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Abstract: Recent development within Chatham County, Georgia have replaced natural tree canopy, raising 
concerns about increased urban heat island (UHI) impacts. To combat urban heat, the Chatham County 
Government has sponsored tree canopy evaluations and set up cooling stations during peak summer months. 
In an effort to help the local government better characterize county-wide UHI impacts, we used optical and 
infrared imagery from the NASA/USGS Landsat 8 Operational Land Imager (OLI) and, Thermal Infrared 
Sensor (TIRS), Landsat 9 OLI-2 and TIRS-2, ISS ECOsystem Spaceborne Thermal Radiometer Experiment 
on Space Station, and National Land Cover Database imagery to map changes in urban heat and vegetation 
during growing season months between 2014 and 2024. Additionally, we combined the U.S. Census Bureau’s 
community resilience index for heat with environmental risk factors to develop a heat vulnerability index 
between 2020 and 2022. We also used the Integrated Valuation of Ecosystem Services and Tradeoffs 
(InVEST) Urban Cooling Model from the Natural Capital Project to create a heat mitigation index for 2021. 
We found that changes in urban heat and vegetation were both concentrated towards the northwestern part 
of the county and associated with development activities. We additionally found that the county lost nearly 
17% of its existing canopy between 2014 and 2024. Lastly, our analyses of both heat vulnerability and heat 
mitigation indicate that urbanized areas have high susceptibility to heat stress. The results suggest that Earth 
observations can be used to map heat-related environmental factors that contribute to the UHI effect in 
Chatham County and support new policy initiatives and community outreach efforts around urban heat in the 
county.  
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1. Introduction 
1.1 Background Information 
The urban heat island (UHI) effect is a phenomenon where urban areas experience higher temperatures 
relative to nearby non-urban areas, posing threats to human health and safety (Straub et al., 2019; Tamaskani 
Esfehankalateh et al., 2021). Researchers have identified several root causes for the UHI effect, including high 
concentrations of impervious surfaces, restricted airflow between buildings, and heat domes created by 
greenhouse gases (Leal Filho et al., 2018; Tamaskani Esfehankalateh et al., 2021). The UHI effect is a concern 
from both a public health and climate perspective, having been linked to higher rates of heat-related 
morbidity and mortality (Heidari et al., 2020; Wong, Paddon, & Jimenez, 2013) and changes to local weather 
patterns (Akbari et al., 2016; Leal Filho et al., 2018). It is anticipated that the UHI effect will become more 
frequent and prolonged in urbanized areas in the future due to climate change (Leal Filho et al., 2018). 
 
The UHI effect can be mitigated by introducing vegetation, which prevents solar radiation from being 
absorbed and converted to heat by urban surfaces (Bowler et al., 2010; Rogan et al., 2013) by providing shade, 
absorbing solar radiation as fuel for evapotranspiration, and reflecting solar radiation (Balany et al., 2020).  
Specifically, trees have been shown to reduce peak ambient temperatures by 0.36 – 9.41 °F, and up to 57.2 °F 
when assessing physiological equivalent temperature (Balany et al., 2020; Tamaskani Esfehankalateh et al, 
2021). Thus, green infrastructure remains a focus for policy makers when facing temperature increases in 
urban areas (Balany et al., 2020). 
 

Earth observations can be leveraged to determine the magnitude of the UHI effect and identify factors that 
are contributing to urban heat. Land Surface Temperature (LST), derived from Landsat 8 and 9 Thermal 
Infrared Sensors (TIRS), has been used to detect UHI –– establishing a remotely sensed alternative to 
measuring ambient air temperatures (Sagris & Sepp, 2017). Satellite imagery can also be used to detect canopy 
cover, which plays a role in mitigating urban heat (McDonald et al., 2021). Further, remotely sensed data can 
be used to estimate variables, such as evapotranspiration and albedo, which can be input into the Integrated 
Valuation of Ecosystem Services and Tradeoffs (InVEST) Urban Cooling Model (Natural Capital Project, 
2025) to assess the heat mitigation ability of vegetation (Zawadzka et al., 2011). Heat mitigation represents the 
ability of an area to cool itself, and when used in tandem with social vulnerability data, provides an 
understanding of areas in which heat mitigation strategies should be implemented.  
 
1.2 Study Area  
Located on the Atlantic coast, Chatham County is the easternmost county in Georgia (Figure 1). Chatham is 
well known for the historic city of Savannah, and a combination of tourism and ports contribute to 6% of the 
total Gross Domestic Product of Georgia (Kraeger, 2020). With a population of 307,336 and a land area of 
433.12 mi2 (US Census Bureau, 2024b), Chatham County continues to grow in terms of population, 
industrialization, and development. Specifically, county officials attribute the influx of large companies, such 
as Hyundai, to the region as being a principal driver of their recent demographic trends. These changes have 
likely contributed to an increase in urban heat and a resulting increase in heat-related morbidity and mortality. 
Thus, this project focuses on Chatham County due to concerns of rising temperatures in association with loss 
of canopy cover within the county and a desire to pinpoint hotspot areas of immediate concern.  
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ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure 1. Study area of Chatham County, Georgia 

 
1.3 Project Partners and Objectives 
Our team collaborated with the local government of Chatham County to determine the feasibility of utilizing 
NASA Earth observations to identify areas with high heat risk and inform heat mitigation measures to 
protect county residents. Chatham County has previously taken steps to understand UHI impacts, contracting 
the Savannah Tree Foundation (STF) in 2015 to evaluate tree canopy loss in the county and determine 
associated heat trends (Savannah Tree Foundation, 2015). STF found that Chatham lost over 20,000 acres of 
canopy between 1999 and 2014, with a projected 40,000 additional acres to be lost by 2050 (Savannah Tree 
Foundation, 2015). In 2022, STF, in collaboration with the Savannah College of Art and Design, found that 
97% of the existing tree canopy within Savannah was nearing the end of its life cycle (Savannah Tree 
Foundation, 2022). They also found a 35 °F temperature difference between impervious surfaces and 
vegetation, highlighting the importance of vegetation in mitigating urban heat. To support Chatham County 
in their search for data to inform UHI mitigation efforts, our team chose to analyze trends within the county 
for May–October of 2014–2024. We selected this study period to align with the STF studies and to coincide 
with peaks in annual temperature and regional vegetative growth. 
 
