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Abstract:  
The rapid warming of the Gulf of Maine and the accelerated urbanization of Maine’s coastal cities contribute 
to the Urban Heat Island (UHI) effect in Portland and South Portland. These cities have elevated 
temperatures compared to nearby rural and suburban areas due to the presence of more heat-absorbing 
infrastructure as well as less cooling tree canopy and vegetative cover. As a response to the intensifying UHI 
effect in this area, the Gulf of Maine Research Institute (GMRI) launched an Urban Heat Island Mapping 
project which aims to engage community members in temperature and humidity data collection for a multi-
year monitoring study. GMRI partnered with NASA DEVELOP to assess the feasibility of using Earth 
observations to inform locations for sensor placement. We used land surface temperature (LST) data from 
Landsat 8 TIRS, Landsat 9 TIRS-2, and ISS ECOSTRESS data to identify UHIs. Furthermore, we created an 
urban heat vulnerability assessment to investigate the relationship between heat exposure and social 
vulnerability. We also modeled outdoor thermal comfort by calculating mean radiant temperature at the local 
level to further pinpoint locations for sensor placement. We found that the hottest census tracts as well as 
communities most vulnerable to extreme heat were located on the peninsula of Portland, suggesting a 
potential area for the partners to highlight when selecting where to place sensors for their UHI Mapping 
project. Overall, we found that it was feasible to integrate Earth observations to assess the UHI effect in 
Portland and South Portland. 
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1. Introduction 
1.1 Project Background 
The Gulf of Maine is warming faster than 95% of the world’s oceans, at a rate three times the global average 
(Gulf of Maine Research Institute, 2023). This rapid rate of warming is due in part to changes in the Labrador 
Current and Gulf Stream flow patterns as these two major ocean currents meet in this region. The 
southward-flowing Labrador Current brings cool Arctic water to the Gulf whereas the northward-flowing 
Gulf Stream brings warm tropical waters. However, as a result of global climate change, the Gulf Stream is 
strengthening and shifting farther north, impeding the flow of the Labrador Current and leading to warmer 
ocean temperatures in the Gulf of Maine (Townsend et al., 2023; Gulf of Maine Research Institute, 2023). 
Furthermore, the Gulf’s unique topography with its deep center and shallow boundaries contributes to its 
abnormally rapid warming. Water enters the Gulf of Maine through the Northeast Channel between the 
George Bank and Browns Bank, and stays enclosed within the Gulf for extended periods, further intensifying 
temperature increases (Gulf of Maine Research Institute, 2023). 
 
Warming seas contribute to a wide range of environmental impacts. As water warms, it expands, leading to 
sea level rise, stronger storm surges, and more frequent and intense coastal flooding. Additionally, warming 
ocean temperatures disrupt marine ecosystems as native species migrate to cooler waters and warm-water 
species take over (Gulf of Maine Research Institute, 2023). On both a global and regional scale, ocean 
temperatures significantly influence weather and climate patterns. Typically, oceans and other bodies of water 
have a cooling effect on coastal land areas as they regulate air temperatures, absorb excess heat, and send a 
cool sea breeze over the land (Guo et al., 2022). As the Gulf of Maine has continued warming, these natural 
cooling effects have weakened, resulting in an increase in coastal cities’ air temperatures and moisture levels, 
and a decrease in wind speeds (Hu, 2021). This phenomenon exacerbates the Urban Heat Island (UHI) effect 
in which urban temperature levels are elevated relative to temperatures in surrounding rural areas (Filho et al., 
2017; Corburn, 2009). Highly developed urban areas are characterized by large heat-absorbing infrastructure, 
such as buildings and roadways, as well as sparse tree canopy and vegetative cover, resulting in less shade and 
cooling moisture. Urbanized areas also tend to exhibit both high and low temperature extremes due to a lack 
of vegetation to regulate the heating and cooling process (Gherri, 2023). Additionally, different types of 
surface material exhibit different rates of heating and cooling, and materials commonly used in urban spaces 
such as asphalt absorb heat readily (Kappou et al., 2002). These characteristics of urban areas are driving 
factors that contribute to higher year-round temperatures as well as more extreme heat days during the warm 
season (Filho et al., 2017).  
 
