pernet-Fisher, J., McDonald, F. E., Zeigler, R. A., and Joy, K. (2019). 50 years on: legacies of
1133 the Apollo programme. *Astronomy and Geophysics*, 60(4), 4.22-4.28.
1134 <https://doi.org/10.1093/astrogeo/atz163>

1135 Prettyman, T.H., Hagerty, J.J., Elphic, R.C., et al. (2006). Elemental composition of the lunar
1136 surface: analysis of gamma ray spectroscopy data from lunar prospector. *J. Geophys. Res.:
1137 Planets* 111 (E12). <https://doi.org/10.1029/2005je002656>.

1138 Qian, Y., Xiao, L., Wang, Q., Head, J.W., Yang, R., Kang, Y., van der Bogert, C.H., Hiesinger,
1139 H., Lai, X., Wang, G. and Pang, Y. (2021). China's Chang'E-5 landing site: Geology, stratig-
1140 raphy, and provenance of materials. *Earth and Planetary Science Letters*, 561, p.116855.

1141 Regberg, A.B., Amick, C.L., Davis, R.E., Lewis, E.K., Mazhari, F., Mitchell, J.L., Owens, D.L.
1142 and McCubbin, F.M. (2021). A Method to Reduce Bioburden in Astromaterials Curation Fa-
1143 cilities Without Introducing Unwanted Contamination. In *52nd Lunar and Planetary Science*
1144 *Conference*: p. 2491

1145 Rezaie-Serej, S. and Outlaw, R.A. (1994). Thermal desorption of CO and H₂ from degassed 304
1146 and 347 stainless steel. *Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and*
1147 *Films*, 12(5), pp.2814-2819.

1148 Sato, H., Robinson, M.S., Lawrence, S.J., Denevi, B.W., Hapke, B., Jolliff, B.L. and Hiesinger,
1149 H. (2017). Lunar mare TiO₂ abundances estimated from UV/Vis reflectance. *Icarus*, 296,
1150 pp.216-238.

1151 Saxena, P., Killen, R. M., Airapetian, V., Petro, N. E., Curran, N. M., and Mandell, A. M.
1152 (2019). Was the Sun a slow rotator? Sodium and potassium constraints from the lunar rego-
1153 lith. *The Astrophysical Journal Letters*, 876(1), L16.

1154 Schild, T., McDonald, F.E., de Medeiros, P., Apolloni, M., Bamsey, N., Biella, R., Butenko, Y.,
1155 Dowson, A., Cowley, A., Lindner, R. and Makaya, A. (2022). Piercing Device for Gas Ex-
1156 traction from Apollo 17 Sample Container: Final Design and Key Learnings. In *Apollo 17-*
1157 *ANGSA Workshop* (Vol. 2704, p. 2013).

1158 Schmitt, H.H., Petro, N.E., Wells, R.A., Robinson, M.S., Weiss, B.P., Mercer, C.M. (2017). Re-
1159 visiting the field geology of Taurus-Littrow. *Icarus* 298:2–33.

1160 Sharp, Z.D., Cano, E.J., Cato, M.J., Gargano, A.M., Shearer, C.K., and Ziegler, K.G. (2020).
1161 Hydrogen, Chlorine and Oxygen Isotope Analyses of the ANGSA Drivetube Samples. In
1162 *51st Annual Lunar and Planetary Science Conference*, no. 2326, p. 1286. 2020.

1163 Sharp, Z.D., Shearer, C.K., Meshik, A., Parai, R., Pravdivtseva, O., Cassata, W., Gross, J.,
1164 McCubbin, F., Zeigler, R., Jolliff, B.L. and McDonald, F. (2022). Major Element Gas Com-
1165 position of the Apollo 73001 Inner (CSVC) and Outer Containers. In *Apollo 17-ANGSA*
1166 *Workshop* (Vol. 2704, p. 2052).

1167 Shearer, C.K., Simon, S.B., Jolliff, B.L., McCubbin, F.M., Zeigler, R.A., Gross, J., Yen, C.K.,
1168 Joy, K.H., Bell, S.K., Cato, M. and Eckley, S. (2022). A "New" Lunar Sample Return Mis-
1169 sion Reveals a Fresh Perspective of Lunar Magmatism from Lithic Fragments from Double
1170 Drive Tube 73001/73002. In *Apollo 17-ANGSA Workshop* (Vol. 2704, p. 2003).

1171 Shearer, C.K., McCubbin, F.M., Eckley, S., Simon, S.B., Meshik A., McDonald F., Schmitt
1172 H.H., Zeigler, R.A., Gross, J., Mitchell J., Krysher C., Morris R.V., Parai R., Jolliff, B.L.,
1173 Gillis-Davis J.J., Joy K., Bell S.K., Lucey P., Sun L., Sharp Z., Dukes C., Sehlke A., Mosie
1174 A., Allton J., Amick C., Simon J., Erickson T.M., Barnes J.J., Dyar M., Burgess K., Petro N.,
1175 Moriarty D., Curran N.M., Elsia J.E., Colina-Ruis R.A., Kroll T., Sokaras D., Isshii H.A.,
1176 Bradley J.P., Sears D., Cohen B., Pravdiseva O., Thompson M.S., Neal C.R., Hana R.,
1177 Ketchum R., Welton K., and the ANGSA science team (2024): Apollo Next Generation
1178 Sample Analysis (ANGSA): An Apollo Participating Scientist Program to Prepare the Lunar
1179 Sample Community for Artemis. *Space Science Reviews*, 220, 62;
1180 <https://doi.org/10.1007/s11214-024-01094-x>

1181 Simon, S.B., Papike, J.J., & Laul, J.C. (1982). The lunar regolith-Comparative studies of the
1182 Apollo and Luna sites. Petrology of soils from Apollo 17, Luna 16, 20, and 24. In *Lunar and*
1183 *Planetary Science Conference, 12th, Proceedings. Section 1*; New York and Oxford, Per-
1184 gamon Press, 1982, Vol. 12; p. 371-388.

1185 Simon, S.B., Papike, J.J., & Shearer, C.K. (1984). Petrology of Apollo 11 regolith breccias.
1186 *Journal of Geophysical Research: Solid Earth*, 89(S01), C108-C132.

1187 Simon, S.B., Papike, J.J., Shearer, C.K., and Laul, J.C. (1983). Petrology of the Apollo 11 high-
1188 land component. *Journal of Geophysical Research: Solid Earth*, 88(S01), B103-B138.

1189 Simpson, J.A. (1983) Introduction to the galactic cosmic radiation. In: *Shapiro MM (ed) Compo-*
1190 *sition and Origin of Cosmic Rays*, Reidel, Amsterdam, p 1-24

1191 Sun, L., Lucey, P.G., and Taylor, G.J. (2021a). Correlating Apollo soil mineralogical data with
1192 Kaguya spectral data for a global mineralogical classification. *Journal of Geophysical Re-*
1193 *search: Planets*, 126(5), e2020JE006445.

1194 Sun, L., Lucey, P.G., Flom, A., Ferrari-Wong, C., Zeigler, R.A., Gross, J., Petro, N.E., Shearer,
1195 C.K., McCubbin, F.M., and The ANGSA Science Team (2021b). Multispectral Imaging and
1196 Hyperspectral Scanning of the First Dissection of Core 73002: Preliminary Results. *Meteorit-*
1197 *ics & Planetary Science*, 56, 1574-1584.

1198 Swinyard, B.M., Joy, K.H., Kellett, B.J., Crawford, I.A., Grande, M., Howe, C.J., Fernandes,
1199 V.A., Gasnault, O., Lawrence, D.J., Russell, S.S., Wieczorek, M.A., Foing, B.H., the
1200 SMART-1 Team (2009). X-ray fluorescence observations of the moon by SMART-1/D-
1201 CIXS and the first detection of Ti K α from the lunar surface. *Planet Space Sci* 57:744–750

1202 Tachibana, S., Yurimoto, H., Nakamura, T., Noguchi, T., Okazaki, R., Yabuta, H., Naraoka, H.,
1203 Sakamoto, K., Watanabe, S. and Tsuda, Y. (2022). Initial Analysis Activity of Hayabusa2-
1204 Returned Samples from C-Type NearEarth Asteroid (162173) Ryugu. *Meteoritics & Plane-*
1205 *tary Science*, 57, p6111.

1206 Tikoo, S.M., Weiss, B.P., Buz, J., Lima, E.A., Shea, E.K., Melo, G., Grove, T.L. (2012). Mag-
1207 netic fidelity of lunar samples and implications for an ancient core dynamo. *Earth Planet Sci*
1208 *Lett* 337–338:93–103

1209 Tikoo, S.M., Weiss, B.P., Shuster, D.L., Suavet, C., Wang, H., Grove, T.L. (2017). A two-
1210 billion-year history for the lunar dynamo. *Sci Adv* 3:E1700207

1211 Treiman, A.H. and Drake, M.J. (1983). Origin of lunar meteorite ALHA 81005: Clues from the
1212 presence of Terrae clasts and a very low-titanium mare basalt clast. *Geophysical Research*
1213 *Letters*, 10(9), pp.783-786.

1214 Wagner, S. (2006). The Apollo experience lessons learned for constellation lunar dust manage-
1215 ment (No. JSC-CN-10841).

1216 Welten, K.C., Caffee, M.W., Nishiizumi, K. and ANGSA Science Team (2022). Cosmogenic
1217 Radionuclides in Lunar Core 73002/01: Cosmic-Ray Exposure History and Regolith Mixing
1218 of the Lunar Surface. In *Apollo 17-ANGSA Workshop* (Vol. 2704, p. 2046).

1219 Wieczorek, M.A., Neumann, G.A., Nimmo, F., Kiefer, W.S., Taylor, G.J., Melosh, H.J., Phillips,
1220 R.J., Solomon, S.C., Andrews-Hanna, J.C., Asmar, S.W., Konopliv, A.S. (2013). The crust of
1221 the Moon as seen by GRAIL. *Science* 339:671–675

1222 Wieczorek, M.A., Weiss, B.P., Breuer, D., Cébron, D., Fuller, M., Garrick-Bethell, I., Gattac-
1223 ceca, J., Halekas, J.S., Hemingway, D.J., Hood, L.L., Laneuville, M., Nimmo, F., Oran, R.,
1224 Purucker, M.E., Rückriemen, T., Soderlund, K.M., Tikoo, S.M. (2023). Lunar magnetism.
1225 *Rev Mineral Geochem* 89:207–241

1226 Wieler, R. (2016). Do lunar and meteoritic archives record temporal variations in the composi-
1227 tion of solar wind noble gases and nitrogen? A reassessment in the light of Genesis data.
1228 *Chemie der Erde* 76:463–480

1229 Wolfe, E.W., Bailey, N.G., Lucchitta, B.K., Muehlberger, W.R., Scott, D.H., Sutton, R.L. and
1230 Wilshire, H.G. (1981). The Geologic Investigation of the Taurus-Littrow Valley: Apollo 17
1231 Landing Site. *United States Geological Surv. Prof. Pap.* 1080.

1232 Wood, J.A. (1975). Lunar petrogenesis in a well-stirred magma ocean. In: Lunar Science Con-
1233 ference, 6th, Houston, Tex., March 17-21, 1975, *Proceedings. Volume 1 (A78-46603 21-91)*
1234 *New York, Pergamon Press, Inc.*, 1975, p. 1087-1102.

1235 Zeigler, R.A., Mosie, A.B., Corrigan, C., Costello, L.J., Kent, J.J., Krysher, C.H., Watts, L.A.
1236 and McCubbin, F.M. (2019). The Apollo sample collection: 50 years of solar system insight.
1237 *Elements*, 15(4), pp.286-287.

1238 Zeigler, R.A., Eckley, S., Edey, D., Ketcham, R.A., Hanna, R.D., Gross, J., McCubbin, F.M. and
1239 Shearer, C.K. (2022). X-Ray Computed Tomography During Preliminary Examination of
1240 Apollo Drive Tube 73001. In *85th Annual Meeting of The Meteoritical Society*.

1241 Zeigler, R.A., Eckley, S., Hanna, R.D., Edey, D., Ketcham, R.A., Gross, J., McCubbin, F.M. and
1242 the ANGSA Science Team (2021). Using X-Ray Computed Tomography to Image Apollo
1243 Drive Tube 73002. In *Lunar and Planetary Science Conference* No.52, p.2632

1244 Zuber, M.T., Smith, D.E., Watkins, M.M., Asmar, S.W., Konopliv, A.S., Lemoine, F.G.,
1245 Melosh, H.J., Neumann, G.A., Phillips, R.J., Solomon, S.C. (2013). Gravity field of the

1246 Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. *Science*
1247 339:668–671.

1248

1249 **Table 1:** List of gas samples taken from sealed sample 73001.

1250 **Table 2:** Classification of rock particles > 4 mm via XCT scanning.

1251 **Figure 1:** a) Returned samples representing the ancient crust such as anorthosites (Apollo sam-
1252 ple 60025); b) modified crust such as breccias (Apollo sample 67016) and impact melts; c) or
1253 additions made to the crust such as basalts (Apollo sample 10049) or exogenic materials. Images
1254 of rocks from the Apollo compendium (Meyer, 2012).

1255 **Figure 2:** Apollo samples have anchored lunar science by calibrating instruments (a) and sci-
1256 entific data sets (b, c). In addition, mineral chemistry (d) and physical properties (e, f) are used to
1257 understand lunar evolution through space and time (f-h), and exogenic material found within
1258 samples provide insights into solar system climate and our place within the galaxy (g,h). See text
1259 for more details (¹Meyer, 2012; ²Lucey et al., 1995; ³Hiesinger et al., 2023; ⁴Kiefer et al., 2014;
1260 ⁵Gross et al., 2014; ⁶Tikoo et al., 2012, 2017; ^{7,8}Treiman and Drake, 1983; ^{7,8}Laul et al., 1983;
1261 ⁹Joy et al., 2016).

1262 **Figure 3:** Flowchart to distinguish between science investigations, basic characterization, pre-
1263 liminary examination, and extended examination (after McCubbin et al., 2019). Y = Yes; N =
1264 No; XCT = X-ray Computed Tomography; BC = Basic Characterization; PE = Preliminary Ex-
1265 amination.

1266 **Figure 4:** Comparison between the medical X-ray dataset from 1973 and XCT dataset from
1267 2019. An unknown amount of material fell out the bottom of this upper drive tube during the se-
1268 curing process on the lunar surface, which manifested in a void space visible in the X-ray image
1269 taken in 1973 (white arrow).

1270 **Figure 5:** a) Gas extraction manifold with the 73001 OVC attached. The water-ice bath, used to
1271 try to remove possible hydrocarbon gas contamination, was only used during OVC2 extraction.
1272 Drs. Gross and Pravdivtseva for scale; b) insertion process of the CSVC into the piercing tool:

1273 (b1) the CSVC going into the piercing tool insert; (b2) the piercing tool insert being placed into
1274 the main body of the piercing tool, with the piercing tool top/chisel in the foreground; (b3) plac-
1275 ing the piercing tool top/chisel on to the piercing tool main body. Drs. Gross and McDonald for
1276 scale; c) gas extraction manifold with the piercing tool (with the 73001 CSVC inside).

1277 **Figure 6:** Current configuration of the Gas Extraction Manifold showing a) the additional stain-
1278 less steel 2-liter bottle added to the system, as well as b) the two available conflate distribution
1279 ports for Principal Investigators (PIs) subsamples to be taken through.

1280 **Figure 7:** a) Whole core XCT images of drive tubes 73001 and 73002 with representative cross-
1281 sectional slices shown for b) 73002 (slice 1748) and c) 73001 (slice 5446). This image is made
1282 from the 51.6 μ m per voxel down-sampled data.

1283 **Figure 8:** a) XCT cross section view of the top of the 73001 CSVC after the gas extraction was
1284 done. The stainless-steel keeper's (purple arrow) prongs (yellow arrows) are supposed to be
1285 holding the regolith material in place by grabbing on to the sides of the inner aluminum drive
1286 tube walls (light blue arrows). b) XCT cross section view of the bottom of the 73001 CSVC after
1287 the gas extraction. The stainless steel CSVC has clearly been pierced (orange arrow), and while
1288 the Teflon cap (dark yellow arrow) on the 73001 drive tube has been dented, it is still intact.

1289 **Figure 9:** a) Lunar processor Andrea Mosie preparing to remove the 73001 drive tube from the
1290 CSVC; b) adding the end effectors to the drive tube to enable the extrusion; c) drive tube inside
1291 the extrusion apparatus and core being pushed onto the receptacle; d) extruded core with quartz
1292 top, on dissection table with happy extrusion team Andrea Mosie and Dr. Juliane Gross.

1293 **Figure 10:** a) Sketch of 73001/2 core with locations of each pass. For pass 1, the quartz top
1294 (light gray) and the first plate (dark gray) was removed. Two more plates are re-moved for each
1295 subsequent pass. Each plate is 0.5 cm thick, thus removing 2 plates leaves the core stick out 1cm
1296 above the next plate level. TS (thin section) is the portion reserved for epoxy impregnation and
1297 encapsulation to make thin sections. b) De-rind process to expose the pristine core material by
1298 removing the outermost 1-2mm rind. The core is marked in 5 cm intervals, the plate is etched
1299 with a cm scale.

1300 **Figure 11:** Pass 2 of 73002 core. a) The core sticks out above plate level for Pass 2 after removal
1301 of two table plates. b) The smooth sides of the core have been de-rinded to expose the pristine
1302 material underneath. The core is mid dissection of pass 2 in this image. Large clasts that protrude
1303 through multiple passes are kept in place and are dissected around (white arrow). These large
1304 clasts are removed from the core after pass 3 is dissected, prior to transferring the TS portion
1305 (Figure 10) to the Apollo thin section lab. c) Sieved and sorted >1 mm particles into their respec-
1306 tive size fractions on the Teflon cap (left, scale is in cm); example of a triple bagged 4-10 mm
1307 particle (right) with a gloved finger in the background. The plate contains an etched cm scale.

1308 **Figure 12:** Examples of the different data sets developed and collected during ANGSA and a
1309 schematic sketch on how they are all connected to each other. a) inventory spreadsheet; b)
1310 sketches and notes; c) XCT images and videos; d) photo particle data with multiple photo angles
1311 and labeled clasts, with a cm scale bar.

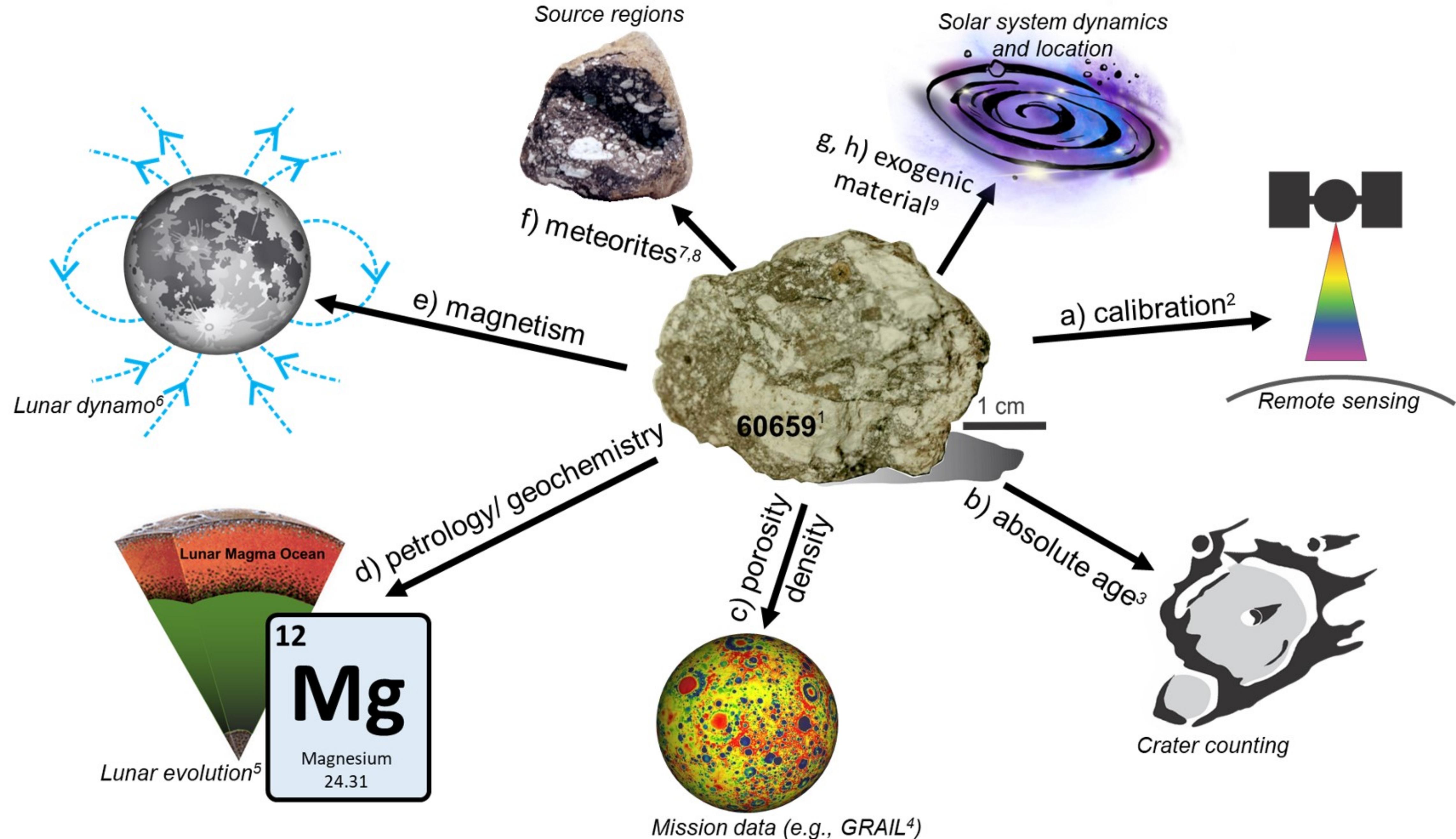
1312 **Figure 13:** a) Example of the sketches taken in the lab during dissection and the cleaned up, b)
1313 digitized version that contains information about clast locations and core properties.

1314 **Figure 14:** Continuous core section process steps. a) 73002 core impregnated with epoxy in the
1315 core dissection plate with a cm scale; b) 73002 core encased in its secondary encapsulation
1316 epoxy with a cm scale ruler; c) silicone secondary encapsulation mold and 73001 core in its sec-
1317 ondary encapsulation epoxy, turned over to show the depth and fiducial markings as well as top
1318 and bottom tags embedded within the epoxy; d) the 4 potted butts produced from one half of the
1319 73002 core after cutting b) in half lengthwise, which were used to produce 2 initial sets of con-
1320 tinuous core thin sections. Scale in a)-c) is in cm; cube edge in d) is 1 inch.

