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Abstract

A method of generating trajectories based on power is proposed for Urban Air Taxis. The
method is simpler and more direct than traditional methods because it does not require a
detailed aircraft model or a flight control model. Instead, it allows the user to specify the
route, the static longitudinal profile (altitude as a function of distance), and a power model
to determine the progress in time along that profile. The power model can be determined
from a recorded or simulated trajectory of the same aircraft type. This capability allows a
trajectory to be generated or reshaped to avoid conflicts while preserving the basic performance
characteristics. Net or excess power is defined as the rate of change of mechanical (kinetic and
potential) energy, and it is modeled as a function of airspeed. The time steps between discrete
points in space along the trajectory are used to yield a specified power as a function of airspeed,
and they are determined by solving a cubic polynomial at each point. An elliptical profile is used
to generate an example trajectory. The dependence of trip flight time on various parameters is
analyzed and plotted.

1 Introduction

The developing concept and technology of Urban Air Mobility (UAM) has the potential to rev-
olutionize short-range air travel in densely populated urban areas [1, 2, 3, 4]. Many airframe
developers, both new and old, are developing new electric aircraft models capable of vertical take-
off and landing (eVTOL) for UAM. Although none of these vehicles are yet certified by the FAA,
the ultimate vision is to have thousands of them in the sky during commuting hours in major
metropolitan areas. The challenges are daunting, however, and the most critical challenges pertain
to safety. Public acceptance will require that catastrophic accidents be extremely rare.

In the early stages of the development, traffic densities will be low, and the main safety concerns
will be the airworthiness of individual vehicles and keeping them safely in flight and away from
static obstacles. As traffic density increases, however, the safety concerns will shift to the traffic
and the potential for mid-air collisions. The development of an air traffic control (ATC) system
for UAM will certainly require extensive simulation studies, and those studies will require flight
modeling and simulation.

The fidelity of aircraft flight modeling forms a spectrum from low to high. Typically, a lower
level of fidelity is required for modeling air traffic than is required for engineering development
of a particular model of vehicle. Vehicle engineering and control system design usually requires
a detailed model with six or more degrees of freedom, including controls and actuators, whereas
traffic modeling for ATC development and simulation testing as well as actual operations (including
conflict detection and resolution) in the field usually only requires a simpler point-mass model
[5, 6, 7].
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This paper proposes an even simpler method of constructing realistic trajectories without the
need for a simulation model of the aircraft and its flight controls. This method allows the user
to directly specify the route, the static longitudinal profile (altitude as a function of distance),
and a power model to determine the progress in time along that profile. The power model can be
determined from a recorded or simulated trajectory of the same aircraft type. This capability allows
a trajectory to be “bent” into any desired shape while retaining the same basic flight performance
characteristics. To the best of the author’s knowledge, this capability has not been proposed in
previous literature on trajectory generation.

This method of trajectory generation is useful for several reasons. Aircraft designers are often
unwilling to provide detailed simulation models of their aircraft, but this method does not require
one. And even if such a model is available, determining the controls to fly a specific trajectory
in 4D space is not simple, but this method does not require that to be done. Given a sample of
a recorded or a simulated trajectory, it can be used to directly generate a flyable trajectory for
conflict resolution. For many conflicts, this method also facilitates the construction of a conflict-free
path in 3D space using altitude separation, with no dependence on the timing along the path.

The methods used in this paper are based in part on the Trajectory Specification (TS) concept
[8, 9]. TS is a method of specifying a trajectory with explicit tolerances relative to a reference
trajectory such that the position at any given time in flight is constrained to a precisely defined
volume of space as shown in Figure 1. The reference trajectory is specified as a position in 3D
space as a function of time, where the time steps between discrete points can vary, typically being
larger in steady-state flight than during transients. The bounding volume at any given time in
flight is determined by tolerances relative to the reference trajectory in all three route-oriented
axes: cross-track, vertical, and along-track. The tolerances can vary as a function of distance along
the route, typically increasing for departure and decreasing for arrival (for conventional aviation).

That allowance for varying time steps in TS is used in this paper to set the specified power
level for the airspeed at that time. The user provides the power function (power as a function of
airspeed) that is appropriate for the aircraft and the flight mission. The time steps between discrete
points in 3D space are then computed to yield the speed corresponding to the required power. The
TS software then automatically converts to a specified constant time step by interpolating between
the varying time steps. The resulting uniform time steps allow for fast (constant time) lookup of
flight variables as a function of time by simple array indexing, followed by interpolation between
the two bounding points for better accuracy than just choosing the nearest point.