Our team established three main objectives for this project, leveraging NASA Earth observations collected 
during 2014–2024. Our first objective was to explore how remotely sensed environmental factors, such as 
urban heat, vegetation heath, and canopy cover, changed during the study period, see where the greatest 
changes occurred, and try to identify the causes. After pinpointing these changes, we were able to work 
towards our second objective of identifying areas most at risk of urban heat impacts, as indicated by high 
environmental risk, high social vulnerability, as well as low heat mitigation ability. Lastly, after identifying 
these areas, our final objective was to help Chatham County reassess their heat mitigation strategy considering 
our new data. By showing county officials where urban heat effects are most severe, the county may be able 
to create effective vegetation and heat station implementation projects, as well as development and resilience 
policies.  
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2. Methodology 
To address Chatham County’s concerns, we used Earth observations from NASA Landsat 8 Thermal 
Infrared Sensor (TIRS), Landsat 9 TIRS-2, and ISS ECOsystem Spaceborne Thermal Radiometer 
Experiment on Space Station (ECOSTRESS) to generate various maps displaying urban heat trends across 
the county. We mapped the current state of urban heat, vegetation, and canopy cover, as well as changes in 
these variables from 2014–2024. We additionally focused on two northwestern Chatham County 
communities, Pooler and Port Wentworth, to evaluate how changes in urban heat and vegetation health 
correlate with one another. To assess the county’s vulnerability to heat, we developed an environmental risk 
index (ERI), created using satellite imagery, in tandem with our social vulnerability index (SVI), adapted from 
the U.S. Census’ Bureau’s Community Resilience Estimates (CRE) for Heat. We also used the Integrated 
Valuation of Ecosystem Services and Tradeoffs (InVEST) Urban Cooling Model, inputting data provided by 
satellite imagery to generate a map of heat mitigation across Chatham County.  
 
2.1 Data Acquisition  
2.1.1 Urban Heat, Vegetation, and Canopy Cover 
To assess urban heat and vegetation health in Chatham County, we acquired Collection 2 Level 2 imagery 
from NASA’s Landsat 8 Operational Land Imager (OLI)/TIRS and Landsat 9 OLI-2/TIRS-2 (Table A1; 
Earth Resources Observation and Science, 2020). We accessed these data through the PySTAC Planetary 
Computer Collection via the Python (3.10.16) application programming interface, written in the Visual Studio 
Code (1.98.2) integrated development environment. Our Python script accessed this collection and selected 
images that covered the study area during May–October from 2014–2024. To limit cloud contamination, we 
selected images with less than 30% cloud cover and composited valid images for further processing. To look 
specifically at tree canopy, we used the EarthExplorer data portal to acquire Landsat 8 OLI Level 2 imagery 
from the United States Geological Survey (USGS) for our study period (Table A1). 
 
2.1.2 Heat Vulnerability 
The data acquisition process for heat vulnerability involved acquiring environmental risk and social 
vulnerability data. For the environmental component, we used 2021 LST, vegetation, and canopy cover data 
acquired using the methods described above. For the social component, we obtained the U.S. Census 
Bureau’s 2022 CRE for Heat, an index created in collaboration with Arizona State University’s Knowledge 
Exchange for Resilience using survey data collected during 2020–2022 (U.S. Census Bureau, 2024a). The 
CRE for Heat captures 11 possible indicators of social vulnerability to heat exposure, including factors such 
as “no health insurance coverage” and “households that potentially lack air conditioning” (Table C1).  For 
use in our analyses, we downloaded the 2022 Census Tract-level data comma-separated values (CSV) file 
from the Census Bureau website and uploaded it into QGIS (3.40 LTR) for processing.  
 
2.1.3 Heat Mitigation 
To run the InVEST Urban Cooling Model, which calculates an index of heat mitigation (Natural Capital 
Project, 2025), we acquired data for albedo, evapotranspiration, landcover, and canopy cover inputs. The 
InVEST heat mitigation index (HMI) represents an area’s ability to reduce heat on its own via vegetation. We 
used InVEST to map heat mitigation across Chatham County, using data from 2021, the most recent year 
with all required inputs. To find albedo, we first acquired surface reflectance data from Landsat 8 OLI and 
Landsat 9 OLI-2 (Earth Resources Observation and Science, 2020) using Python in Visual Studio Code via 
the PySTAC Planetary Computer (Table A1). We developed a script to select images during May–October 
2021 with less than 5% null values and 30% cloud cover. To obtain evapotranspiration data, we used the 
AppEEARS interface to extract daily evapotranspiration data from ECOSTRESS (Hook & Fisher, 2019) and 
the corresponding quality control data (L3_L4_QA_ECOSTRESS_L2_QC) for May–October 2021. These 
data were downloaded as tagged image files (TIFF) along with a CSV file (ECO3ETPTJPL-001-Statistics), 
which provided statistics of the downloaded evapotranspiration data. Lastly, to obtain land cover data 
(Dewitz, 2023) for InVEST, we used the Multi-Resolution Land Characteristics Consortium’s National Land 
Cover Database Viewer (MRLC NLCD Viewer). We used the Data Download tool, chose the Rectangle 
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method to select an area encompassing Chatham County, and downloaded 2021 landcover data as TIFFs. 
Canopy cover data was acquired for 2021 from Landsat 8 using the methods described in section 2.1.1. 
 