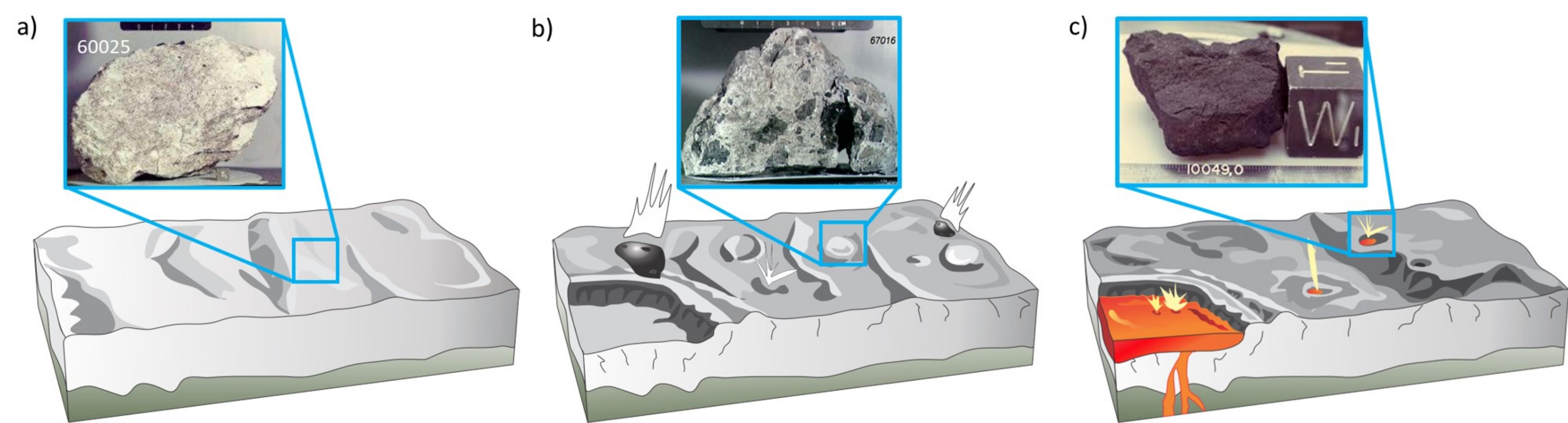
1321 **Figure 15:** Single slice XCT image views of 10 typical lithologies encountered of the 352 parti-
1322 cles scanned that were >4 mm. a) high-Ti basalt, b) high-Ti basalt, c) recrystallized high-Ti bas-
1323 alt, d) low-Ti basalt, e) low-Ti basalt, f) agglutinate, g) regolith breccia, h) cataclastic anortho-
1324 site, i) regolith breccia dominated by black glass, j) anorthosite. Scale bars are 1 mm.

1325 **Figure 16:** Lithology of all >4 mm clasts. a) Lithologies in 73002; b) lithologies in 73001.

1326 **Figure 17:** a-d) Grainsize analyses for 73002 and for 73001 (e-h). Number of grains in all sieved
1327 passes (passes 1 & 2) for a) 73002 and e) 73001 compared to the mass of all material from all


1328 sieved passes (b, f). c) XCT images of 73002 and g) of 73001 are shown to highlight the dissected
1329 and sieved material above the yellow line which represents the dissected surface of pass 2 for
1330 both cores. Photographs of the dissected surface of pass 2 for each respective core (d = 73002; h
1331 = 73001) with clasts sticking out that go into pass 3.

1332 **Figure 18:** Relative displacement of clasts within 73002 drive tube during extrusion. The location
1333 of the clasts pre-extrusion was measured using the XCT data set of the core (a) and compared
1334 to the location of the clasts after the extrusion and dissection (c). The orange arrows in the
1335 relative displacement graph (b) indicate that the direction of compaction is stronger at the bottom
1336 of the core from the direction of extrusion and weaker at the top, most likely caused by friction
1337 between the regolith, the follower clam, and the receptacle.


1338 **Figure 19:** Relative displacement of clasts within 73001 drive tube during extrusion. The location
1339 of the clasts pre-extrusion was measured using the XCT data set of the core (a) and compared
1340 to the location of the clasts after the extrusion and dissection (c). The orange arrows in the
1341 relative displacement graph (b) indicate that the direction of compaction is stronger at the bottom
1342 of the core from the direction of extrusion and weaker at the top, most likely caused by friction
1343 between the regolith, the follower clam, and the receptacle.

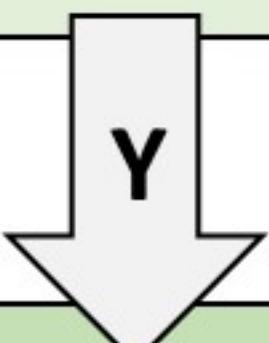
1344

Figure 1.

Figure 2.

Figure 3.

Can results of the investigation lead to a stand-alone paper?



Science
(not PE or BC)

Exception

Is it time sensitive
science (within 6
months after return)?

Conduct in parallel to PE

Can the investigation be
done without altering or
touching the samples

Basic
Characterization
(BC)*

Are the results critical to
create a meaningful
sample catalog?

Preliminary
Examination
(PE)*

*Basic Characterization (BC)

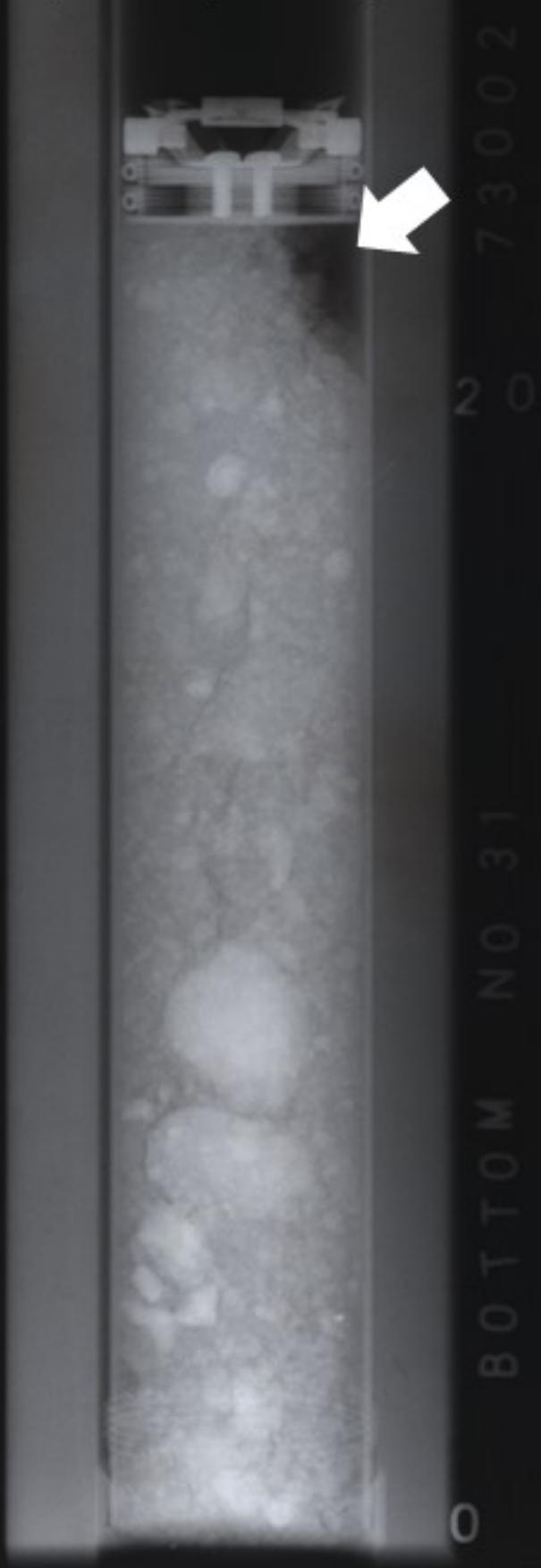
Documentation of sample containers & seals
upon arrival via different methods (e.g., XCT,
photos, videos, notes)

#Preliminary Examination (PE)

Documentation (e.g., photos, videos) of
opened sample states (e.g., crumbled, broken,
intact) and character (e.g., mass, size, texture).

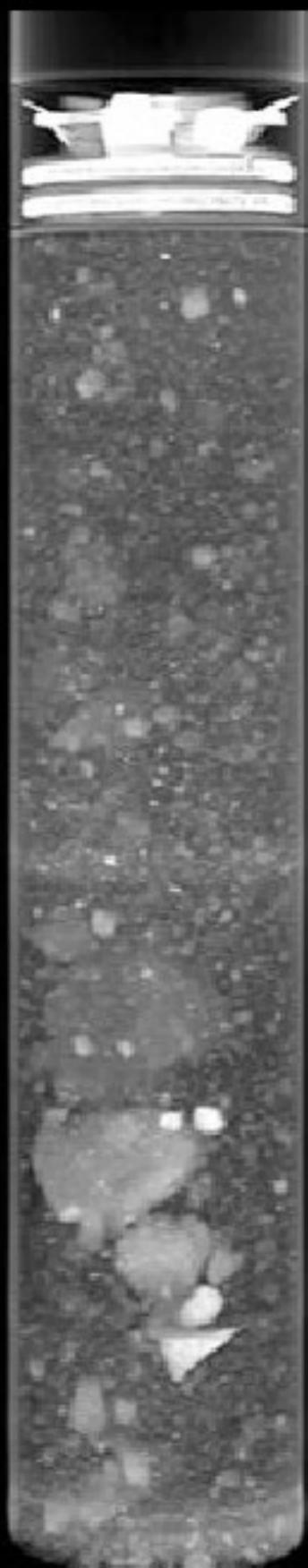
Extended Examination

(carried out on small subset of samples during PE time
permitting; carried out during long term curation)

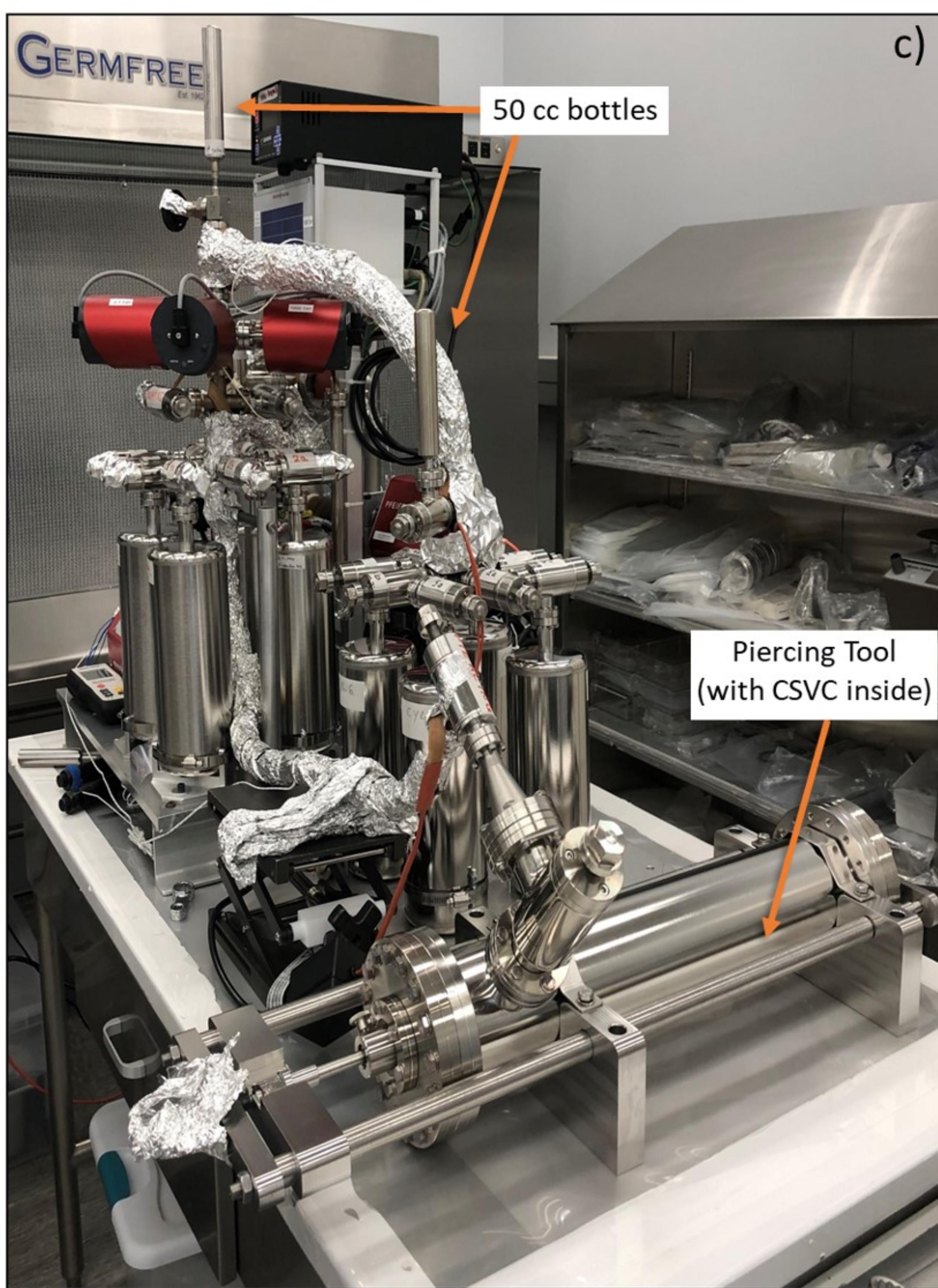
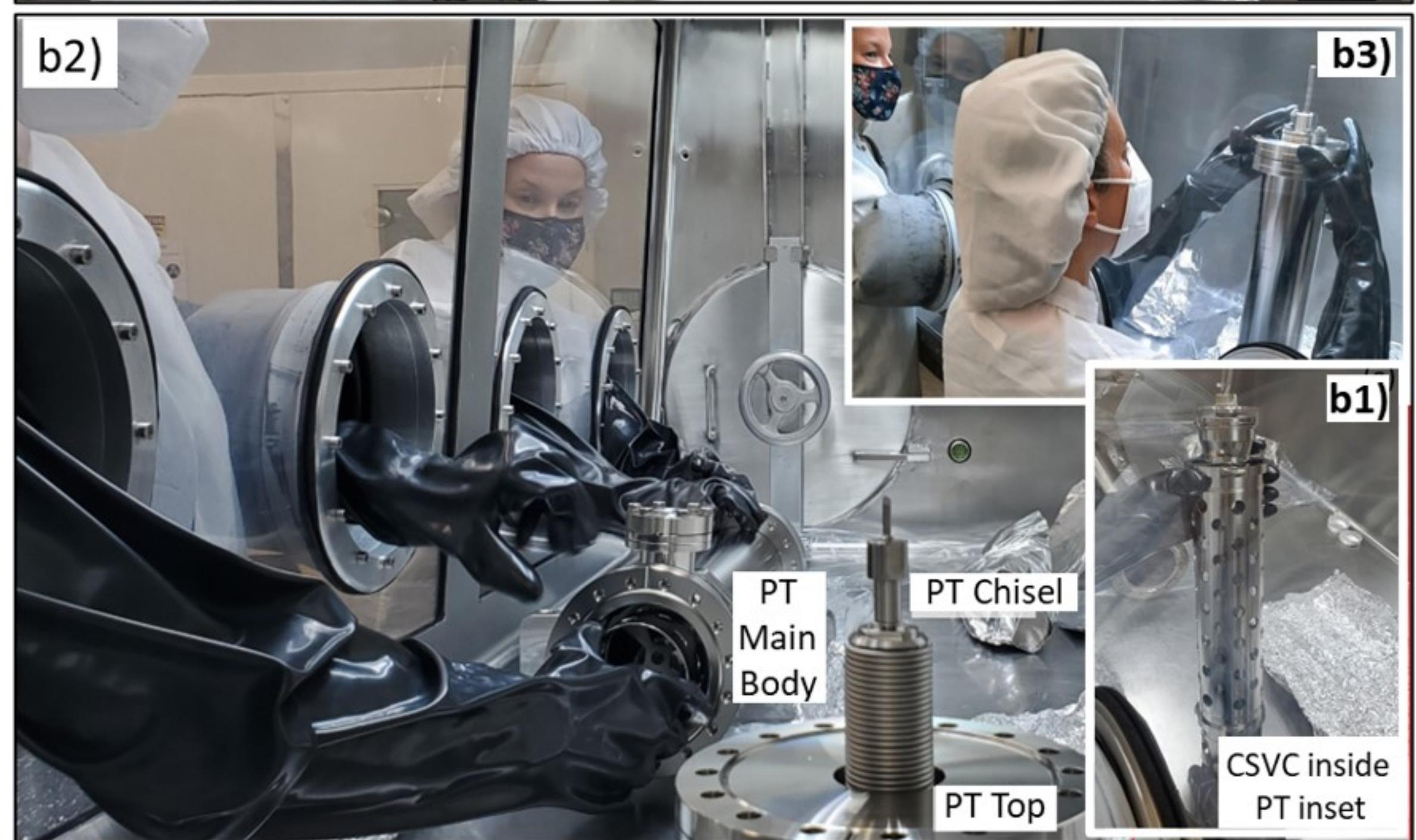
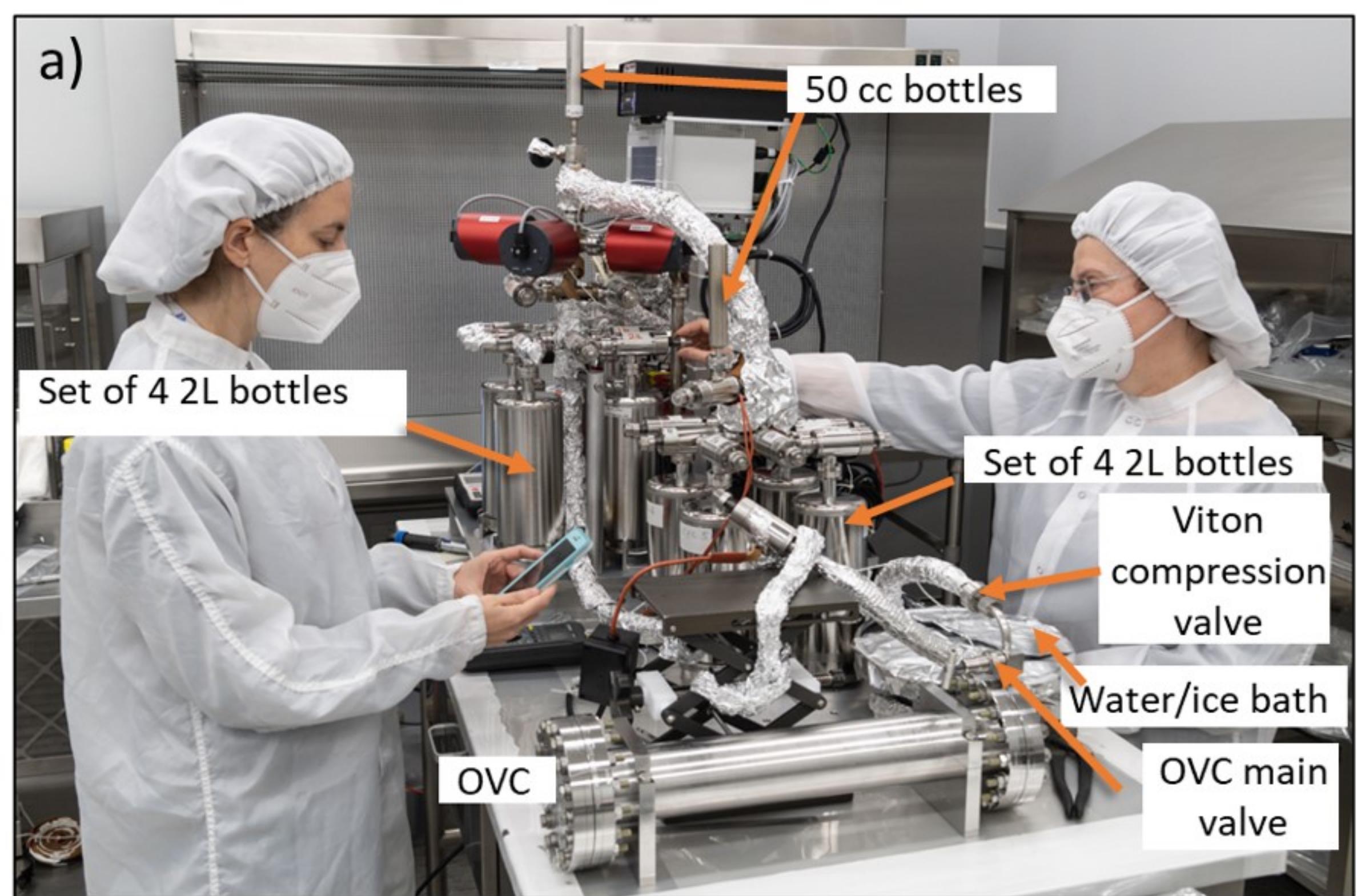


Documentation of physical sample properties
via different methods such as sieving, XCT
scanning, thin-sectioning, grain mounts, grain
size distribution, maturity, core dissection.