The next section discusses the method of generating trajectories based on power for con-
ventional fixed-wing and eVTOL aircraft. Section 3 presents the algorithm for generating the
trajectories, and Section 4 analyzes the dependence of trip flight time on the various parameters
used in generating the trajectory. Finally, conclusions are presented, followed by a brief appendix
on solving for the roots of a cubic (third-order) polynomial.

2 Trajectory Generation Based on Power

For any aircraft type, steady flight at a given altitude and airspeed requires a certain amount of
power to maintain. That power ultimately comes from the engines or batteries, and it can be
applied to the vehicle through either direct thrust, propellers, rotors, or lift, depending on the
aircraft type. Any power beyond what is needed to maintain steady state that is not wasted as
thermal energy and drag goes into mechanical energy, which is comprised of potential energy due
to altitude and kinetic energy due to speed. That “net” or “excess” power is the rate of change of
mechanical energy and integrates over time to determine mechanical energy in terms of speed and
altitude.

For most aircraft types, the maximum available net power increases with airspeed to some
maximum, because it depends on the mass flow through the engines or rotors, then it decreases
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Figure 1: Top: Plan view of trajectory bounds in the horizontal plane; Bottom: Side view of
trajectory bounds in the longitudinal plane
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as drag increases at higher speeds. Maximum available power at takeoff is usually less than it is
in forward flight up to some speed. For example, Figure 2 shows the maximum rate of climb as a
function of airspeed for the NASA Reference Quadrotor six-passenger air taxi at a pressure altitude
of 6,000 ft, as computed by the NASA Design and Analysis of Rotorcraft (NDARC) program [10, 12].
The rate of climb reaches a maximum of slightly less than 2000 fpm at an airspeed between 50 and
60 knots, and the maximum airspeed is approximately 120 knots.

To avoid confusion, it should be pointed out that the net or excess power referred to here is
not based on the maximum available power. It is based on the power that is appropriate for the
aircraft and the mission at any given time, position, and airspeed. In steady-state flight, the net
power is zero by definition. For climb, it can range from slightly above zero to maximum power
minus the power needed for steady-state flight at the current airspeed and altitude. For descent
it is negative. For reliable flight control, it is usually wise to maintain a margin below maximum
power so that power can be increased through feedback when necessary to compensate for modeling
errors, including wind modeling errors in particular.

A net power model for any trajectory can be derived from recorded or simulated trajectory
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Figure 2: Maximum rate of climb as a function of horizontal airspeed for the NASA Reference
Quadrotor six-passenger eVTOL aircraft
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data by simply computing the rate of change of mechanical energy as a function of airspeed and
any other flight variable of interest. The resulting model will depend on how the aircraft was
flown, however, so the trajectory that is used should not have arbitrary maneuvers that would
not normally be used in flight with no other traffic in the airspace. Note also that when a new
trajectory is generated using this method, the speed can be limited at any time in flight if necessary
for conflict resolution or airspace speed limits (e.g., near vertiports).

For convenience, power will be expressed in this paper in terms of power per unit mass divided
by gravitational acceleration. This unit has an intuitive meaning because it is the rate at which
the vehicle can climb vertically, hence it will be expressed in units of feet per minute (fpm).
Regardless of the units used, however, power varies with airspeed and determines both climb rate
and acceleration throughout the flight.

The net or excess power determines the longitudinal profile of the flight, which is (1) the hor-
izontal distance flown as a function of time and (2) the altitude as a function of time or distance.
Assuming decoupled lateral and longitudinal dynamics, that longitudinal profile superimposed on
the route determines the trajectory in 4D space. The assumption of decoupled lateral and longi-
tudinal dynamics is common for simulation models that are not high fidelity. It can be inaccurate
for large turns at high bank angles, but a simple method will be discussed later to account for
the effect of bank angle, if necessary. A basic method will also be discussed to model the effect of
winds.
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2.1 Conventional Fixed-Wing Aircraft

For a conventional fixed-wing aircraft, the engine power is applied through (1) the engine thrust
and (2) the lift on the wings and other surfaces. The thrust goes mainly into kinetic energy, but a
component of it also goes into direct lift, depending on the pitch angle of the aircraft at any given
time. The lift goes into potential energy. The elevator is used to control the pitch angle, which
determines the ratio of the engine power that goes into kinetic and potential energy.

The four basic controls of a conventional fixed-wing aircraft are (1) the throttle (or thrust), (2)
the elevator, (3) the ailerons, and (4) the rudder. The throttle and the elevator are for longitudinal
control, and the ailerons and rudder are for lateral control to follow an assigned route. A simplifying
assumption in this paper will be that the the aircraft is able to follow its route exactly, so an explicit
model for lateral control is not needed. For longitudinal control (of a fixed-wing aircraft), an explicit
model can have inputs of throttle and elevator, but a simplified model can be based on power, as
will now be explained.

