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Abstract:

The rapid warming of the Gulf of Maine and the accelerated urbanization of Maine’s coastal cities contribute
to the Urban Heat Island (UHI) effect in Portland and South Portland. These cities have elevated
temperatures compared to nearby rural and suburban areas due to the presence of more heat-absorbing
infrastructure as well as less cooling tree canopy and vegetative cover. As a response to the intensifying UHI
effect in this area, the Gulf of Maine Research Institute (GMRI) launched an Urban Heat Island Mapping
project which aims to engage community members in temperature and humidity data collection for a multi-
year monitoring study. GMRI partnered with NASA DEVELOP to assess the feasibility of using Earth
observations to inform locations for sensor placement. We used land surface temperature (LST) data from
Landsat 8 TIRS, Landsat 9 TIRS-2, and ISS ECOSTRESS data to identify UHIs. Furthermore, we created an
urban heat vulnerability assessment to investigate the relationship between heat exposure and social
vulnerability. We also modeled outdoor thermal comfort by calculating mean radiant temperature at the local
level to further pinpoint locations for sensor placement. We found that the hottest census tracts as well as
communities most vulnerable to extreme heat were located on the peninsula of Portland, suggesting a
potential area for the partners to highlight when selecting where to place sensors for their UHI Mapping
project. Overall, we found that it was feasible to integrate Earth observations to assess the UHI effect in
Portland and South Portland.
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1. Introduction

1.1 Project Background

The Gulf of Maine is warming faster than 95% of the world’s oceans, at a rate three times the global average
(Gulf of Maine Research Institute, 2023). This rapid rate of warming is due in part to changes in the Labrador
Current and Gulf Stream flow patterns as these two major ocean currents meet in this region. The
southward-flowing Labrador Current brings cool Arctic water to the Gulf whereas the northward-flowing
Gulf Stream brings warm tropical waters. However, as a result of global climate change, the Gulf Stream is
strengthening and shifting farther north, impeding the flow of the Labrador Current and leading to warmer
ocean temperatures in the Gulf of Maine (Townsend et al., 2023; Gulf of Maine Research Institute, 2023).
Furthermore, the Gulf’s unique topography with its deep center and shallow boundaries contributes to its
abnormally rapid warming. Water enters the Gulf of Maine through the Northeast Channel between the
George Bank and Browns Bank, and stays enclosed within the Gulf for extended periods, further intensifying
temperature increases (Gulf of Maine Research Institute, 2023).

Warming seas contribute to a wide range of environmental impacts. As water warms, it expands, leading to
sea level rise, stronger storm surges, and more frequent and intense coastal flooding. Additionally, warming
ocean temperatures disrupt marine ecosystems as native species migrate to cooler waters and warm-water
species take over (Gulf of Maine Research Institute, 2023). On both a global and regional scale, ocean
temperatures significantly influence weather and climate patterns. Typically, oceans and other bodies of water
have a cooling effect on coastal land areas as they regulate air temperatures, absorb excess heat, and send a
cool sea breeze over the land (Guo et al,, 2022). As the Gulf of Maine has continued warming, these natural
cooling effects have weakened, resulting in an increase in coastal cities’ air temperatures and moisture levels,
and a decrease in wind speeds (Hu, 2021). This phenomenon exacerbates the Urban Heat Island (UHI) effect
in which urban temperature levels are elevated relative to temperatures in surrounding rural areas (Filho et al.,
2017; Corburn, 2009). Highly developed urban areas are characterized by large heat-absorbing infrastructure,
such as buildings and roadways, as well as sparse tree canopy and vegetative cover, resulting in less shade and
cooling moisture. Urbanized areas also tend to exhibit both high and low temperature extremes due to a lack
of vegetation to regulate the heating and cooling process (Gherri, 2023). Additionally, different types of
surface material exhibit different rates of heating and cooling, and materials commonly used in urban spaces
such as asphalt absorb heat readily (Kappou et al., 2002). These characteristics of urban areas are driving
factors that contribute to higher year-round temperatures as well as more extreme heat days during the warm
season (Filho et al., 2017).