We selected Portland and South Portland, Maine as our study area, both of which are in Cumberland County 
(Figure 1) (United States Census Bureau, 2025a; 2025b). This region is the ancestral homeland of the 
Aucocisco, N’dakina, and Wabanaki indigenous peoples (Native Land Digital, 2024). Located on the coast of 
the Gulf of Maine, the UHI effect impacts these cities due to a combination of urban development as well as 
a decrease in the coastal cooling capacity of the rapidly warming Gulf of Maine. Furthermore, the UHI effect 
is particularly intense for urban areas located in high latitude climatic zones, such as the temperature zone of 
Maine (Hu, 2021; Varquez & Kanda, 2018). There is stronger coupling between coastal land and ocean 
temperatures at high latitudes than in tropical or sub-tropical regions, further contributing to high coastal 
urban temperatures (Hu, 2021). Local news articles from Cumberland County highlight the severity of 
warming with reports of certain neighborhoods experiencing air temperature increases as high as 11.1 degrees 
Fahrenheit during the summer of 2024 (Overton, 2024). These extreme temperature increases are cause for 
community concern as they contribute to severe health impacts, especially for vulnerable groups such as 
elderly populations, those with pre-existing health conditions, and those without access to mitigation 
measures such as air conditioning (Filho et al., 2017; Overton, 2024; Valigra, 2021; Hu 2021; Maine Climate 
Council, 2024). 
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Figure 1. The cities of Portland and South Portland along the Gulf of Maine. 

 
We partnered with the Gulf of Maine Research Institute (GMRI), a non-profit marine science center in 
Portland, to support their Community Science Program’s Urban Heat Island Mapping project. For this 
project, GMRI will conduct a multi-year study into the UHI effect and its impact on the community in 
Portland and South Portland. GMRI aims to include community members in the data collection process 
through the installation of static temperature and humidity sensors at community hubs and the distribution of 
mobile sensors for community members to take measurements throughout the cities. GMRI will use the 
results of this study to identify key areas of interest within Portland and South Portland for prioritizing sensor 
placement. Potential areas of interest include areas found to be UHIs as well as census tracts considered the 
most vulnerable to heat-related health risks. As such, the results of this study inform GMRI’s decision-
making strategies in terms of where community members should take on-the-ground measurements to 
continue building knowledge surrounding the UHI effect as well as which communities are most critical to 
include in project outreach and engagement. GMRI’s Urban Heat Mapping project will serve as a model for 
how to integrate remotely sensed data into community science projects monitoring the UHI effect in other 
communities. The findings of this study as well as GMRI’s continued research will also inform Portland and 
South Portland’s joint One Climate Future plan as well as Maine’s Maine Won’t Wait climate action plan, 
neither of which currently integrates remote sensing data into their discussion of urban heat (One Climate 
Future, 2020; Maine Climate Council, 2024). 

 
1.2 Project Objectives & Scientific Basis 
Our first objective was to conduct a daytime urban heat assessment using satellite data from Landsat 8 
Thermal Infrared Sensor (TIRS) and Landsat 9 TIRS-2 to model the magnitude of thermal differentials 
indicative of UHIs. Our second objective was to conduct a nighttime urban heat assessment using ISS 
ECOSTRESS data to identify areas with elevated nighttime temperatures to further highlight existing UHIs. 
Our next objective was to investigate the relationship between extreme heat exposure and social vulnerability 
through the creation of a bivariate urban heat vulnerability assessment. We also aimed to model outdoor 
thermal comfort through calculating mean radiant temperature on a local scale for the five hottest census 
tracts. Our final objective was to create a tree canopy map for the cities to identify areas lacking canopy cover 
as these are areas with increased vulnerability to elevated urban heat temperatures. These objectives 
supported GMRI’s Urban Heat Mapping project by identifying key locations for temperature and humidity 
sensors, allowing for a more intentional and targeted approach to data collection. Furthermore, the results 
identified communities most vulnerable to urban heat, which supports GMRI’s mission to engage with 
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community members being impacted by extreme temperatures and build community resilience to the 
changing climate. 
 
We selected a ten-year study period from 2014 to 2024 based upon our partner’s interest in analyzing how 
observed rapid urban development shaped urban heat patterns over the past decade. We limited our analysis 
to the summer months of each year as the UHI effect has the greatest impact during the warm season. We 
defined the warm season of Portland and South Portland as June 1st through September 30th based on yearly 
climate reports (National Oceanic and Atmospheric Administration, 2025). 

