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In the past decade, Southern California has become a hotbed for destructive, out-of-control wildfires 
(Donovan et al., 2020). These fires spread quickly because of shifting climatic conditions and available fuel. 
With hotter, dryer summers, gusty winds, and organic material covering the ground, a single spark can set 
entire counties ablaze. One area that is particularly at risk for wildland fires is San Bernardino County, which 
is home to approximately two million people and encompasses the San Bernardino National Forest (San 
Bernardino County, n.d.). This region can be characterized as the wildland urban interface (WUI) – the zone 
where regions of human development and structures meet vegetative fuels – a region that has also increased 
in area in recent decades. San Bernardino's residents are heavily impacted by wildland fires because of their 
proximity to the forest. A 2008 case study of San Bernardino National Forest residents revealed that 87.6% of 
participants experienced road closures, 67.7% previously evacuated their homes, and 69.7% reported shut off 
or reduced power (Cvetkovich & Winter, 2008). This pattern of mass displacement is cause for concern and 
calls for more resources to be committed to fire analysis.  
 
One of the main factors of wildland fires is the available fuel, and there are methods to mitigate the risk of 
dried organic material compounding these natural disasters. One of the primary solutions is prescribed burns, 
which are controlled fires intentionally created by agencies to remove excess fuel (Miller et al., 2020). 
Prescribed burns serve as an effective method to build ecosystem resilience by reducing fuel accumulation, 
improving ecosystem health, and preventing large-scale burns (U.S. Department of Agriculture, Forest 
Service, 2023).  
 
We set out to understand the efficacy of prescribed burning with a natural case study: the Line Fire and the 
Angelus Oaks Understory (AOU) Prescribed Burn (Rx; Figure 1). The AOU Rx burn was active from April 
30 – May 3, 2024, and the Line Fire burned from September to December of 2024. Since the Line Fire halted 
at the area of the prescribed burn, we wanted to investigate how fuel load and water content impacts fire 
spread and vegetation recovery. We sought to understand the direct impacts of the AOU Rx burn through 
pre- and post-fire landscape analysis using synergies between different satellite sensors.  
 

                                                                         
 Figure 1. Highlighted study area contains the extents of the Line Fire and the Angelus Oaks Understory 

Prescribed Burn, and all of San Bernardino County in California, United States. 
 

We partnered with the United States Department of Agriculture (USDA), United States Forest Service, 
Wildland Fire Management Research & Development (1); the USDA, United States Forest Service, San 
Bernardino National Forest (2); and the San Bernardino Valley Municipal Water District (3) to provide pre- 
and post-fire analysis to impact mitigation and land management strategies between November 2023 to 
March 2025. Our research informed partners of before and after fire fuel loads, vegetation health, and burn 
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severity throughout the fire extents. We also collaborated with the Institute for Watershed Resiliency (IWR, 
4) and CSU Northridge, Center for Geospatial Science & Technology (5) for additional support (Table 1).  
 
 
Table 1.  
Project Partners 

Partner Existing Strategy and Involvement   

1 

An interagency program that prioritizes fire protection with fire prediction technology and risk 
management tools (U.S. Department of Agriculture, Forest Service, 2021). They lacked 
quantification of burned areas that impacted mitigation and land management strategies. Our 
project served as an outline for land use and land cover analysis in pre-fire and post-fire 
landscapes to apply throughout California.   

2 

A federal agency that manages San Bernardino National Forest (Fire management, n.d.). Their 
environmental decision for forest management relied on moisture readings of vegetation to treat 
fire-prone areas. We provided moisture readings of land cover before and after fires, which may 
impact land management practices.   

3  

A regional agency responsible for the water supply of San Bernardino Valley that includes fire 
protection services (About us, n.d.). They allocate and manage water services and work to better 
understand the erosion and runoff of fires and how they impact water quality. We supported the 
agency’s understanding of how fires impacted the landscape with land cover change figures and 
analysis.   

4 

A research institute with community-university partnerships that study issues surrounding water 
resources (Institute for Watershed Resiliency, n.d.). IWR studies fire impacts on dams and water for 
public partners and potential policy changes. We highlighted physiological and urban effects of 
fires on land, water, and infrastructure so they could incorporate them into their research.  

5 
A research center focused on geospatial technology with projects regarding pre-fire planning and 
management monitoring (Center for Geospatial Science and Technology, n.d.). We provided fuel maps 
and land cover time series for their scientific communication and future work.   

 
Successful studies done previously to assess pre- and post-fire landscape conditions include emphases on 
resource disparities, vegetation classifications, and conditions using Earth observation data from ECOsystem 
Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), Harmonized Landsat 
Sentinel-2 (HLS), and Earth Surface Mineral Dust Source Investigation (EMIT; Zhu et al., 2024; Roteta et al., 
2021). Deeper inspection into the vegetation water content using these data in tandem with Uninhabited 
Aerial Vehicle Synthetic Aperture Radar (UAVSAR), and Landscape Fire and Resource Management 
Planning Tools (LANDFIRE) provided a well-rounded approach to determining fuel availability and post-fire 
regrowth levels (Lopez-De-Castro et al., 2022). NASA employed these data in similar natural wildfire case 
studies including the Station Fire, Colby Fire, San Gabriel Complex Fire, La Tuna Fire, and Bobcat Fire 
(Gabbert, 2021).  
 
Considering these approaches and their insights, we emphasized identification of fire-fuel load changes since 
assessments of fuel load accumulation under evolving climate conditions provide insights into the 
unprecedented frequency and prevalence of fire in Southern California (Keifer et al., 2006; van Wagtendonk 
et al., 1998). We used multiple satellite missions to more fully understand prescribed burn efficacy. From 
thermal infrared (ECOSTRESS) we determined vegetation temperature and related it to water use and water 
stress; from visible to shortwave infrared imaging spectroscopy (EMIT) we assessed canopy water content, 
and from Landsat data we characterized land cover type and burn severity. Using different sensors allowed us 
to see a wide range of spatial and temporal resolutions and capture short- and long-term fuel changes.   
 