The net or excess power beyond what is needed for steady flight at any given speed and
altitude can be determined as a function of equivalent airspeed (EAS) or, at lower Mach numbers,
“calibrated” airspeed (CAS). EAS and CAS are based on dynamic pressure and, unlike true airspeed
(TAS), implicitly account for the effect of altitude on air density, thereby eliminating the explicit
dependence of aerodynamic forces on altitude. The net power must be split into two components:
one that drives kinetic energy and another that drives potential energy. The power model therefore
requires a kinetic component and a potential component, both of which are functions of CAS.
Different models can be developed based on different throttle and airspeed (CAS/Mach) schedules
for climb and descent, but that is outside the scope of this paper, which will focus on eVTOL air
taxis.

2.2 eVTOL Air Taxis

Many different types of eVTOL air taxi vehicles are currently in development, including multi-rotor,
tilt-rotor, tilt-wing, rotor/push-prop hybrid, and others. Unlike conventional fixed-wing aircraft,
most of them can climb and descend at any angle. A flight profile might be to takeoff and climb
vertically for 20 feet, transition to a flightpath angle of 10 degrees and climb to the cruise altitude,
then reverse the pattern for descent and landing. This profile determines altitude as a function
of distance flown, with no reference to speed or time. Such a profile will be referred to here as
a static longitudinal profile, and it can be converted to a dynamic longitudinal profile (or simply
a longitudinal profile) by specifying time as a function of the distance along the static profile.
The next section provides an algorithm to do that conversion based on the power model discussed
earlier.

As mentioned earlier, the longitudinal profile can be superimposed on a route to determine a
trajectory in 4D space. Determining the control settings or values as a function of time that are
necessary to fly the resulting trajectory for a given vehicle is not easy, but it is not necessary for
a simulation of air traffic or to find a flyable trajectory that is free of conflicts with other traffic.
All that is needed is a realistic trajectory that is flyable and acceptable to the flight operator. The
aircraft flight control system should then be able to compute the feedforward control variables as a
function of time that are necessary to track the trajectory, and that will be combined with feedback
to compensate for modeling errors as has been done for helicopters [13]. The trajectories generated
by the methods in this paper should therefore be usable for actual trajectory assignments in the
field.
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3 Trajectory Generation Algorithm

The trajectory generation algorithm presented in this paper is composed of four main parts: (1)
generating the static longitudinal profile, (2) converting it to a (dynamic) longitudinal profile by
applying a power model, (3) superimposing that profile onto a specified route, and (4) adjusting
for the effects of winds. The first step is purely geometric, and the second step is kinetic. The
geometric step specifies the shape of the trajectory in 3D space, independent of time, and the
kinetic step fills in the times to yield a specified power profile as a function of calibrated airspeed
(CAS) and any other flight variable of interest, including time, position along the route, altitude,
and flightpath angle. The third step is to superimpose the longitudinal profile onto the route, and
the final step of adjusting for effects of winds completes the construction of the trajectory in 4D
space.

3.1 Static Longitudinal Profile

As explained earlier, the static longitudinal profile is the altitude as a function of horizontal distance
along the route, with no reference to speed or time. It is purely geometric. A basic profile that
has been proposed by industry is to take off and climb vertically to some specified height above
the vertipad, then transition to some non-vertical climb angle, say 10 degrees, and climb to the
cruise altitude. The methods proposed in this paper can be applied to any reasonable profile,
but an elliptical profile will be used as the main example because it provides a smooth transition
from vertical takeoff to level flight, which should result in a smooth ride. However, it may not be
appropriate for all eVTOL aircraft types, depending on the method of transition from vertical to
forward flight and possibly other considerations as well. An optimal or reasonably efficient and
smooth profile can be determined and used for each aircraft type and takeoff weight, but that is
beyond the scope of this paper.

The elliptical profile consists of a quarter of an ellipse that is vertical at takeoff and transitions
to horizontal at the cruise altitude. The elliptical segment can be preceded by a straight vertical
segment at takeoff, or followed by one at landing, to avoid conflicts near the vertipad, if necessary.
The parameters of the elliptical profile are the starting and ending altitude and the distance along
the route at which the cruise altitude is reached. Figure 3 shows an example where the vertipad
elevation is 200 feet, the cruise altitude is 1,000 feet, and the horizontal distance at the end of climb
is 2.0 nmi (nautical miles).