 
We assessed the feasibility of using NASA Earth observations (EO) and remote sensing techniques to 
identify UHIs and assess heat vulnerability in Portland and South Portland to support GMRI’s decision-
making for sensor placement. EOs are effective for identifying specific areas experiencing extreme urban 
heat, making them valuable for analyzing temperature distributions throughout the study area. We used data 
from Landsat 8 TIRS as well as Landsat 9 TIRS-2 to calculate land surface temperature (LST). These datasets 
enabled us to investigate the UHI effect and the broader distribution of heat across the study area. Past 
research demonstrates the effectiveness of utilizing TIRS data in this context (Rajasekar et al., 2009; Fu et al., 
2019; Yang et al., 2020), while other studies have demonstrated its widespread use in UHI analysis (Zhou et 
al., 2019; Almeida., et al 2021). Furthermore, past studies used ECOSTRESS data in their analysis of 
nighttime temperatures (Yue et al., 2023). To inform our urban heat vulnerability assessment, we found that 
research indicated LST data has strong associations with heat-related human health indicators (Guo et al. 
2022). Finally, we used the 3D modeling tool SOlar and Long Wave Environmental Irradiance Geometry 
(SOLWEIG) to model outdoor thermal comfort, a product demonstrated to be effective by Lindberg et al., 
2008. 
 

2. Methodology 
2.1 Data Acquisition  
2.1.1 Daytime Urban Heat Assessment 
To identify areas characterized by warmer temperatures, we followed a workflow developed by a previous 
DEVELOP team (Miller, 2024) in Python Version 24.11.3 which extracted Landsat 8 Thermal Infrared 
Sensor (TIRS) and Landsat 9 TIRS-2 data from Microsoft Planetary Computer (Table 1). We used the code 
to compile a stack of images within the warm season (June through September) on a yearly basis for our ten-
year study period. To ensure the use of clear images, we filtered out those with a high percentage of cloud 
cover and with high rates of no data values. This process returned between 1 and 6 images per summer. 

Table 1. 
Datasets acquired for the daytime urban heat assessment 

Dataset Data Product 
Spatial 

Resolution 
Time Period 

Acquisition 
Method 

Description 

Landsat 8 TIRS 
Collection 2 

Level 2 
100 m 

2014 – 2021, 
June 01 – 

September 30 

Planetary 
Computer 

Long-wave 
infrared band 
to calculate 

LST 

Landsat 9 
TIRS-2 

Collection 2 
Level 2 

100 m 
2022 – 2024, 

June 01 – 
September 30 

Planetary 
Computer 

Long-wave 
infrared band 
to calculate 

LST 

National Land 
Cover 

Database 
(NLCD) 

Land Cover 30 m 
2014 – 2024, 

June 01 – 
September 30 

United States 
Geological 

Survey – Earth 
Explorer 

Land cover 
data for 
selecting 

reference area 
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2.1.2 Nighttime Urban Heat Assessment 
To conduct a nighttime urban heat assessment, we acquired geospatial datasets from the Application for 
Extracting and Exploring Analysis Ready Samples (AppEEARS) website. This tool allows users to subset 
geospatial data spatially, temporally, and by layer through area and point requests. We specified our area data 
via the vector polygon of Portland and South Portland and set the temporal parameters for our 
predetermined summer months spanning from June to September for the years 2018 - 2024. We then 
requested land surface temperature & emissivity (LSTE) data (ECO_L2T_LSTE.002) which included five 
thermal-infrared bands to calculate LST as well as available cloud mask data within the temporal parameters.  
 
2.1.3 Urban Heat Vulnerability Assessment 
To assess vulnerability to urban heat, we acquired the Community Resilience Estimate (CRE) for Heat (2022) 
experimental data product compiled by the United States Census Bureau. The CRE for Heat dataset provides 
a social vulnerability metric to describe individuals’ and households’ capacity to respond to extreme heat 
exposure. The CRE dataset takes into consideration eleven components of social vulnerability associated with 
heat exposure: financial hardship, single or zero caregiver’s per household, low housing quality, 
communication barrier, no full-time employment within household, disability, no health insurance coverage, 
aged 65+, transportation exposure, lack of household broadband internet access, and potential lack of 
household air conditioning (United States Census Bureau, 2022). We downloaded the data at the census tract 
and national levels as a comma-separated values (CSV) file directly from the Census Bureau website.  
 
2.1.4 Urban Heat Mitigation Model 
To model outdoor thermal comfort, we used the SOlar and LongWave Environmental Irradiance Geometry 
(SOLWEIG) model. This model requires several spatial and meteorological data inputs to estimate and 
analyze the complex interaction between urban design and the thermal environment. This included a Digital 
Elevation Model (DEM), LiDAR Point Cloud data, building footprint data, and meteorological data (Table 
2). We acquired building footprints from the Microsoft Buildings data product. Using USGS Earth Explorer, 
we downloaded the DEM as well as the LiDAR Point Cloud data.  
 