We selected Portland and South Portland, Maine as our study area, both of which are in Cumberland County
(Figure Ty (United States Census Bureau, 2025a; 2025b). This region is the ancestral homeland of the
Aucocisco, N’dakina, and Wabanaki indigenous peoples (Native Land Digital, 2024). Located on the coast of
the Gulf of Maine, the UHI effect impacts these cities due to a combination of urban development as well as
a decrease in the coastal cooling capacity of the rapidly warming Gulf of Maine. Furthermore, the UHI effect
is particularly intense for urban areas located in high latitude climatic zones, such as the temperature zone of
Maine (Hu, 2021; Varquez & Kanda, 2018). There is stronger coupling between coastal land and ocean
temperatures at high latitudes than in tropical or sub-tropical regions, further contributing to high coastal
urban temperatures (Hu, 2021). Local news articles from Cumberland County highlight the severity of
warming with reports of certain neighborhoods experiencing air temperature increases as high as 11.1 degrees
Fahrenheit during the summer of 2024 (Overton, 2024). These extreme temperature increases are cause for
community concern as they contribute to severe health impacts, especially for vulnerable groups such as
elderly populations, those with pre-existing health conditions, and those without access to mitigation
measures such as air conditioning (Filho et al., 2017; Overton, 2024; Valigra, 2021; Hu 2021; Maine Climate
Council, 2024).
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Figure 1. The cities of Portland and South Portland along the Gulf of Maine.

We partnered with the Gulf of Maine Research Institute (GMRI), a non-profit marine science center in
Portland, to support their Community Science Program’s Urban Heat Island Mapping project. For this
project, GMRI will conduct a multi-year study into the UHI effect and its impact on the community in
Portland and South Portland. GMRI aims to include community members in the data collection process
through the installation of static temperature and humidity sensors at community hubs and the distribution of
mobile sensors for community members to take measurements throughout the cities. GMRI will use the
results of this study to identify key areas of interest within Portland and South Portland for prioritizing sensor
placement. Potential areas of interest include areas found to be UHIs as well as census tracts considered the
most vulnerable to heat-related health risks. As such, the results of this study inform GMRI’s decision-
making strategies in terms of where community members should take on-the-ground measurements to
continue building knowledge surrounding the UHI effect as well as which communities are most critical to
include in project outreach and engagement. GMRI’s Urban Heat Mapping project will serve as a model for
how to integrate remotely sensed data into community science projects monitoring the UHI effect in other
communities. The findings of this study as well as GMRI’s continued research will also inform Portland and
South Portland’s joint One Climate Future plan as well as Maine’s Maine Won’t Wait climate action plan,
neither of which currently integrates remote sensing data into their discussion of urban heat (One Climate
Future, 2020; Maine Climate Council, 2024).

1.2 Project Objectives & Scientific Basis

Our first objective was to conduct a daytime urban heat assessment using satellite data from Landsat 8
Thermal Infrared Sensor (TIRS) and Landsat 9 TIRS-2 to model the magnitude of thermal differentials
indicative of UHIs. Our second objective was to conduct a nighttime urban heat assessment using ISS
ECOSTRESS data to identify areas with elevated nighttime temperatures to further highlight existing UHIs.
Our next objective was to investigate the relationship between extreme heat exposure and social vulnerability
through the creation of a bivariate urban heat vulnerability assessment. We also aimed to model outdoor
thermal comfort through calculating mean radiant temperature on a local scale for the five hottest census
tracts. Our final objective was to create a tree canopy map for the cities to identify areas lacking canopy cover
as these are areas with increased vulnerability to elevated urban heat temperatures. These objectives
supported GMRI’s Urban Heat Mapping project by identifying key locations for temperature and humidity
sensors, allowing for a more intentional and targeted approach to data collection. Furthermore, the results
identified communities most vulnerable to urban heat, which supports GMRI’s mission to engage with



community members being impacted by extreme temperatures and build community resilience to the
changing climate.

We selected a ten-year study period from 2014 to 2024 based upon our partner’s interest in analyzing how
observed rapid urban development shaped urban heat patterns over the past decade. We limited our analysis
to the summer months of each year as the UHI effect has the greatest impact during the warm season. We
defined the warm season of Portland and South Portland as June 1st through September 30th based on yearly
climate reports (National Oceanic and Atmospheric Administration, 2025).