The descent profile is constructed using the same algorithm that is used for the climb segment,
with the same or different parameters, then it is reversed and shifted along-track to match the end
with the end of the specified route. A steady level cruise segment is then inserted between the climb
and descent profiles to fill the gap between them and complete the static longitudinal profile. If the
route is too short for a level cruise segment at the specified altitude, then a lower cruise altitude
should be used or the length of the climb and descent segments should be decreased, or both.

Each discrete point of the static longitudinal profile consists of an along-track distance and an
altitude. After the power model (to be discussed later) is applied, each point will also have a time
associated with it. The distance and time spacing between points can vary, and they are arbitrary
within a wide range, but a few basic considerations apply. The smaller the spacing between points,
the higher the resolution of the trajectory will be (and the more computation and storage space
will be required, of course). Numerical roundoff error can become significant if the time steps are
too small, but with standard 64-bit floating-point arithmetic they would have to be very small for
that to become a concern. A more detailed description of the construction of the static longitudinal
profile now follows.

For an ellipse centered at the origin and aligned with the x and y coordinate axes, the position
at any given angle θ is x = a sin θ and y = b sin θ where a and b are the semi-major and semi-minor
axes of the ellipse. As shown in Figure 3, the ellipse is not centered at the origin in this case but
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Figure 3: Static longitudinal profile for an elliptical climb
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is tangent to the vertical axis at the pad elevation (or at the top of the vertical climb segment if
there is one), so appropriate offsets are required. The semi-minor axis in this case is the height
of the ellipse from the pad (or the top of the vertical climb segment) to the cruise altitude. The
semi-major axis is the along-track distance in climb from takeoff to cruise altitude. The axis scales
in Figure 3 are very different, so the actual shape of the ellipse is distorted as shown, having a
semi-major (horizontal) to semi-minor (vertical) axes length ratio of 15.2.

A function was needed to map from the arc distance along the ellipse to the along-track and
altitude coordinates of the point at that distance. A closed-form equation for that mapping is
not possible, unfortunately, but a precise numerical mapping was constructed by sweeping the
angle through the full range from zero to 90 deg in small angular increments and constructing an
interpolated mapping from the integrated arc distance to the along-track distance and altitude.
The size of the angular increment should be small enough for high resolution but not so small that
numerical roundoff error becomes an issue. That covers a wide range, and a value of deg/8 was
arbitrarily selected. The details will not be presented here, but the resulting function was used to
step through the arc distance in small increments to construct the static longitudinal profile as will
now be explained.

As mentioned earlier, the distance between points can vary and is arbitrary within a wide range.
The distance spacing is perhaps not as critical as the time spacing, but the time spacing is not
known until the power function (to be presented later) is applied. Hence, determining reasonable
distance steps requires a manual iteration process: distance steps are selected, and if the resulting
time steps are too large, smaller distance steps are tried, and the procedure is repeated until the
time steps are within the desired range. Note that this manual iteration is only required once for
each power model and static longitudinal profile, not for every trajectory. Moreover, a new iteration
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is unlikely to be needed even for a new profile unless it is dramatically different than the one for
which the iteration was already done. For the purposes of this paper, time steps in the range of
approximately 0.1 sec to 1.0 sec are considered reasonable, with smaller time steps preferred in
the dynamic segments and larger in steady-state. The power of modern computers allows for high
resolution at a negligible cost in terms of both computation time and data storage.

For the initial vertical climb segment, the vertical speeds are low, so small step sizes in arc
distance are needed. Actually, several different step sizes were needed, ranging is size from 0.125 ft
at takeoff and increasing to 2 ft at an arc distance of 600 ft. After that point, the speed is higher,
and an increment of 10 ft was used. When the power model described in the next subsection was
applied, these arc distance step sizes yielded the desired range of time steps.

3.1.1 Altitude Change Maneuvers

A key type of maneuver for conflict resolution is altitude change, usually from flying level at one
altitude to flying level at another. Figure 4 shows an example of such an altitude transition in level
flight from 1,000 to 1,500 ft. These maneuvers must be smooth enough for passenger comfort, and
they must also be completed within a given distance to avoid the conflict. For imminent conflicts,
the distance takes precedence over passenger comfort.

The algorithm used here for this type of maneuver works as follows. The flightpath (climb
or descent) angle is incremented in small angular increments (a value of deg/8 was used in the
example) at a constant rate from zero to a specified maximum magnitude, which can be in the
range of approximately 5 to 20 deg. A value of 10 deg was used for the example. The rate of
increase of the flightpath angle is a constant parameter that should normally be in the range from
approximately 5 to 30 deg/nmi, depending on the traffic situation and the distance to the conflict
to be resolved. A value of 10 deg/nmi was used for the example, resulting in a total maneuver
length of 1.33 nmi.