2. Methodology 

2.1 Data Acquisition 
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To accomplish this analysis, we utilized a variety of remote sensing tools. We used data from ECOSTRESS 
and EMIT to assess resource disparities and delineate various vegetation conditions (Zhu et al., 2024). We 
also used HLS Surface Reflectance 30m data to detect pre- and post-fire changes in land cover classifications 
(Roteta et al., 2021). Additionally, we used UAVSAR to validate soil burn severity.  
 
We gathered LANDFIRE information to understand fuel availability and track post-fire regrowth levels 
(About LANDFIRE, n.d.). LANDFIRE, or Landscape Fire and Resource Management Planning Tools, is a 
wildland fire management dataset from the U.S. Department of the Interior and the U.S. Department of 
Agriculture Forest Service. LANDFIRE developers created vegetation cover and height layers by assigning 
pixels values to vegetation types based on Forest Inventory and Analysis training data. They created the 
classification type class by compositing seasonal scenes and assigning classifications for each data type. For 
surface and canopy fuel, developers manipulated vegetation type, cover, height, and disturbance layers with a 
linear regression analysis for canopy base height and equations for crop cover and crop height (U.S. 
Department of the Interior, U.S. Geological Survey, 2023). Table 2 showcases the location where 
LANDFIRE and each other data set was acquired. 
 
Table 2. 
Earth Observation Sensor Data Information 

Dataset Level Spatial 
Res. 

Temporal 
Res. 

Years 
Available 

Acquisition 
Platform  

 
Search Attributes 

ISS 
ECOSTRESS 

3L & 
4L 

70 m Periodic 2022–
2024 

Application for 
Extracting and 
Exploring 
Analysis Ready 
Samples 
(AppEEARS) 

Evapotranspiration Instantaneous and 
Daytime L3 Global, Evaporative Stress 
Index PT-JPL Instantaneous L4 
Global, Water Use Efficiency 
Instantaneous L4 Global, 
L3/L4 Ancillary Data Quality 
Assurance (QA) Flags; 
File Format: GeoTIFF, Projection: 
Geographic  

ISS EMIT 2A 60 m Periodic 2022–
2025 

EarthData Search EMIT L2A Surface Reflectance 
File Format: GeoTIFF, Projection: 
Geographic 

HLS 3L 30 m 8 days 2015–
2025 

AppEEARS  Band Layers: B02, B03, B04, B05, B06, 
B07;   
File Format: GeoTIFF, Projection: 
Native  

UAVSAR 2L 7 m Sporadic 2015–
2021 and 
2023–
2024 

Alaska Satellite 
Facility 
Distributed 
Active Archive 
Center (ASF 
DAAC) 
generated.py 
script 

L-band, POL, Full polarization, 
Ground Project Complex, multi-look 
complex, Slope, GEOTIFF Height 
File, Metadata 
File 
Format: .zip, .mlc, .kmz, .hgt, .tiff, .ann 
Projection: Geographic 

LANDFIRE NA 30 m Every 1-2 
years 

2023 LANDFIRE.gov All attributes for all available years 
File Format: GeoTIFF, Projection: 
Geographic 

 
 The available dates associated with each dataset relate specifically to its availability within our study area. The 
temporal range we inspected was between November 2023 to March 2025 (Figure 2). This period includes 
the largest breadth of available data for our natural case studies across all sensors. We applied spatial filters 
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for the San Bernardino National Forest (SBNF), the Line Fire, and the Angelus Oaks Understory (“AOU”) 
Rx Burn perimeters when gathering data.  
 

 
Figure 2. Study period timeline highlighting the prescribed burn, Angelus Oaks Understory Prescribed Burn 

(April–May 2024), and wildfire, Line Fire (October–December 2024). 
 

When acquiring data, we sought data before and after both fires. For each fire, we prioritized data six months 
and one month before the burn to understand how the baseline vegetation and fuel loads existed at ignition 
and how extraordinarily wet or dry seasons impacted the landscape. We collected multiple scenes after the 
fires to better understand how the landscape recovered. Since the wildfire was not fully contained until 
December 23, 2024, there is limited data availability post-Line Fire (Incident Information System, n.d.). 
 
2.2 Data Processing 
We applied different processing and analysis workflows for each of the sensor datasets using a combination 
of Python 3.12.8 and ArcGIS Pro 3.4.2. We relied on the NASA-designed scripts, which were hosted in 
various repositories. We developed maps to quantify water use trends using canopy water content, water use 
efficiency (WUE), evapotranspiration (ET), and evaporative stress index (ESI) to assess pre- and post-fire 
fuel conditions using ISS EMIT and ISS ECOSTRESS. To interpret and compare landscape changes between 
the two fire types, we tabulated normalized difference vegetation index (NDVI), enhanced vegetation index 
(EVI), and differenced normalized burn ratio (dNBR) using HLS. 
 
2.2.1 Quantifying Vegetation Water Use Trends 
To interpret terrestrial biosphere trends relating to water availability, we used the ISS ECOSTRESS sensor. 
This sensor contains pertinent information relating to how vegetation uses water (NASA Jet Propulsion 
Laboratory, n.d.). To process the ECOSTRESS data, we harnessed the 
‘02_Working_with_EMIT_Reflectance_and_ECOSTRESS_LST.ipynb’ script from NASA’s ‘VITALS’ 
repository (Land Processes Distributed Active Archive Center, 2024a). In this script, we manipulated Level 3 
Tiled Evapotranspiration products, which were estimated from Level 2 Tiled Land Surface Temperature 
products and other inputs. Level 3 data are preprocessed, so we generated an evapotranspiration color ramp, 
visualized, and cropped the data. After running the script, we documented ET, WUE, and ESI. 