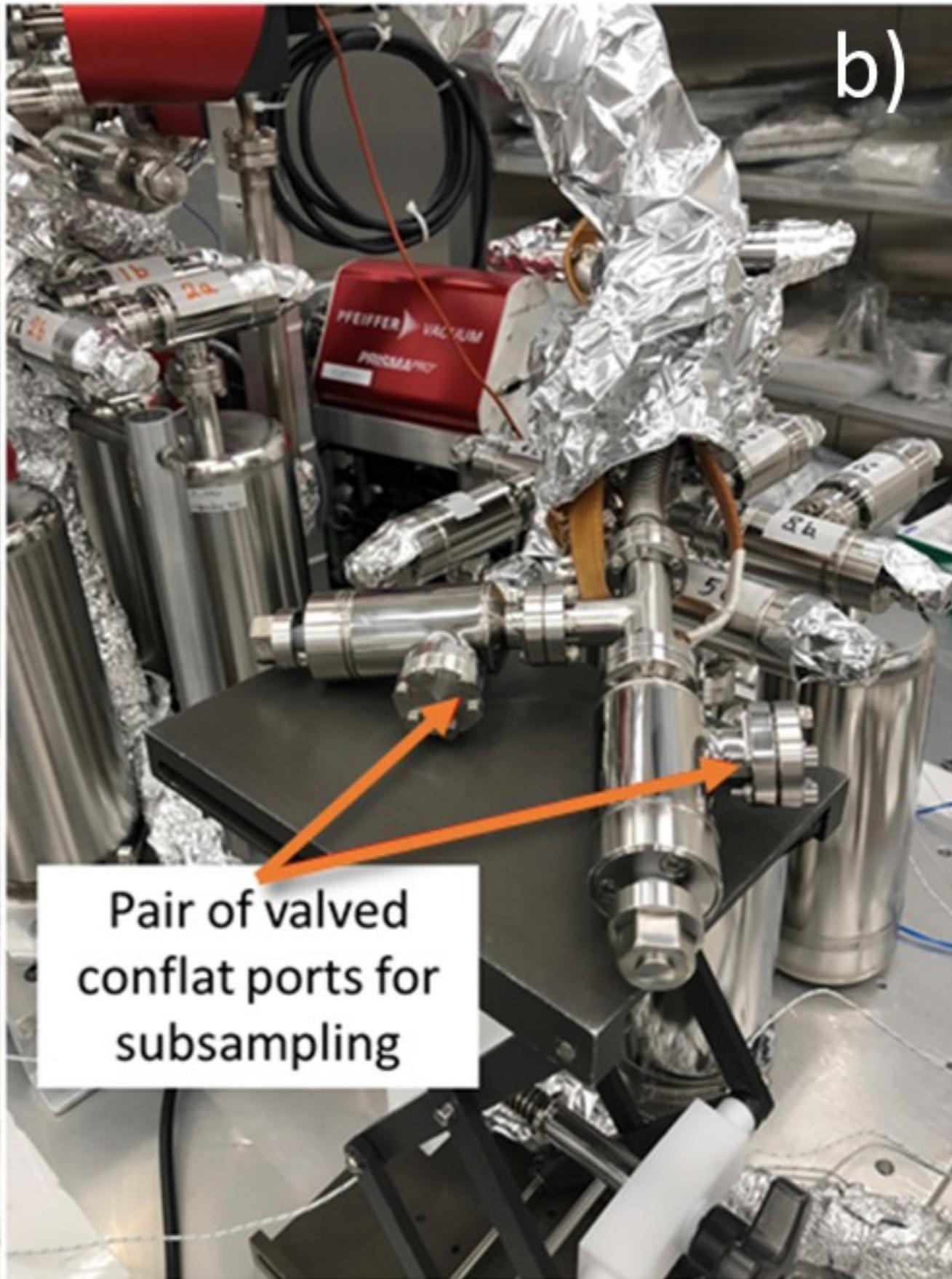
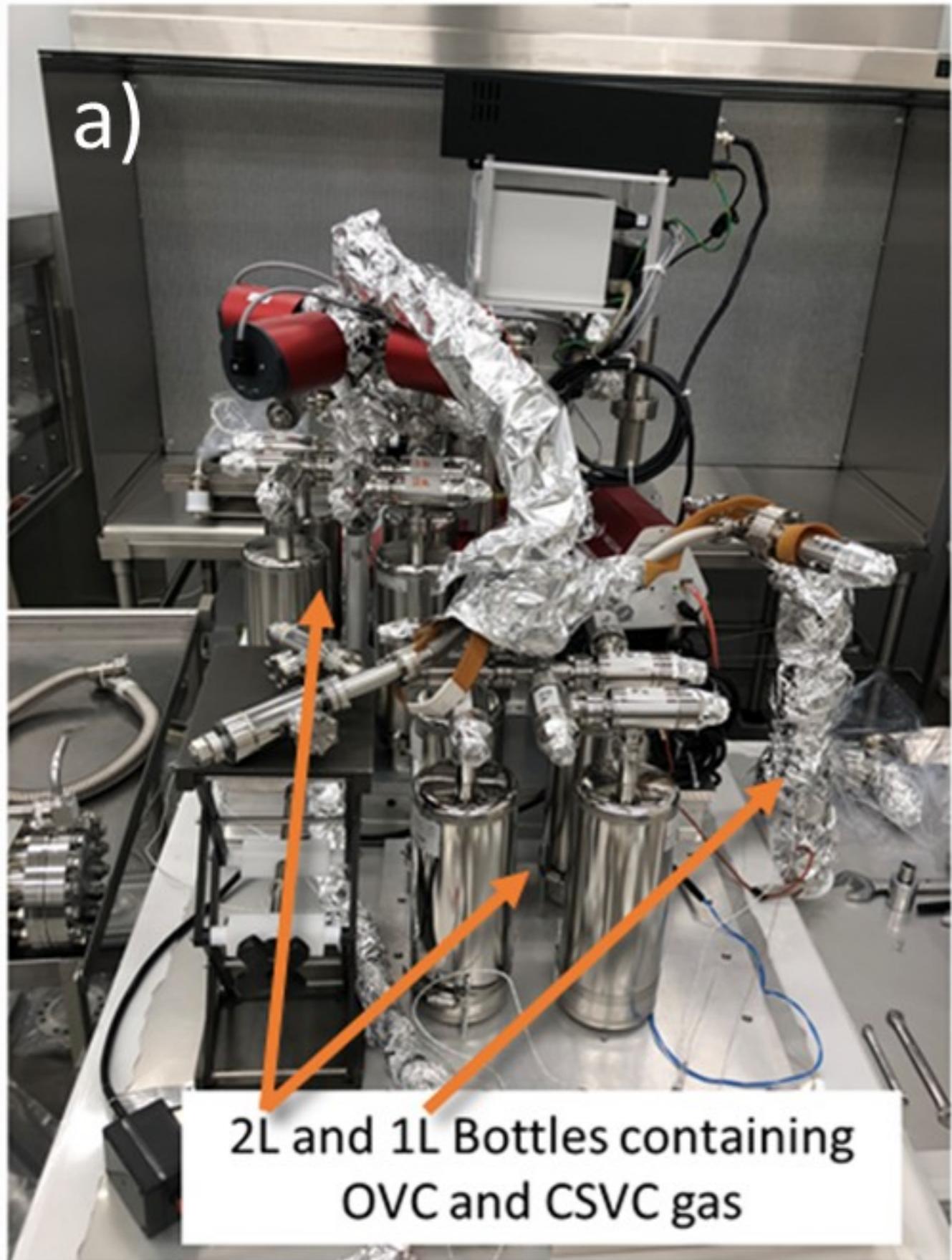
Y = Yes; N = No; PE = preliminary Examination; BC
= basic characterization


Figure 4.

a) X-ray image

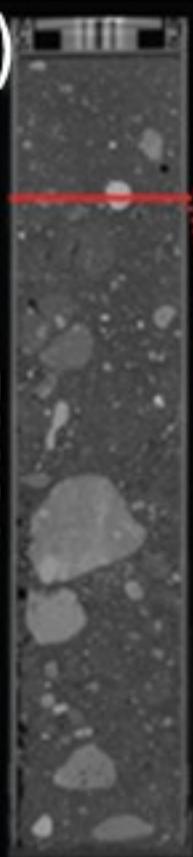



1973

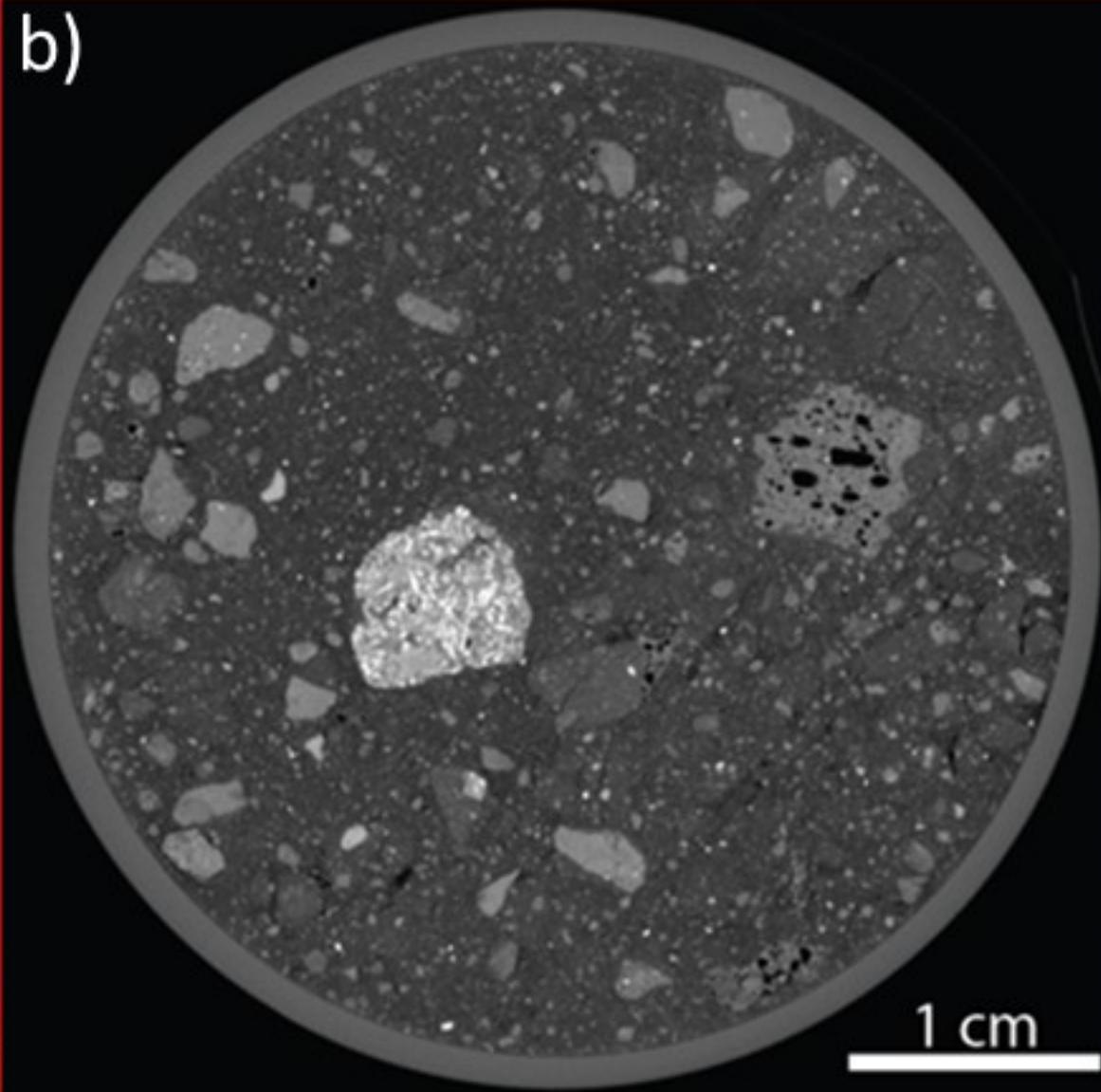
b) XCT scan

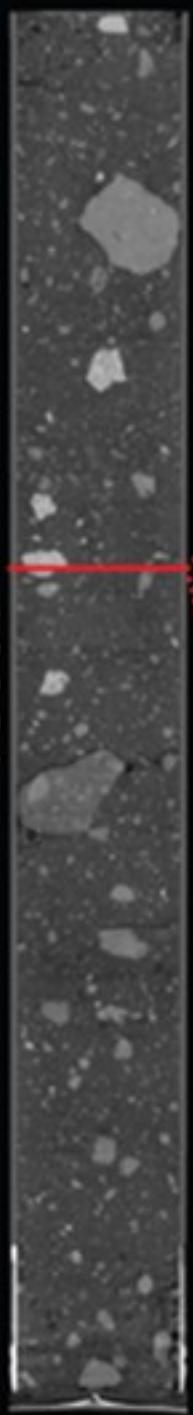
2019

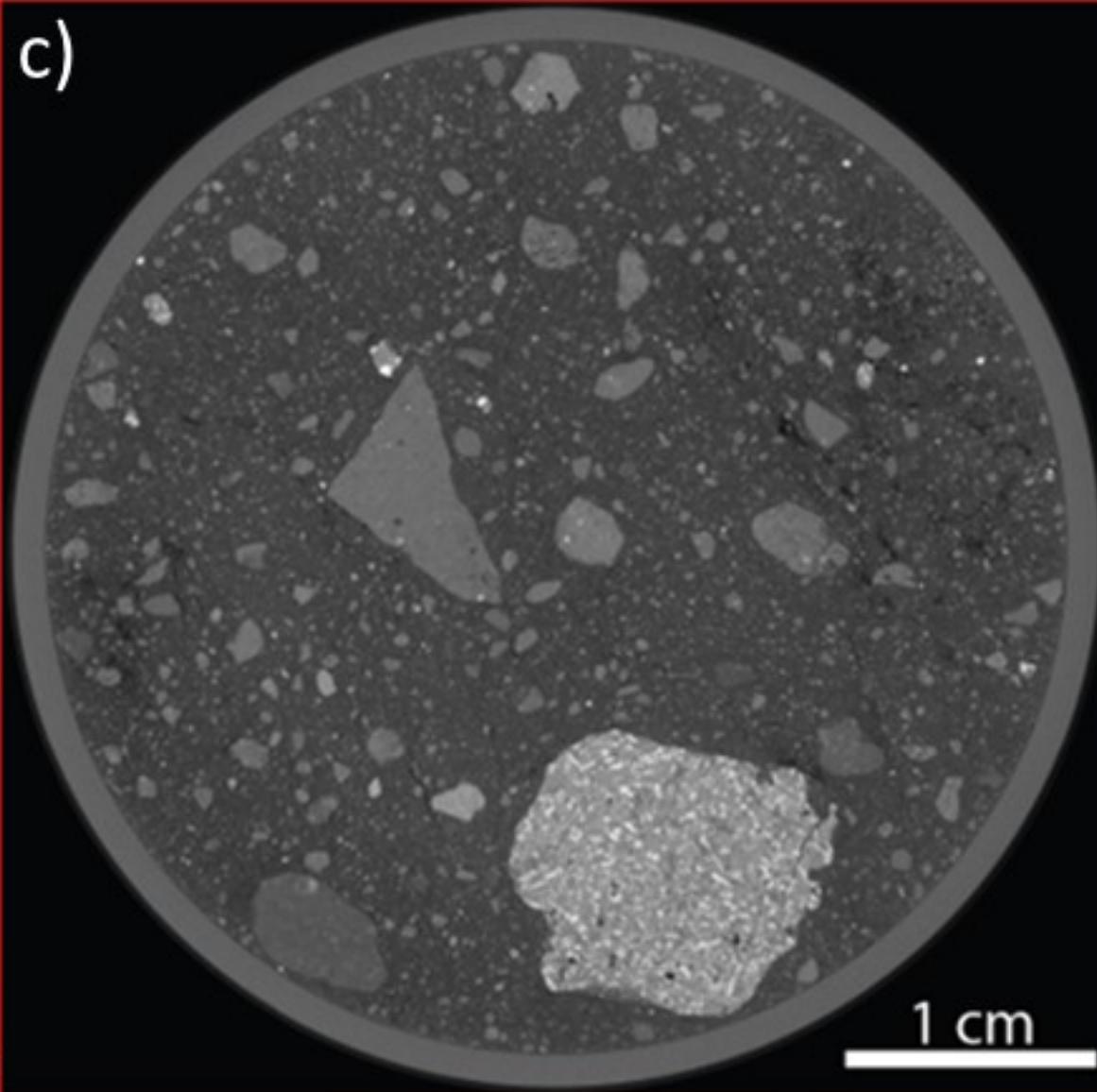
Figure 5.


Figure 6.


Figure 7.

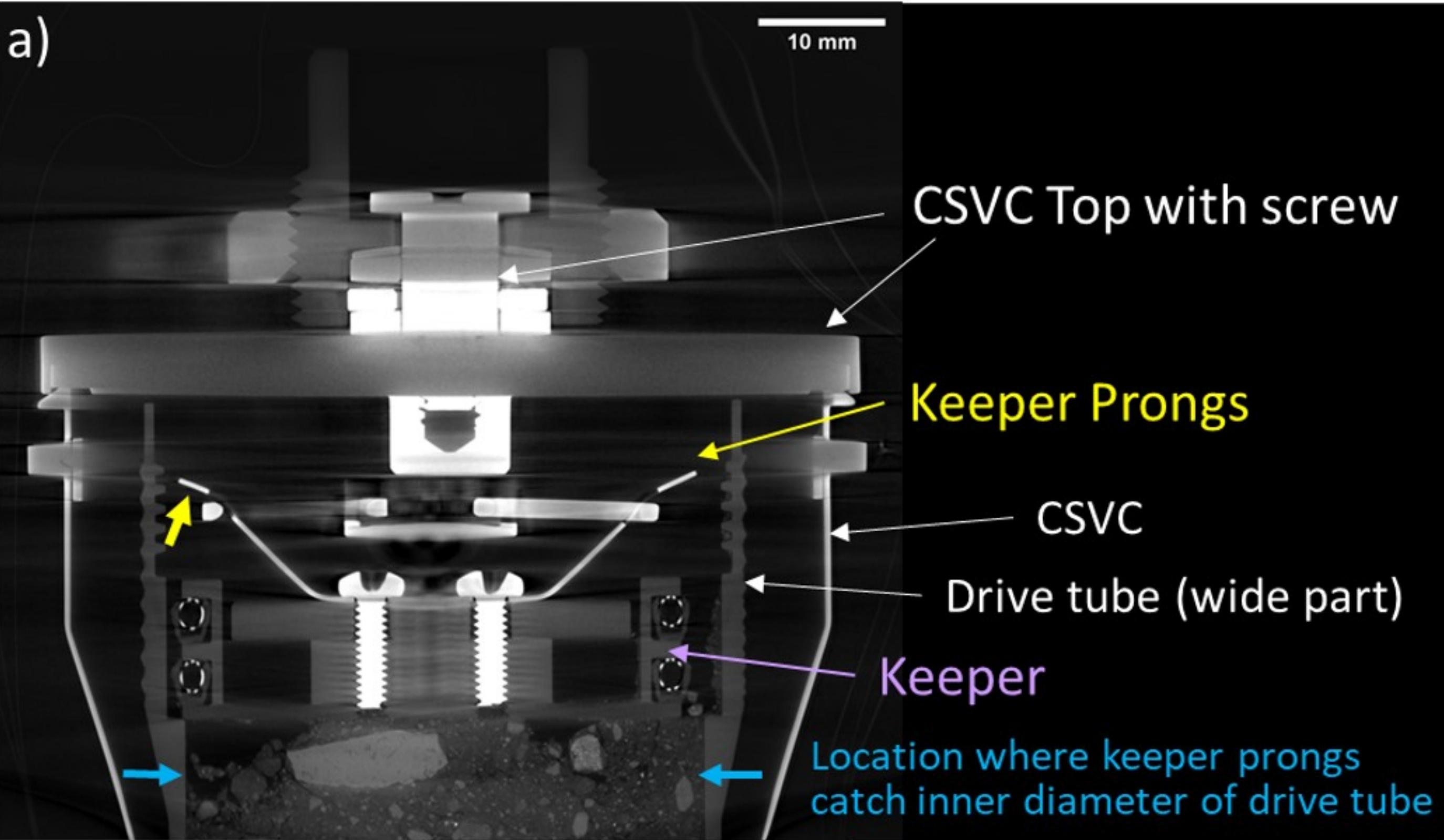
a)


73002


b)

73001

c)



4 cm

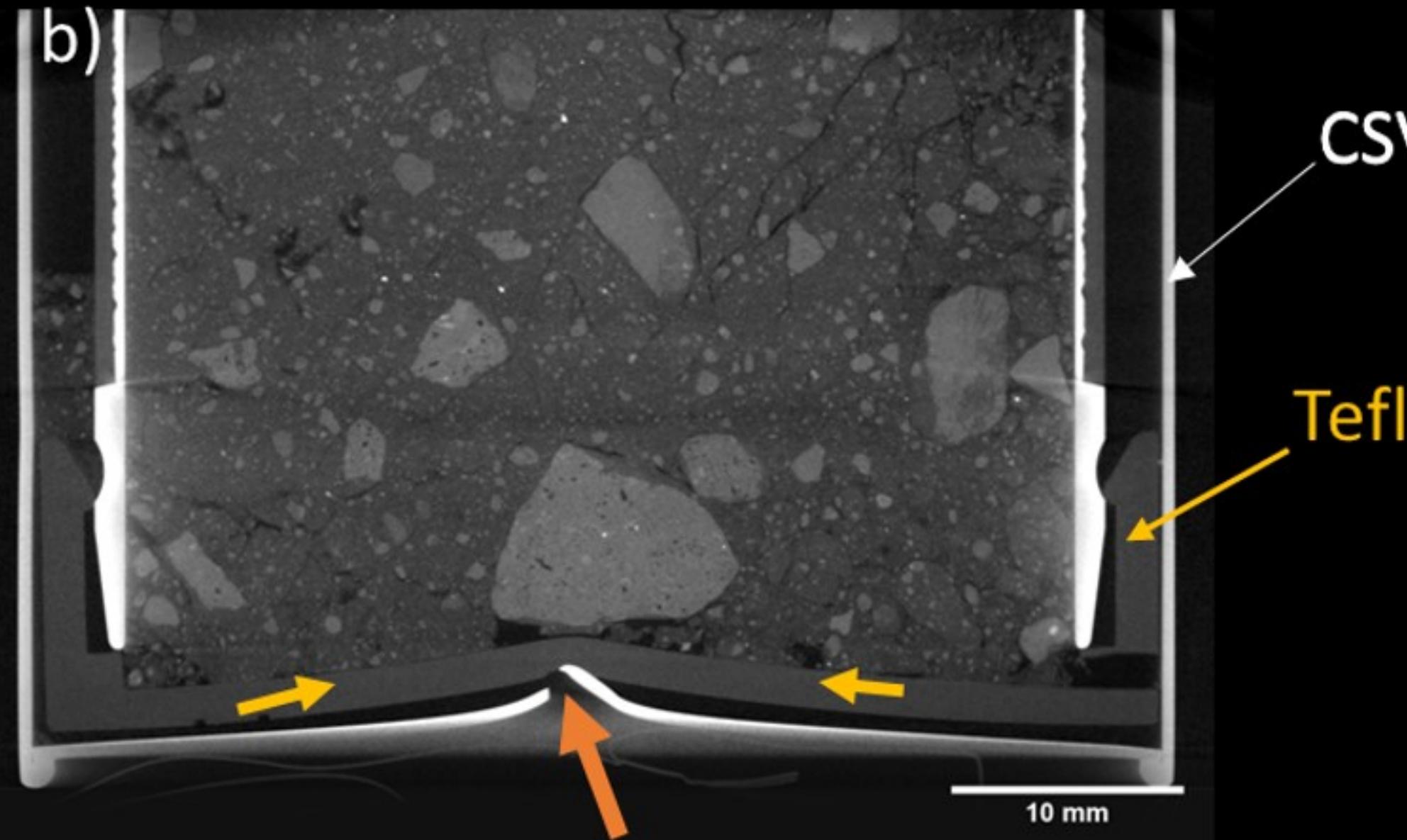

1 cm

Figure 8.

a)