The normal (vertical) acceleration for this kind of maneuver is approximately an = rs2, where
s is the speed and r is the rate of increase of the flightpath angle. The value of 10 deg/nmi that was
used for the example shown in Figure 4 yields a normal acceleration of 0.043 g, which is mild and
acceptable for passenger comfort. The threshold for passenger comfort is approximately 0.1 g, but
a lower value of approximately 0.05 g is preferable if the traffic situation allows it. Another way
to select a value for this rate is to start with a desired value for normal acceleration and compute
the required rate of increase of flightpath angle as r = an/s

2. For example, the required rate for a
normal acceleration of 0.05 g and a speed of 130 knots is 11.6 deg/nmi.

The algorithm starts by constructing the profile to the center altitude, half way between the
initial and final altitudes. To realize symmetry, that first half of the profile is then reflected, first
vertically about the center altitude, then horizontally about the end point, to form the second
half of the profile. The two halves of the profile meet in the center at a flightpath angle that was
limited to a maximum magnitude of 10 deg in the example shown in Figure 4. However, that
value was never reached in the example, where the actual maximum flightpath angle was 6.9 deg.
Whether the maximum allowed magnitude of the flightpath angle is reached or not depends on the
parameters of the maneuver.

3.2 Power Model and Longitudinal Profile

As mentioned earlier, a longitudinal profile consists of (1) the horizontal distance flown as a function
of time and (2) the altitude as a function of time or distance. It is essentially the resulting trajectory
with the route “bent” into a straight line, assuming decoupled lateral and longitudinal dynamics.
It will be constructed here for air taxis by assigning time as a function of arc distance to the static
longitudinal profile constructed above. In other words, a time will be computed as follows to yield
a specified net power for each discrete point of the static longitudinal profile.
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Figure 4: Example Altitude Change Maneuver Profile
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Also as mentioned earlier, the net power at any time is not necessarily based on the maximum
power available at the current flight state. It cannot exceed the maximum power available, of
course, and it should leave a margin for controllability. The maximum power available, and hence
the maximum net power available at any time, depends mainly on the airspeed (CAS) at that time,
but the net power function is essentially a control variable that can be programmed as a function
of any flight variable, including time, position along the route, altitude, and flightpath angle. For
purposes of this paper, it will be modeled as a function of CAS only.

As mentioned in the Introduction, the methods used in this paper are based in part on the
Trajectory Specification concept [9], which allows the time steps of the reference trajectory to vary
in size, typically being larger in steady-state flight than otherwise. That allowance for varying time
steps is used here to set the power level by computing the time step between discrete points in 3D
space that yields the specified power at that time. The TS software then automatically converts
the time steps to a specified uniform time step by linearly interpolating between the varying time
steps.

Once the interpolated points with equal time steps are computed, any relevant flight variable
as a function of time or along-track distance can be precomputed as an array with uniform time
or distance steps for fast lookup. If the start time of the trajectory is t0, and the time step is ∆t,
then the array index corresponding to time t is simply (t − t0)/∆t. Because that index value is
usually not an exact integer, the values of the array at the two closest bounding integer indices are
linearly interpolated for better accuracy. This procedure provides a fast (constant-time) lookup and
interpolation of the relevant flight variables as a function of time or distance, making the trajectory
model effectively continuous in time and space.
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Total mechanical energy is the sum of potential and kinetic energy:

E = mgh+mv2/2 (1)

where m is the vehicle mass, g is gravitational acceleration, h is altitude, and v is velocity (speed).
(This energy does not include the rotational kinetic energy in the rotors, which is not relevant
here.) Now consider the change in the total energy over a single discrete time step of length ∆t.
The average power over that time step is P = ∆E/∆t, so

P∆t = ∆E = mg∆h+m∆(v2/2) = mg∆h+mv21/2−mv20/2 (2)

where v0 and v1 and the speeds are the start and end of the interval. The average speed over the
time interval is v = ∆d/∆t, where d is the arc distance flown over the interval (the hypotenuse of
the horizontal and vertical distance between points). Substituting this expression for v1 yields

P∆t/m = g∆h+ (∆d/∆t)2/2− v20/2 (3)

Multiplying both sides by (∆t)2 and rearranging yields

P (∆t)3/m+ (v20/2− g∆h)(∆t)2 − (∆d)2/2 = 0 (4)

This is a cubic polynomial of the form ax3 + bx2 + cx+ d = 0 where x = ∆t and

a = P/m (5)

b = v20/2− g∆h (6)

c = 0 (7)

d = −(∆d)2/2 (8)

This cubic polynomial equation can be solved using the formula given in the appendix to
determine the time increment between points to yield a given level of net power in excess of the
power needed to maintain steady level flight at the current airspeed and altitude. There should be
only one positive real root, which will be the correct solution. Given a sequence of position points
in 3D space, plugging in the desired power per unit mass and the other relevant variables into the
equation allows the required time difference between points to be determined.