Table 2. 
Datasets acquired as inputs for the SOLWEIG model 

Dataset Acquisition Method Description 

USGS National Map 3D 
Elevation Program 

United States Geological Survey – 
Earth Explorer 

Digital Elevation Model (DEM) 

USGS Maine LiDAR 
United States Geological Survey – 

Earth Explorer 
LiDAR Point Cloud data 

Global Machine Learning 
Building Footprints 

GlobalMLBuildingFootprints 
GitHub 

Building footprint feature layer 

National Renewable Energy 
Laboratory National Solar 

Radiation Database 

National Solar Radiation Database 
(DSRDB) Viewer 

Meteorological data 

 

2.1.5 Tree Canopy Mapping 
To map tree canopy cover throughout the study area, we acquired National Agriculture Imagery Program 
(NAIP) aerial images from the United States Department of Agriculture, downloaded from USGS Earth 
Explorer. We chose NAIP imagery due to its fine spatial resolution, which helped us map trees with high 
precision. The NAIP raster downloads included four bands (red, green, blue, and near infrared), which we 
utilized to classify land cover as either tree canopy or non-canopy. The data we used was from the summer of 
2023 (July – September). 
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2.2 Data Processing 
2.2.1 Daytime Urban Heat Assessment 
We performed preprocessing steps on the returned images which included eliminating cloud cover, rescaling 
the values, and converting the data to Fahrenheit. Using the information from the QA Pixel band, we masked 
pixels where cloud confidence was high. We then calculated the median LST per pixel to create a composite 
LST image for each summer. Due to significant cloud coverage and data gap (NoData), the years 2019 and 
2020 were excluded. We imported the images into ArcGIS Pro Version 3.30 and created a reference area 
within the town of Falmouth, a Cumberland County suburb near our study area. We used NLCD land cover 
datasets to select the pixels classified as vegetation within Falmouth to use as the reference area (Table 1). 
Selecting only those pixels classified as vegetation enabled us to contextualize the data through a comparison 
between urban and non-urban areas. 
 
2.2.2 Nighttime Urban Heat Assessment 
We used code from NASA’s Jet Propulsion Laboratory ECOSTRESS repository in Python Version 3.13 for 
our data processing and analysis of nighttime urban heat temperatures. After modifying the code to perform a 
quality control and calibration of the dataset (Baumann, 2024a), we extracted the LST and cloud layers for 
applying a cloud mask (Baumann, 2024b), and created composite imagery (Baumann, 2024c; 2024d). To 
isolate the nighttime observations from the daytime, we filtered the data to include only observations that 
occurred within a pre-determined nighttime window. We defined this window as between 7:19 PM and 5:49 
AM local time (11:19 PM and 9:49 AM UTC) which we found by averaging the difference between sunset 
times and sunrise times during the summer months.  
 
2.2.3 Urban Heat Vulnerability Assessment 
To process the data for our urban heat vulnerability assessment, we first filtered the CRE for Heat Census 
Tract CSV in RStudio (R Version 4.3.0) to extract census tracts within Cumberland County. We then used 
Microsoft Excel (Version 2502) to create a census tract number column to use as a common field for which 
to join the data with geospatial data. This allowed us to georeference the CRE data in ArcGIS Pro using 
census tract shapefiles from the United States Census Bureau to visualize the variables contained within the 
CSV file. Once we had the census tract shapefiles, it became clear that they did not align properly with the 
LST data from the daytime urban heat assessment. To rectify this, we applied a shift of 0.002 decimal degrees 
to the X coordinates and –0.0001 decimal degrees to the Y coordinates, whilst at a latitude of 43.6708° N 
(Figure A1- A3). With the data aligned, we visualized urban heat vulnerability by creating a bivariate 
vulnerability assessment. The first variable depicts heat exposure and the other describes social vulnerability. 
For the heat exposure variable, we used the rectified ten-year average temperature difference map. 
 
2.2.4 Urban Heat Mitigation Model 
Using QGIS Version 3.38, we converted LiDAR point cloud data to a raster using the Point Cloud 
Conversion Export to Raster with Triangulation tool. This created the digital surface model (DSM), a 
required input for the SOLWEIG model. Then, the DSM was resampled to match the spatial resolution of 
the DEM. To create the canopy digital surface model (CDSM) input for the SOLWEIG model, we calculated 
the difference between the DSM and DEM and set the pixels within building footprints to 0. Using the 
aggregated ten-year average temperature difference map, we identified the five hottest census tracts and 
clipped a copy of the DEM, DSM, and CDSM to the shape of each census tract. Then, preparing inputs for 
the SOLWEIG model, we reprojected, clipped, and resampled the rasters so that each input had the same 
shape, projection, and spatial resolution. We used the DEM, DSM, and CDSM as inputs for the Urban Multi-
scale Environmental Predictor preprocessor plugin for QGIS to create other required inputs: Wall Height, 
Wall Aspect, and Sky View Factors. 
 