To understand canopy water content throughout the study area, we used the ISS EMIT sensor. We used the 
‘02_Working_with_EMIT_Reflectance_and_ECOSTRESS_LST.ipynb’ and 
‘03_EMIT_CWC_from_Reflectance.ipynb’ scripts from NASA’s ‘VITALS’ repository to manipulate the raw 
data. The first notebook accessed the raw ISS EMIT data, documented spectral information, applied a cloud 
mask, linked surface reflectance to wavelength, selected ten points to serve as a baseline for canopy water 
content, and exported the spectra and points in an Excel file (Land Processes Distributed Active Archive 
Center, 2024a). Then, we clipped the preprocessed EMIT data to the study area, first for the Line Fire, then 
for the prescribed fire, to provide side-by-side comparisons.  

In the second script, we used the Beer-Lambert physical model data to estimate canopy water content (CWC) 
by using wavelength-dependent absorption coefficients of liquid water to identify absorption path lengths as a 
function of the absorption feature depth (Land Processes Distributed Active Archive Center, 2024b). We 
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estimated the path length of liquid water absorption by using a least squares inversion to minimize residuals 
between the Beer-Lambert physical model and our EMIT reflectance (Land Processes Distributed Active 
Archive Center, 2024a; Green et al., 2006). The algorithm works by modeling surface reflectance as a linear 
change in reflectance with respect to the wavelength. We then multiplied that linear change in reflectance by 
the spectral dependent absorption for water through their distinct path lengths. The Beer-lambert physical 
model assumes that the general spectral solar energy absorption effect of water within 850 – 1100 nm is 
proportional to its baseline reflectance (Green et al., 2006). Once we set up the equations to calculate water 
content, we imported our study area to calculate each included pixel and visualize the canopy water content.  

2.2.2 Comparing Landscape Change by Fire Type               
To tabulate the NDVI and EVI time series, we initially gathered these indices for the entire San Bernardino 
National Forest using the HLS data. We applied Equations 1 and 2 to calculate the NDVI and EVI indices 
respectively (Tucker, 1979). These equations collectively utilize the Near Infrared (NIR), Red, and Blue 
Bands.  

NDVI = 
NIR - Red

NIR + Red
(1) 

 
                                     

EVI =2.5 * 
NIR - Red

(NIR + 6*Red - 7.5*Blue +1)
(2) 

 
We utilized HLS data to both calculate NBR (Normalized Burn Ratio) represented as Equation 3 as a method 
of distinguishing burned regions, and dNBR (Difference Normalized Burn Ratio) represented as Equation 4 
to reflect burn severity as a change between pre-fire and post-fire environments (United Nations Office for 
Outer Space Affairs UN-SPIDER, n.d.). These equations utilize the second Short-Wave infrared band 
(SWIR2).  
 

NBR = 
NIR - SWIR2

NIR + SWIR2
(3) 

 
                                                                         

 dNBR=(pre-fire)NBR - (post - fire)NBR (4) 
 
 

For classification of soil burn severity, we used the ‘burn_severity.ipynb’ United Nations Platform for Space-
based Information for Disaster Management and Emergency Response (UN-SPIDER) script to calculate the 
dNBR and NBR indices (UN-SPIDER, 2018). Once we completed the calculation for the indices, we 
transformed the final data from an array back to a GeoTIFF projected raster.                 

From the NASA-JPL code repository ‘uavsar-wildfire-rtc,’ we leveraged Python scripts to process the raw 
UAVSAR data (Simard et al., 2016; California Institute of Technology, 2023). We used the script 
‘RTC_notebook.ipynb’ to apply the radiometric terrain correction (RTC). To complete the RTC calculation, 
we used the file types .mlc, .hgt, and .ann to produce .hdr files. This was to account for backscatter estimates 
and eliminate geometric distortions and terrain within the radar shadow (An et al., 2024). We used the 
polarization horizontal-vertical (HVHV) to highlight volume scattering from forest canopy (NASA 
EarthData, n.d.). We converted the horizontal-vertical values to decibel units, and produced an HV difference 
(or log ratio) map to provide insights into post-fire conditions for vegetation and soil burn severity (An et al., 
2024).                      

2.3 Data Analysis 
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2.3.1 Quantifying Vegetation Water Use Trends 
To contextualize our study area, we visualized LANDFIRE data pertaining to existing vegetation classes, 
historical land cover changes, and canopy cover percentages (Figures A.1, A.2, & A.3). Then we were able to 
move to CWC from EMIT. While CWC is often limited by vegetation type, in general higher CWC points to 
healthier and more fire-resistant vegetation (Martin et al., 2018). ISS EMIT had data available pre-fire in 2023, 
which helped understand the context of the landscape in regard to fire-resistance. To understand the 
landscape statistically, we created histograms for the Line Fire extent and the AOU extent (Figure B.2). We 
calculated the mean, median, minimum/maximum, and standard deviation in ArcGIS Pro and created 
histograms to visualize the distribution throughout the fire perimeters. We exported the histogram results 
from ArcGIS Pro to Excel to revisualize for further clarity. Because both fire extents had bimodal 
distributions, we did not apply any transformations to avoid data censorship. We also created maps to 
visualize the distribution of CWC throughout the fire extent.  

Utilizing ECOSTRESS’s ET, ESI, and WUE data, we created pre- and post-fire maps for both fires. We 
produced these maps by combing raster files into a composite image from time windows of interest for each 
variable (Figure 2). To further understand fires’ impact on vegetation we synthesized histograms for WUE 
and ESI data 3 months prior and 3 months post-fire, for each fire (Figure B.3). We visualized this change 
between data by calculating the difference between the pre- and post-fire rasters. Overall, we conducted this 
process to assess vegetation stress and primary productivity before and after the fires.  