2.2 Data Processing 
2.2.1 Urban Heat and Vegetation  
From the Landsat 8 and 9 infrared images collected, we calculated LST by selecting both the long-wave 
infrared band (lwir11) band and the Pixel Quality Assessment Band (QA_pixel), a band that denotes factors 
affecting image clarity, such as cloud cover and snow cover. We signed the URL of both bands using the 
odc.stac package to assure accurate image retrieval. Once retrieved, we used the QA_pixel band to apply a 
cloud mask that filtered out pixels with excessive clouds and cloud shadows. We then rescaled the raw 
temperature data to floating points using a scale factor and an offset, then converted the raw temperature data 
from Kelvin to Fahrenheit to get an LST composite image. To determine the extent of the UHI effect using 
our LST image, we subtracted a reference temperature taken from a rural reference area (Figure A1). The 
reference area was chosen as it was found to have a consistent land cover type of evergreen forest and woody 
wetlands throughout the study period. We aggregated the selected urban heat bands to create median 
composite rasters for the time ranges of 2014–2016 and 2022–2024. We used three-year aggregates to achieve 
a statistically significant composite with 30-plus images (Kwak & Kim, 2017) given the sparsity of viable 
images available. Using the Rasterio Python package, we exported the median urban heat composite images as 
TIFF files and imported them into ArcGIS Pro (3.1.1) for further processing.  
 
Using an adaptation of our LST script, we calculated the Normalized Difference Vegetation Index (NDVI), a 
widely used metric which assesses health and density of vegetation, by selecting the red and near-infrared 
bands for processing and QA_pixel for quality control and cloud masking. We calculated NDVI with using 
red (Red) and near-infrared (NIR) bands (Equation 1; Kriegler et.al., 1969) and took the 90th quantile of the 
result to assess peak growth, eliminating erroneous values that may result from taking the maximum. Next, 
we added a cloud mask to remove any remaining clouds and created composite NDVI images for May 
through October of 2014–2015, 2014–2016, 2022–2024, and 2024. We selected these aggregates to align with 
LST aggregates and achieve statistical significance by compiling 30+ images (Table A3). The resulting raster 
images had a range of -1 to 1 with negative values representing water, 0 representing barren land, and 1 
representing dense, healthy vegetation. We imported our 90th quantile NDVI TIFF files into QGIS for 
analysis. 

  

                                     𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
(1) 

 
2.2.2 Canopy Cover 
To make Landsat 8 imagery usable for canopy cover analysis, we utilized ArcGIS Pro to combine bands 2–5 
(Blue, Green, Red, Near-Infrared) of Landsat 8 imagery, then used the composite tool with the bands to 
create natural color imagery. We clipped the imagery to the study area and performed pixel classification, 
splitting surface features into three categories: impervious surfaces, non-tree vegetation, and trees. Pixels 
classified as trees were used to find canopy cover for the years of 2014, 2021 and 2024.  
 

2.2.3 Heat Vulnerability 
To assess heat vulnerability, we created our ERI and SVI, which we used in tandem to calculate our heat 
vulnerability index (HVI). To calculate our ERI, we processed LST, NDVI, and canopy cover as explained in 
2.2.1, then used the Extract by Mask tool in QGIS to clip the rasters to the tract boundaries. Next, we used 
the Zonal Statistics tool to find the median value of each environmental risk factor per census tract, then used 
quantiles to score each environmental risk factor from 1–3 and summed these scores to create our ERI, 
which ranges from 3–9. To calculate our SVI, we imported the CRE for Heat and census tract boundaries 
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into QGIS, filtered the data to Chatham County, and selected the variable PRED3_PE, the rate of individuals 
with three or more components of social vulnerability, which has a range of 0-49. 
 
2.2.4 Heat Mitigation 
To run the InVEST model and assess heat mitigation, we processed model inputs by calculating albedo from 
satellite imagery and cleaning evapotranspiration data. To calculate albedo from surface reflectance, we first 
used the rescaling coefficient and offset as instructed by USGS (2023). We then used the V03 Method 

(Equation 2; Andres-Anaya et al., 2023), to solve for a direct estimate of surface albedo (α) using 𝜌𝜆, the 
monochromatic reflectance of the spectral band (λ) provided by Landsat 8. To process ECOSTRESS 
evapotranspiration data, we followed the framework provided in the tutorials section of the ECOSTRESS 
website and used Python in Visual Studio Code to remove granules with no data in more than half of the 
pixels. We imported the TIFF files into QGIS and used the Cell Statistics algorithm from the Processing 
Toolbox to calculate median evapotranspiration values. We then clipped the median evapotranspiration and 
albedo rasters to the study area. 
 

𝛼 = 0.043 + 0.082 ⋅ 𝜌1 + 0.173 ⋅ 𝜌2 + 0.114 ⋅ 𝜌4 + 0.237 ⋅ 𝜌5 + 0.252 ⋅ 𝜌6 + 0.034 ⋅ 𝜌7 (2) 
 
2.3 Data Analysis 
2.3.1 Vegetation and Urban Heat 
To understand how urban heat has changed throughout the county over time, we created a difference map by 
subtracting the 2014–2016 urban heat TIFF from the 2022–2024 urban heat TIFF using the Raster Calculator 
tool. We binned the results using increments of 5 °F for display purposes and created a pie chart to look at 
the distribution of these bins throughout the county. Similarly, we created two difference maps for NDVI by 
subtracting the 2014–2016 composite from the 2022–2024 composite, for comparison with LST, as well as 
the 2014–2015 composite from the 2024 composite to assess change NDVI alone. Rather than binning our 
results for vegetation, we used a continuous color ramp to display our results. As a visual check, we also 
compared the urban heat and vegetation maps to historic aerial photography to examine if land use changes 
influenced the patterns we were seeing. 
 