2.2.5 Tree Canopy Mapping 
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To prepare the NAIP imagery for classification, we imported each of the ten raster images into ArcGIS Pro. 
We individually clipped each image to the study area. Working with each image individually allowed us to 
train the classification model more efficiently as it reduced the computing power required to run the 
application. 
 
2.3 Data Analysis 
2.3.1 Day-time Urban Heat Assessment 
To produce our annual urban heat assessment maps, we first calculated the average temperature within the 
reference area for each year. To assess the UHI effect, we subtracted each year’s respective reference 
temperature average from the entire median LST composite image for the corresponding year using the 
Raster Calculator in ArcGIS Pro. This method normalized each year’s urban heat temperature against the 
broader temperature trends of that summer, allowing for a more accurate comparison between years. To 
create our 10-year average LST composite map, we calculated the average of these annual LST difference 
raster images using the raster calculator tool. Finally, we aggregated the median LST data at the census tract 
level using the Zonal Statistics tool in ArcGIS Pro for comparison between census tracts.    
 
2.3.2 Nighttime Urban Heat Assessment 
We created nighttime temperature composite maps on a monthly and yearly basis as well as calculated a six-
year nighttime LST average using Python. The ECOSTRESS sensor was launched and installed on the 
International Space Station in 2018, limiting data to the six-year collection window rather than the full 10-year 
study period. We visualized nighttime temperatures by uploading the image outputs to QGIS version 3.40, 
adjusting the color ramp to appropriately reflect the temperature differential, and clipping to the study area 
using the Clip Raster by Mask Layer tool. 
 
2.3.3 Urban Heat Vulnerability Assessment 
To create our urban heat vulnerability assessment, we created a bivariate map to investigate the overlaps 
between social vulnerability factors and heat exposure. To quantify social vulnerability to heat, we used the 
rate of individuals who met three or more social vulnerability factors per census tract. We calculated the 
difference between the rate for each census tract and the national average to assess how communities within 
the study compared to a national baseline. We created the bivariate map in ArcGIS Pro, with one field 
describing social vulnerability on a scale from low to high, using a quantile distribution method to minimize 
the influence of any extreme values. The second field described heat exposure using the median 10-year 
average temperature difference between the study area and the reference area, aggregated by census tract, 
created as part of the daytime urban heat assessment. 
 
2.3.4 Urban Heat Mitigation Model 
To run the SOLWEIG model, we used the Urban Multi-scale Environmental Predictor plugin in QGIS. The 
model measures mean radiant temperature in the upward direction, downward direction, and the four cardinal 
directions. Mean radiant temperature captures the heat exchange between a human body and its environment. 
This allows the model to depict the felt temperature for areas of interest at a fine spatial resolution. Ideally, 
we would be able to visualize how distinct features like shadows, vegetation, and buildings influence the 
distribution of thermal comfort. We input the data and variables processed in section 2.2.4 and ran the model 
for each of the five census tracts of interest. The output raster images showed the mean radiant temperatures 
for the entire census tract.  
 
2.3.5 Tree Canopy Mapping 
Using the Classification Wizard tool in ArcGIS Pro, we ran an object-based supervised classification model to 
classify land cover into a tree canopy versus non-canopy schema. To segment the image, we set both the 
spectral and spatial detail to 15.0 and set the minimum segment size to 150 which aggregated the pixels 
without combining dissimilar landcover types. Due to running each clipped raster image individually, the 
spatial extent of each raster varied, which led to variation in the number of training samples we selected. For 
smaller raster images (up to approximately 16 km2), we selected between 100 and 200 samples per class. As 
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the training samples for the tree canopy class were on average smaller in pixel size than those for non-canopy, 
we selected a greater number of samples representing tree canopy. For larger rasters (approximately 30 km2), 
we selected upwards of 450 training samples for tree canopy and approximately 100 samples for non-canopy, 
ensuring that training samples were distributed throughout the entire image and included a diverse range of 
samples. 
 
Upon training the model, we ran a Support Vector Machine (SVM) classifier, with no maximum number of 
samples per class and selected all available segment attributes for consideration. We then validated each of the 
outputs to ensure over 90% accuracy. We generated 100 points per class, or 200 points total, using a stratified 
random sample. After manually inputting whether the random point was a tree canopy or non-canopy point, 
we computed a confusion matrix to check the statistics on the validation. 
 