We assessed the feasibility of using NASA Earth observations (EO) and remote sensing techniques to
identify UHIs and assess heat vulnerability in Portland and South Portland to support GMRI’s decision-
making for sensor placement. EOs are effective for identifying specific areas experiencing extreme urban
heat, making them valuable for analyzing temperature distributions throughout the study area. We used data
from Landsat 8 TIRS as well as Landsat 9 TIRS-2 to calculate land surface temperature (LST). These datasets
enabled us to investigate the UHI effect and the broader distribution of heat across the study area. Past
research demonstrates the effectiveness of utilizing TIRS data in this context (Rajasekar et al., 2009; Fu et al.,
2019; Yang et al., 2020), while other studies have demonstrated its widespread use in UHI analysis (Zhou et
al,, 2019; Almeida., et al 2021). Furthermore, past studies used ECOSTRESS data in their analysis of
nighttime temperatures (Yue et al., 2023). To inform our urban heat vulnerability assessment, we found that
research indicated LST data has strong associations with heat-related human health indicators (Guo et al.
2022). Finally, we used the 3D modeling tool SOlar and Long Wave Environmental Irradiance Geometry
(SOLWEIG) to model outdoor thermal comfort, a product demonstrated to be effective by Lindberg et al.,

2008.

2. Methodology

2.1 Data Acquisition

2.1.1 Daytime Urban Heat Assessment

To identify areas characterized by warmer temperatures, we followed a workflow developed by a previous
DEVELOP team (Miller, 2024) in Python Version 24.11.3 which extracted Landsat 8 Thermal Infrared
Sensor (TIRS) and Landsat 9 TIRS-2 data from Microsoft Planetary Computer (Table 1). We used the code
to compile a stack of images within the warm season (June through September) on a yearly basis for our ten-
year study period. To ensure the use of clear images, we filtered out those with a high percentage of cloud
cover and with high rates of no data values. This process returned between 1 and 6 images per summer.

Table 1.
Datasets acquired for the daytime nrban heat assessment
Spatial . . Acquisition o
Dataset Data Product Resolution Time Period Method Description
Long-wave
. 2014 — 2021, .
Landsat 8 TIRS Collection 2 100 m June 01 — Planetary infrared band
Level 2 September 30 Computer to calculate
P LST
Long-wave
Landsat 9 Collection 2 2022 - 2024, Planetary infrared band
100 m June 01 —
TIRS-2 Level 2 Computer to calculate
September 30
LST
National Land 2014 — 2024, United SFates Land cover
Cover Geological data for
Land Cover 30 m June 01 — .
Database September 30 Survey — Earth selecting
(INLCD) eptembe Explorer reference area




2.1.2 Nighttime Urban Heat Assessment

To conduct a nighttime urban heat assessment, we acquired geospatial datasets from the Application for
Extracting and Exploring Analysis Ready Samples (AppEEARS) website. This tool allows users to subset
geospatial data spatially, temporally, and by layer through area and point requests. We specified our area data
via the vector polygon of Portland and South Portland and set the temporal parameters for our
predetermined summer months spanning from June to September for the years 2018 - 2024. We then
requested land surface temperature & emissivity (LSTE) data (ECO_L2T_LSTE.002) which included five
thermal-infrared bands to calculate LST as well as available cloud mask data within the temporal parameters.

2.1.3 Urban Heat V' ulnerability Assessment

To assess vulnerability to urban heat, we acquired the Community Resilience Estimate (CRE) for Heat (2022)
experimental data product compiled by the United States Census Bureau. The CRE for Heat dataset provides
a social vulnerability metric to describe individuals’ and households’ capacity to respond to extreme heat
exposure. The CRE dataset takes into consideration eleven components of social vulnerability associated with
heat exposure: financial hardship, single or zero caregiver’s per household, low housing quality,
communication barrier, no full-time employment within household, disability, no health insurance coverage,
aged 65+, transportation exposure, lack of household broadband internet access, and potential lack of
household air conditioning (United States Census Bureau, 2022). We downloaded the data at the census tract
and national levels as a comma-separated values (CSV) file directly from the Census Bureau website.

2.1.4 Urban Heat Mitigation Model

To model outdoor thermal comfort, we used the SOlar and LongWave Environmental Irradiance Geometry
(SOLWEIG) model. This model requires several spatial and meteorological data inputs to estimate and
analyze the complex interaction between urban design and the thermal environment. This included a Digital
Elevation Model (DEM), LIDAR Point Cloud data, building footprint data, and meteorological data (Table
2). We acquired building footprints from the Microsoft Buildings data product. Using USGS Earth Explorer,
we downloaded the DEM as well as the LIDAR Point Cloud data.