To get a better understanding of the temperature outliers, we used z-scores to determine statistically 
significant temperature thresholds for our urban heat difference maps, using a Python script. We defined 
statistical significance as 2 standard deviations outside of our mean, which is equivalent to being within the 
95th percentile or a z-score of 2.58. After determining the threshold, we used the script to count how many 
pixels experienced statistically significant changes and converted the number of pixels to total area in acres. 
Zooming in, we clipped our urban heat and vegetation results to Pooler and Port Wentworth, our 
municipalities of interest, and continued analysis in Python. Specifically, we conducted a Pearson’s correlation 
between NDVI and LST to show how these two variables are associated.  
 
2.3.2 Canopy Cover 
To analyze canopy cover, we calculated the percentage of Chatham County covered by trees for 2014 and 
2024. This was done by taking our classified tree canopy cover layers for 2014 and 2024 respectively and 
comparing them to the total Chatham County area to determine percentage of canopy cover for each year. 
We overlaid the 2014 and 2024 canopy cover results to create a map showcasing the loss of canopy over the 
study period. Next, we utilized the Apportion Polygon tool in ArcGIS Pro to determine the percentage of 
tree canopy per census tract for both 2014 and 2024. We then calculated the difference between these values 
to show the change in canopy cover per census tract over the study period. To ensure accuracy of our canopy 
classification, we cross referenced our results with the true color imagery. With this, we are able to compare 
the 2014 and 2024 classifications to highlight areas where changes in canopy cover levels occurred. 
 
2.3.3 Heat Vulnerability 
After calculating our ERI and SVI, our final step in assessing heat vulnerability was to calculate and display 
our HVI. To do this, we calculated the sum of our ERI and SVI, which resulted in an HVI with ranges from 
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4–12. To display the HVI as a bivariate plot, we overlayed our scored ERI and SVI layers using the blending 
by multiplication method in QGIS. 
 
2.3.4 Heat Mitigation 
To analyze heat mitigation, we ran the InVEST urban cooling model using InVEST workbench (3.14.3) 
software to calculate HMI. We inputted the landcover raster, evapotranspiration raster, county shapefile, and 
our user-defined biophysical table (Table D1) into InVEST. The landcover raster that contained data of areas 
outside of the county border, such that the cooling effects of these areas were captured in our model. The 
biophysical table provides InVEST with the shade, albedo, and crop coefficient of each landcover class and if 
the given class is considered a green area. We gave all landcover classes a crop coefficient of 1 because we 
input evapotranspiration instead of potential evapotranspiration. We classified all forest classes, both wetland 
classes, shrub/scrub, herbaceous, and hay/pasture as green areas. To find the shade and albedo for each 
landcover class, we imported the canopy cover, albedo, and landcover rasters into QGIS and clipped all 
rasters to the county boundary. Next we used the raster layer zonal statistics algorithm, selecting the “Zones 
layer” (the landcover raster) as the reference layer, and calculating the mean canopy cover (shade) and albedo 
in each landcover class. 
 
To finalize our model inputs, we chose the “factors” cooling capacity calculation method and input the 
remaining parameters: reference air temperature, UHI effect, air blending distance, and maximum cooling 
distance. We calculated the reference air temperature by using the zonal statistics tool in QGIS to find the 
2021 median land surface temperature of a rural reference area just outside of Chatham County (Figure A1). 
Next, to find UHI effect, we used the raster calculator in QGIS to subtract the reference temperature from 
the 2021 land surface temperature raster for Chatham County. We then clipped this raster to only show data 
within an urban reference area within the county. Using Python, we found the 90th percentile of these land 
surface temperature difference values and used this to represent UHI effect. We used the 90th percentile 
temperature difference value instead of the instructed maximum value because we used land surface 
temperature instead of air temperature, likely resulting in irregularly high values due to the presence of urban 
surfaces. We chose an air blending distance of 600m as recommended by Shatz & Kucharik (2014) and a 
value of 450m, as recommended by InVEST documentation (Natural Captial Project, 2025). After preparing 
all inputs and parameters, we ran the model, outputting an HMI TIFF. We imported this TIFF into QGIS for 
visualization. For more details on the InVEST model and our inputs, refer to Appendix D: InVEST Urban 
Cooling Model. 
 

3. Results 
3.1 Analysis of Results 
3.1.1 Urban Heat and Vegetation Health 
Our urban heat map shows the difference between 2014–2016 and 2022–2024 urban heat composite images 
(Figure 2). Upon initial inspection, we found that the mean temperature change for the county was -1.14 °F. 
Nearly 2/3 of the county showed minor temperature decreases on the order of 0–5 °F, while another 23% of 
the county showed minor increases between 0–5 °F. From our z-score threshold, we found that the 95th 
percentile temperature change threshold for our data were 7.56 °F on the high end, and that approximately 
7,332 acres of the county exceeded this high threshold. These areas are concentrated in the northwest of the 
county and tend to correspond to areas that were developed during the study period (Figure 2). In addition, 
we mapped the UHI effect in Chatham County for 2022–2024 (Figure B1). Values shown are normalized to a 
reference area temperature (Figure A1) of 87.5 °F. Based on these results, we found that UHI is high in 
urbanized areas and low in non-urban areas.  
 
Our NDVI change detection map (Figure 3) depicts changes in vegetation health from 2014/2015 to 2024. 
The most dramatic changes occurred in the northwest part of the county, shown in red. These changes are 
associated with approximately 9,435 acres, or about 3% of the county area, which have seen statistically 
significant decreases in vegetation health. This statistical significance, the 95th percentile NDVI change found 
using with our z-score threshold, is associated with a NDVI decrease of 0.16. We additionally produced an 
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NDVI composite map from 2022 to 2024 to depict the recent state of vegetation health across the county 
(Figure B2). The maximum NDVI value for Chatham County was 0.53, corresponding to forested areas in 
the northern part of the county. Conversely, the urban area surrounding Savannah along with suburban areas 
in the northwest of the county and marsh areas are shown to have the lowest vegetation health. Yet, the 
marsh area results were likely skewed by high levels of water amongst vegetation in the marsh. 
 