3. Results  
3.1 Analysis of Results 
3.1.1 Daytime Urban Heat Assessment 
When comparing the 10-year temperature difference between our study area and the reference area of 
Falmouth, the daytime urban heat assessment (Figure 2) revealed that the hottest areas are located on the 
peninsula of Portland and the western areas of South Portland. LST in these areas are up to 30°F hotter than 
the average LST from the reference area, which is consistent with the greater presence of impervious surfaces 
in these areas. Despite being surrounded by the ocean, the peninsula displays characteristics of a large UHI.  

 
Figure 2. Daytime Urban Heat Assessment Map 

 
3.1.2 Nighttime Urban Heat Assessment 
Within the composite map that includes all nighttime summer observations between 2018 and 2024 (Figure 3), 
nighttime values produced consistently higher temperatures of 77°F maximum on the peninsula and in the 
middle of the city when compared with the relatively cooler temperatures further inland. While daytime UHIs 
have different drivers compared to nighttime UHIs in response to the presence or absence of incoming solar 
radiation, this heat assessment closely mirrors the daytime LST distribution. Although the temperature 
gradient is reduced in comparison to the daytime urban heat assessment, analysis of the nighttime results 
reveals a continuation and persistence of urban heat island hotspots within the study area. 
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Figure 3. ECOSTRESS Nighttime Urban Heat Assessment Composite Map (2018 – 2024) 

Higher temperatures of 77°F are found with Forest Avenue running along the southwest coast of the Black 
Cove basin on the peninsula. Notable hot spots include the intersection of Woodford Street and Forest 
Avenue, the cloverleaf interchange near Deering Oaks Park, and the Portland International Jetport southwest 
of the city center (Figure A4). Notable cool temperatures of 69°F are found in areas nearby or within the areas 
displaying higher daytime temperatures, including the Old Port area situated at the center of the peninsula, 
the North Deering neighborhoods near the intersection of Allen and Forest Avenue, as well as The Maine 
Mall on the southwestern edge of the study area (Figure A4). 
 
3.1.3 Urban Heat Vulnerability Assessment 
After generating a bivariate heat vulnerability map (Figure 4) based on the results of our daytime LST results 
and the Community Resilience Estimates for Heat data, we found that the census tracts with the highest 
median temperatures and the highest vulnerability to heat are primarily located on the peninsula of Portland. 
The areas with the lowest median LST and the lowest vulnerabilities tend to fall around the outskirts of the 
city, specifically northwest Portland and southern South Portland. We cross-referenced the results of the 
urban heat vulnerability assessment with a land cover map (Figure A5) and found that there is less urban 
development in the least vulnerable census tracts and more high intensity developed areas in the most 
vulnerable.  

 
Figure 4. Urban Heat Vulnerability Assessment 
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3.1.4 Urban Heat Mitigation Model 
The Urban Heat Mitigation Model (Figure 5) demonstrates the felt heat for a section of census tract 001100, 
one of the five hottest census tracts located on the peninsula of Portland identified using the Urban Heat 
Vulnerability Map. In some areas of the image, mean radiant temperatures are as high as 142°F. Building 
rooftops are consistently the hottest surfaces, as seen on Cumberland Ave. Some paved surfaces and roads 
reach similarly high temperatures, but the model shows that shade, from trees or buildings, is effective at 
keeping temperatures lower. The overall range of values is from 80°F to 141.8°F. We ran the model for the 
five hottest census tracts (Figure A6). 

 
Figure 5. Subsection of Census Tract 001100 displaying  

Mean Radiant Temperature at 14:30 on 2 August 2020 

 
3.1.5 Tree Canopy Mapping 
The team generated a map of tree canopy cover (Figure 6) in order to identify locations with sparse canopy 
cover, as these are areas we would expect to have elevated urban heat temperatures. We cross-referenced the 
results of the tree canopy mapping with our daytime urban heat assessment map (Figure 2) as well as our 
urban heat vulnerability map (Figure 4) to investigate the relationship between these metrics. We found that 
notable areas with sparse vegetative cover, such as the peninsula of Portland, tend to have higher LSTs and 
higher vulnerability to extreme heat than areas with high canopy cover, which is consistent with our 
expectations given past research (Gherri, 2023; Corburn, 2009). 
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Figure 6. Tree Canopy Map (July – September 2023) 
 
3.2 Errors & Uncertainties  
One source of error stemmed from the misalignment of the LST data from other data sets during the 
processing phase of the daytime urban heat assessment in this study. We were unable to correct this 
alignment issue using the reference systems and information attached in the metadata. We resorted to shifting 
the data using the Shift Data Management tool in ArcGIS Pro, which allowed us to perform our analysis 
(Figure A1-A3). A manual shift is inherently less accurate than reprojection and transformation, and therefore 
could have introduced errors. It is worth noting as well that LST does not account for how ambient heat is 
experienced and therefore limited the conclusions we drew from these results. 
 