Determining the power model from trajectory data can be done as follows. If the trajectory
data is based on simulation, it should have negligible noise, but if it comes from recorded flight
data, it will have some measurement noise and should be smoothed before it is used. The trajectory
should be given in terms of a closely spaced series of points in 4D space. That series can be effectively
differentiated with respect to time by back-differencing to determine velocity, and the velocity and
altitude at each point can then be used to determine total mechanical energy according to Equation
1. Net power is then the time derivative of energy at each point. CAS can be computed at each
point, based on standard equations, as a function of true airspeed (TAS), altitude, and the wind
vector, if applicable (CAS is not much different than TAS at the lower altitudes designated for
UAM). Note that CAS and net power must be determined separately for climb and descent. The
resulting CAS-power points should then be ordered by CAS value and then interpolated to make
the CAS steps uniform for efficient (constant-time) array access followed by linear interpolation
(as discussed earlier for time steps). If the resulting function is not smooth enough, a smoothing
algorithm or a curve fit (e.g., polynomial or spline) can be used to make it smoother.

Figure 5 shows the resulting net power vs CAS for the QEP1, a Quadrotor Electric Power
single-seat aircraft. The QEP1 has a rotor diameter of 12.6 ft and an operating gross weight of
1428 pounds [6, 11, 12]. The dashed red line is the model target function to be emulated, which is
derived from simulated trajectory data in the form of a sequence of data points in 4D space (t,x,y,z)

10



Figure 5: Example of net power as a function of calibrated airspeed (CAS)
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with a uniform time step of 1.0 second. The solid black line (which obscures much of the red line)
represents the resulting net power function, which matches the model very closely, verifying the
correctness of the cubic polynomial solution presented above. The slight discrepancies are due to
discretization error. The descent was modeled as the negative mirror image of this function but
is not shown. The net power at takeoff is approximately 300 fpm, and the maximum power is
approximately 1300 fpm at a CAS of approximately 85 knots.

It is worth noting that the power models discussed in this paper are actually models of
power/weight ratio. They should therefore be scaled by the inverse of the weight of the aircraft if
it differs significantly from what it was when the trajectory data that the power model is based on
was generated. In practice, a weight estimate would depend on the weight of the passengers and
their luggage (each passenger may have to be weighed periodically and the resulting weight stored,
but the logistics of that process is beyond the scope of this paper). The weight could also serve as
a proxy for the available battery power. If the batteries are not fully charged, the assigned weight
could be arbitrarily increased by the ratio of the nominal battery power to the current reduced
battery power.

Figure 6 shows the climb profile that results from applying the power algorithm to the static
longitudinal profile shown in Figure 3 above. The top plot shows altitude as a function of time,
and the bottom plot shows speed as a function of time, where the steady cruise speed is 122 knots.
The descent profile is essentially the mirror image of this profile. The resulting time steps are in
the desired range from 0.1 sec to 1.0 sec as discussed earlier. The black vertical line marks the top
of climb and the start of level flight, and the small red vertical line marks the point at which the
steady cruise speed is reached.

Figure 7 shows the resulting energy and power profiles. The top plot shows the potential,
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Figure 6: Top: Climb profile for example trajectory; bottom: speed
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kinetic, and total mechanical energy as a function of time (excluding the rotational kinetic energy
in the rotors), where energy is represented as altitude equivalent (energy per unit mass divided
by gravitational acceleration). The point at which a steady altitude is reached is marked on the
potential energy (altitude) curve, and the point at which steady speed is reached is marked on the
kinetic energy curve. The point at which steady altitude and speed are both reached (i.e., the later
of the two points) is marked on the total energy curve. The symmetry is due to the symmetric
modeling of climb and descent power in this example.

The bottom plot Figure 7 shows the resulting power profile as a function of time during climb.
As explained earlier, this power is the rate of change of the mechanical energy and is represented
here as altitude rate or vertical speed equivalent (power per unit mass divided by gravitational
acceleration). The power drops to zero when steady-state flight at the cruise speed and altitude is
reached. The net power in descent is the negative mirror image of this plot but is not shown here.