Given that urban heat and NDVI results visually indicated that urban heat has increased and vegetation 
health has decreased in the northwestern part of the county, our team performed a Pearson correlation 
analysis between urban heat and NDVI for two communities located in this area: Pooler and Port 
Wentworth. The Pearson correlation analysis measures the linear relationship between two variables. The 
analysis produces an r value, ranging from -1 to 1, in which -1 indicates a perfect negative linear correlation, 1 
indicates a perfect positive linear correlation, and 0 indicates no linear correlation. The Pearson correlations 
for Pooler (Figure 4) and Port Wentworth (Figure B3) were found to produce Pearson r values of -0.618 and 
-0.561, respectfully. These results indicate that urban heat and NDVI are moderately negatively correlated 
within these communities, meaning that there is a significant linkage between decreasing vegetation and 
increasing urban heat, but that they are not completely dependent on one another.   
 

 
ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure 2. Change in urban heat between 2014-2016 and 2022-2024 
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ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure 3. Vegetation change 

 
 

 
ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure 4. Urban heat-vegetation correlation at Pooler community. 

 
3.1.2 Canopy Cover 
We found that the percentage of area covered by tree canopy decreased within all census tracts across the 
county within the study period (Figure B4). Canopy cover within Chatham County decreased around 17% 
between 2014 and 2024, decreasing from 31.80% to 26.49% of the county’s total area (Figure 5). Some urban 
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areas within Savannah experienced higher canopy cover loss than other areas, but the majority of canopy 
cover loss is located in the north and northwest of the county.   
 

 
ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure 5. Canopy cover loss between 2014–2024 

 
3.1.3 Heat Vulnerability and Heat Mitigation 
Our heat vulnerability index bivariate map (Figure 6) considers both environmental risk and social 
vulnerability, as they relate to heat. It depicts the relationships between the Environmental Risk Index (Figure 
C1) and the Social Vulnerability Index (Figure C2), by census tract. Tracts near the center of Savannah, as 
well as northern Pooler and Tybee Island, display the greatest vulnerability to heat events.  
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ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure 6. Heat Vulnerability Index 

 
3.1.4 Heat Mitigation 
As expected, the HMI map (Figure 7) shows that the areas with the lowest heat mitigation are in Savannah, 
where the UHI effect is most pronounced, the concentration of urban surfaces are high, and the 
concentration of vegetation and greenery are low. Low heat mitigation can also be found in other urban areas, 
including Garden City, Pooler, Port Wentworth, and Thunderbolt. Areas of high heat mitigation are found on 
the borders of the county, where large green areas are found in abundance. 
 

 
ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
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Figure 7. InVEST’s Heat Mitigation Index 
 
3.2 Errors & Uncertainties  
When generating our results, we ran into some inherent errors and uncertainties with our data. Specifically, 
there were an inconsistent number of images that were available across months and years due to cloud 
contamination and null data. Further, our datasets had inconsistent spatial and temporal resolutions. This 
specifically impacted our LST and NDVI results, as LST had been resampled from 100m resolution to 30m 
resolution whereas NDVI is collected at 30m resolution initially. Additionally, due to inconsistent temporal 
resolutions in the CRE for heat data, our HVI map consists of data between 2020–2022 (Table A2). Similarly, 
when analyzing the change of urban heat and NDVI over time, we had to compile images across multiple 
years in order to achieve statistical significance. When detecting canopy cover over time, we did not have 
enough images to achieve statistical significance. Moreover, since our analyses only used data from the first 
three and last four years of our study period, we did not account for any changes that may have occurred in 
2017, 2018, or 2019. Finally, cloud masking resulted in some areas having null data, preventing them from 
being incorporated into analyses. 
 
Additionally, remotely sensed data has inherent uncertainty and does not provide a perfectly accurate 
depiction of the measured variable. For example, when measuring NDVI the presence of water among 
vegetation in marsh areas resulted in a negative skew. Additionally, the heat mitigation index provided by 
InVEST has inherent uncertainty because it uses equations with empirical weights. Also, the InVEST heat 
mitigation index does not take into account any dynamic meteorological effects, such as wind or sea breeze, 
when quantifying heat mitigation.  
 

4. Conclusions  
4.1 Interpretation of Results  
From our analysis of urban heat, vegetation health, and canopy cover, we found that the urban heat island 
effect is at play in Chatham County, particularly within urbanized areas. The effect is particularly strong in 
downtown Savannah, as well as in the northwestern part of the county in communities like Garden City, 
Pooler, and Port Wentworth, where vegetation has recently given way to urban development. Looking at how 
urban heat trends have changed within the county over the study period, we found that new pockets of urban 
heat have appeared in the northwestern part of the county. These new urban heat pockets coincide with new 
development projects, where natural vegetation is being replaced with urbanized land uses. Our team found 
that urban heat stayed relatively unchanged within the southeastern part of the county. In total, our team 
found that the county has lost approximately 17% of its canopy cover since 2014, resulting in the expansion 
of urban heat.  
 
Our team also looked at how able the county is to mitigate against urban heat on its own. Results from 
InVEST show that the urban core of Savannah, as well as parts of Garden City and Port Wentworth, have 
low heat index scores. These areas are the least able to naturally mitigate against adverse urban heat effects 
due to the prevalence of urbanized surfaces relative to vegetation. The model also found that less urbanized 
areas with unbroken expanses of greenspace tend to have stronger natural heat mitigation. Moreover, by 
overlaying the U.S. Census CRE with our environmental risk factors, we found that in addition to the core of 
Savannah, northern Pooler and Tybee Island exhibit high vulnerability to heat events due to high combined 
environmental risk and social vulnerability. The compounding effects of low heat mitigation and 
environmental and social vulnerability make Savannah an area for concern regarding heat and a key area for 
policy. 
 