Additionally, the results of this project were limited to the quality and availability of data. Landsat images for 
the daytime urban heat assessment had a coarse spatial resolution of 100 m which limited the accuracy of our 
LST analysis. Regarding the nighttime urban heat analysis, temperature data from AppEEARS was temporally 
restricted as ECOSTRESS only began collecting data in July 2018, which fell four years short of the desired 
10-year study time frame for the project. There were also minor temporal limitations due in part to the 
irregular orbit path of the International Space Station, upon which the ECOSTRESS sensor is affixed. 
Because of these irregularities, some months had more nighttime observations than others which potentially 
skewed the average summertime composites for the years 2018 to 2024. Regarding data quality, ISS 
ECOSTRESS resolution is 70 m and due to the unstable nature of the satellite the images tend to be heavily 
pixelated. Heavily pixelated satellite images are disadvantageous when attempting to identify, analyze, and 
interpret data accurately. 
 
For the urban heat vulnerability assessment, we were limited to using pre-existing vulnerability estimates such 
as the CRE for Heat rather than developing our own social vulnerability assessment, which prevented us 
from tailoring vulnerability metrics to our study area and partner interests. Furthermore, many of the social 
vulnerability factors were derived from estimates and proxies rather than directly measured statistics which 
introduced error to the CRE dataset. The CRE was available at the census tract level rather than at the block 
group level, which limited our ability to analyze finer nuances in vulnerability within specific communities. 
However, there is also a benefit to using census tract data as many of the social metrics included in the CRE 
would not be available at a finer scale. 
 
Certain challenges presented themselves in the use of the SOLWEIG model as well. Given that we were 
unable to acquire a pre-existing CDSM for the study area, we created one by subtracting the DEM from the 
DSM and setting building pixels to zero. This introduced some error given that the building footprints did 
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not match the buildings in the DSM perfectly. The results would be more accurate if an independent CDSM 
was used. Additionally, SOLWEIG requires that the optional land classification input include classes that 
distinguish between paved areas and buildings. No such classification was readily available, nor were we able 
to classify the images ourselves. Including proper land classification would improve the model.  
 

4. Conclusions 
4.1 Interpretation of Results  

Through our investigation of the UHI effect in Portland and South Portland, the team determined there was 
a consistent trend in LST distribution within the cities during the study period. Daytime LST observations 
revealed an increase of up to 30°F in hotspots compared to nearby vegetated areas, indicating clear urban 
heat islands within the cities of Portland and South Portland. We concluded that the cooling effect typically 
expected from the Gulf of Maine may not be an influential factor in reducing coastal land temperatures in 
Portland and South Portland, as the team observed no patterns indicating that areas in closer proximity to the 
coast exhibit cooler temperatures than those further inland. Higher humidity from the rapidly warming Gulf 
of Maine could explain the slow rate of cooling these areas model even as the average daytime temperature 
drops. 

Daytime LST closely aligned with nighttime LST, and the peninsula displayed the highest temperatures across 
the collection of remotely sensed observations. Coastal land cover analysis data obtained from NOAA’s 
Office for Coastal Management further confirmed that the presence of cool spots in the nighttime heat 
assessment could in part be attributable to the greater percentage of vegetation present in these areas helping 
to regulate the heating and cooling process (Figure A5). Our urban heat vulnerability assessment confirmed a 
link between urban heat exposure and social vulnerability to heat. Census tracts displaying low vulnerability 
and low median LST were more common in less developed areas further inland. Tracts experiencing high 
vulnerability to heat were in areas that also displayed the highest median temperatures, particularly on the 
peninsula of Portland. Community members residing in these hot spots have limited capacity to adapt to 
higher temperatures which suggests an area of opportunity for community outreach and engagement with 
those most susceptible to heat-related health risks. GMRI will be applying these findings in tandem with their 
outreach efforts to address this significant environmental issue impacting the region.  