Table 2.
Datasets acquired as inputs for the SOLWEIG model
Dataset Acquisition Method Description
USGS National Map 3D United States Geological Survey — . .
Elevation Program Earth Explorer Digital Elevation Model (DEM)
USGS Maine LIDAR United States Geological Survey — LiDAR Point Cloud data
Earth Explorer
Global Machine Learning GlobalMLBuildingFootprints . .
Building Footprints GitHub Building footprint feature layer
National Renewz}ble Energy National Solar Radiation Database .
Laboratory National Solar . Meteorological data
o (DSRDB) Viewer
Radiation Database

2.1.5 Tree Canopy Mapping

To map tree canopy cover throughout the study area, we acquired National Agriculture Imagery Program
(NAIP) aerial images from the United States Department of Agriculture, downloaded from USGS Earth
Explorer. We chose NAIP imagery due to its fine spatial resolution, which helped us map trees with high
precision. The NAIP raster downloads included four bands (red, green, blue, and near infrared), which we
utilized to classify land cover as either tree canopy or non-canopy. The data we used was from the summer of
2023 (July — September).



2.2 Data Processing

2.2.1 Daytime Urban Heat Assessment

We performed preprocessing steps on the returned images which included eliminating cloud cover, rescaling
the values, and converting the data to Fahrenheit. Using the information from the QA Pixel band, we masked
pixels where cloud confidence was high. We then calculated the median LST per pixel to create a composite
LST image for each summer. Due to significant cloud coverage and data gap (NoData), the years 2019 and
2020 were excluded. We imported the images into ArcGIS Pro Version 3.30 and created a reference area
within the town of Falmouth, a Cumberland County suburb near our study area. We used NLCD land cover
datasets to select the pixels classified as vegetation within Falmouth to use as the reference area (Table 1).
Selecting only those pixels classified as vegetation enabled us to contextualize the data through a comparison
between urban and non-urban areas.

2.2.2 Nighttime Urban Heat Assessment

We used code from NASA’s Jet Propulsion Laboratory ECOSTRESS repository in Python Version 3.13 for
our data processing and analysis of nighttime urban heat temperatures. After modifying the code to perform a
quality control and calibration of the dataset (Baumann, 2024a), we extracted the LST and cloud layers for
applying a cloud mask (Baumann, 2024b), and created composite imagery (Baumann, 2024c; 2024d). To
isolate the nighttime observations from the daytime, we filtered the data to include only observations that
occurred within a pre-determined nighttime window. We defined this window as between 7:19 PM and 5:49
AM local time (11:19 PM and 9:49 AM UTC) which we found by averaging the difference between sunset
times and sunrise times during the summer months.

2.2.3 Urban Heat V uinerability Assessment

To process the data for our urban heat vulnerability assessment, we first filtered the CRE for Heat Census
Tract CSV in RStudio (R Version 4.3.0) to extract census tracts within Cumberland County. We then used
Microsoft Excel (Version 2502) to create a census tract number column to use as a common field for which
to join the data with geospatial data. This allowed us to georeference the CRE data in ArcGIS Pro using
census tract shapefiles from the United States Census Bureau to visualize the variables contained within the
CSV file. Once we had the census tract shapefiles, it became clear that they did not align propetly with the
LST data from the daytime urban heat assessment. To rectify this, we applied a shift of 0.002 decimal degrees
to the X coordinates and —0.0001 decimal degrees to the Y coordinates, whilst at a latitude of 43.6708° N
(Figure A1- A3). With the data aligned, we visualized urban heat vulnerability by creating a bivariate
vulnerability assessment. The first variable depicts heat exposure and the other describes social vulnerability.
For the heat exposure variable, we used the rectified ten-year average temperature difference map.

