Dynamic Drop Testing of eVTOL Energy Storage Systems Part 1: Drop Test Data Summary Justin Littell Ph.D., Nathaniel Gardner Ph.D. Research Aerospace Engineer NASA Langley Research Center Shay Ellafrits Research Aerospace Engineer NASA Glenn Research Center Vertical Flight Society 81st Annual Forum and Technology Display May 20, 2025 ## Research background - NASA has decided to include battery crashworthiness as a part of the Revolutionary Vertical Lift Technology Crashworthiness Technical Challenge - After talking to stakeholders, and due to lack of data on eVTOL batteries, NASA has decided to undertake a multistep program to provide data to the community - Some of the questions that we have - What does a 50 ft drop test do to Energy Storage System (ESS) modules? - What types of failure mechanisms occur if ESS modules are tested under these conditions? - Are there ways to mitigate failures through testing and/or configuration changes - i.e. mounting "within structure", mounting a particular orientation - What we are **NOT** doing - Certifying ESS systems for flight - Providing commentary on effect of the ESS system result on the aircraft - Caveat - Testing one design from one OEM under one condition to provide data and generate discussion - Data is in work ## Research Roadmap - Phase 1 Module Level COMPLETE - Conduct drop tests of zero state of charge (ZSOC) ESS modules in 4 orientations - Right-side Up, Upside Down, Sideways, Flatways - No supporting structure present - Develop scoring rubric to determine a quantitative way of scoring and comparing the damage sustained by each module - Disassemble modules and conduct post-test forensics noting failures, deformations and other mechanisms present post-test - Use data to guide Phase 2 efforts - Phase 2 Module Level Conducted 2024 - Phase 3 Pack Level Testing preparations in process scheduled for late 2025 #### **Test Articles** - Electric Power Systems (EPS) EPIC Energy Module AV2300L10-001 - Nominal operation of 39 Volts generating 2.3 kWh of energy - Per Module - 30 pouch cells, busbars, chiller plate, electronics, ventilation, health monitoring - All modules designed TSO-179b, DO-311a and UN38.3 requirements - Zero-state of charge - 4 orientations noted below by connection block (black) and vent port (white covered in red in figure) ## **Test Instrumentation** - 2 triaxial accelerometers in upper facing corners opposite sides if possible - 1 uniaxial accelerometer in middle or edge of upper face - 4 thermocouples on non-speckle coated sides - Two sides speckle coated 1 local Digital Image Correlation (DIC), 1 global DIC and impact orientation tracking - Voltage and temperature checks pre- and post-test ## **Test Conduct** - Tests conducted at National Institute for Aviation Research (NIAR) outdoor test cell - Pre-test checks on health of module recorded - Voltage - Temperature - Verify module is at ZSOC, and functional - Raise 50 ft, drop, collect impact data and video - Post-test Monitor/record post-test t+1 hour - thermal runaway (TR)/ delta Temperature - Move to covered storage and inspect at t+24 hours for long term changes # **Test Sequence Examples** Realtime Camera – Sideways Test Realtime Camera – Flatwise Test #### Accelerations – Raw to Filtered - Loading events on the order of 20 millisecond (ms) or less - SAE J211 lowpass filter criteria unable to adequately capture pulse - 4-pole Butterworth backward and forward low-pass filter used - Various cutoff frequencies evaluated to determine viable number - Integrate signal and compare unfiltered to filtered - 1000 Hz picked due to minimal differences in signal | Measurement (integrated signal) | Unfiltered | 2000 Hz | 1000 Hz | 500 Hz | 100 Hz | |----------------------------------|------------|---------|---------|--------|--------| | Initial spike
(0 < t < 1 ms) | 1.00 | 1.024 | 1.027 | 0.677 | 0.195 | | Full contact
(0 < t < 20 ms) | 1.00 | 1.005 | 1.014 | 0.871 | 0.708 | #### **Flatwise Test** NASA - North Side low angle of 17.9 degrees - West side low angle of 1.4 degrees - Impact velocity of 46.9 ft/s - North-to-south rotation through the impact - South side impact t+4.8 ms - Some localized deformations but little crushing on impact face - Post test health monitoring data available # **Right-side Up Test** NASA - South side low angle of 2.2 degrees - East side low angle of 2.6 degrees - Impact velocity of 52.8 ft/s - Minor east-to-west rotation - Side impacts ~1ms difference - Accel data shows uniform pulse shapes, varying magnitudes - Post-test configuration on side - Post test health monitoring data available ## **Upside Down Test** - North side low angle of 6.2 degrees - West side low angle of 2.3 degrees - Impact velocity of 48.5 ft/s - North to South rotation - Side impacts ~ 1.4 ms difference - Large amounts of crushing on impact face - Differences in the middle accelerometer to the accelerometers mounted at the corners - No post test health monitoring data available # **Sideways Test** NASA - Electrode side down – positive protrusion prior to test - Flat North to South - West side low angle of 6.5 degrees - Impact velocity of 50.6 ft/s - Side impacts approximately same time - Sparks noted from electrode crushing - Inward deformation on top surface - Bulging but little crushing on impact face - No post test health monitoring data available # **Result Discussion – Impact Conditions** - Impact conditions angles, speeds large angles in flatwise - Highest impact energy was Rightside Up with no significant angle - Flatwise was 78% energy from highest test, and with significant impact angle - Sideways was 92% energy from highest test, no significant angle #### **Result Discussion – Accelerometer Location** - Corner accelerometers measured higher results due to their location in the structure where three edges meet - Right side up approximately the same accelerations - Accelerometers mounted in the middle of the face experienced differences in response due to other factors #### **Result Discussion – Module Deformation** - Upside down and Rightside Up tests produced noticeable crushing as determined by visual inspections - Generally 750-1500 g in all locations - Sideways and Flatwise produces localized deformations - Varied results high in Flatwise and Sideways, but lower in middle ## Thermocouple Data - Temperatures during test do not significantly change - Spike but not sustained changes - Longer duration temperature changes due to changing weather and cloud cover - No TC data shows steadily increasing temperatures indicating thermal runaway is occurring # **Part 1 Summary** - Somewhat inconsistent impact conditions but test method refinement reduced data scatter - Impacts induced "shock" type (~1,500 g) accelerations into modules even after filtering to higher than typical SAE values - Highest accelerations measured in modules with little signs of crushing - Thermocouple data collected showed no signs of TR - Digital Image Correlation obtained on outer case, working to determine effect on internal structure - Module health checks pre- and post-test correlated with qualitative damage determined from visual inspections ## Acknowledgements Rob Huculak and NIAR test team Joseph James, Spencer Wright, Derek Larsen, Brad Mowery – Electric Power Systems