4.2 Feasibility & Partner Implementation  
We found that it was not only feasible but also beneficial to integrate remote sensing techniques to identify 
the UHI effect in Portland and South Portland as satellite-derived temperature data was readily available for 
analysis throughout the entire study area and study period, whereas in-situ temperature measurements were 
unavailable for this scope. GMRI will use the end products of this project to support their Community 
Science Program’s Urban Heat Island Mapping project to identify areas of interest for continued monitoring. 
The main goal of their project is to engage community members in the data collection process by installing 
static temperature and humidity sensors at community centers and local hubs such as schools and libraries, as 
well as by distributing mobile sensors to data collection participants for measurement collection along 
commuting routes. The urban heat vulnerability assessment will be used to help meet the partner’s goals of 
building community resilience through outreach initiatives that engage with those most at-risk to extreme 
heat exposure and the associated negative health impacts. Furthermore, the partners can adapt this project’s 
urban health vulnerability methodology to include different metrics relevant to future project interests. 
GMRI’s Urban Heat Island Mapping project will serve as a model for how to integrate remote sensing data 
into future projects investigating the UHI effect in other communities in Maine and across the country. The 
findings of this study, as well as GMRI’s future research, will also inform Portland and South Portland’s joint 
One Climate Future plan as well as the Maine Won’t Wait Climate Action Plan led by the state of Maine. The 
project’s non-profit partner and local collaborators will both share these project results and use the end 
products to build climate resilience against the threats of extreme heat due to the UHI effect. 
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6. Glossary 
AppEEARS – The Application for Extracting and Exploring Analysis Ready Samples 
CDSM – Canopy Digital Surface Model 
CRE – Community Resilience Estimate 
DEM – Digital Elevation Model 
DSM – Digital Surface Model 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time. 
ECOSTRESS – Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station 
Emissivity – The relative power of a surface to emit heat by radiation 
Labrador Current – A current that flows south along the western boundary of the Labrador Sea located in 
the North Atlantic Ocean. 
LiDAR – Light Detection and Ranging 
LST – Land Surface Temperature 
Gulf Stream – An ocean current that runs along the east coast of the United States and Canada, delivering 
the warm water from the Gulf of Mexico to the northern Atlantic Ocean. 
GMRI – The Gulf of Maine Research Institute 
ISS – International Space Station 
Median – a value or quantity located at the midpoint of observed values or quantities. 
Mitigation – reducing the severity or seriousness of something 
NAIP – National Agriculture Imagery Program 
NASA – National Aeronautics and Space Administration which is a United States government agency that is 
responsible for science and technology related to air and space. 
NDVI – Normalized Difference Vegetation Index which quantifies vegetation by measuring the difference 
between near-infrared, which vegetation strongly reflects, and red light, which vegetation absorbs. 
OLI – Operational Land Imager 
Remote sensing – the scanning of the Earth by satellite or high-flying aircraft in order to obtain information 
about it. 
Shapefile – simple, nontopological format for storing the geometric location and attribute information of 
geographic features. 
SOLWEIG – SOlar and Long Wave Environmental Irradiance Geometry 
Temporal – relating to time 
Thermal – relating to heat energy 
TIRS – Thermal Infrared Sensor 
Urban Heat Island – A phenomenon that occurs when a developed area experiences higher temperatures 
than nearby rural areas. 
  

https://www.google.com/search?rlz=1C1GCEA_enUS1042US1042&sxsrf=AJOqlzX6n_3kOP3P89Aio_6Fu5PfAspWXA:1678897576812&q=midpoint&si=AEcPFx6giEFwMtc5-VlsuZjQBEMyCoYGlywEB7AtleyD8r2_wvNfMlZAJAhCsrPg_4UWImp73zPN0QAqFkoT8YEoTV7wf_JNDA%3D%3D&expnd=1
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8. Appendices 
 
 

Appendix A: Supplemental Figures 

 
Figure A1: Daytime Urban Heat Assessment Map Pre-Shift 

 
Figure A2: Daytime Urban Heat Assessment Map Post-Shift 
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Figure A3: Zoomed in images of Daytime Urban Heat Assessment pre (left) and post (right) shift 
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Figure A4: ECOSTRESS Nighttime Urban Heat Assessment Composite Map  

(2018 – 2024) depicting prominent hot spots (left) and cool spots (right) 
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Figure A5: Regional Land Cover Classification for Portland and South Portland, Maine 
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Figure A6: Mosaiced image of the Urban Heat Mitigation Model output for census tracts 000300, 000500, 
000600, 001100, and 001200 on the peninsula of Portland: the five hottest identified from the Urban Heat 

Vulnerability Map 
 
 
 
 
 
 