2.2.4 Urban Heat Mitigation Model

Using QGIS Version 3.38, we converted LIDAR point cloud data to a raster using the Point Cloud
Conversion Export to Raster with Triangulation tool. This created the digital surface model (DSM), a
required input for the SOLWEIG model. Then, the DSM was resampled to match the spatial resolution of
the DEM. To create the canopy digital surface model (CDSM) input for the SOLWEIG model, we calculated
the difference between the DSM and DEM and set the pixels within building footprints to 0. Using the
aggregated ten-year average temperature difference map, we identified the five hottest census tracts and
clipped a copy of the DEM, DSM, and CDSM to the shape of each census tract. Then, preparing inputs for
the SOLWEIG model, we reprojected, clipped, and resampled the rasters so that each input had the same
shape, projection, and spatial resolution. We used the DEM, DSM, and CDSM as inputs for the Urban Multi-
scale Environmental Predictor preprocessor plugin for QGIS to create other required inputs: Wall Height,
Wall Aspect, and Sky View Factors.

2.2.5 Tree Canopy Mapping



To prepare the NAIP imagery for classification, we imported each of the ten raster images into ArcGIS Pro.
We individually clipped each image to the study area. Working with each image individually allowed us to
train the classification model more efficiently as it reduced the computing power required to run the
application.

2.3 Data Analysis

2.3.1 Day-time Urban Heat Assessment

To produce our annual urban heat assessment maps, we first calculated the average temperature within the
reference area for each year. To assess the UHI effect, we subtracted each year’s respective reference
temperature average from the entire median LST composite image for the corresponding year using the
Raster Calculator in ArcGIS Pro. This method normalized each year’s urban heat temperature against the
broader temperature trends of that summer, allowing for a more accurate comparison between years. To
create our 10-year average LST composite map, we calculated the average of these annual LST difference
raster images using the raster calculator tool. Finally, we aggregated the median LST data at the census tract
level using the Zonal Statistics tool in ArcGIS Pro for comparison between census tracts.

2.3.2 Nigbttime Urban Heat Assessment

We created nighttime temperature composite maps on a monthly and yearly basis as well as calculated a six-
year nighttime LST average using Python. The ECOSTRESS sensor was launched and installed on the
International Space Station in 2018, limiting data to the six-year collection window rather than the full 10-year
study period. We visualized nighttime temperatures by uploading the image outputs to QGIS version 3.40,
adjusting the color ramp to appropriately reflect the temperature differential, and clipping to the study area
using the Clip Raster by Mask Layer tool.

2.3.3 Urban Heat V uinerability Assessment

To create our urban heat vulnerability assessment, we created a bivariate map to investigate the overlaps
between social vulnerability factors and heat exposure. To quantify social vulnerability to heat, we used the
rate of individuals who met three or more social vulnerability factors per census tract. We calculated the
difference between the rate for each census tract and the national average to assess how communities within
the study compared to a national baseline. We created the bivariate map in ArcGIS Pro, with one field
describing social vulnerability on a scale from low to high, using a quantile distribution method to minimize
the influence of any extreme values. The second field described heat exposure using the median 10-year
average temperature difference between the study area and the reference area, aggregated by census tract,
created as part of the daytime urban heat assessment.

2.3.4 Urban Heat Mitigation Model

To run the SOLWEIG model, we used the Urban Multi-scale Environmental Predictor plugin in QGIS. The
model measures mean radiant temperature in the upward direction, downward direction, and the four cardinal
directions. Mean radiant temperature captures the heat exchange between a human body and its environment.
This allows the model to depict the felt temperature for areas of interest at a fine spatial resolution. Ideally,
we would be able to visualize how distinct features like shadows, vegetation, and buildings influence the
distribution of thermal comfort. We input the data and variables processed in section 2.2.4 and ran the model
for each of the five census tracts of interest. The output raster images showed the mean radiant temperatures
for the entire census tract.

2.3.5 Tree Canapy Mapping

Using the Classification Wizard tool in ArcGIS Pro, we ran an object-based supervised classification model to
classify land cover into a tree canopy versus non-canopy schema. To segment the image, we set both the
spectral and spatial detail to 15.0 and set the minimum segment size to 150 which aggregated the pixels
without combining dissimilar landcover types. Due to running each clipped raster image individually, the
spatial extent of each raster varied, which led to variation in the number of training samples we selected. For
smaller raster images (up to approximately 16 km?), we selected between 100 and 200 samples per class. As
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the training samples for the tree canopy class were on average smaller in pixel size than those for non-canopy,
we selected a greater number of samples representing tree canopy. For larger rasters (approximately 30 km?),
we selected upwards of 450 training samples for tree canopy and approximately 100 samples for non-canopy,
ensuring that training samples were distributed throughout the entire image and included a diverse range of
samples.