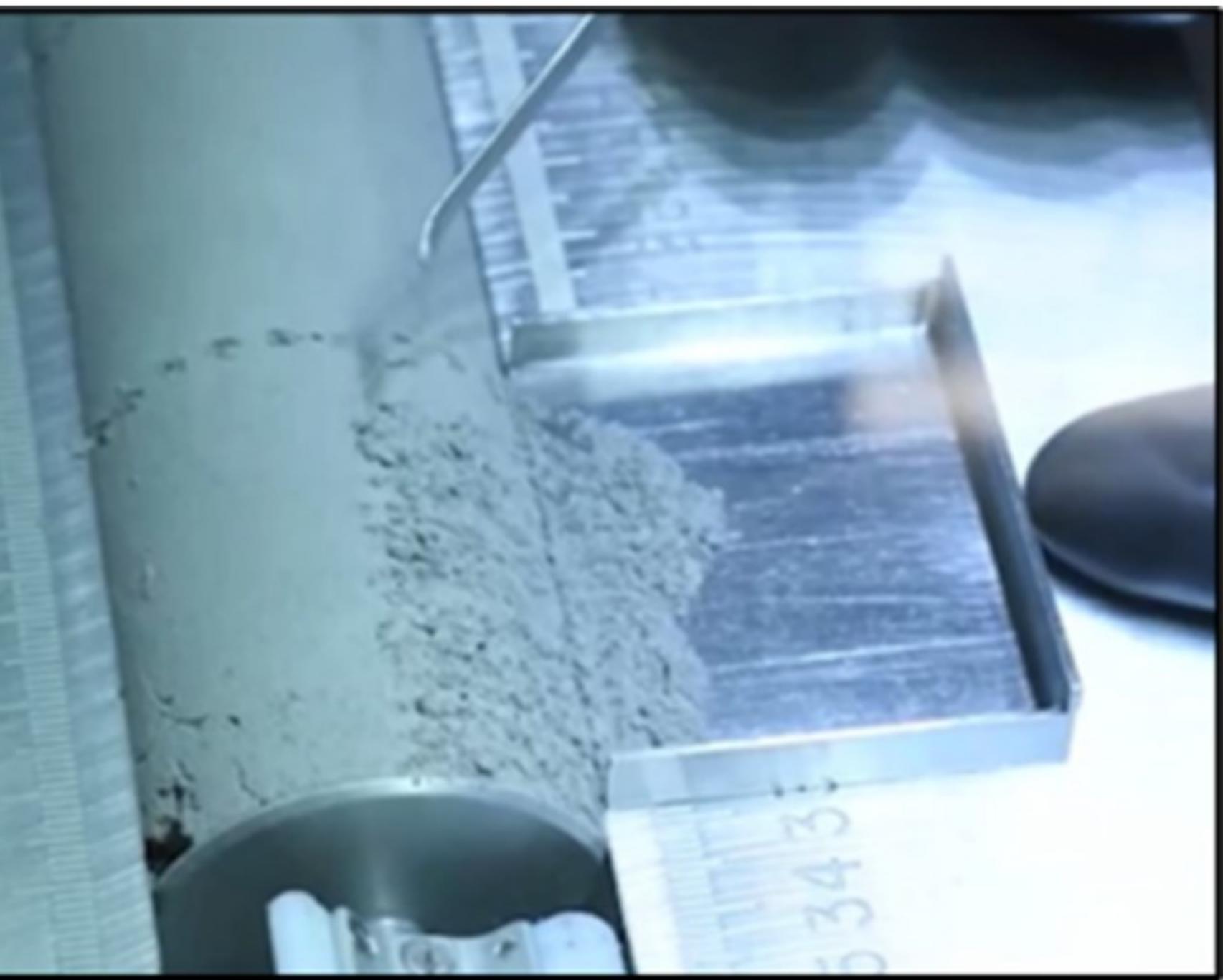
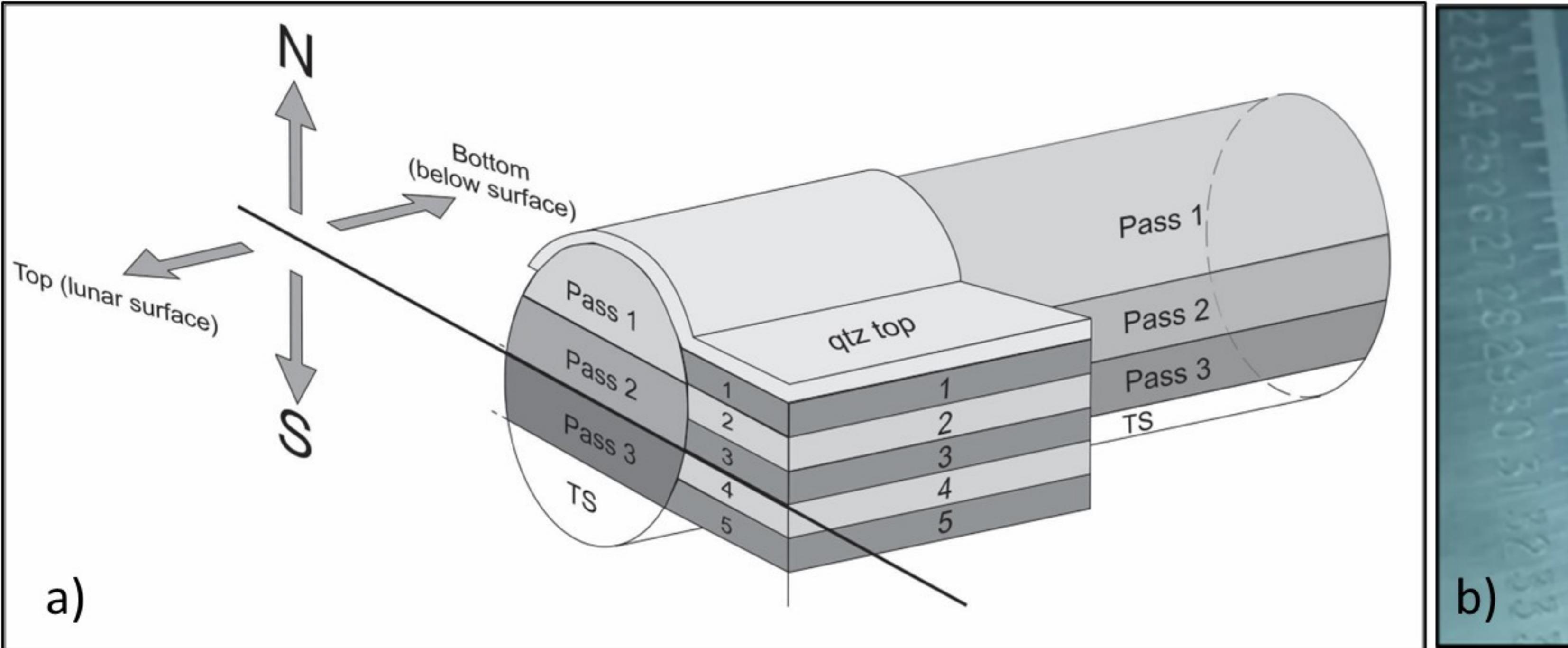


b)

Figure 9.

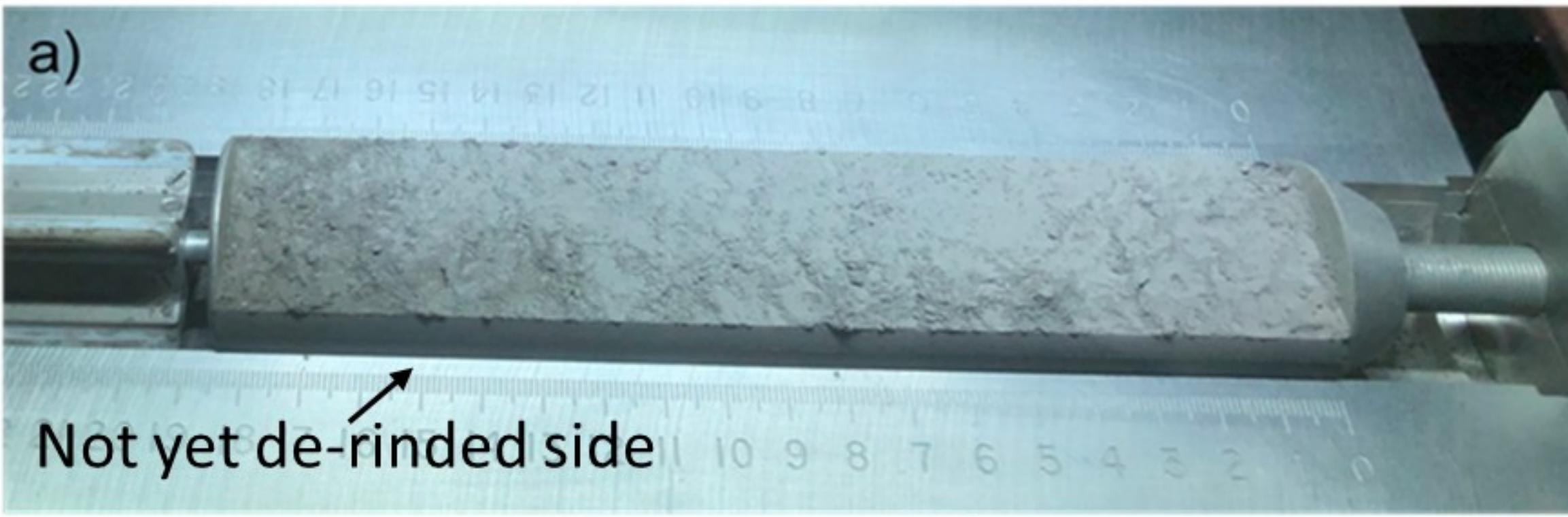


Figure 10.

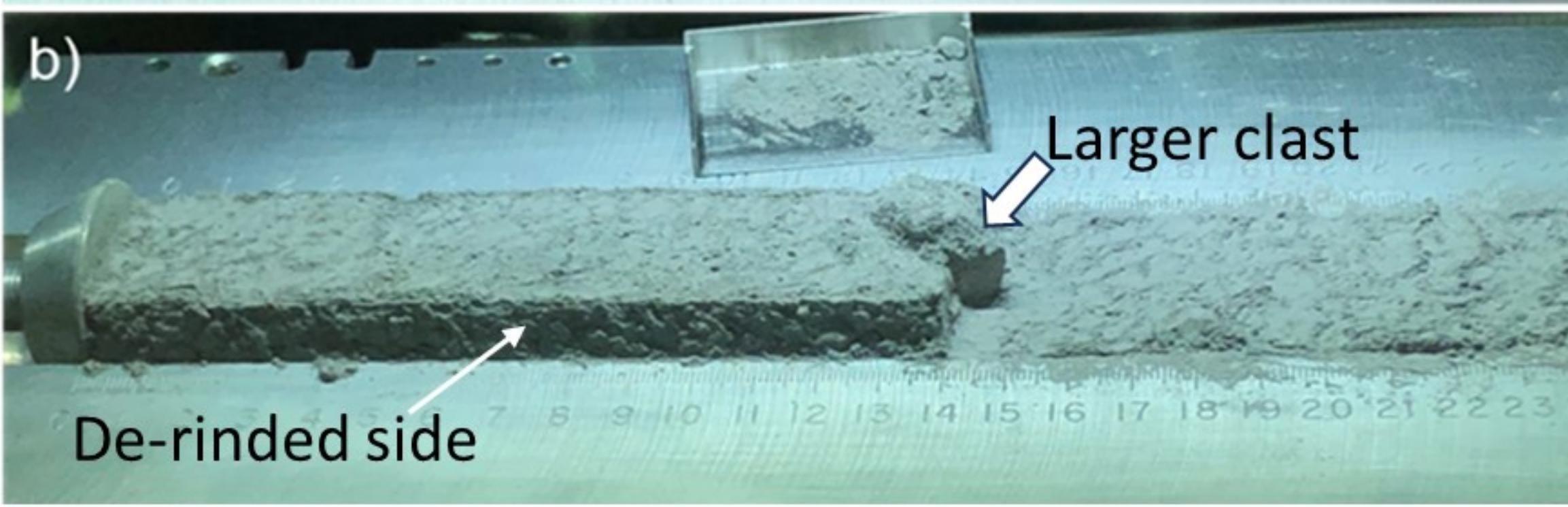
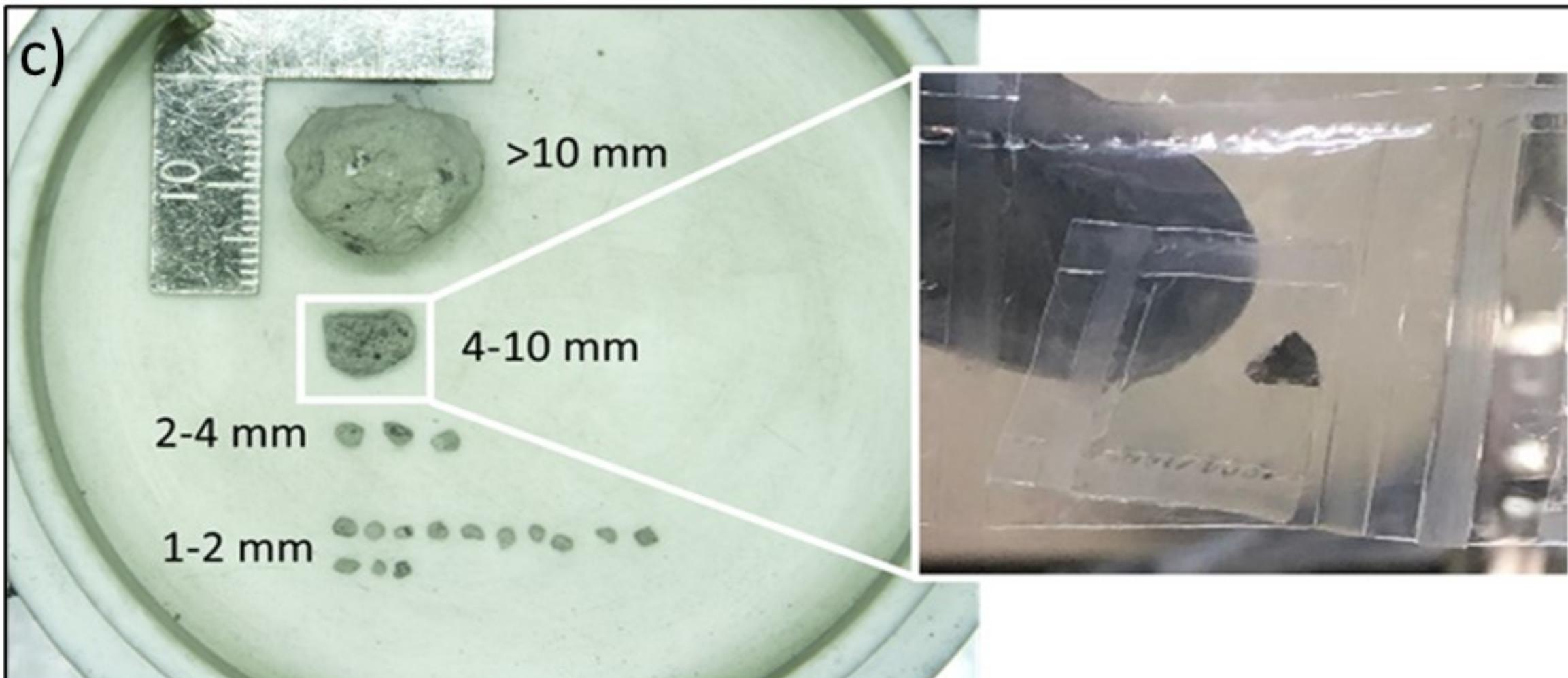


Figure 11.


a)

b)

c)