2.3.2 Comparing Landscape Change by Fire Type        
To compare the prescribed burn and wildfire over time, we clipped the NDVI and EVI data using the fire 
perimeters, collecting the values and associated dates into a dictionary. We conducted time series analysis 
using ordinary least squares (OLS) regressions on the indices for each fire and visualized the values density 
distribution. Since our aim was to better comparatively understand the rate of vegetation recovery, we 
quantified time’s influence on the vegetation indices within the two fire areas (Jamali et al., 2015).                                                       

We used the processed dNBR data to develop maps for both fires for further visual interpretation and 
comparison. We assessed the data against elevation topography and vegetation type. To quantitatively 
compare the difference burned between the two fires, we plotted bar and dumbbell graphs that provide 
estimations for hectares burned in each of the regions by burn severity type. 

3. Results 
3.1 Quantifying Vegetation Water Use Trends 
3.1.1 Canopy Water Content & Pre-fire Landscape Context 

To contextualize results, we used LANDFIRE data to understand the landscape in 2023. When analyzing the 
historical vegetation departure, most of the Line Fire’s extent was classified as ‘Very High’ or ‘Drastically 
Different’ than the historical vegetation precedent, indicating these areas contained a surplus of available fuel 
compared to previous conditions. The AOU area was categorized with ‘Moderate to Low’ changes to normal 
vegetation levels. This is likely related to the regular prescribed burns the US Forest Service conducted since 
2010. We also leveraged LANDFIRE to understand historical tree cover percentages within our study region. 
Tree canopy cover often indicates a higher level of water content, which can indicate how susceptible an area 
is to fires. Before 2023, approximately half of the Line Fire extent consisted of moderately dense tree cover of 
40–60%, with the remaining extent consisted of different vegetation types or barren soil (Figure A.1, A.3). 
Considering the AOU perimeter has undergone regular prescribed burning since 2010, this area was more 
evenly populated with 30–50% canopy cover (US Forest Service, n.d.), and has far less areas with no canopy 
cover. This means there was likely less dry fire fuel load within the prescribed burn extent.   

We collected ISS EMIT sensor data to visualize the water use trends using a pre-fire map. Water content 
ranged from 0.05 to 0.35 g/cm2 throughout the fire extents. The water content was more normalized within 
the AOU perimeter, likely due to its smaller size and regular Rx burn treatments. We observed correlation 
between CWC and the type of vegetation, where some vegetation types were able to store more water than 
others. We were unable to conclude how canopy water content changed after the fires, since no after-fire data 
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were available. However, it is still helpful to compare the distribution of high and low CWC before the 
prescribed and Line Fire alongside the historical LANDFIRE data (Figure 3).  

 

Figure 3. Canopy Water Content (CWC) estimated with ISS EMIT surface reflectance values in Line Fire and 
AOU Burn extents.  

Histograms for the Line Fire and AOU Rx Burn show different distributions (Figure B.2). In the Line Fire 
extent in 2023, the CWC has a distinct bimodal distribution with peaks around 0.15 g/cm2 and 0.48 g/cm2 
and a range of 0.59 g/cm2. When cross-referenced with LANDFIRE classification data, areas of high water 
content usually fall under the vegetation class of ‘Open Tree Canopy.’ Areas with low water content tend to 
fall in the ‘Shrubland’ vegetation class, which have lower CWC capacities. The extent of the AOU Rx Burn 
was more normalized and had a much smaller range of 0.27 g/cm2. There were a few areas of distinctly low 
water content, which correlates to shrubland. The median of the Line Fire was 0.41 g/cm2 while the median 
for the AOU Rx Burn was 0.20 g/cm2 meaning that overall, the Line Fire had higher water content 
throughout. Having higher water does not necessarily mean that an area is less fire resistant. Because the Line 
Fire’s extent was much larger than the AOU Rx Burn area, the water content varied widely, so even areas of 
high-water content were subject to wildland fire destruction since dry fuel load scattered the area. This 
allowed the Line Fire to travel widely throughout the San Bernardino National Forest. The prescribed burn’s 
more normalized water content lent less opportunity for wide-scale burns because it lacked dry fuel load 
throughout. While ISS EMIT data set up expectations of fire behavior, the limited data available meant that 
before and after comparisons were not possible.    

3.1.2 Evaporative Stress Index (ESI) 
We utilized the ISS ECOSTRESS sensor to assess ESI. ESI denotes the amount of water stress vegetation is 
experiencing due to reduced water availability and is a ratio between evapotranspiration and potential 
evapotranspiration. A higher ESI indicates low water stress while a lower ESI indicates high water stress. We 
visualized ESI pre- and post-fire for both fires as histograms, the change in data trends was inverse between 
the two fire events (Figure B.3). The Line Fire caused ESI to shift from a bell curve to a bimodal distribution, 
with data peaks at low and high ESI. The AOU fire showed the opposite effect, where pre-fire ESI was a 
bimodal distribution at the high and low extremities of values, and post-fire ESI shifted to a bell curve above 
the median 0.5. This difference demonstrates that the AOU burn smoothed out vegetation ESI while the 
Line Fire exacerbated the extremities. The right most peak in ESI post Line Fire may be a result of re-
growing invasive vegetation that outcompetes surrounding vegetation. Invasive grasses frequently repopulate 
burned land quicker than native species, which can in turn increase fire fuel loads quicker. Additionally, the 
re-growing of vegetation, whether invasive or not, could inaccurately represent the historic or expected 
vegetation of the area (Fusco, 2019). This is of concern regarding preservation and restoration efforts. It 
should also be considered that unburned vegetation may have influenced this data. The greater ESI shown 
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with the AOU fire may be a result of this unburned vegetation due to its low intensity. Lower intensity 
prescribed burns could allow for greater ESI values to persist. This data was normalized to limit the effect 
that area had on the distribution of the data. However, the vegetation type present in the region was not 
considered when quantifying ESI. As such, differing vegetation could have affected these results. 