4.2 Feasibility & Partner Implementation  
Despite some errors and uncertainties, our team found that it is feasible to use Earth observations to map 
heat-related environmental factors that contribute to the UHI effect in Chatham County. We were able to use 
Earth observations to gather information on parameters, such as urban heat, vegetation health, and canopy 
cover. Using this data, we were able to examine both spatial and temporal trends in these environmental 
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parameters to understand how the urban heat island effect has evolved within the county. We were also able 
to successfully pair our environmental parameters with social vulnerability data to identify communities most 
vulnerable to heat impacts. Beyond looking at spatial and temporal trends, we were able to model Chatham 
County’s natural ability to mitigate against heat to further contextualize where mitigation efforts can be 
focused. Finally, though our results indicate that the urban heat effect is both present in Chatham County and 
expanding with each new development, this also means that there are many opportunities to implement heat 
mitigation strategies and see significant improvement. Using the information provided from this project, we 
hope that Chatham County is better able to prioritize their heat mitigation efforts. Current mitigation efforts 
that Chatham County implements, such as installing mobile cooling stations and implementing tree planting 
initiatives, can leverage Earth observations to better target their efforts on higher risk areas. Moreover, the 
results presented herein can help Chatham County by supporting new policy initiatives and community 
outreach efforts around urban heat.  
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6. Glossary 
CRE – Community Resilience Estimate; we used the CRE for Heat created by the U.S. census bureau, an 

index created using survey data that represents social vulnerability to heat events 

LST – Land Surface Temperature; the temperature of the surface of the Earth 

ERI – Environmental Risk Index; an index representing environmental risk pertaining to heat, which we 

created using LST, NDVI, and canopy cover data 

HMI – Heat Mitigation Index; the output of the InVEST Urban Cooling Model, which represents an area’s 

ability to cool itself 

HVI – Heat Vulnerability Index; an index representing areas most susceptible to heat risk, which we created 

using environmental and social data.  

InVEST – Integrated Valuation of Ecosystem Services and Tradeoffs; a series of models created by Natural 

Capital Project including the Urban Cooling Model, which we used to find heat mitigation  

NDVI – Normalized Difference Vegetation Index; an index representing vegetation density and health 
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OLI – Operational Land Imager; sensors on Landsat 8 and 9 which measure the visible, near infrared, and 

shortwave infrared wavelengths 

STF – Savannah Tree Foundation; a nonprofit that protects and grows Chatham County’s urban forests 

SVI – Social Vulnerability Index; an index representing areas where residents are most vulnerable to heat, 

which we created using the CRE for Heat 

TIRS – Thermal Infrared Sensors; sensors on the Landsat 8 and 9 which measure land surface temperature 

in two thermal infrared bands 

UHI – Urban Heat Island; a phenomenon where urban areas have higher temperatures than nearby non-
urban areas. This results from the trapping of heat by urban surfaces, buildings, and greenhouse gas emissions 
 

  



   
 

16 

 

7. References  
Akbari, H., Cartalis, C., Kolokotsa, D., Muscio, A., Pisello, A.L., Rossi, F., Santamouris, M., Synnesfa, A., 

Wong, N.H., & Zinzi, M. (2016). Local Climate Change and Urban Heat Island Mitigation Techniques 

– The State Of The Art. Journal of Civil Engineering and Management, 22(1), 1-16. 

https://doi.org/10.3846/13923730.2015.1111934  

Andres-Anaya, P., Sanchez-Aparicio, M., Del Pozo, S., Lagüela, S., Hernández-López, D., & Gonzalez-

Aguilera, D. (2024). A New Methodology for Estimating Surface Albedo in Heterogeneous Areas from 

Satellite Imagery. Applied Sciences, 14(1), 75. https://doi.org/10.3390/app14010075 

Balany, F., Ng, A. W. M., Muttil, N., Muthukumaran, S., & Wong, M. S. (2020). Green Infrastructure as an 
urban heat island mitigation strategy—A review. Water, 12(12), 3577. 
https://doi.org/10.3390/w12123577   

 
Bowler, D. E., Buyung-Ali, L., Knight, M. T., & Pullin, A.S. (2010). Urban greening to cool towns and cities: 

A systematic review of the empirical evidence. Landscape and Urban Planning, 97, 147–155. 
https://doi.org/10.1016/j.landurbplan.2010.05.006   

 
Dewitz, J. (2023). National Land Cover Database (NLCD) 2021 Products: U.S. Geological Survey data release [Data 

 set]. U.S. Geological Survey. Retrieved March 5, 2025, from https://doi.org/10.5066/P9JZ7AO3 

Earth Resources Observation and Science (EROS) Center. (2020). Landsat 8-9 Operational Land Imager / 
Thermal Infrared Sensor Level-2, Collection 2 [Data set]. U.S. Geological Survey. Retrieved February 3, 2025, 
from https://doi.org/10.5066/P9OGBGM6 

 
Hook, S., Fisher, J. (2019). ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global 70 m V001 [Data set]. 

NASA EOSDIS Land Processes Distributed Active Archive Center. Retrieved March 6, 2025, from 
https://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001  

 
Kwak, S. G., & Kim, J. H. (2017). Central limit theorem: the cornerstone of modern statistics. Korean journal of 

anesthesiology, 70(2), 144–156. https://doi.org/10.4097/kjae.2017.70.2.144 
 
Leal Filho, W., Echevarria Icaza, L., Neht, A., Klavins, M., & Morgan, E. A. (2018). Coping with the impacts 

of urban heat islands. A literature based study on understanding urban heat vulnerability and the 
need for resilience in cities in a global climate change context. Journal of Cleaner Production, 171, 1140–
1149. https://doi.org/10.1016/j.jclepro.2017.10.086 

 
McDonald, R. I., Biswas, T., Sachar, C., Housman, I., Boucher, T. M., Balk, D., Nowak, D., Spotswood, E., 