3.3 Mapping to a Route

A route is the vertical projection of a trajectory onto the geodetic surface of the earth. In the
Trajectory Specification (TS) concept [9], a route is specified as a sequence of waypoints on that
surface and a turn radius associated with each waypoint. The TS algorithm takes those route
parameters and constructs a detailed route representation consisting of alternating straight and
turn segments. All turns are tangent-arc or “flyby” turns of constant radius. If two successive
waypoints are too close together for the specified turn radius, the route is geometrically invalid
and is flagged as such by the TS software (but is left for the user to correct by changing either the
radius or the waypoints). The route representation constitutes a curvilinear coordinate system in
which the coordinates are along-track distance and cross-track position, which can be converted to
geodetic or locally level Cartesian coordinates and vice versa.

Recall that the static longitudinal profile was adjusted to the path length of the specified route
by adding a steady cruise segment of the required length between the climb and descent segments.
Applying power to determine the time values does not change the length of the longitudinal profile,
so it will still have the same length as the specified route. It is then superimposed onto the route
by mapping the along-track distance of each discrete point onto the corresponding position at that
distance on the route (assuming no cross-track error). This has the effect of “bending” the straight
longitudinal profile onto the route, assuming decoupled lateral and longitudinal dynamics as before.

As mentioned earlier, the simplifying assumption of decoupled lateral and longitudinal dy-
namics can be inaccurate, particularly for large turns at high bank angles during climb. The bank
angle for a coordinated turn is φ = atan(v2/(rg)), where v is speed, r is the turn radius, and g
is gravitational acceleration. The component of net power that is in the longitudinal plane is the
overall net power scaled by cosφ, the cosine of the bank angle. For a bank angle of 20 deg, for
example, the longitudinal component is 6.0% less than the overall net power. If the overall net
power can be increased by a factor of 1/(cosφ), the effect can be offset, and the assumption of
decoupled lateral and longitudinal dynamics will be valid. For a bank angle of 20 deg, that requires
a 6.4% increase in net power. If power cannot be increased that much, which typically happens
only in climb, then the net power model can be adjusted to account for the diminished longitudinal
power during the turn.

3.4 Modeling the Effect of Winds

A wind model is usually not required for ATC simulation unless the fidelity of the simulation is
intended to be high. To actually use this method of trajectory generation in the field, however, the
current winds must be accounted for because the power required in flight depends on the winds.
In a cross-wind, the aircraft needs extra power just to stay on course, which is another reason
that a margin should be maintained away from maximum power. On the other hand, a headwind
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Figure 7: Top: total mechanical energy profile in climb for example trajectory; Bottom: power
profile in climb for example trajectory
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or tailwind determines the groundspeed at a given airspeed and vice versa. The cross-wind effect
is more subtle and will not be addressed here, but the effect of the along-track wind component
(headwind or tailwind) can be modeled as follows.

If a simulated trajectory is used to determine the power model, it should be simulated with zero
winds, and if a recorded trajectory is used, it should preferably be recorded in low-wind conditions.
After the new trajectory is generated and mapped to a route as explained earlier, the effect of the
current wind field during level flight can be modeled by adjusting groundspeed for the headwind
or tailwind at each point along the route. This method is equivalent to adjusting the along-track
position by the integrated along-track component of the wind vector along the route.

Nonlevel flight segments can be modified similarly, except that the adjustment in along-track
position should be scaled by the cosine of the flightpath angle (relative to horizontal) at any given
point. Hence there would be no adjustment in a vertical segment, and the adjustment in a level
segment would be as discussed above. This method preserves the static path of the trajectory in
3D space while accounting for the main wind effects in terms of progress in time along the route.

4 Flight Time Dependence on Parameters

The utility and economic viability of Urban Air Mobility will depend on how much time can it can
save compared to driving, so it is interesting to analyze how various trajectory parameters affect
trip flight times.

The top plot of Figure 8 shows how the flight time varies as a function of the cruise altitude,
with climb distance (from takeoff to top of climb, the semi-major axis of the ellipse) as a parameter,
for a route of 20 nmi, using the same power model that was used in the earlier examples. The
dependence is significant, with flight time increasing by 3.6 min as cruise altitude is increased from
1.0 to 2.0 kft with a climb distance of 2 nmi. The time increases by another 4.7 min as cruise
altitude is increased again from 2.0 to 3.0 kft, and another 5.4 min from 3.0 to 4.0 kft, for a total
increase of 13.6 min as cruise altitude is increased all the way from 1.0 to 4.0 kft. The increases
in trip flight time with altitude are even larger for a smaller climb distance of 1.0 nmi. This plot
clearly shows the time advantage of staying at lower altitudes and the economic disincentive of
flying in the upper regions of the UAM airspace for this particular aircraft model at least, which
may be somewhat underpowered. At some point, the time advantage over driving is lost (and the
travel time to and from the vertiports must also be accounted for, of course).