3.1.3 Water Use Efficiency (WUE) 
To further understand vegetative stress, we extracted WUE from ECOSTRESS. WUE represents how 
efficiently plants use water for photosynthesis. WUE estimates the rate of carbon uptake per unit of water 
lost. A WUE closer to 0 denotes lower carbon uptake efficiency and less healthy vegetation, while a higher 
WUE signifies increased carbon uptake. We used this to observe the impact both fires had on the efficiency 
of vegetative primary productivity. We visualized WUE pre- and post-fire for both fires as histograms (Figure 
B.3). The Line Fire had an overall decrease in WUE. While there was an increase in pixel density at 10 WUE, 
these may be outliers. This is because the density distribution of the remaining pixels was minimally affected. 
Regarding the AOU fire, there was minimal change. We considered seasonal effects on vegetation, 
normalized the data, and omitted values signifying barren soil. The minimal change observed may be the 
result of a collection error, lower sample size, or inaccurate visualization; however, it is likely that the AOU 
fire had no effect on WUE. The Line Fire ultimately had a greater negative impact on WUE than the AOU 
prescribed burn. In turn, the AOU prescribed burn had little to no impact on the vegetation water stress, 
further supporting the use of this land management tool. The variations we saw between vegetation water use 
trends within the prescribed burn and wildfire areas led us to question how the landscape greenness was 
affected over time by the Line Fire. To quantify these changes and further explore the previous water use 
trends of the local vegetation, we inspected NDVI and EVI.  

3.2 Normalized Difference Vegetation Index (NDVI) & Enhanced Vegetation Index (EVI) 
3.2.1 Normalized Difference Vegetation Index (NDVI) 
We calculated NDVI to describe vegetation health by quantifying the amount of green in plants. EVI was 
tabulated to provide greater insights related to canopy coverage and vegetation greenness in these thicker 
vegetative areas because the approach is more sensitive to vegetation density and canopy background noise. 
To gauge immediate vegetation impacts we visualized the changes in NDVI greenness for the Line Fire one 
month prior, as well as one- and three-months post-fire. Our investigation displayed a dramatic change in 
vegetation greenness caused by the Line Fire near the end of 2024. Before the wildfire, in August 2024, 
greenness was high, closer to 1, which indicated widespread, healthy vegetation (Figure 4). One month 
following the wildfire, January 2025, a distinct extent of the Line Fire dropped below 0, nearing –1, indicating 
barren soil or dead vegetation (Figure 4). When we evaluated the trends in NDVI over time, there were no 
significant relationships. Our analysis of the changes within the most barren regions of the Line Fire burn 
scar from January 2025 to March 2025 indicated potential vegetation with greater wildfire resiliency. 
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Figure 4. NDVI Landscape Greenness Trends in Line Fire extent from September 5 – December 21, 2024. 
Pre- and post-Line Fire NDVI “vegetation greenness” in San Bernardino National Forest, San Bernardino, 

CA (HLS 2024–2025). 

Minor recovery in the areas identified as barren soil (dark brown) was observed in late February and early 
March of 2025 (Figure 4, C.1, C.2). Reflecting on the 2023 LANDFIRE vegetation classifications, these 
swiftly recovering areas were associated with a mixture of sparse tree canopy, open tree canopy, shrubland, 
and sparse vegetation. This evidence suggests vegetation of this classification type may have increased 
resiliency resulting from shorter recovery times following wildfires. However, deeper considerations for the 
landscape topography, plant seasonality, and comparative levels of burn severity are needed to validate these 
claims. It is important to note that NDVI does have some limitations and does not work as well in densely 
vegetated areas (Rhew et al., 2011). As revealed in the LANDFIRE changes historical vegetation density and 
EMIT pre-fire canopy water content trends, the Line Fire region was highly populated with dense canopy 
coverage (Figures A.1, A.2, A.3, B.1). For this reason, we also computed the EVI.  

3.2.2. Enhanced Vegetation Index (EVI) 
By employing EVI, we collected greater insights into canopy greenness in more densely vegetated areas. 
Similar to NDVI, we witnessed a significant decrease in landscape greenness following the wildfire. The area 
prior to the fire, in August 2024, was considered dense and healthy with a range of ~2 (Figure 5, C.3). 
Following the wildfire, in January 2025, we observed a large and distinct burn scar area, indicating lowered 
vegetation density considerably and in some cases to the point bare soil, a 0 or less (Figure 5). For 
consistency, we also compared the EVI median values of both the fires overtime. Using a simplified 
regression analysis, Eq. 2, we found a significant (p-value < 0.05**) decreasing relationship in dense 
vegetation greenness for both fire areas as time continued (Figure 5, C.4).  

 

 

Figure 5. Enhanced vegetation index time series regression analysis on pre- and post-fire conditions for the 
Angelus Oaks Understory Rx Burn (gold) and the Line Fire (purple) (HLS 2024-2025). 

When comparing the wildfire's median EVI greenness trends overtime (shown in purple) to the prescribed 
burn greenness trends (displayed in gold) we observed a rapid decrease in greenness within the wildfire area 
following the start of the Line Fire on September 5, 2024 (Figure 5). The wildfire median EVI exemplifies the 
drastic drop in greenness immediately following ignition. A significant (p-value < 0.05**) decrease of 0.0046 

±0.002 in median EVI was predicted for a single unit increase in time with an adjusted R² of 0.51. The 
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wildfire time series highlighted longer recovery times required to return to the pre-fire levels of vegetation 
greenness. In the 3 months following the Line Fire, we observed vegetation in this region had not yet 
recovered to similar levels prior to the wildfire (Figure 5), indicating a slower recovery rate compared to the 
Rx burn area. 

However, the prescribed burn median EVI remained relatively consistent over time with a shallow dip around 
the time of the prescribed burn (Figure 5). The vegetation has somewhat steady recovery rates, with a 
significant (p-value < 0.05**) decrease of 0.0016 in median EVI for a single unit increase in time for an 
adjusted R² of 0.58. Throughout the time series, the AOU Rx burn demonstrated stable vegetation trends for 
this fire type, bolstering evidence of its ability to reduce fire-fuel availability without devastating the 
landscape. We considered this behavior to be supporting evidence of the benefits of regular Rx burns in this 
area.  