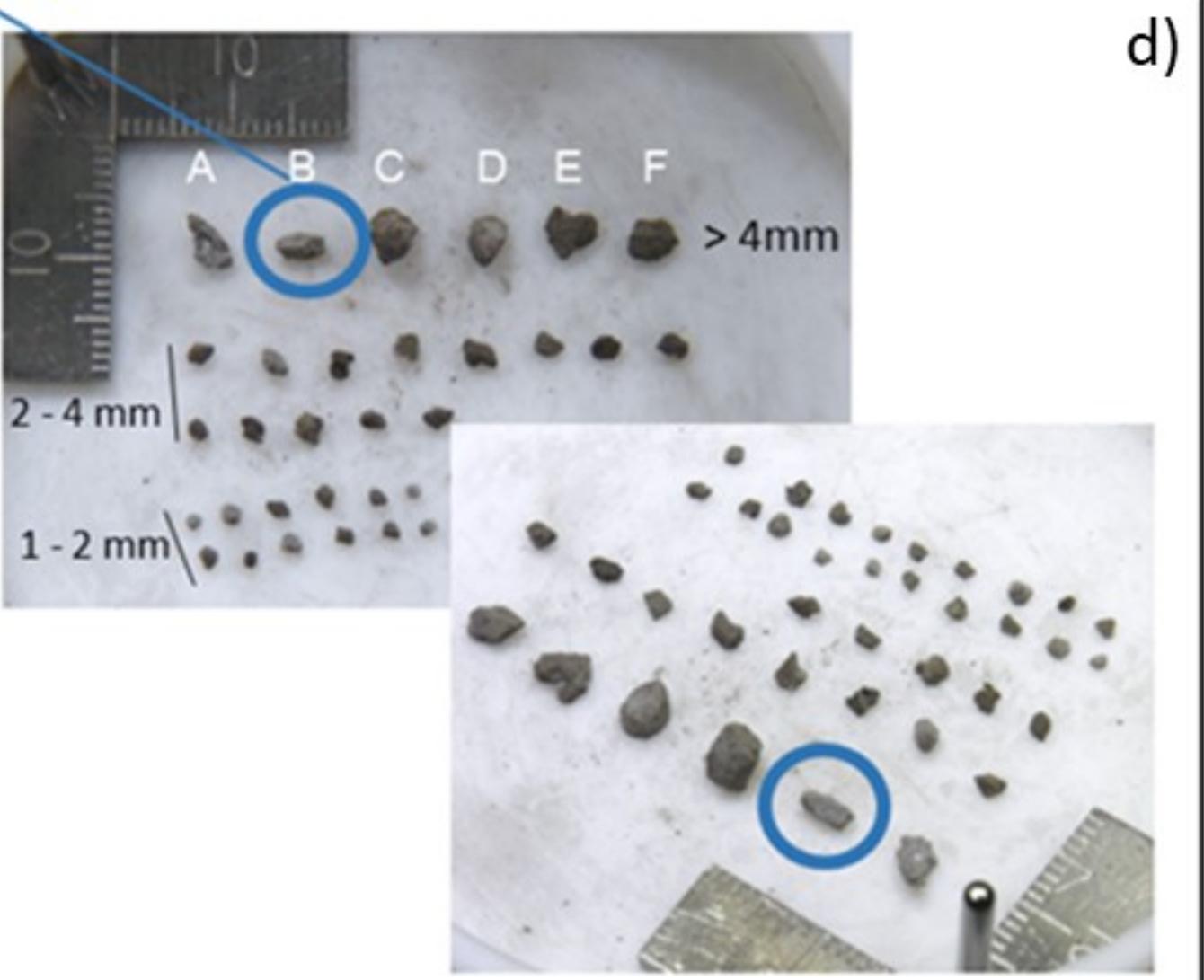
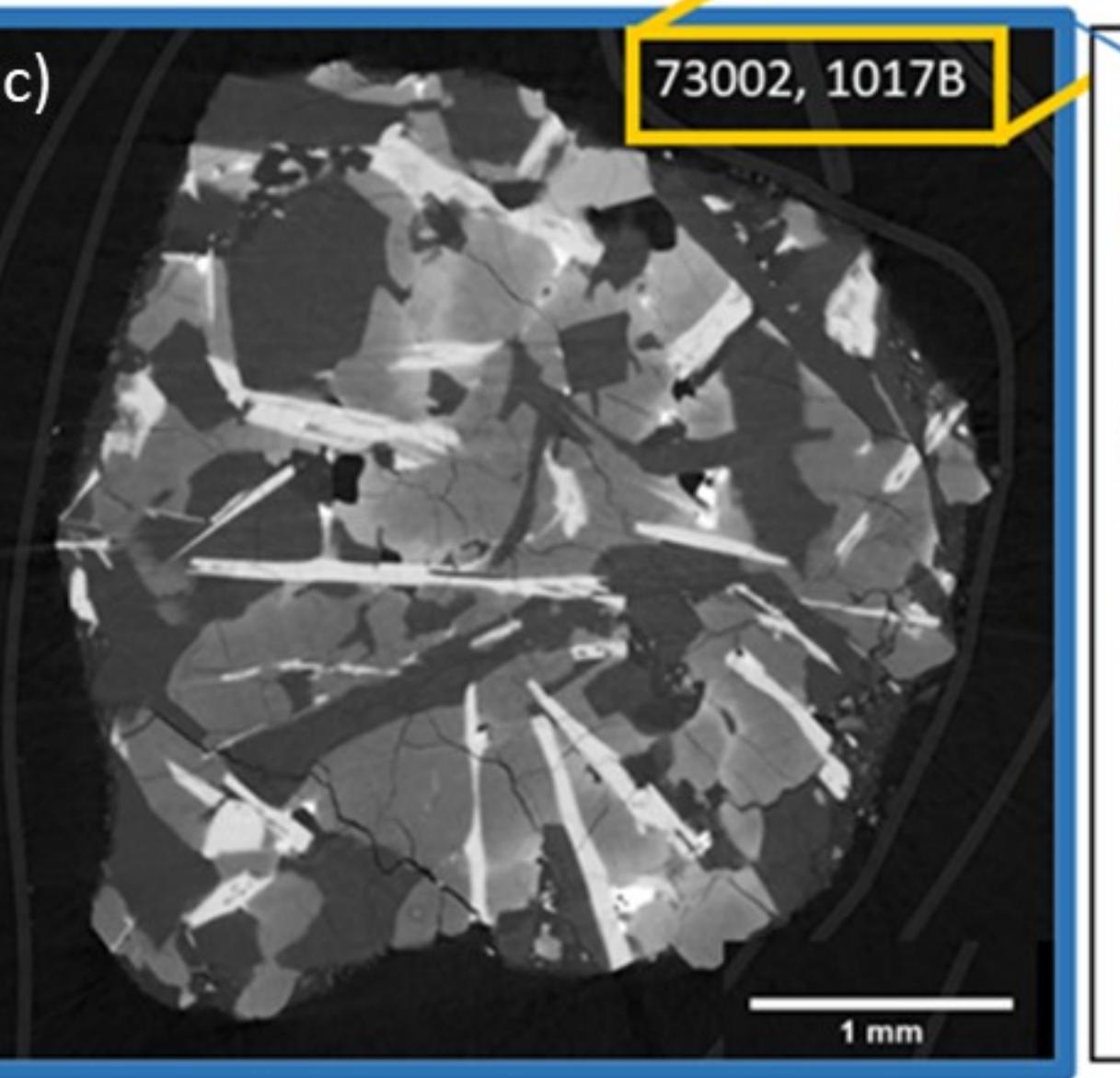
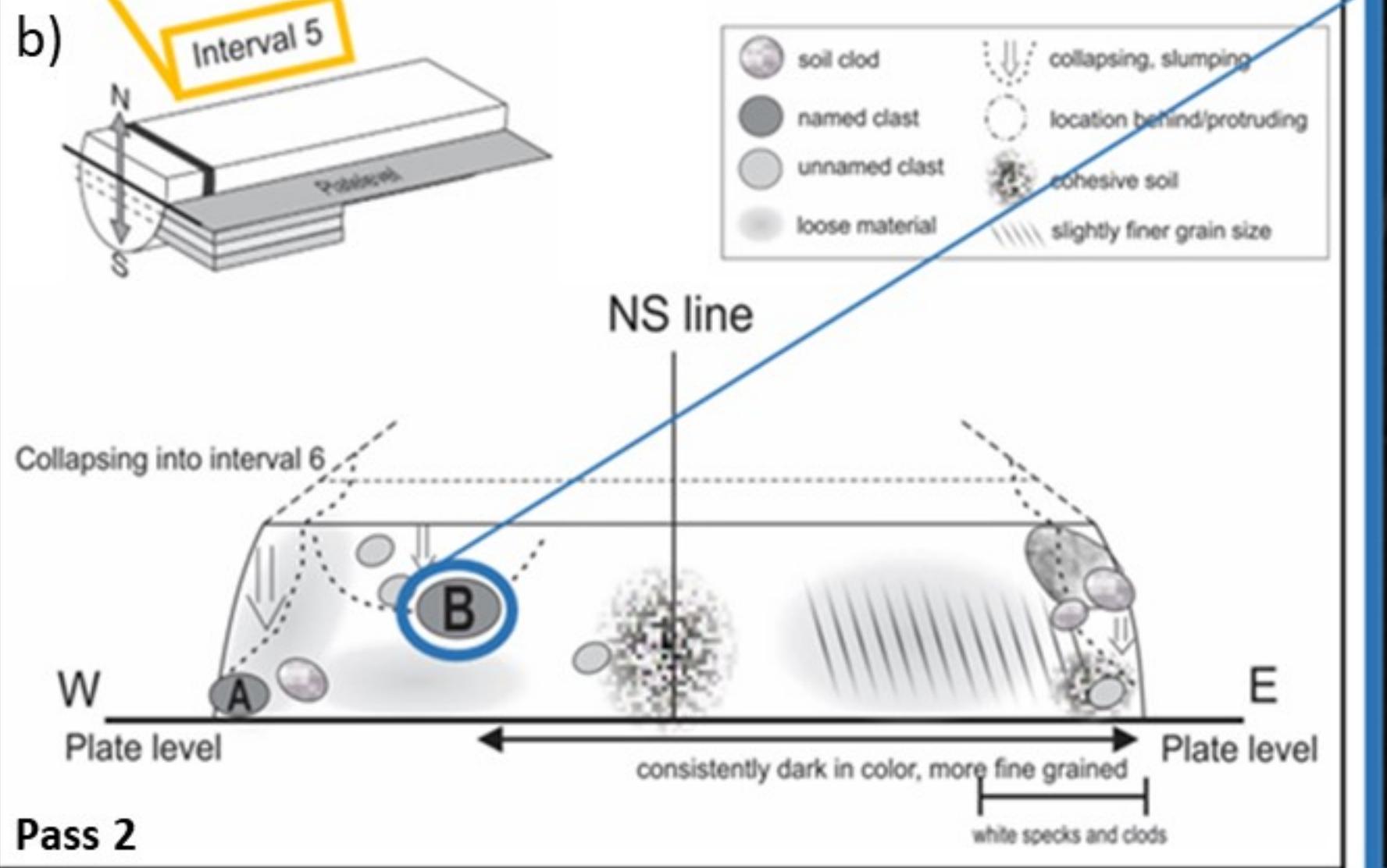
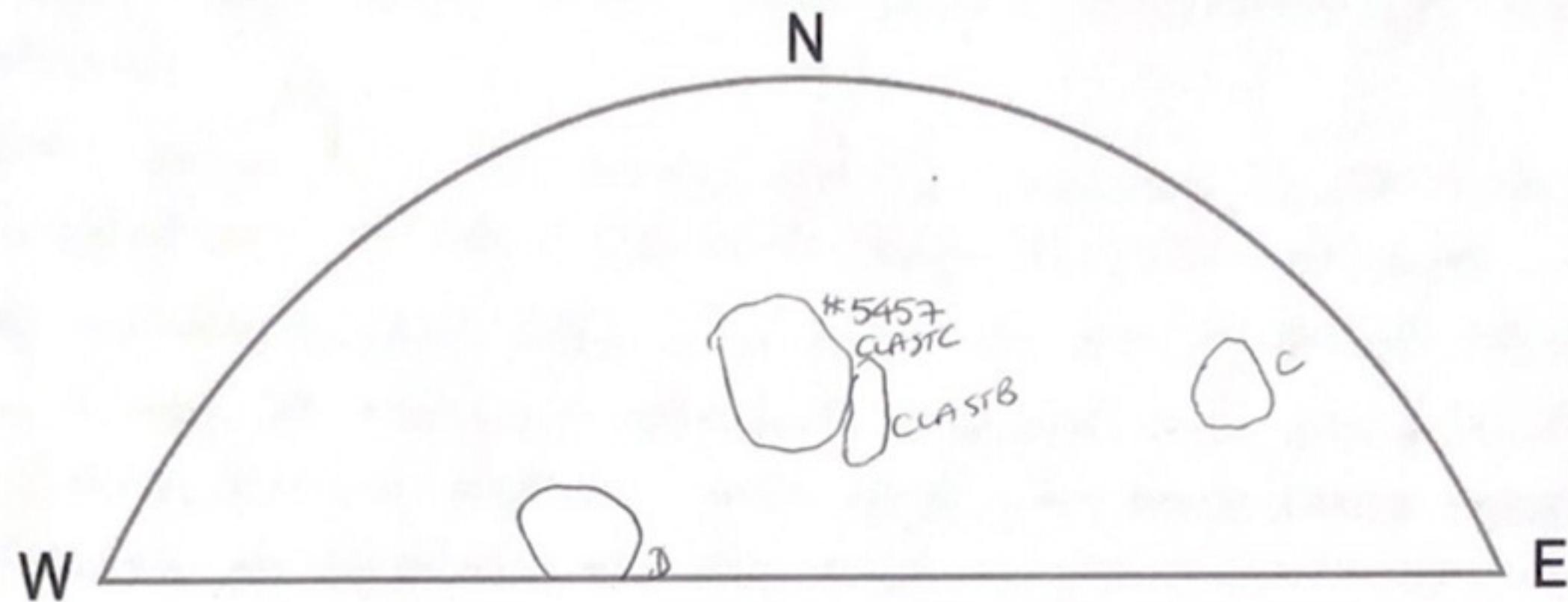
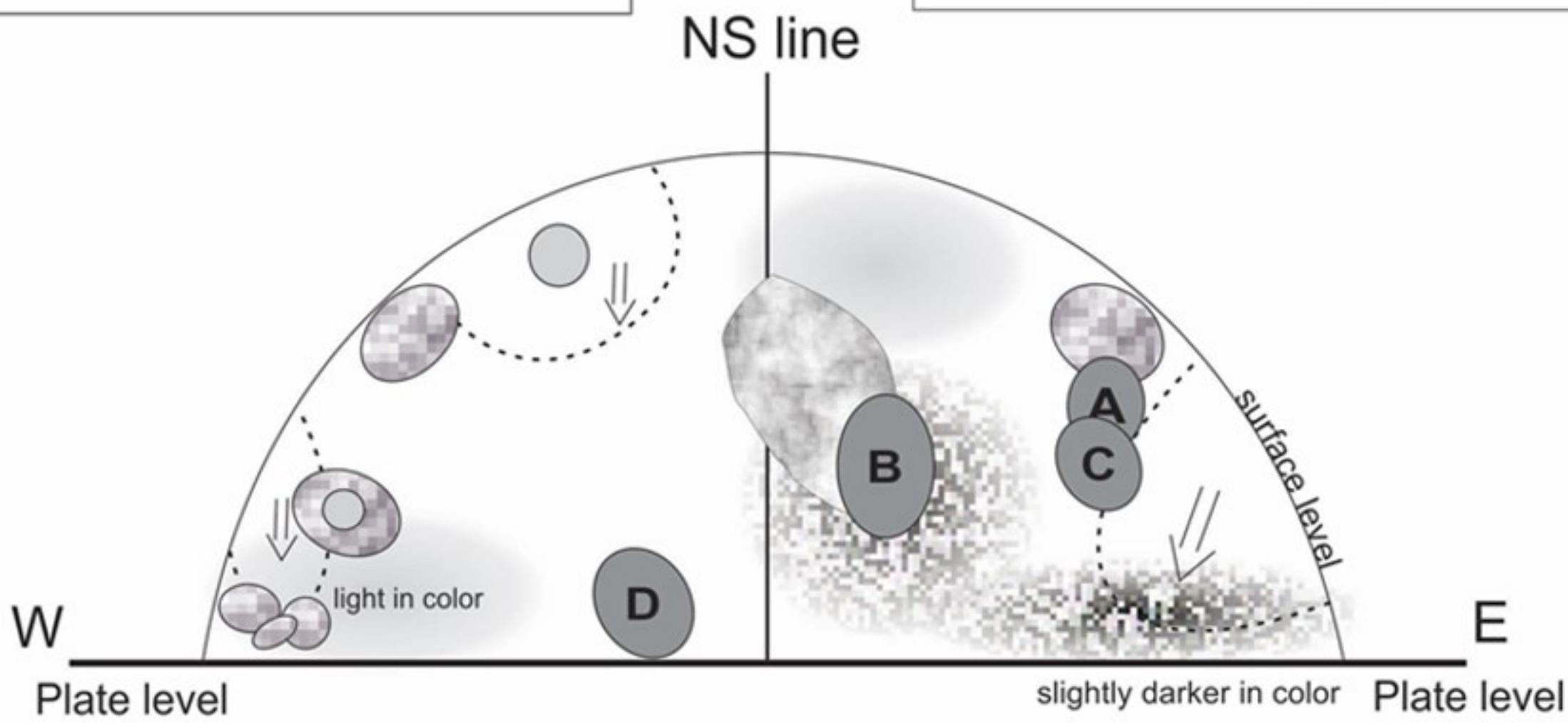
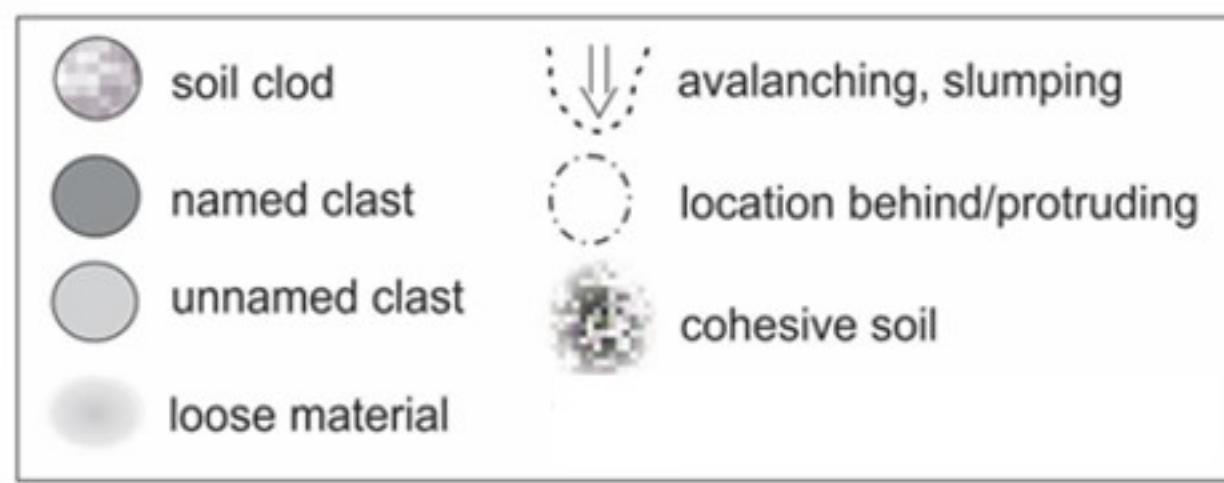
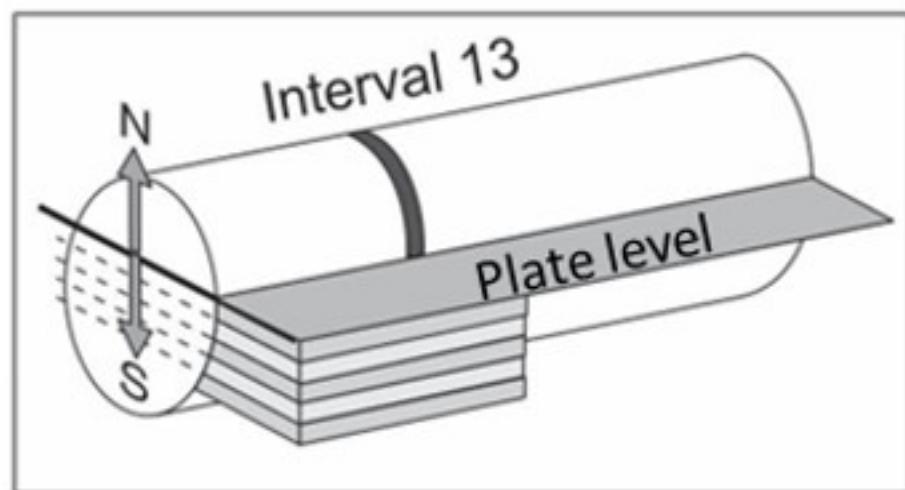




Figure 12.

a)

Interval information			Number of clasts					Mass (g)				
Interval #	Depth beneath surface (cm):	Total interval mass (g)	>10 mm	4-10 mm	2-4 mm	1-2 mm	Total # clasts	>10 mm	4-10 mm	2-4 mm	1-2 mm	<1 mm fines
1	0.0 - 0.5	2.001	0	0	7	7	14	0.000	0.000	0.062	0.023	1.916
2	0.5 - 1.0	2.273	0	1	11	8	20	0.000	0.050	0.080	0.017	2.126
3	1.0 - 1.5	2.963	0	3	11	20	34	0.000	0.193	0.121	0.066	2.583
4	1.5 - 2.0	2.943	0	1	13	36	50	0.000	0.100	0.080	0.131	2.632
5	2.0 - 2.5	2.754	0	5	13	19	37	0.000	0.244	0.094	0.054	2.252
6	2.5 - 3.0	3.012	0	2	11	29	42	0.000	0.148	0.133	0.092	2.639





Labelled >10 mm and 4-10 mm in				
Clast	Number (73002,xxx)	Size fraction (mm)	Individual mass (g)	CT scanned (Y, N)
B	,1009	4-10	0.128	Y
B	,1017	4-10	0.098	Y
B	,1021	4-10	0.025	Y