Stanley, C. K., & Leyk, S. (2021). The tree cover and temperature disparity in US urbanized areas: 
Quantifying the association with income across 5,723 communities. PloS One, 16(4). 
https://doi.org/10.1371/journal.pone.0249715 

 
Natural Capital Project. (2025). InVEST. Stanford University, University of Minnesota, Chinese Academy  

of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre and the  
Royal Swedish Academy of Sciences. https://naturalcapitalproject.stanford.edu/software/invest 
 

Rogan, J., Ziemer, M., Martin, D., Ratick, S., Cuba, N., & DeLauer, V. (2013). The impact of tree cover loss 
on land surface temperature: A case study of central Massachusetts using Landsat Thematic Mapper 
thermal data. Applied Geography, 45, 49–57. https://doi.org/10.1016/j.apgeog.2013.07.004   

 
Sagris, V., & Sepp, M. (2017). Landsat-8 TIRS Data for Assessing Urban Heat Island Effect and Its Impact  

https://doi.org/10.3846/13923730.2015.1111934
https://doi.org/10.3390/app14010075
https://doi.org/10.3390/w12123577
https://doi.org/10.1016/j.landurbplan.2010.05.006
https://doi.org/10.5066/P9JZ7AO3
https://doi.org/10.5066/P9OGBGM6
https://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001
https://doi.org/10.4097/kjae.2017.70.2.144
https://doi.org/10.1016/j.jclepro.2017.10.086
https://doi.org/10.1371/journal.pone.0249715
https://naturalcapitalproject.stanford.edu/software/invest
https://doi.org/10.1016/j.apgeog.2013.07.004


   
 

17 

 

on Human Health. IEEE Geoscience and Remote Sensing Letters, 14(12), 2385–2389.    
 https://doi.org/10.1109/LGRS.2017.2765703 
 
Savannah Tree Foundation. (2015). An Assessment of Urban Tree Canopy Chatham County, Georgia.  

Chatham County Archives. https://savannahtree.org/wp-content/uploads/2023/11/Chatham-   
County-Urban-Tree-Canopy-Assessment.pdf 

 
Savannah Tree Foundation. (2022). Savannah’s Journey to Canopy Equity. Chatham County Archives. 
 https://savannahtree.org/wp-content/uploads/2024/12/STF_Tree-Canopy-Equity.pdf 
 
Shatz, J. & Kucharik, C.J. (2014). Seasonality of the Urban Heat Island Effect in Madison, Wisconsin. Journal 
 of Applied Meteorology and Climatology, 53(10), 2371-2386. https://doi.org/10.1175/JAMC-D-14-
 0107.1 
 
Straub, A., Berger, K., Breitner, S., Cyrys, J., Geruschkat, U., Jacobeit, J., Kuhlbach, B., Kusch, T., Philipp, A.,  

Schneider, A., Umminger, R., Wolf, K., & Beck, C., (2019). Statistical Modelling of spatial patterns of 
the urban heat island intensity in the urban environment of Augsburg, Germany. Urban Climate, 29, 
100491. https://doi.org/10.1016/j.uclim.2019.100491  

 
Tamaskani Esfehankalateh, A., Ngarambe, J., & Yun, G. Y. (2021). Influence of Tree Canopy Coverage and 

Leaf Area Density on Urban Heat Island Mitigation. Sustainability, 13(13), 7496. 
https://doi.org/10.3390/su13137496 
 

U.S. Census Bureau (2024a). 2022 Community resilience estimates for heat –Tract [Data set]. U.S. Census Bureau,  
Department of Commerce. Retrieved February 3, 2025, from https://www2.census.gov/programs-

 surveys/demo/datasets/community-resilience/2022/heat/CRE22_Heat_Tract.csv 
 
U.S. Census Bureau (2024b). QuickFacts: Chatham County, Georgia.   

https://www.census.gov/quickfacts/fact/table/chathamcountygeorgia/PST045224 
 
USGS (2023). How do I use a scale factor with Landsat Level-2 science products? 

https://www.usgs.gov/faqs/how-do-i-use-a-scale-factor-landsat-level-2-science-products 

 
Wong, K.V., Paddon, A., & Jimenez., A. (2013). Review of World Urban Heat Islands: Many Linked to 

Increased Mortality. Journal of Energy Resources Technology, 135(2), 022101. 
https://doi.org/10.1115/1.4023176  

 
Zawadzka J.E., Harris J.A., Corstanje R. (2021). Assessment of heat mitigation capacity of urban greenspaces 

with the use of InVEST urban cooling model, verified with day-time land surface temperature data. 
Landscape and Urban Planning, 214, 104163. https://doi.org/10.1016/j.landurbplan.2021.104163 

 
 
 
 
 

  

https://doi.org/10.1109/LGRS.2017.2765703
https://savannahtree.org/wp-content/uploads/2023/11/Chatham-
https://savannahtree.org/wp-content/uploads/2024/12/STF_Tree-Canopy-Equity.pdf
https://doi.org/10.1175/JAMC-D-14-0107.1
https://doi.org/10.1175/JAMC-D-14-0107.1
https://doi.org/10.1016/j.uclim.2019.100491
https://doi.org/10.3390/su13137496
https://doi.org/10.3390/su13137496
https://www2.census.gov/programs-surveys/demo/datasets/community-resilience/2022/heat/CRE22_Heat_Tract.csv
https://www2.census.gov/programs-surveys/demo/datasets/community-resilience/2022/heat/CRE22_Heat_Tract.csv
https://www.census.gov/quickfacts/fact/table/chathamcountygeorgia/PST045224
https://www.usgs.gov/faqs/how-do-i-use-a-scale-factor-landsat-level-2-science-products
https://doi.org/10.1115/1.4023176
https://doi.org/10.1016/j.landurbplan.2021.104163


   
 

18 

 