It is important to note there were limitations to this regression analysis above due to the time restrictions of 
this project. This analysis may be subject to omitted variables bias due to lack of consideration for interacting 
relationships (Carelton, n.d.). Our model was not exogenous because we neglected to include variables such 
as precipitation, which in turn are influenced by seasonality, or in this case, time. The purpose of this analysis 
was to generally interpret immediate changes in the vegetation greenness following exposure to different fire-
types. Greater contextualization of the landscape and its associated burn severities are required to draw any 
full conclusions. To better understand how the intensities of the fire-types differed, we chose to explore the 
difference in normalized burn ratios. 

3.3 Soil Burn Severity Classifications 
3.3.1 Differenced Normalized Burn Ratio (dNBR) 
Applying the insights we gained for both vegetation water uses and greenness trends, we investigated how 
these factors influenced the landscape burn severity for each fire. The colors within the Line Fire dNBR map 
on the left indicate the various levels of severity, with yellow defining unburned and black defining high burn 
severity (Figure 6). The map displays higher levels of burn severity throughout the region compared to the 
AOU prescribed burn (Figure D.1). Through visual comparison against elevation levels, we identified that 
areas with higher slopes tended to have higher severity burns (Figure 6, D.2). This is likely due to how pre-
heated fuel from uphill burns cause fire to spread quickly and how many of the south facing mountains in the 
Line Fire have more exposure to sunlight and are more likely to ignite (Northwest Fire Science Consortium, 
2017). On the other hand, areas that experienced no or low severity burns tended to surround creeks or 
roads, which served as a natural barrier for fire spread. Like the Line Fire, the AOU Prescribed Burn’s higher 
severity burns did not spread past regions with high elevation. It experienced much lower burn severity, likely 
because the burn was controlled and had minimal fuel access. To validate these measurements, we leveraged 
UAVSAR to confirm the extent of the soil burn severity following the Line Fire (Figure D.4, D.5). 
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Figure 6. Line Fire Categorized by Soil Burn Severity illustrating dNBR (left) and elevation in San Bernardino 
National Forest, San Bernardino, CA (HLS 2024–2025; right).  

We identified visual links between burn severity classification and existing vegetation classes within the Line 
Fire and AOU regions. Within the Line Fire, areas that were sparsely vegetated or shrubland tended to be 
associated with low or moderate-low burn severity, while regions with sparse tree canopy tended to fall under 
moderate to high severity. Regions with open tree canopy aligned with burn areas classified as high severity. 
The AOU Prescribed Burn did not have any clear associations between vegetation class and burn severity 
levels.  

We also compared the estimated hectares of burned area by burn severity levels for each fire. In total, the 
Line Fire resulted in 17797.3 hectares burned, in contrast to the AOU's 80.9 hectares (Figure 6). The largest 
difference was in high severity burn levels at 8000 hectares, while the lowest is low severity at over 2000 
hectares. Within these classifications, 76% of the AOU's burn scars were low severity, while this only 
consisted of 12% of the Line Fire's burns (Figure 7). Additionally, 40% of the Line Fire's burns were 
classified as High Severity, while none were identified in the AOU (Figure 7, D.3). As such, the Line Fire 
resulted in significant amounts of burn disturbance when compared against the AOU prescribed burn, which 
consequently had much lower severity controlled-burns that allow for healthy regrowth patterns. 
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Figure 7. Comparing Difference in Estimated Hectares within the Line Fire (purple) and AOU Prescribed 
Burn (gold) fire perimeters by Burn Severity Classification in San Bernardino National Forest, San 

Bernardino, CA (HLS 2024–2025). 

We utilized dNBR to develop a better understanding of how topography, vegetation classification, and fire-
type contributed to different levels of burn severity and hectares burned. When measuring area using HLS 
dNBR data, there was no pre-processing done before the calculation of hectares due to time restrictions and 
land area file resource availability. This hindered accurate assessments of area per pixel, and we instead opted 
to utilize area estimations using a scalar factor against pre-existing information of each region’s overall size. 

4. Conclusion 
All in all, harnessing a wide variety of Earth observation data allowed us to convey the comparative impacts 
of wildfires vs prescribed burns on the landscape. We provided evidence to support the effectiveness of 
consistent prescribed burns in the San Bernardino National Forest AOU area to reduce available fire-fuel 
loads. This evidence supports the sentiment that reduced fire-fuel loads decrease the risk of wildfires and 
preventing wildfires from growing larger and spreading to nearby urban areas. In the case of the Angelus 
Oaks Understory Rx Burn, the prescribed burn protected nearby urban areas and reduced the risk of wildfire 
devastation caused by the Line Fire. 
 
4.1 Feasibility & Partner Implementation 
Our study emphasized the need for NASA EO tools such as NASA-ISRO Synthetic Aperture Radar 
(NISAR) and Surface Biology and Geology (SBG) that have greater availability and shorter data processing 
release times (NASA JPL, n.d.). Our data was subject to some limitations, as some sensors had sporadic 
revisit times, varied greatly in resolution, and were dependent on minimal cloud coverage (Figure E.1). The 
range in resolution may pose some challenges if combined for future projects. However, each observation 
tool provided insights into landscape conditions at key periods. Our evidence indicated the AOU Rx Burn 
may have served as a natural break and protected the nearby urban area from the Line Fire flames (2024). To 
further explore resiliency in post-fire vegetation, different case studies or the use of extended study periods 
may provide more evidence to support our findings. 