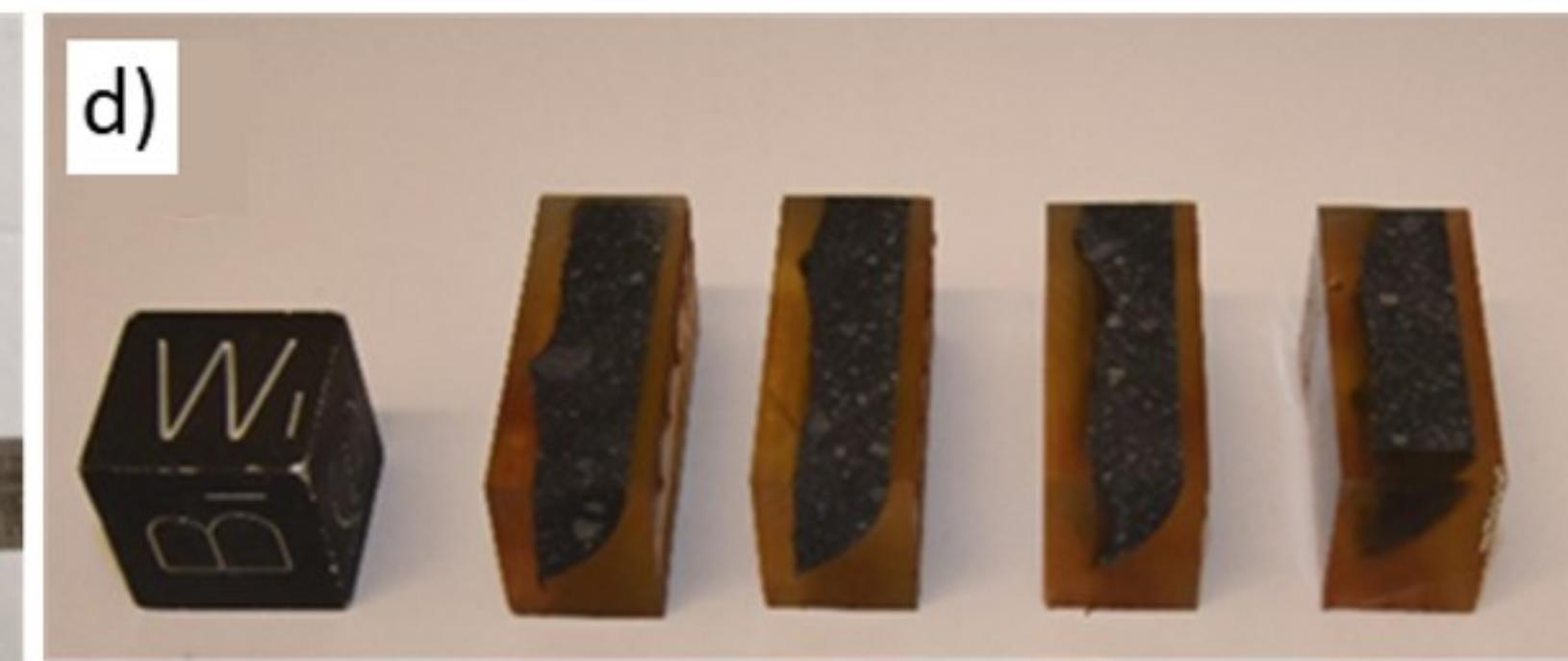
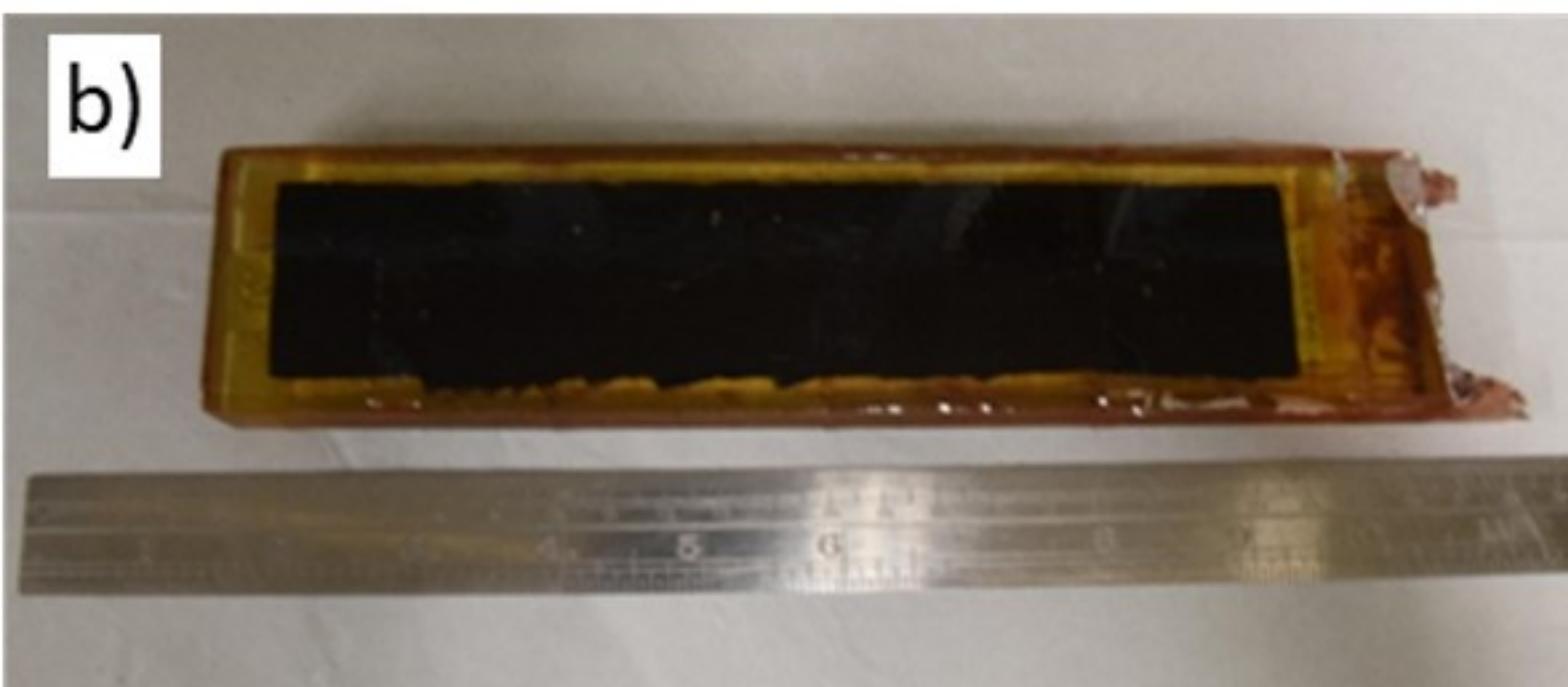
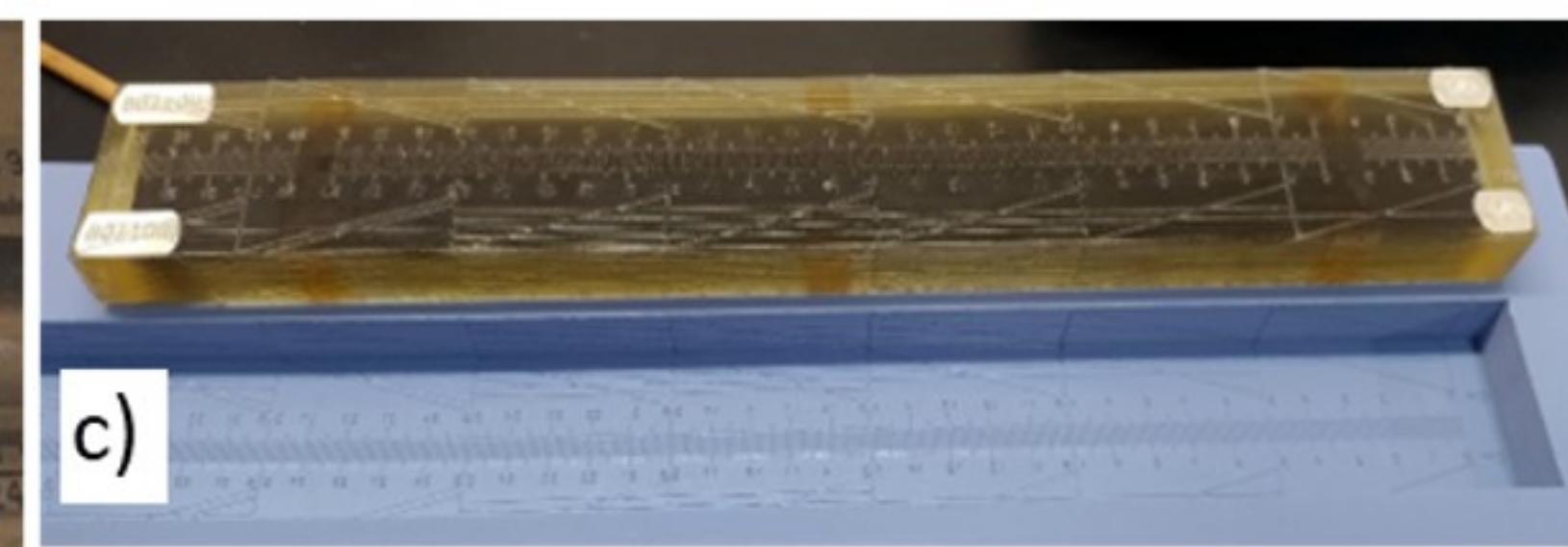
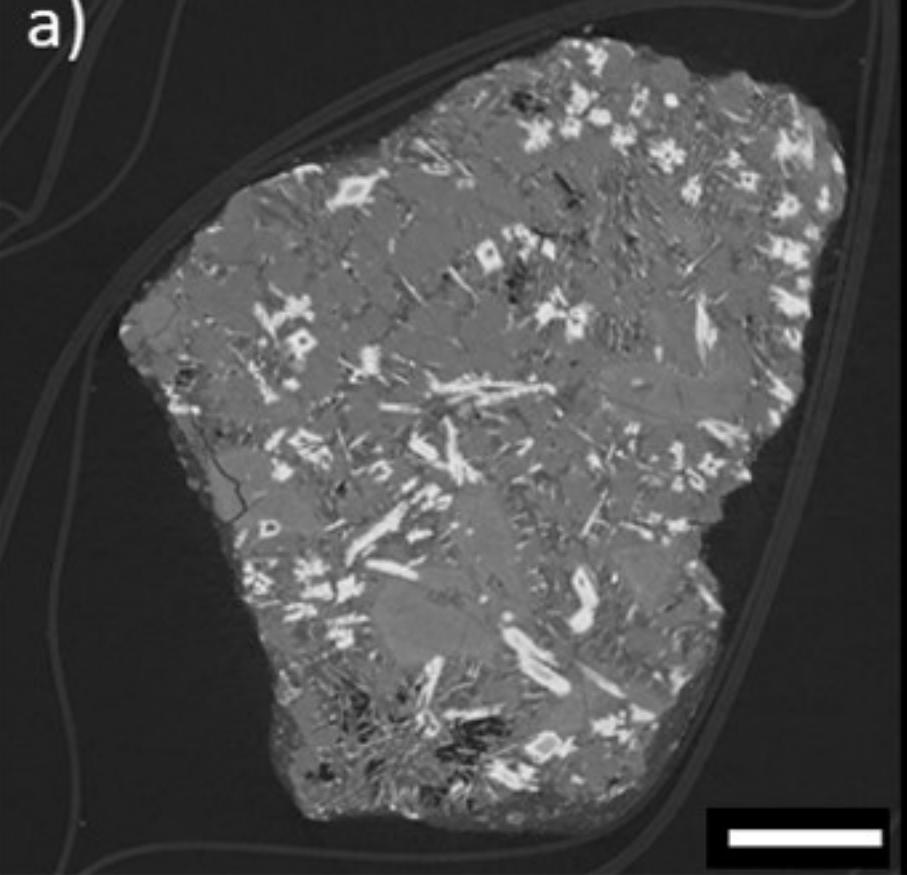
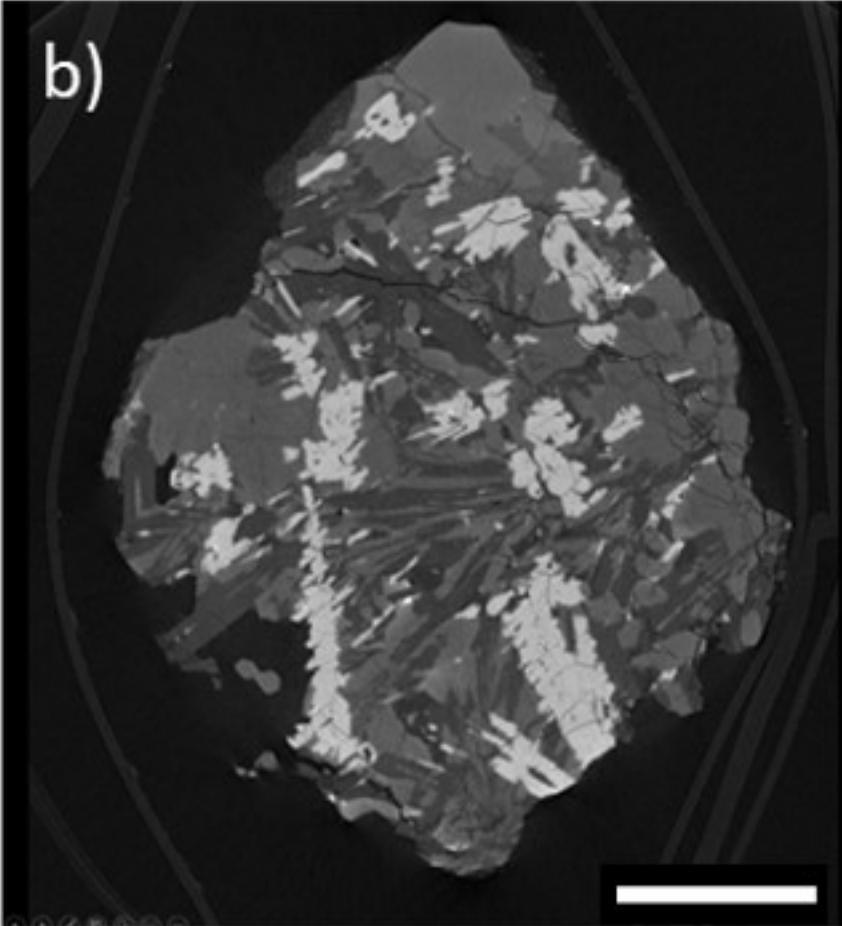
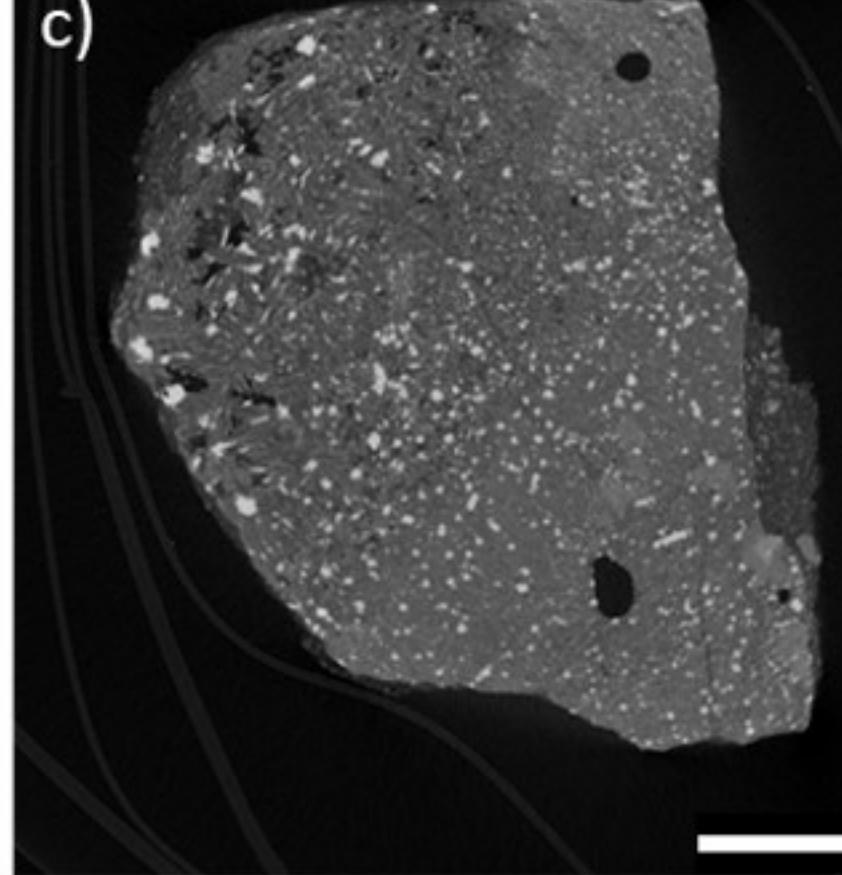
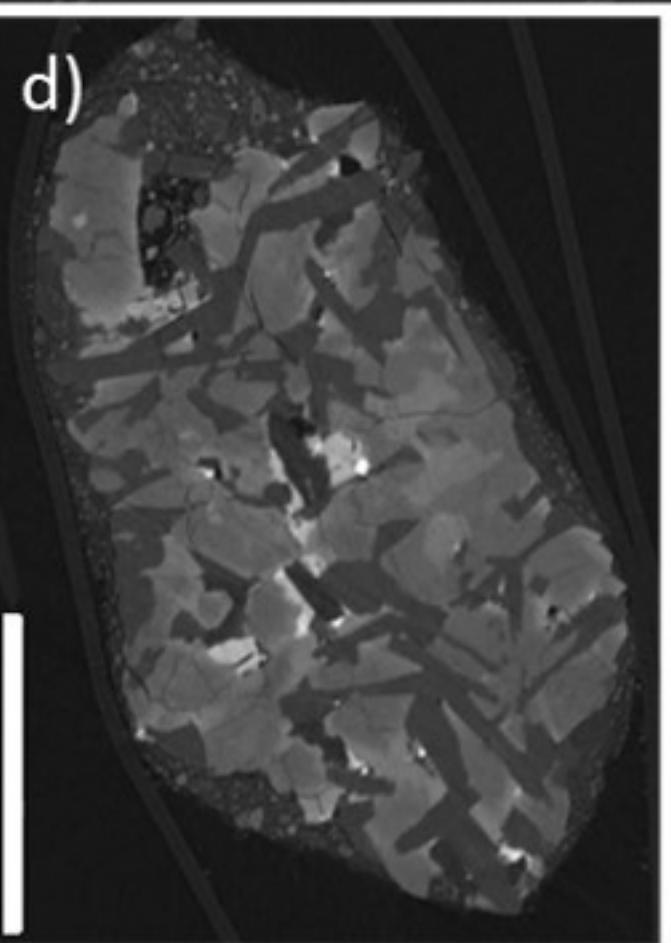
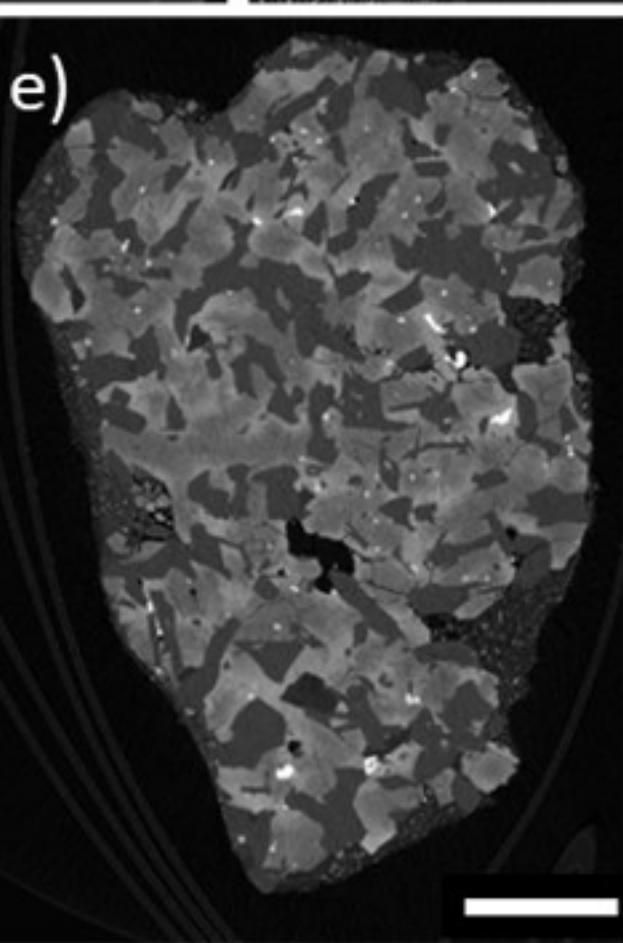
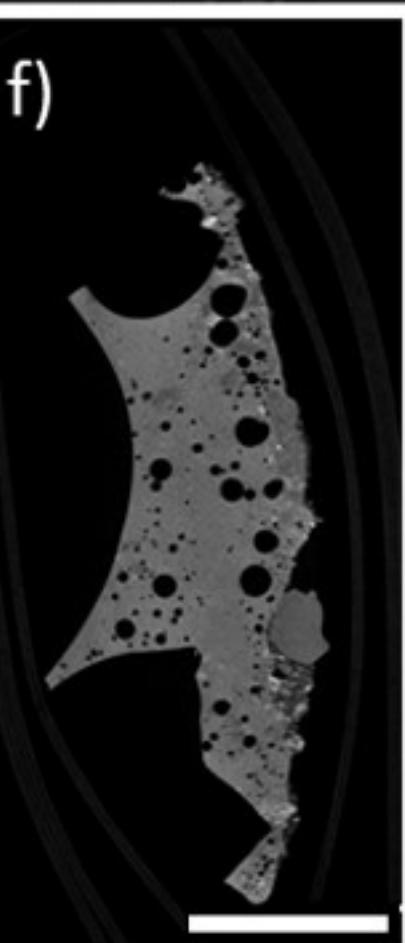
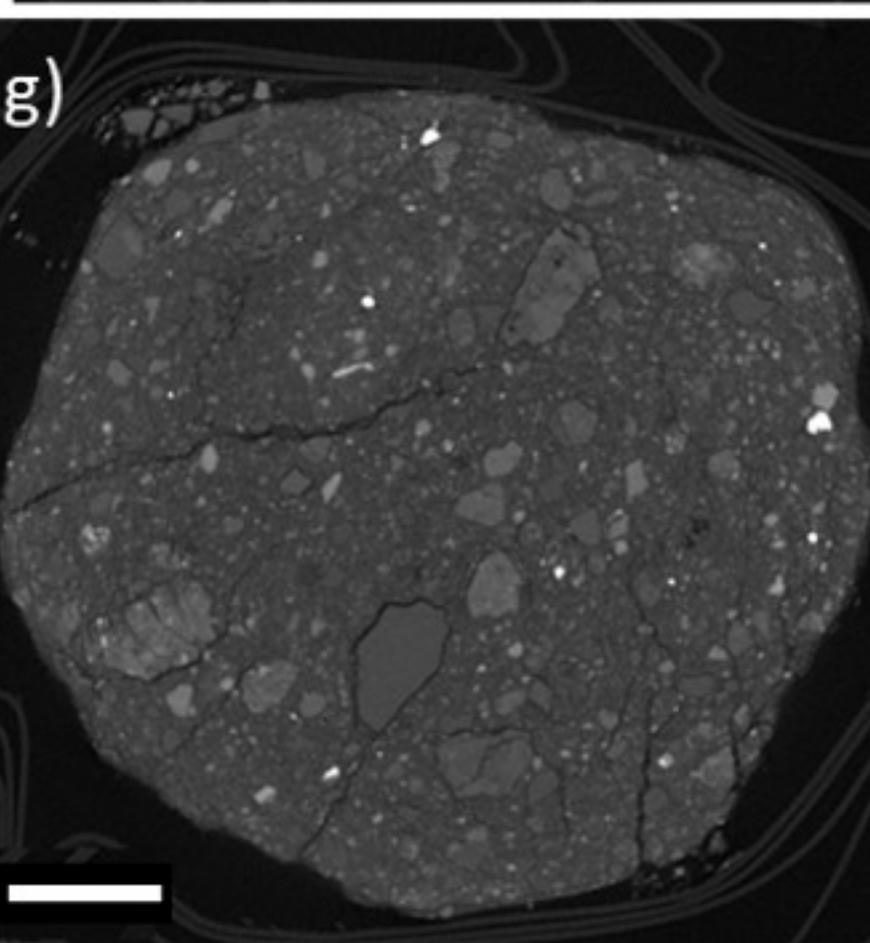
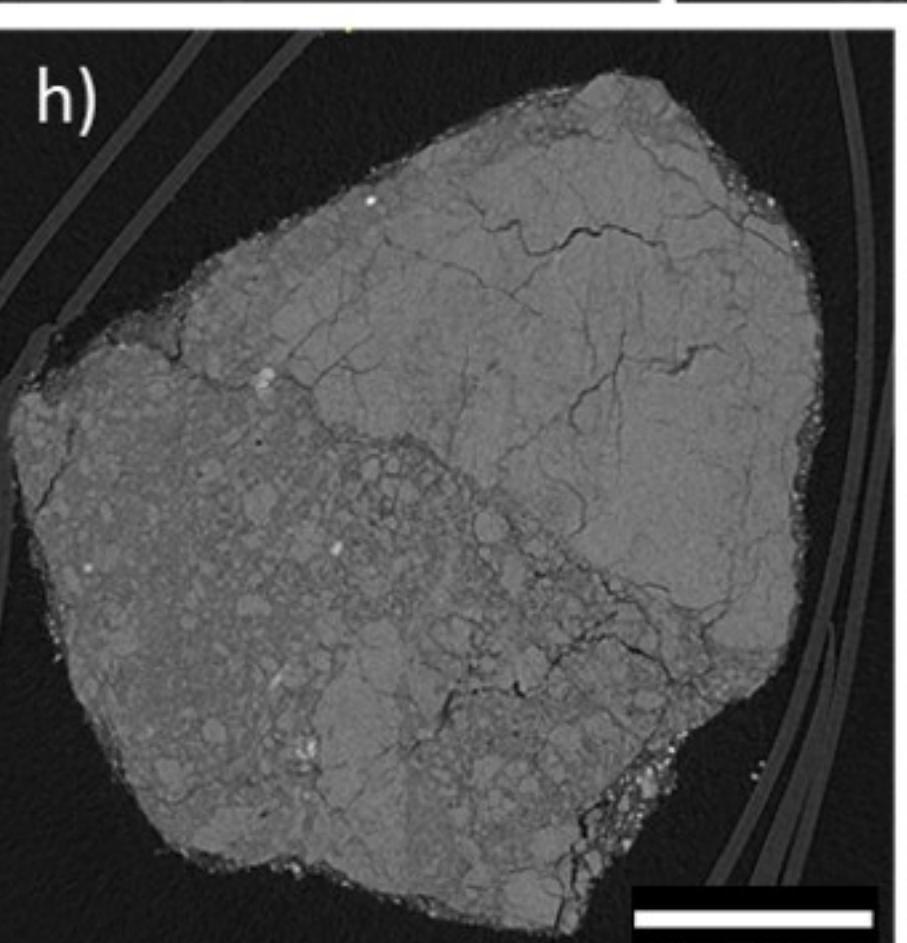
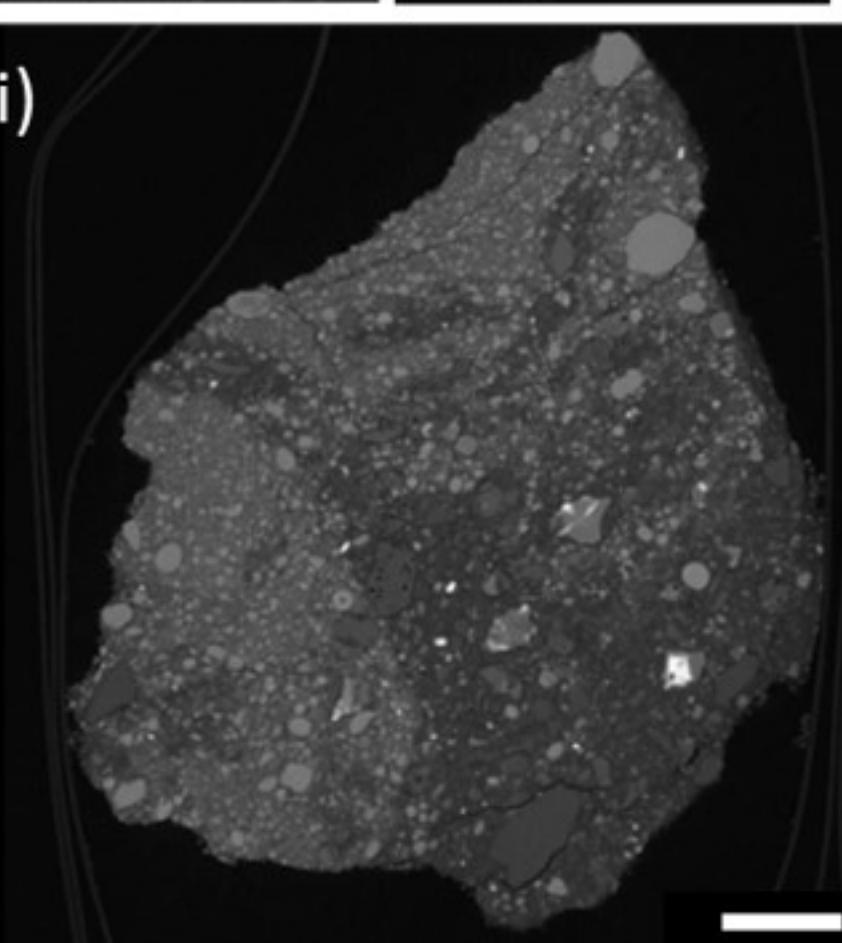
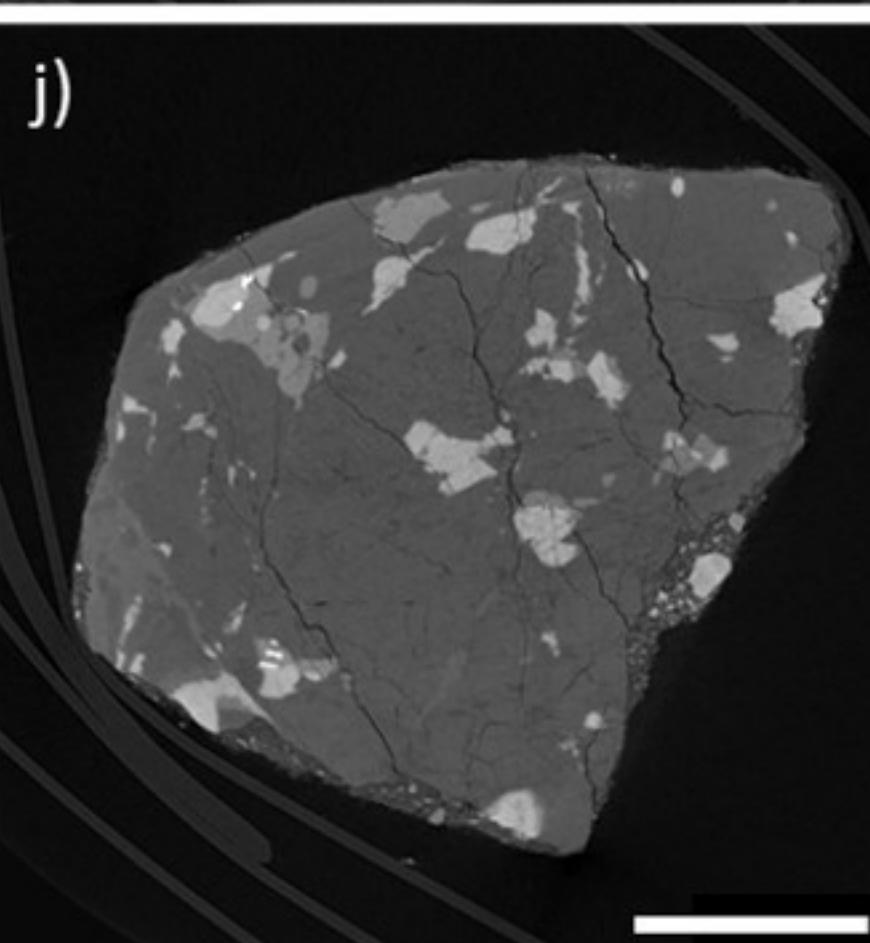