Upon training the model, we ran a Support Vector Machine (SVM) classifier, with no maximum number of
samples per class and selected all available segment attributes for consideration. We then validated each of the
outputs to ensure over 90% accuracy. We generated 100 points per class, or 200 points total, using a stratified
random sample. After manually inputting whether the random point was a tree canopy or non-canopy point,
we computed a confusion matrix to check the statistics on the validation.

3. Results

3.1 Analysis of Results

3.1.1 Daytime Urban Heat Assessment

When comparing the 10-year temperature difference between our study area and the reference area of
Falmouth, the daytime urban heat assessment (Fjgure 2) revealed that the hottest areas are located on the
peninsula of Portland and the western areas of South Portland. LST in these areas are up to 30°F hotter than
the average LST from the reference area, which is consistent with the greater presence of impervious surfaces
in these areas. Despite being surrounded by the ocean, the peninsula displays characteristics of a large UHI.

Temperature
Difference (°F)

Figure 2. Daytime Urban Heat Assessment Map

3.1.2 Nighttime Urban Heat Assessment

Within the composite map that includes all nighttime summer observations between 2018 and 2024 (Figure 3),
nighttime values produced consistently higher temperatures of 77°F maximum on the peninsula and in the
middle of the city when compared with the relatively cooler temperatures further inland. While daytime UHIs
have different drivers compared to nighttime UHIs in response to the presence or absence of incoming solar
radiation, this heat assessment closely mirrors the daytime LST distribution. Although the temperature
gradient is reduced in comparison to the daytime urban heat assessment, analysis of the nighttime results
reveals a continuation and persistence of urban heat island hotspots within the study area.
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Fignre 3. ECOSTRESS Nighttime Urban Heat Assessment Composite Map (2018 — 2024)

Higher temperatures of 77°F are found with Forest Avenue running along the southwest coast of the Black
Cove basin on the peninsula. Notable hot spots include the intersection of Woodford Street and Forest
Avenue, the cloverleaf interchange near Deering Oaks Park, and the Portland International Jetport southwest
of the city center (Figure A4). Notable cool temperatures of 69°F are found in areas nearby or within the areas
displaying higher daytime temperatures, including the Old Port area situated at the center of the peninsula,
the North Deering neighborhoods near the intersection of Allen and Forest Avenue, as well as The Maine
Mall on the southwestern edge of the study area (Figure A4).

3.1.3 Urban Heat 1 ulnerability Assessment

After generating a bivariate heat vulnerability map (Figure 4) based on the results of our daytime LST results
and the Community Resilience Estimates for Heat data, we found that the census tracts with the highest
median temperatures and the highest vulnerability to heat are primarily located on the peninsula of Portland.
The areas with the lowest median LST and the lowest vulnerabilities tend to fall around the outskirts of the
city, specifically northwest Portland and southern South Portland. We cross-referenced the results of the
urban heat vulnerability assessment with a land cover map (Figure A5) and found that there is less urban
development in the least vulnerable census tracts and more high intensity developed areas in the most
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Figure 4. Urban Heat Vulnerability Assessment



3.1.4 Urban Heat Mitigation Model

The Urban Heat Mitigation Model (Figure 5) demonstrates the felt heat for a section of census tract 001100,
one of the five hottest census tracts located on the peninsula of Portland identified using the Urban Heat
Vulnerability Map. In some ateas of the image, mean radiant temperatures are as high as 142°F. Building
rooftops are consistently the hottest surfaces, as seen on Cumberland Ave. Some paved surfaces and roads
reach similarly high temperatures, but the model shows that shade, from trees or buildings, is effective at
keeping temperatures lowet. The overall range of values is from 80°F to 141.8°F. We ran the model for the
five hottest census tracts (Figure A
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Mean Radiant Temperature at 14:30 on 2 August 2020

3.1.5 Tree Canopy Mapping

The team generated a map of tree canopy cover (Figure 6) in order to identify locations with sparse canopy
cover, as these are areas we would expect to have elevated urban heat temperatures. We cross-referenced the
results of the tree canopy mapping with our daytime urban heat assessment map (Figure 2) as well as our
urban heat vulnerability map (Figure 4) to investigate the relationship between these metrics. We found that
notable areas with sparse vegetative cover, such as the peninsula of Portland, tend to have higher LSTs and
higher vulnerability to extreme heat than areas with high canopy cover, which is consistent with our
expectations given past research (Gherri, 2023; Corburn, 2009).
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Figure 6. Tree Canopy Map (July — September 2023)