The San Bernardino National Forest is home to several watersheds, reservoirs, and the Seven Oaks Dam 
(Figure A.1, Figure E.2). Our partners, the U.S. Forest Service and the San Bernardino Valley Municipal 
Water District, expressed an interest in expanding our project to better understand the implications on local 
water supplies caused by these considerations. Using Earth observations, other impacts caused by wildfires 
may be studied, such as analyzing changes in soil composition, sedimentation trends that may lead to run–off 
into water supplies, and negative impacts to dams. We recommend the use of ISS EMIT to study these 
variables to gain a greater understanding of the landscape changes. 
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6. Glossary 
AOU - Angelus Oaks Understory 
AppEEARS - Application for Extracting and Exploring Analysis Ready Samples 
ArcGIS Pro - Professional desktop GIS application from ESRI used to visualize and analyze GIS data 
ASFDAAC - Alaska Satellite Facility Distributed Active Archive Center 
Backscatter - Electromagnetic energy that is reflected back toward its source by terrain or particles in the 
atmosphere 
Band - A layer in a raster dataset that represents data values of a specified characteristic or specified range in 
the electromagnetic spectrum, a single matrix of call values 
Bare soil - Areas lacking vegetation cover 
Beer-Lambert law - The amount of light absorbed by a substance is proportional to its concentration and 
path length  
Beer-Lambert physical model - Application of Beer-Lambert law  
Bimodal - Distribution of data with two distinct peaks or modes 
Blue Band - A band in the red region of the visible spectrum, 450nm to 520nm 
Canopy cover - The proportion of forest covered by the vertical projection of tree crowns 
Clip - Extraction of a portion of a dataset based on a specified boundary or extent  
Cloud mask - A technique used to identify and filter out pixels in imagery that are obscured by clouds or 
cloud shadows 
Composite - A combination of multiple datasets or bands into a single image, can include combining 
datasets across different times 
CSU - California State University 
CWC - Canopy Water Content, the amount of water stored within the vegetation canopy, grams of water per 
square meter of ground surface 
dNBR - Differenced Normalized Burn Ratio, assess the severity of burns based on the difference between 
pre-fire and post-fire normalized burn ratio 
ECOSTRESS - ISS Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station 
EMIT - International Space Station Earth Surface Mineral Dust Source Investigation 
ESI - Evaporative Stress Index, quantifies vegetative water stress, actual evapotranspiration by potential 
evapotranspiration 
ET - Evapotranspiration, the amount of water transferred from the Earth’s surface to the atmosphere 
through evaporation and transpiration, thermal infrared sensors are used to estimate vegetative 
evapotranspiration  
EVI - Enhanced Vegetation Index, used to quantify vegetation greenness and correct for atmospheric 
conditions and canopy background noise 
Fire severity - Quantitative measurement of the effects a fire has on the environment, considering impacts to 
vegetation and soil 
Fuel - Flammable plant material 
Full polarization - The ability to transmit and receive electromagnetic waves both vertically and horizontally, 
relating to a radar system such as SAR 
GeoTIFF - Image file format that includes embedded geospatial data for images to accurately align with real-
world locations 
Green Band - A band in the green region of the visible spectrum, 500nm to 600nm 
H- Horizontal polarization, oscillation of an antenna’s electronic field in the horizontal plane 
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High severity - Fire has completely consumed surface vegetation, the organic soil layer may be entirely 
burned 
HLS / HLSL-30 - Harmonized Landsat and Sentinel-2 Operational Land Imager Surface Reflectance and 
Top of Atmosphere (TOA) Brightness Daily Global 30m 
Invasive - Non-native plants that when introduced to an area establish and proliferate rapidly, disrupting 
ecosystems by outcompeting native plants  
IRO - Institutional Research Opportunity 
ISS - Internation Space Station 
LANDFIRE - Landscape Fire and Resource Management Planning Tools 
Large-scale/Large Fires - Fire burning with a size and intensity in which the interaction between its own 
convection column and weather conditions determine its behavior 
L-band - Data acquired by employing an electronically scanned antenna, fully polarized 
Level/L - The degree of which data has been processed (series of operations on data) from raw to highly 
processed, regarding data processing 
Least squares - Within regression analysis, a parameter estimation method made by minimizing the sum of 
square differences (residuals)  
Linear regression - Estimates the linear relationship between dependent and one or more explanatory 
variable 
L1 - Level 1 data, raw unprocessed data 
Low severity - Surface vegetation is lightly burned, tree canopies and organic soil layers remain mostly intact 
L2 - Level 2 data, derived geophysical variables from L1 data 
L2A - Level 2 data, derived from geolocated instrument data, such as highest and lowest surface elevations  
L3 - Level 3 data, geophysical variables mapped on uniform space-time grid scales (averaged over time and 
space)  
L4 - Level 4 data, model results from lower-level data analysis which may be derived from multiple 
measurements 
Moderate severity - A significant portion of surface vegetation burned away, partial scorched tree canopies, 
organic soil layer may have been affected 
NASA - National Aeronautics and Space Administration 
NBR - Normalized Burn Ratio, index used to assess the severity of burn scares 
NDVI - Normalized Difference Vegetation Index, measures the greenness and density of vegetation using 
red and NIR band 
NIR - Near Infrared, region of the electromagnetic spectrum 770nm to 900nm, infrared radiation closest to 
the visible spectrum 
NISAR - NASA-IRO Synthetic Aperture Radar  
OLS - Ordinary Least Squares, A least square method that makes assumption about the residuals such as, 
residuals have constant variance, residuals are uncorrelated, residuals are normally distributed 
Open tree canopy - Areas of a forest where the crowns of the trees are not tightly packed and do not 
overlap to form a continuous layer 
Polarization - The direction of travel of an electromagnetic wave including, vertical, horizontal, or circular 
allowing for more detailed information extraction 
Prescribed burn - Controlled fires intentionally created and controlled by agencies to remove excess fuel 
Python - Versatile programming language 
QA - Quality Assurance, process or method to ensure that data meets defined quality criteria 
Raster - A matrix of cells (pixels) organized into rows and columns, an image, in which each pixel contains a 
value that represents a specific attribute 
Red Band - A band in the red region of the visible spectrum, 625nm to 740nm 
RTC - Radiometric Terrain Correction, used to reduce distortion in imagery caused by terrain variation by 
ensuring backscatter values accurately reflect the surface 
Rx - Prescribed 
SBG - Surface Biology and Geology 
SBNF - San Bernardino National Forest 
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Shrubland - Areas where vegetation distribution is dominated by shrubs or short tress 
Simplified regression analysis - regression analysis using only one independent variable 
Sparse tree canopy - Areas of forest where tree crowns are spread out, leaving space in-between crowns 
Sparse vegetation - Areas with low vegetation cover, 10-50% vegetation surface coverage 
Spatial resolution - A sensors’ ability to register a physical object on the ground, within a single cell or pixel  
Spectral solar absorption - The amount of solar radiation energy absorbed by a surface or object 
Surface reflectance - Incoming solar radiation that is reflected by the Earth’s surface 
SWIR - Short-Wave Infrared, region of the electromagnetic spectrum 1400nm to 3000nm 
SWIR1 - A band in the short-wave infrared region of the electromagnetic spectrum 1550nm to 1750 
SWIR2 - A band in the short-wave infrared region of the electromagnetic spectrum 2090nm to 2350nm 
Temporal resolution - The frequency at which images are captured over the same geographic area 
TOA - Top of Atmosphere 
Transformation - The conversion of geographic coordinates on a map or image from one system to another  
UAVSAR - Uninhabited Aerial Vehicle Synthetic Aperture Radar 
Unburned - Vegetation remains intact, no soil change, no evidence of fire impact 
USDA - United State Department of Agriculture 
V - Vertical polarization, oscillation of an antenna’s electronic field in the vertical plane 
Vegetation greenness - The amount and vigor of green vegetation, often used as an indicator of plant  
health 
WUE  - Water Use Efficiency, the ratio of biomass produced to water consumed, gross primary production 
by evapotranspiration 
WUI - Wildland Urban Interface, the zone where regions of human development meet vegetative fuels 
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8. Appendices  
Appendix A: LANDFIRE 