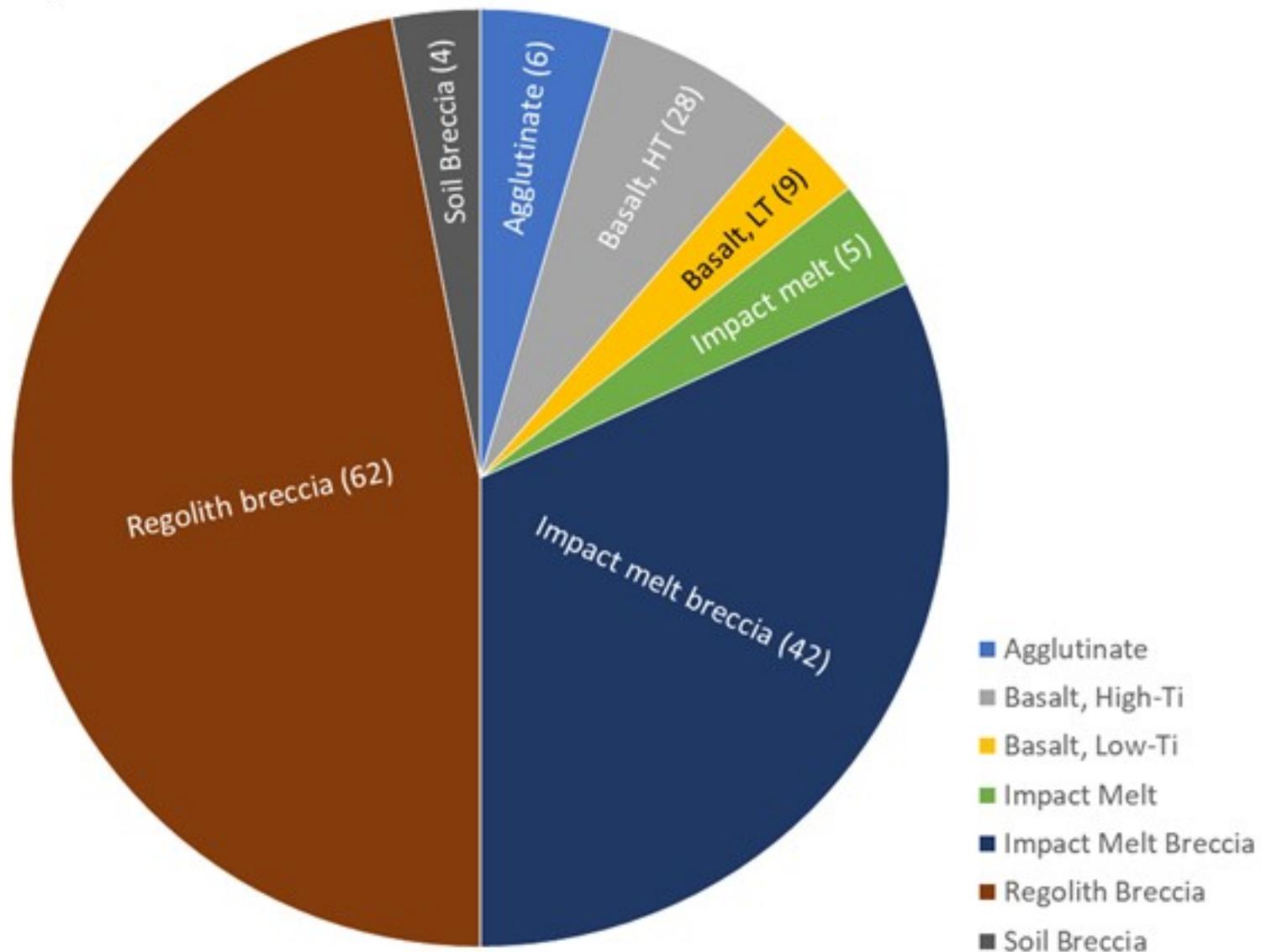
Figure 13.

a)











Lab notes: Interval 13 sketch

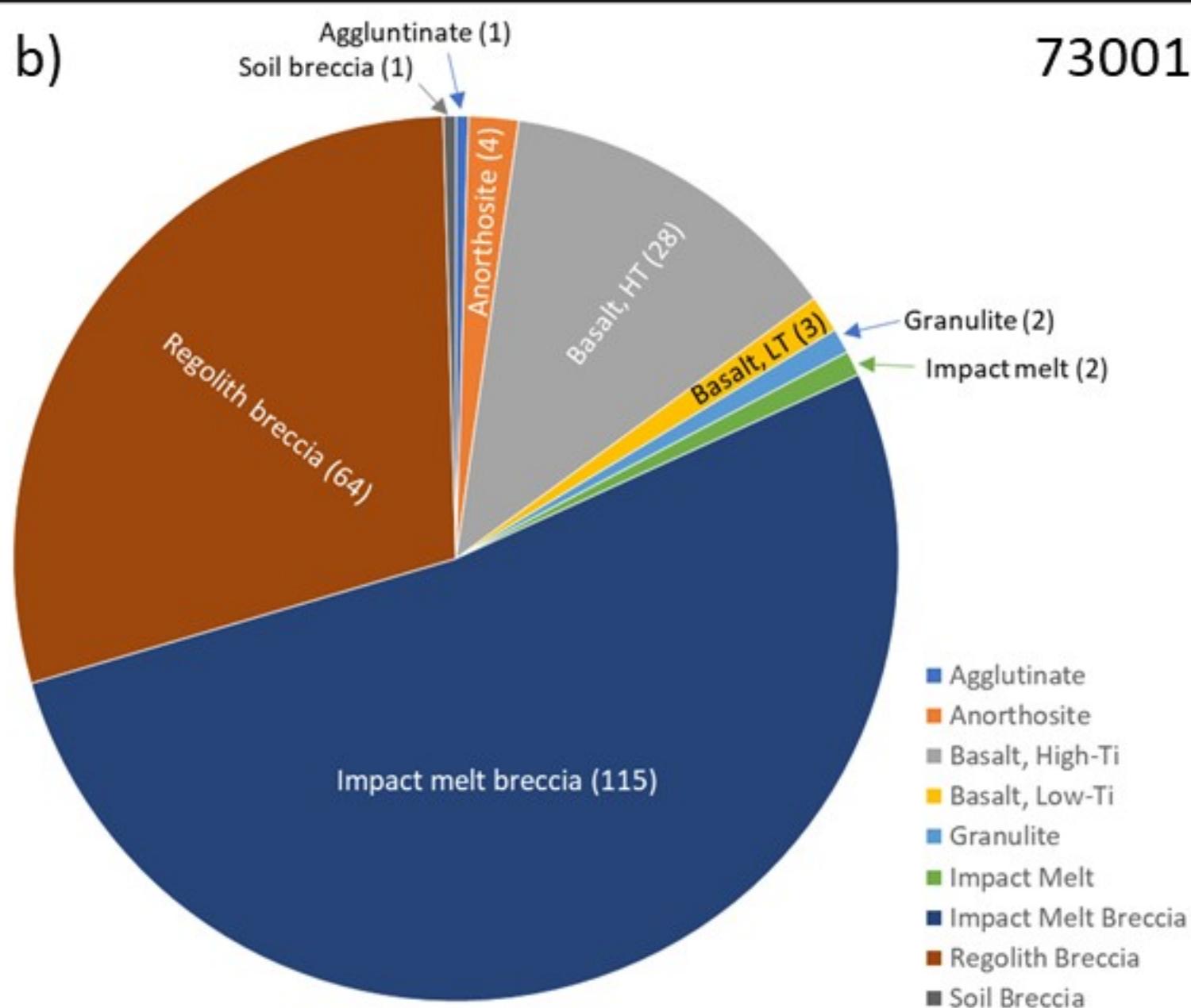
b)

Figure 14.


Figure 15.

a)**b)****c)****d)****e)****f)****g)****h)****i)****j)**

Figure 16.


a)

73002

b)

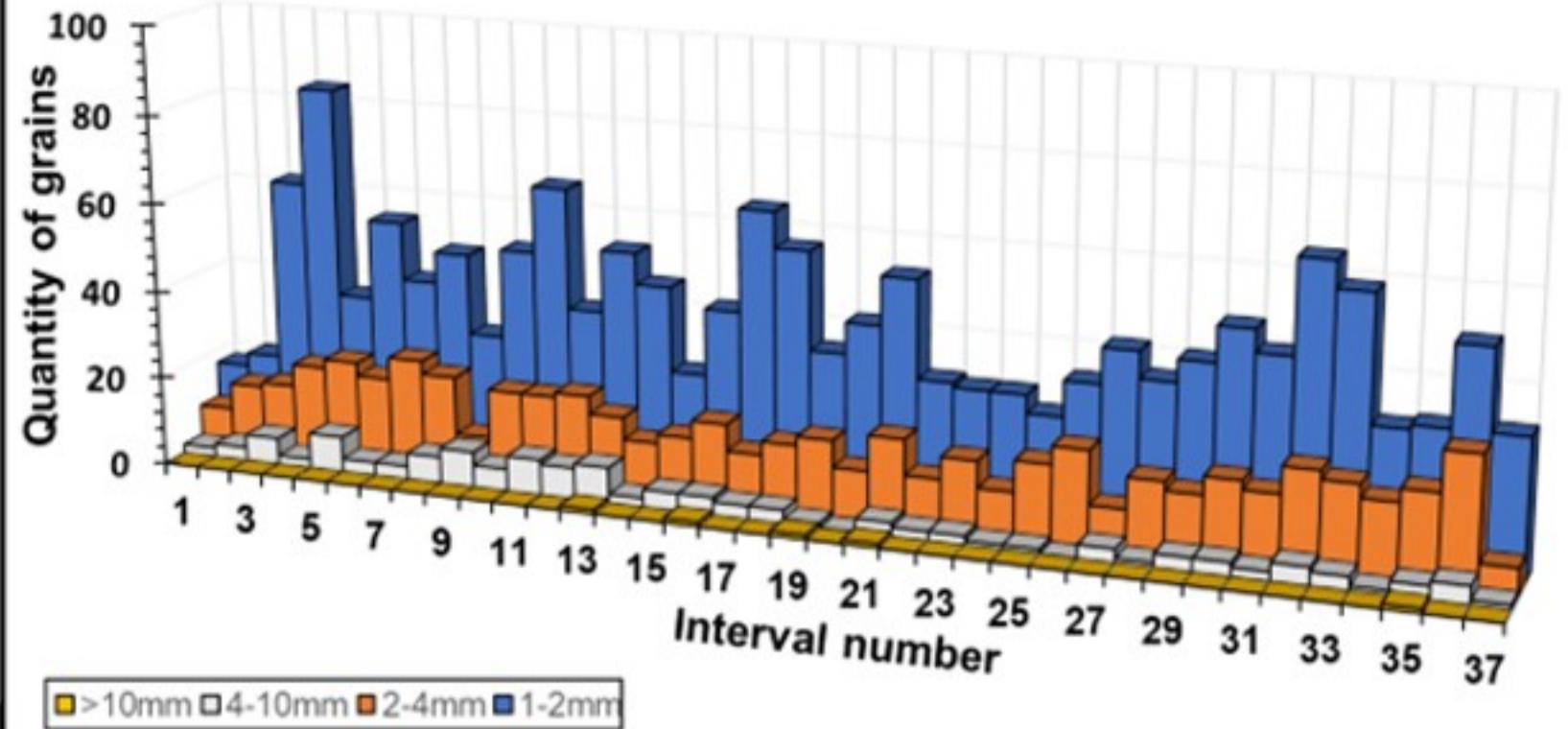
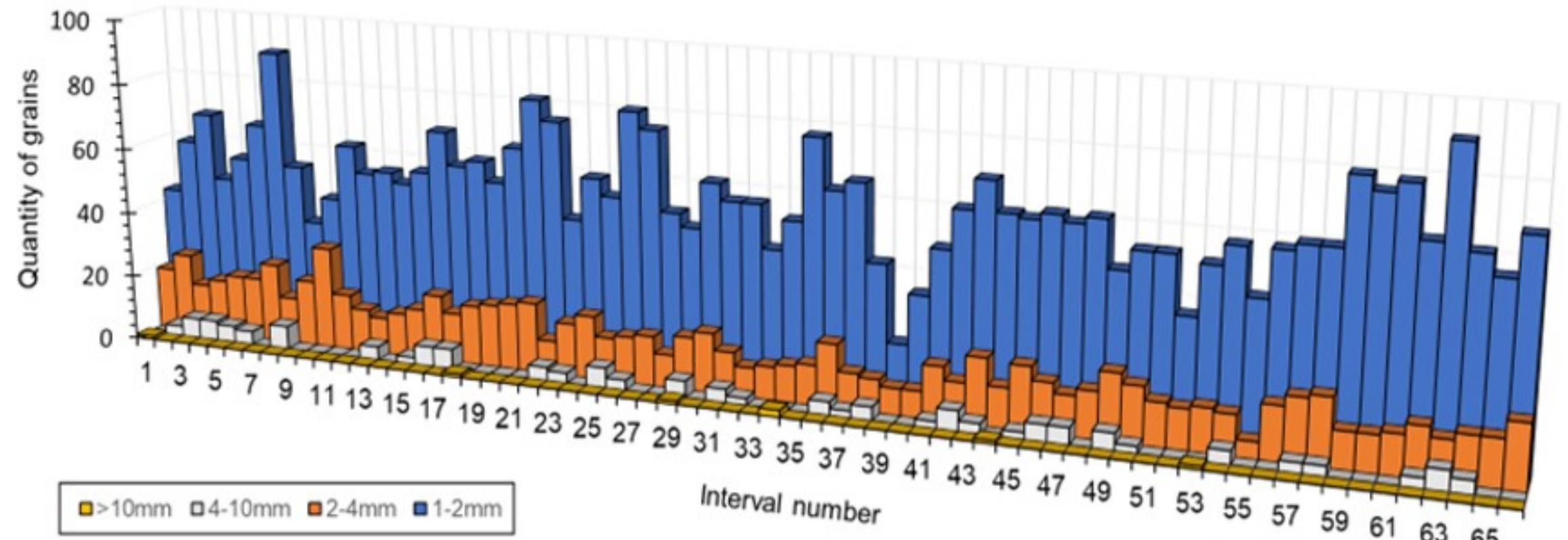
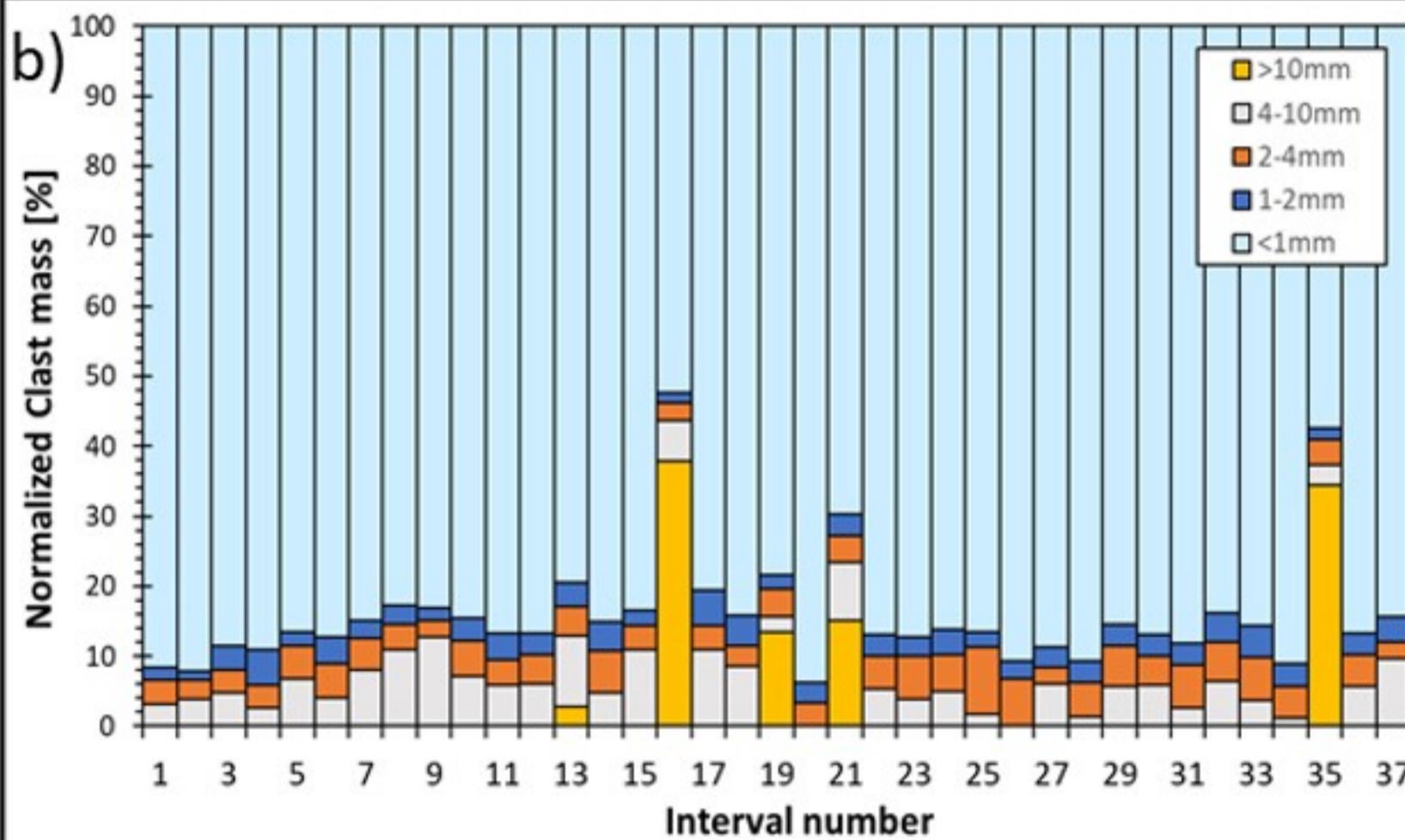

73001

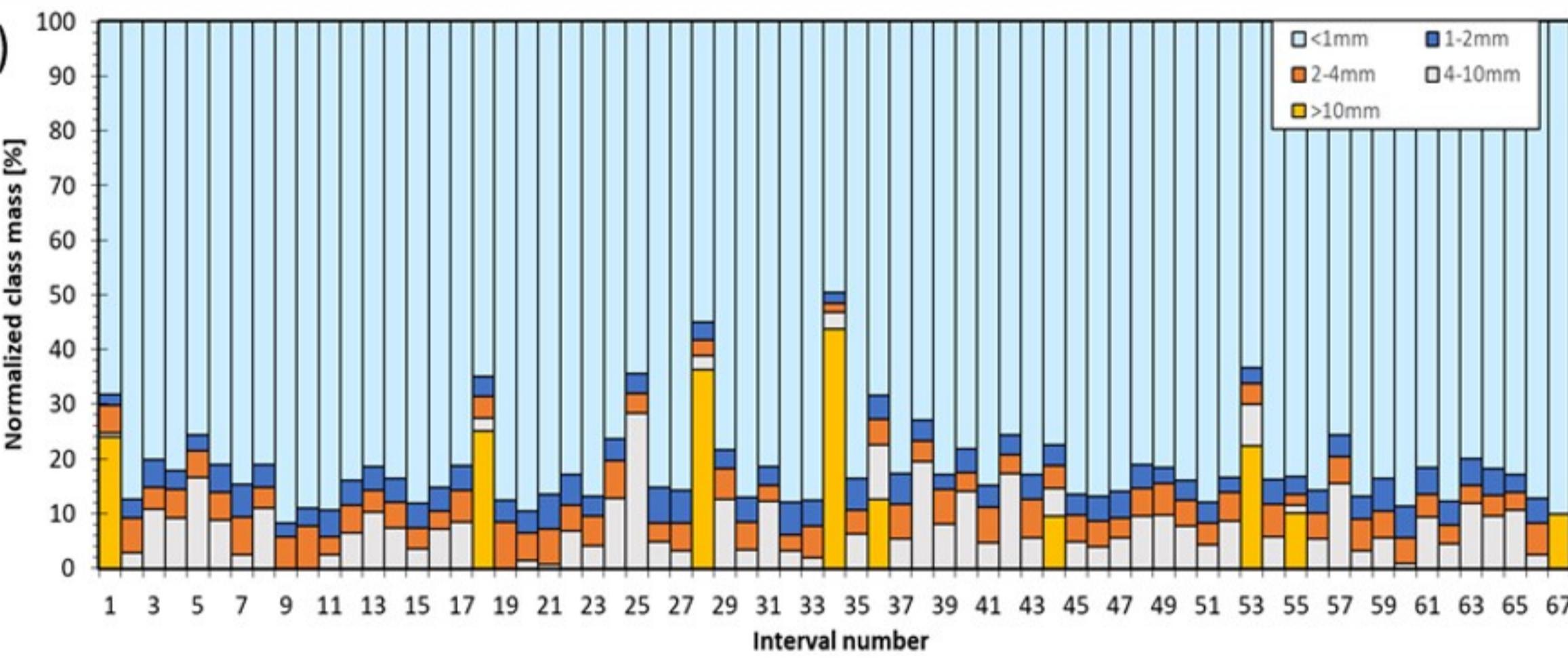
Figure 17.