3.2 Errors & Uncertainties

One source of error stemmed from the misalignhment of the LST data from other data sets during the
processing phase of the daytime urban heat assessment in this study. We were unable to correct this
alighment issue using the reference systems and information attached in the metadata. We resorted to shifting
the data using the Shift Data Management tool in ArcGIS Pro, which allowed us to perform our analysis
(Figure A1-A3). A manual shift is inherently less accurate than reprojection and transformation, and therefore
could have introduced errors. It is worth noting as well that LST does not account for how ambient heat is
experienced and therefore limited the conclusions we drew from these results.

Additionally, the results of this project were limited to the quality and availability of data. Landsat images for
the daytime urban heat assessment had a coarse spatial resolution of 100 m which limited the accuracy of our
LST analysis. Regarding the nighttime urban heat analysis, temperature data from AppEEARS was temporally
restricted as ECOSTRESS only began collecting data in July 2018, which fell four years short of the desired
10-year study time frame for the project. There were also minor temporal limitations due in patt to the
irregular orbit path of the International Space Station, upon which the ECOSTRESS sensor is affixed.
Because of these irregularities, some months had more nighttime observations than others which potentially
skewed the average summertime composites for the years 2018 to 2024. Regarding data quality, ISS
ECOSTRESS resolution is 70 m and due to the unstable nature of the satellite the images tend to be heavily
pixelated. Heavily pixelated satellite images are disadvantageous when attempting to identify, analyze, and
interpret data accurately.

For the urban heat vulnerability assessment, we were limited to using pre-existing vulnerability estimates such
as the CRE for Heat rather than developing our own social vulnerability assessment, which prevented us
from tailoring vulnerability metrics to our study area and partner interests. Furthermore, many of the social
vulnerability factors were derived from estimates and proxies rather than directly measured statistics which
introduced error to the CRE dataset. The CRE was available at the census tract level rather than at the block
group level, which limited our ability to analyze finer nuances in vulnerability within specific communities.
However, there is also a benefit to using census tract data as many of the social metrics included in the CRE
would not be available at a finer scale.

Certain challenges presented themselves in the use of the SOLWEIG model as well. Given that we were
unable to acquire a pre-existing CDSM for the study area, we created one by subtracting the DEM from the
DSM and setting building pixels to zero. This introduced some error given that the building footprints did
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not match the buildings in the DSM perfectly. The results would be more accurate if an independent CDSM
was used. Additionally, SOLWEIG requires that the optional land classification input include classes that
distinguish between paved areas and buildings. No such classification was readily available, nor were we able
to classify the images ourselves. Including proper land classification would improve the model.

4. Conclusions
4.1 Interpretation of Results

Through our investigation of the UHI effect in Portland and South Portland, the team determined there was
a consistent trend in LST distribution within the cities during the study period. Daytime LST observations
revealed an increase of up to 30°F in hotspots compared to nearby vegetated areas, indicating clear urban
heat islands within the cities of Portland and South Portland. We concluded that the cooling effect typically
expected from the Gulf of Maine may not be an influential factor in reducing coastal land temperatures in
Portland and South Portland, as the team observed no patterns indicating that areas in closer proximity to the
coast exhibit cooler temperatures than those further inland. Higher humidity from the rapidly warming Gulf
of Maine could explain the slow rate of cooling these areas model even as the average daytime temperature

drops.

Daytime LST closely aligned with nighttime LST, and the peninsula displayed the highest temperatures across
the collection of remotely sensed observations. Coastal land cover analysis data obtained from NOAA’s
Office for Coastal Management further confirmed that the presence of cool spots in the nighttime heat
assessment could in part be attributable to the greater percentage of vegetation present in these areas helping
to regulate the heating and cooling process (Figure A5). Our urban heat vulnerability assessment confirmed a
link between urban heat exposure and social vulnerability to heat. Census tracts displaying low vulnerability
and low median LST were more common in less developed areas further inland. Tracts experiencing high
vulnerability to heat were in areas that also displayed the highest median temperatures, particularly on the
peninsula of Portland. Community members residing in these hot spots have limited capacity to adapt to
higher temperatures which suggests an area of opportunity for community outreach and engagement with
those most susceptible to heat-related health risks. GMRI will be applying these findings in tandem with their
outreach efforts to address this significant environmental issue impacting the region.