 
Figure A.1 
Historical land cover changes within Fire Perimeters. Historical vegetation precedent within the Line Fire and AOU 
burn perimeter in San Bernardino National Forest, San Bernardino, CA (LANDFIRE 2023). 

 
 
Figure A.2 
Existing Vegetation Classes within Fire Perimeters. Vegetation classification within the Line Fire burn perimeter in San 
Bernardino National Forest, San Bernardino, CA (LANDFIRE 2023). 

 

 
Figure A.3 
Existing tree cover percentages within Fire Perimeters. Canopy Cover Percentages within the Line Fire and AOU burn 
perimeter in San Bernardino National Forest, San Bernardino, CA (LANDFIRE 2023). 
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Appendix B: EMIT & ECOSTRESS 
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Figure B.1 
Canopy Water Content within fire perimeters estimated with ISS EMIT surface reflectance (ISS EMIT, 2023).  

 
 
Figure B.2 
Histograms displaying canopy water content throughout fire extents (ISS EMIT, 2023). 

 
 

Figure B.3 
Histograms displaying Evaporative Stress Index and Water Use Efficiency Change pre- and post-AOU and 
Line fire burn (ISS ECOSTRESS, 2024). 

 
 

Appendix C: NDVI & EVI 
Figure C.1 
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NDVI Landscape Greenness Trends in Line Fire extent, from September 5 – December 21, 2024 (HLS, 2024–
2025).  

  
 
 
Figure C.2 
NDVI Landscape Greenness Trends Over Time. NDVI Time Series Ordinary Least Squares (OLS) Regression 
Analysis: Angelus Oaks Understory Prescribed Burn vs Line Fire, from November 2023 – March 2025 (HLS, 
2023–2025). The regression outputs for each fire respectively are shown below this. 
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Figure C.3 
Enhanced Vegetation Index (EVI) Landscape Greenness Trends in Line Fire extent from September 5 – 
December 21, 2024 (HLS, 2024–2025).  

 
 
 
Figure C.4 
EVI Landscape Greenness Trends Over Time. EVI Time Series Ordinary Least Squares (OLS) Regression 
Analysis: Angelus Oaks Understory Prescribed Burn vs Line Fire, from November 2023 – March 2025 (HLS, 
2023–2025). The regression outputs for each fire respectively are shown below this. 
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Appendix D: Burn Severity 
Figure D.1 
Prescribed burn categorized by soil burn severity. Differenced normalized burn ratio (dNBR) in AOU extent 
(left) and (right) ArcGIS Basemap “Environment” AOU Prescribed Burn Elevation Topography Map (HLS, 
2024–2025,). Basemap Source: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, 
© World Wildlife Fund, Inc., and the GIS User Community.   
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Figure D.2 
Line Fire was categorized by soil burn severity. Differenced normalized burn ratio (dNBR) in wildfire extent 
(left) and (right) ArcGIS Basemap “Environment” AOU Prescribed Burn Elevation Topography Map (HLS 
2024-2025, ). Basemap Source: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap 
contributors, © World Wildlife Fund, Inc., and the GIS User Community. 

 
 
 
Figure D.3 
Examining Fire Type Burn Severity Trends within the Line Fire (purple) and AOU Prescribed Burn (gold) fire 
perimeters by Burn Severity Classification in San Bernardino National Forest, San Bernardino, CA (HLS, 2024–
2025). 
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Figure D.4 
Composite image of San Bernardino National Forest with Line Fire perimeter (purple) and AOU perimeter 
(black) dNBR classified soil burn severity (UAVSAR, 2023, 2025). 

 
 
 
Figure D.5 
Composite image of San Bernardino National Forest with Line Fire perimeter (purple) and AOU perimeter 
(black) dNBR classified soil burn severity (UAVSAR, 2023, 2025). 
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Appendix E: Other 
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Figure E.1 
Errors, uncertainty, and feasibility concerns. Varying spatiotemporal resolution inconsistencies were present.  

 
 
Figure E.2 
Courtesy of the USDA Forest Service, this map shows the location of the Angelus Oaks Prescribed Fire, April 
30 to May 3. 
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