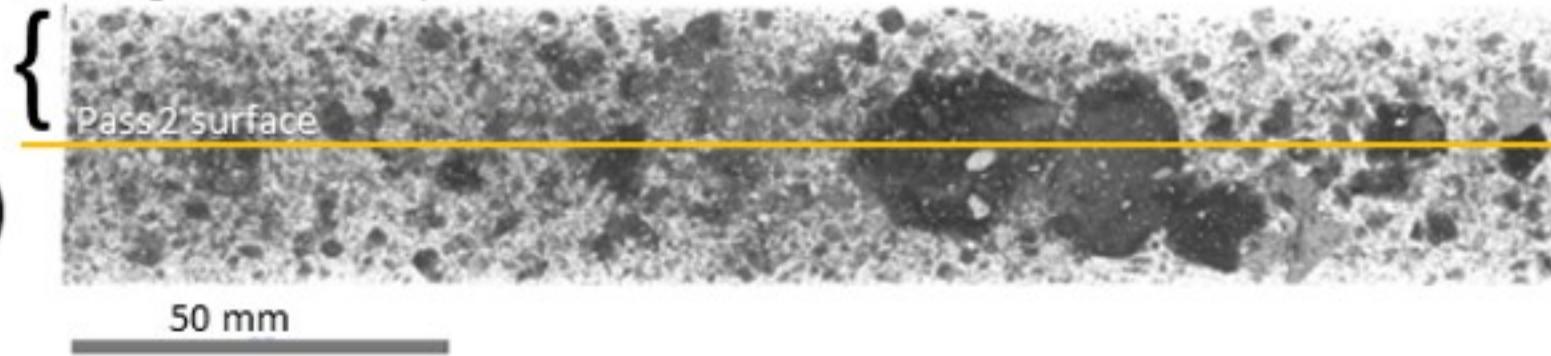

a)

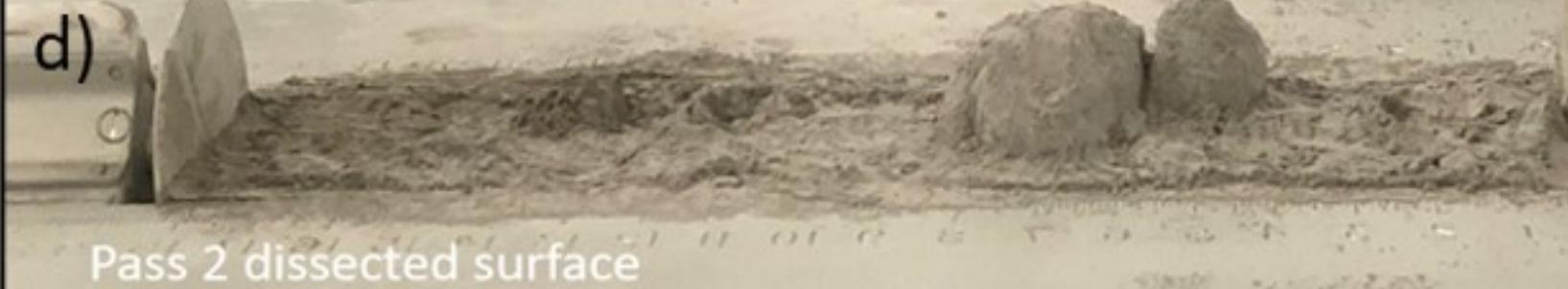
73002

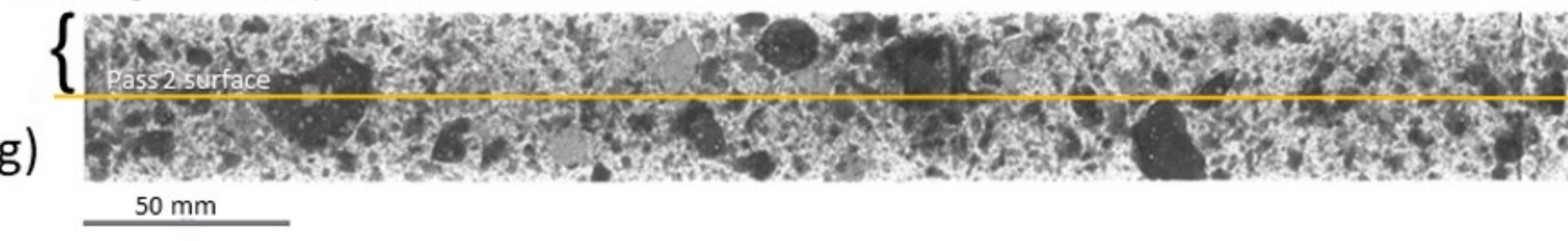


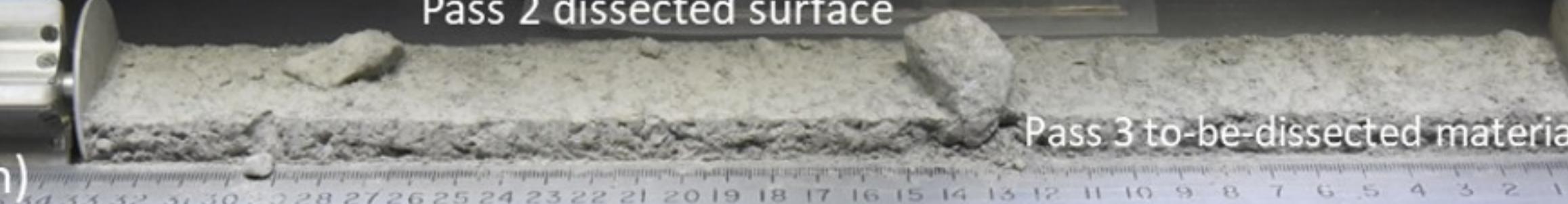
e)


73001

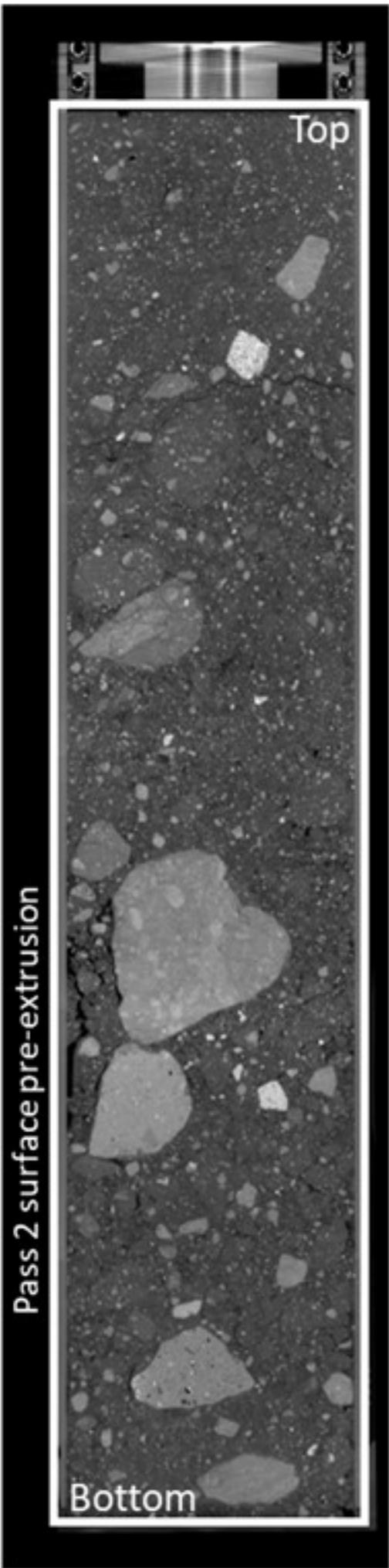

b)


f)


Dissected, grain-sized analyzed material

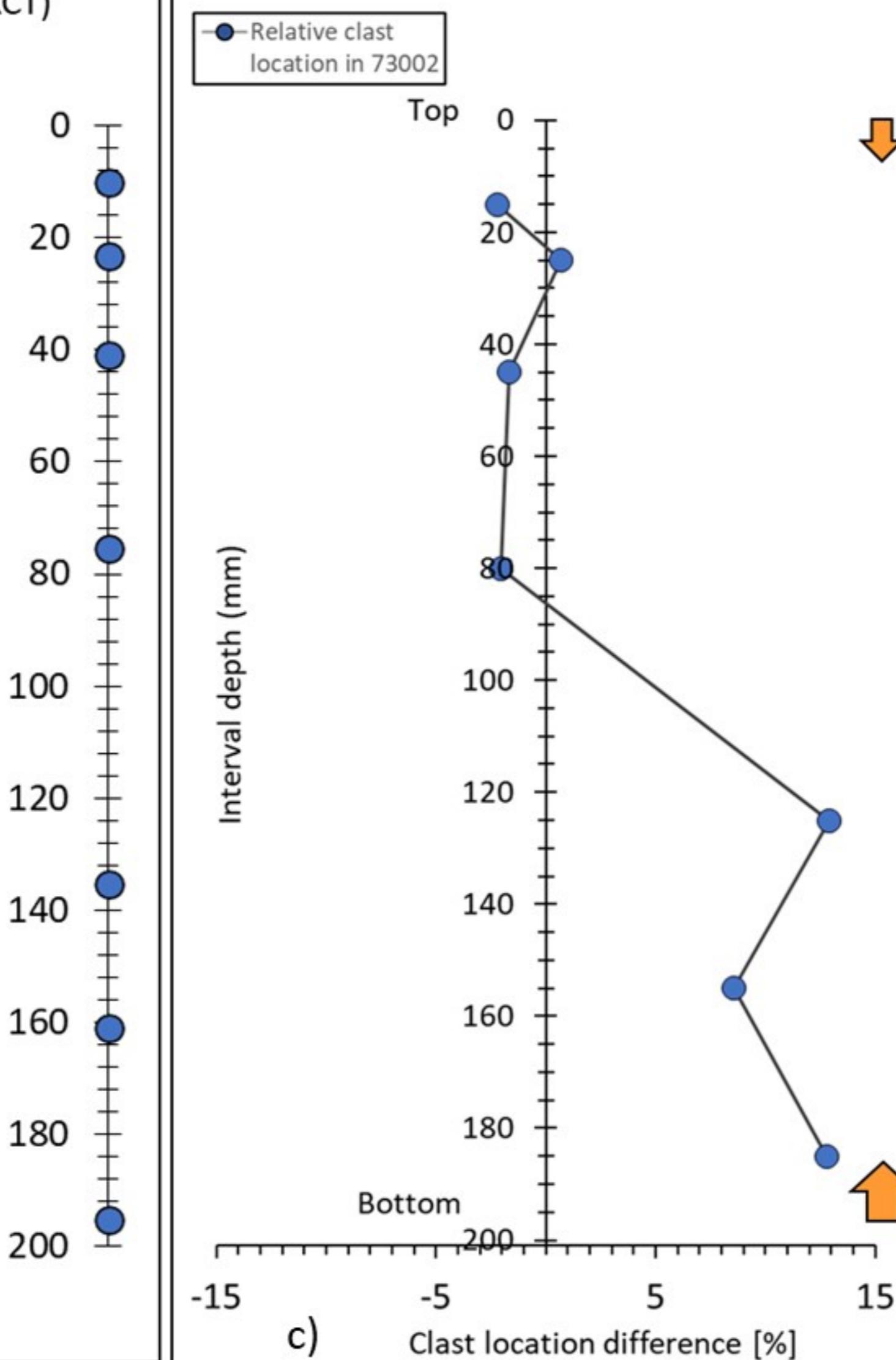

d)

Dissected, grain-sized analyzed material

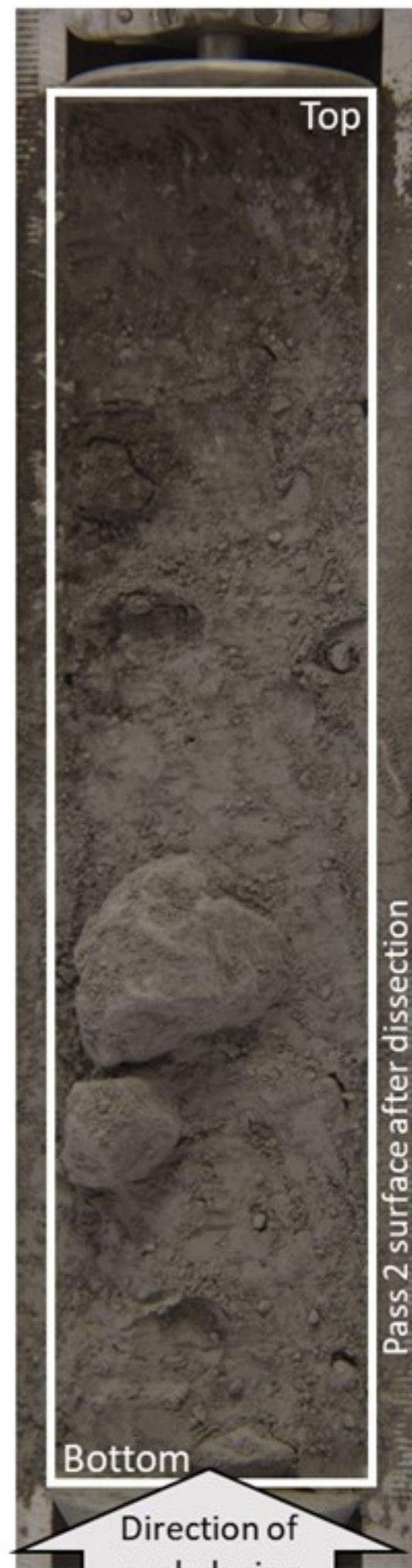

g)

Pass 2 dissected surface

Figure 18.


Clast location within 73002
pre-extrusion (XCT)

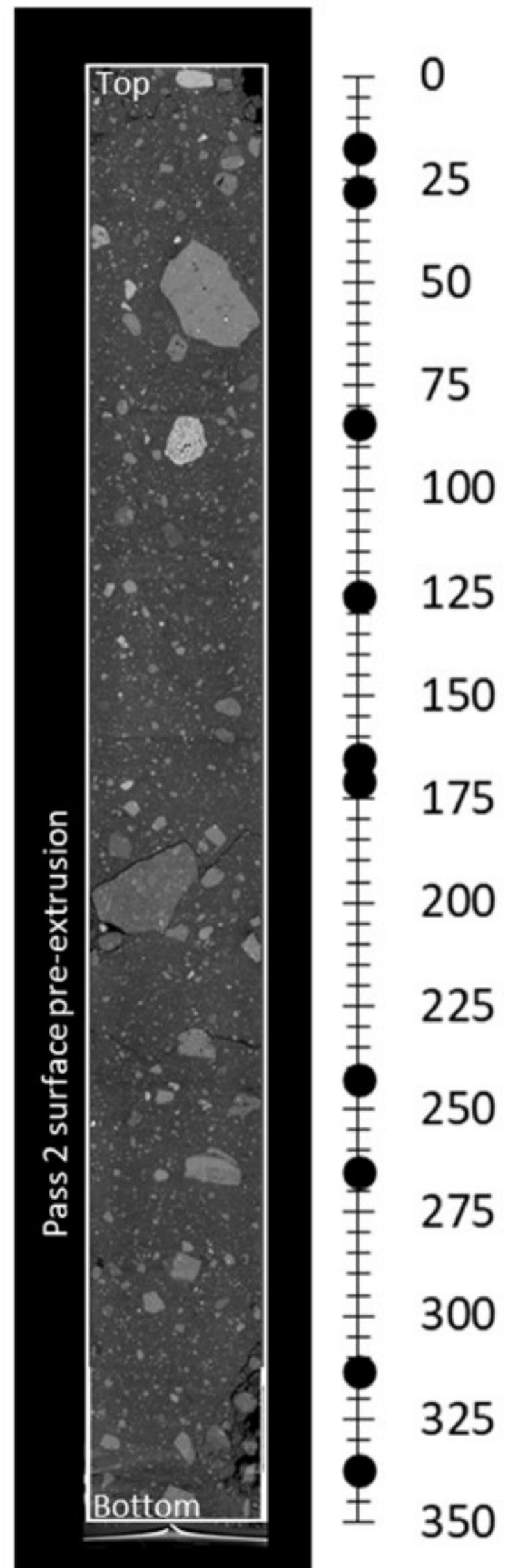
Pass 2 surface pre-extrusion


a)

Relative displacement of clasts

c)

Clast location within 73002
post-extrusion



Pass 2 surface after dissection

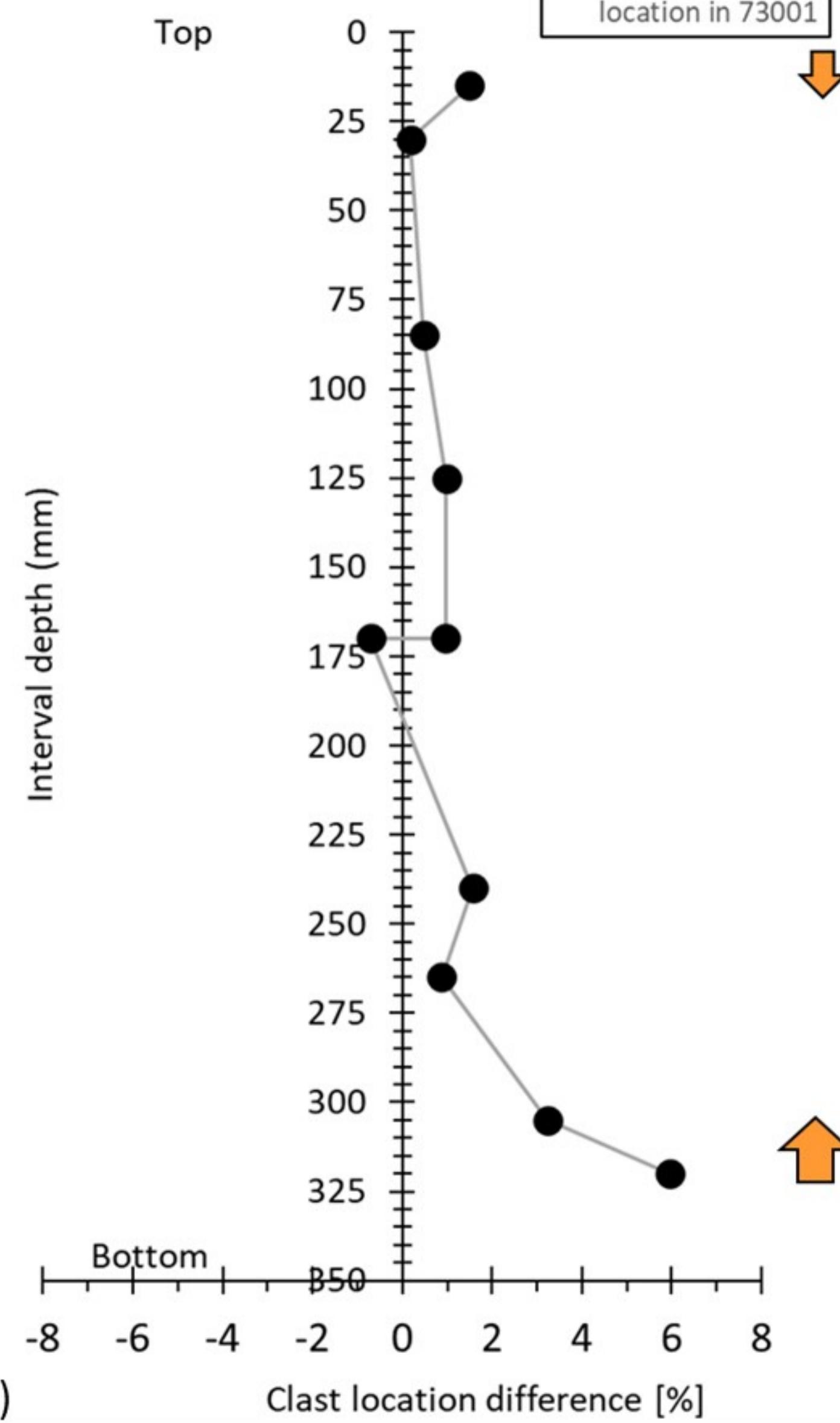

b)

Figure 19.

Clast location within 73001
pre-extrusion (XCT)

Relative displacement of clasts

Clast location within 73001
post-extrusion

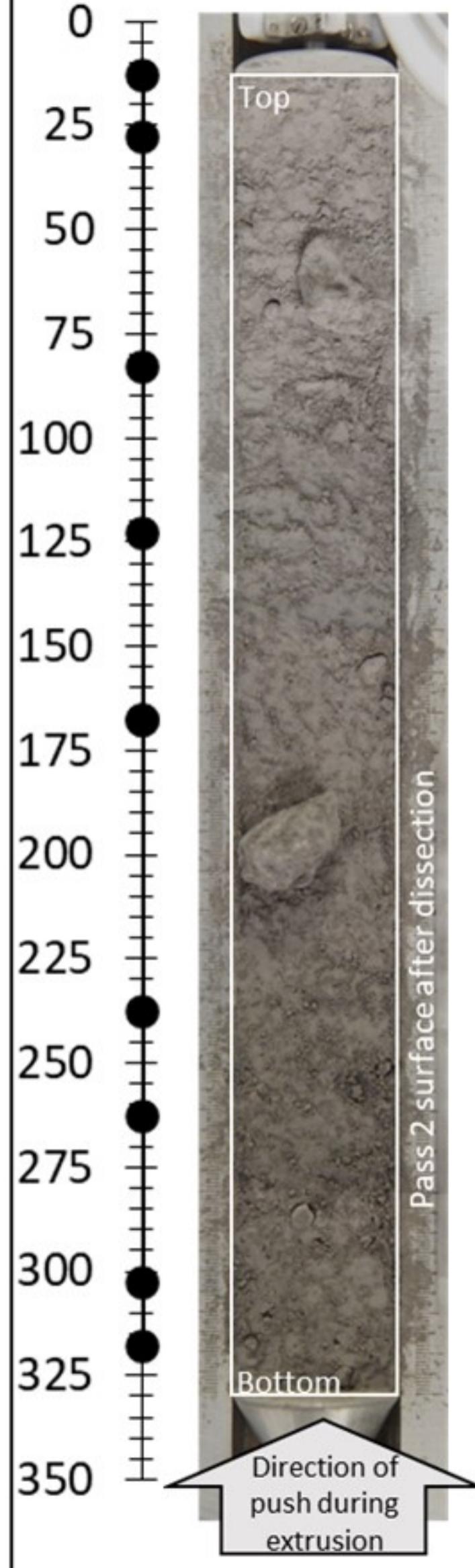


Table 1: List of Gas Samples Taken from ANGSA Sample 73001

Sample Number		Container number	Container Volume	Container Press (Torr)	Type of Gas in the Container	Equilibration time	Notes
Generic	Specific						
73001	,5001	4	~1.9 liter	~5 x 10-6	System Blank	15 minutes	
73001	,5002	3	~1.9 liter	27	OVC, 1st extraction	15 minutes	
73001	,5003	2	~1.9 liter	7	OVC, 2nd extraction	15 minutes	
73001	,5004	1	~1.9 liter	~0.2	CSVC, Leak Gas 1	15 minutes	Accumulated in the piercing tool for ~24 hours prior to extraction
73001	,5005	8	~1.9 liter	~0.2	CSVC, Leak Gas 2	15 minutes	Accumulated in the piercing tool for ~24 hours prior to extraction
73001	,5006	6	~1.9 liter	4.6	CSVC, 1st extraction	15 minutes	
73001	,5007	7	~1.9 liter	4.6	CSVC, 1st extraction	15 minutes	
73001	,5008	5	~1.9 liter	3.2	CSVC, 2nd extraction	10.75 days	
73001	,5009	9	~1 liter	5 x 10-4	CSVC, 3rd extraction	15 minutes	Piercing Tool/CSVC was pumped down to 2 x 10-7 Torr, and then gas accumulated in sealed piercing tool for 6 days prior to extraction
73001	,5010	10	50 cc	28	OVC, 1st extraction	15 minutes	Consumed for PE
73001	,5011	11	50 cc	4.6	CSVC, 1st extraction	15 minutes	Consumed for PE

Table 2: Lithologic Classification of >4 mm particles by XCT

73001				
Lithology	# of particles	% of particles	Mass of particles (g)	% of mass
Agglutinate	1	0.5%	0.112	0.1%
Anorthosite	4	1.8%	0.200	0.2%
Basalt, High-Ti	28	12.7%	6.736	7.6%
Basalt, Low-Ti	3	1.4%	0.216	0.2%
Granulite	2	0.9%	0.194	0.2%
Impact Melt	2	0.9%	1.528	1.7%
Impact Melt Breccia	115	52.3%	50.745	56.9%
Regolith Breccia	64	29.1%	29.360	32.9%
Soil Breccia	1	0.5%	0.086	0.1%
73002				
Lithology	# of particles	% of particles	Mass of particles (g)	% of mass
Agglutinate	6	4.5%	0.143	0.3%
Anorthosite	0	0.0%	0.000	0.0%
Basalt, High-Ti	9	6.8%	1.639	2.9%
Basalt, Low-Ti	4	3.0%	0.291	0.5%
Granulite	0	0.0%	0.000	0.0%
Impact Melt	5	3.8%	0.247	0.4%
Impact Melt Breccia	42	31.8%	18.732	33.1%
Regolith Breccia	62	47.0%	35.118	62.1%
Soil Breccia	4	3.0%	0.361	0.6%