4.2 Feasibility & Partner Implementation

We found that it was not only feasible but also beneficial to integrate remote sensing techniques to identify
the UHI effect in Portland and South Portland as satellite-derived temperature data was readily available for
analysis throughout the entire study area and study period, whereas in-situ temperature measurements were
unavailable for this scope. GMRI will use the end products of this project to support their Community
Science Program’s Urban Heat Island Mapping project to identify areas of interest for continued monitoring.
The main goal of their project is to engage community members in the data collection process by installing
static temperature and humidity sensors at community centers and local hubs such as schools and libraries, as
well as by distributing mobile sensors to data collection participants for measurement collection along
commuting routes. The urban heat vulnerability assessment will be used to help meet the partner’s goals of
building community resilience through outreach initiatives that engage with those most at-risk to extreme
heat exposure and the associated negative health impacts. Furthermore, the partners can adapt this project’s
urban health vulnerability methodology to include different metrics relevant to future project interests.
GMRTI’s Urban Heat Island Mapping project will serve as a model for how to integrate remote sensing data
into future projects investigating the UHI effect in other communities in Maine and across the country. The
findings of this study, as well as GMRDI’s future research, will also inform Portland and South Portland’s joint
One Climate Future plan as well as the Maine Won’t Wait Climate Action Plan led by the state of Maine. The
project’s non-profit partner and local collaborators will both share these project results and use the end
products to build climate resilience against the threats of extreme heat due to the UHI effect.
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6. Glossary

AppEEARS — The Application for Extracting and Exploring Analysis Ready Samples

CDSM - Canopy Digital Surface Model

CRE — Community Resilience Estimate

DEM - Digital Elevation Model

DSM - Digital Surface Model

Earth observations — Satellites and sensors that collect information about the Earth’s physical, chemical, and
biological systems over space and time.

ECOSTRESS — Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station

Emissivity — The relative power of a surface to emit heat by radiation

Labrador Current — A current that flows south along the western boundary of the Labrador Sea located in
the North Atlantic Ocean.

LiDAR — Light Detection and Ranging

LST — Land Surface Temperature

Gulf Stream — An ocean current that runs along the east coast of the United States and Canada, delivering
the warm water from the Gulf of Mexico to the northern Atlantic Ocean.

GMRI - The Gulf of Maine Research Institute

ISS — International Space Station

Median — a value or quantity located at the midpoint of observed values or quantities.

Mitigation — reducing the severity or seriousness of something

NAIP — National Agriculture Imagery Program

NASA — National Aeronautics and Space Administration which is a United States government agency that is
responsible for science and technology related to air and space.

NDVI — Normalized Difference Vegetation Index which quantifies vegetation by measuring the difference
between near-infrared, which vegetation strongly reflects, and red light, which vegetation absorbs.

OLI — Operational Land Imager

Remote sensing — the scanning of the Earth by satellite or high-flying aircraft in order to obtain information
about it.

Shapefile — simple, nontopological format for storing the geometric location and attribute information of
geographic features.

SOLWEIG — SOlar and Long Wave Environmental Irradiance Geometry

Temporal — relating to time

Thermal — relating to heat energy

TIRS — Thermal Infrared Sensor

Urban Heat Island — A phenomenon that occurs when a developed area experiences higher temperatures
than nearby rural areas.
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8. Appendices

Appendix A: Supplemental Figures
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Figure A2: Daytime Urban Heat Assessment Map Post-Shift
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Fignre A3: Zoomed in images of Daytime Urban Heat Assessment pre (left) and post (right) shift
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Figure A4: ECOSTRESS Nighttime Urban Heat Assessment Composite Map
(2018 — 2024) depicting prominent hot spots (left) and cool spots (right)
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Figure A5: Regional Land Cover Classification for Portland and South Portland, Maine
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Fignre A6: Mosaiced image of the Urban Heat Mitigation Model output for census tracts 000300, 000500,
000600, 001100, and 001200 on the peninsula of Portland: the five hottest identified from the Urban Heat
Vulnerability Map
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