The bottom plot of Figure 8 shows how total flight time varies as a function of the climb
distance, with cruise altitude as a parameter, for the same vehicle as the top plot. At a cruise
altitude of 1000 ft, the trip flight time decreases by 0.7 min as the climb distance is increased
from 1.0 to 2.0 nmi, and it decreases by 1.3 min as the climb distance is increased from 1.0 to 4.0
nmi. The time reductions are larger at higher cruise altitudes. According to this plot, shallower
climbs reduce flight time, and the climb distance should be maximized to minimize flight time. The
same applies for the descent distance, so the shortest flight time requires the climb and descent to
meet somewhere in the middle, with no level cruise segment. However, that could reduce airspace
capacity by blocking altitudes that other flights need, so it cannot always be done and perhaps
should rarely be done. Further analysis is required to determine the best values to use for climb
and descent distance based on the traffic scenario.

Figure 9 shows flight time as a function of power, with cruise altitude as a parameter, for
a climb distance of 2.0 nmi. As before, power is expressed as power per unit mass divided by
gravitational acceleration, in units of fpm. The power level is varied as a scale factor of the climb
power shown in Figure 5, where a power factor of 1.0 corresponds to that same power function.
The negative power level in descent was left unchanged because it does not depend on available
power. Because power is actually power per unit mass, the power factor can also be considered the
inverse of a scale factor on aircraft mass or weight.
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Figure 8: Top: Flight time as a function of cruise altitude; Bottom: Flight time as a function of
climb distance
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Figure 9: Flight time as a function of power level
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Figure 9 shows that flight time can be sensitive to power level, perhaps even more sensitive than
it is to speed for shorter flights. In particular, decreased power levels can significantly increase trip
flight time at the higher cruise altitudes. At the lowest shown cruise altitude of 1,000 ft, however,
the sensitivity to power level is minimal over a wide range. Also, the sensitivity increases with
cruise altitude and decreases as power/weight ratio increases. And because power per unit mass
depends on weight, the flight time can also be sensitive to the payload mass, hence more passengers
can mean significantly longer flight time, particularly for smaller aircraft at higher cruise altitude.
Underpowered aircraft could hamper the UAM business model with flight times that offer no
significant time savings over driving.

5 Conclusions

A new method has been developed to generate flyable trajectories for eVTOL urban air taxis. The
method allows the user to directly specify the route, the static longitudinal profile, and a power
model as a function of airspeed (CAS) and possibly other flight variables. This method has the
advantage over previous methods of not requiring a detailed aircraft model or a model of the flight
controls.

The trajectory generation algorithm is composed of four main parts: (1) generating the static
longitudinal profile, (2) converting it to a (dynamic) longitudinal profile by applying a power model,
(3) superimposing that profile onto a specified route, and (4) adjusting for the effects of winds.

A novel method was developed to yield the specified power model as a function of airspeed by
solving a cubic polynomial for the required time step between discrete points in the longitudinal
plane.
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Because the climb trajectory starts vertically and ends horizontally, an elliptical profile (a
quarter of an ellipse) was used as an example profile shape, which is smoother than other profiles
that have been proposed.

The dependence of trip flight time on various parameters was analyzed and plotted, showing
that flight times are significantly longer for higher cruising altitudes, steeper climbs, and lower power
levels. These dependencies have implications for the economic viability of UAM as an alternative
to driving.

This method can be used to generate candidate trajectories for conflict resolution, which
can then be checked to find the candidate with the shortest flight time that is free of conflicts.
Using advanced feedforward/feedback control methods, aircraft should be able to fly the resulting
deconflicted trajectories to within specified tolerances in the field.
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A Cubic Polynomial Roots

A cubic polynomial of the form
ax3 + bx2 + cx+ d = 0 (9)

where a 6= 0, can be solved using complex mathematics as follows (from Wikipedia [14]). First, the
following terms are defined:

d0 ≡ b2 − 3ac (10)

d1 ≡ 2b3 − 9abc+ 27a2d (11)

z ≡
√
d21 − 4d30 (12)

f ≡ d1 + z (13)

h ≡ if f 6= 0 then f else d1 − z (14)

g ≡ (
√
−3− 1)/2 (15)

C1 ≡ 3

√
h/2 (16)

C2 ≡ gC1 (17)

C3 ≡ gC2 (18)

The three roots for x are then

xi = −(b+ Ci + d0/Ci)/(3a), i = 1, 2, 3 (19)

At least one root must be real, and the other two can be either real or complex. However, a real
root can be computed to have a tiny imaginary part due to numerical roundoff error, so the root
that has the smallest imaginary magnitude should have its imaginary part set to zero and be taken
as a real root.
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