8. Appendices 
Appendix A: Data Information 

 
Table A1 
Datasets used in this study 

Dataset 
Spatial 

Resolution 
Time 

Period 
Description Source 

Landsat 8 OLI 30m 
2014–2024 

Red and near infrared bands: 
used to calculate NDVI PySTAC Planetary 

Computer 
2021 

Surface reflectance: used to 
calculate Albedo 

Landsat 8 TIRS 100m 2014–2024 
Long-wave infrared band: 

used to calculate LST 
PySTAC Planetary 

Computer 

Landsat 9 OLI-2 30m 
2022–2024 

Red and near infrared bands: 
used to calculate NDVI PySTAC Planetary 

Computer 
2021 

Surface reflectance: used to 
calculate Albedo 

Landsat 9 TIRS-2 100m  2022–2024 
Long-wave infrared band: 

used to calculate LST 
PySTAC Planetary 

Computer 

CRE for Heat N/A  2020–2022 
Community Resilience Index 
for Heat: used to create Heat 

Vulnerability Index 
U.S. Census Bureau 

ECOSTRESS 70m 2021 Daily evapotranspiration AppEEARS 

NLCD 30m 2021 Land cover classification 
MRLC NLCD 

Viewer 

 
Table A2 
Years of data used for analyses 

Analysis Years of data used 

Urban Heat change 2014–2016 & 2022–2024 (statistical significance achieved) 

NDVI change 2014–2015 & 2024 (statistical significance achieved) 

Canopy Cover change 2014 & 2024 (statistical significance not achieved) 

Community Resilience Estimate for Heat 2020–2022 

Environmental Risk Index 2021 

InVEST 2021 
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ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure A1. Urban and rural reference areas 

 
Table A3 
Number of images in composites 

Parameter  Time Period  Number of Selected Images 

LST 
2014–2016 34 

2022–2024 63 

NDVI 

2014–2015 33 

2014–2016 49 

2022–2024 94 

2024 42 
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Appendix B: Urban Heat, Vegetation Health, & Canopy Cover 

 

 
ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure B1. Median Urban Heat: 2022–2024 

 

 
ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure B2. NDVI: 2022–2024 
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ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure B3: Urban Heat-Vegetation Correlation – Port Wentworth 

 

 
ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure B4: Canopy Cover Change per Census Tract: 2014–2024 
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Appendix C: Social vulnerability & Environmental Risk 

 
Table C1 
CRE Components of Social Vulnerability for Household (HH) and Individuals (I) 

Component Name Vulnerability Qualification  HH or I 

Financial hardship Income-To-Poverty Ratio < 130 percent or 50% < 
for housing/rental costs 

HH 

Single or zero caregiver household Only one or no individuals living in the household 
who are 18-64 

HH 

Housing quality Unit-level crowding with >0.75 persons per room 
or live in a mobile home, boat, RV, van, or other  

HH 

Communication barrier Limited English-speaking households or no one in 
the household has a high school diploma 

HH 

No one in the household is employed 
full-time (not applicable if all residents 
are 65+) 

As stated in component name HH 

Disability posing constraint to 
significant life activity 

As stated in component name I 

No health insurance coverage As stated in component name I 

65 years or older As stated in component name I 

Transportation exposure No vehicle access (HH) or work commuting 
methods with increased exposure to heat (I) 

HH/I 

No broadband internet access As stated in component name HH 

Potentially lacking air conditioning As stated in component name HH 
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ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure C1. Environmental Risk Index 

 

 
ArcGIS. (Basemap Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User 

Community) 
Figure C2. Social Vulnerability Index 
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Appendix D: InVEST Urban Cooling Model 
 

InVEST Model Description 

The InVEST Urban Cooling Model incorporates the cooling effect of large green spaces (>2ha) and the 

cooling capacity of land cover across the county. If a pixel is within the Maximum Cooling Distance (dcool) of a 

large green space, the heat mitigation index is calculated as a distance-weighted average of cooling capacity 

from the large green spaces and the given pixel. We chose the “factors” Cooling Capacity Calculation 

Method, which finds the cooling capacity for each land cover type (CCi) using the weighted sums of the 

evapotranspiration index (ETI), shade, and albedo (Equation D1). 

 

Shade and albedo are provided by the user for each of the land cover classes in the biophysical table (Table 

D1). ETI is a normalized value for evapotranspiration found by dividing the product of the crop coefficient 

(Kc) and reference evapotranspiration (ETo) by the maximum ETo value (ETmax) within the area of interest 

(Equation D2). Since we had high-resolution evapotranspiration values, we replaced Kc • ETo with 

evapotranspiration (ET) by setting Kc to 1 in the biophysical table for all landcover classes and inputting ET 

into InVEST in place of ETo. 

 

 

 𝐶𝐶𝑖 = 0.6 ⋅ 𝑠ℎ𝑎𝑑𝑒 + 0.2 ⋅ 𝑎𝑙𝑏𝑒𝑑𝑜 + 0.2 ⋅ 𝐸𝑇𝐼 (𝐷1) 

 

The “factors” method of calculating Cooling Capacity in InVEST (Natural Capital Project, 2025). 

 

 

 𝐸𝑇𝐼 =
𝐾𝑐 ⋅ 𝐸𝑇𝑜

𝐸𝑇𝑚𝑎𝑥
 (𝐷2) 

 

Evapotranspiration index in InVEST (Natural Capital Project, 2025). 
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Biophysical Table Description 

The Lucode column in the biophysical table (Table D1) is the land use/land cover code from the landcover 

raster, with the description of each landcover class found in the Description column. The Green_area column 

is a boolean value that states if the given landcover class is a green area or not. We classified all forest classes, 

both wetland classes, shrub/scrub, herbaceous, and hay/pasture as green areas. Shade represents the 

proportion of pixels for each landcover class with at least 2m of canopy cover. We estimated this using 

canopy cover, assuming that all canopy cover is at least 2m in height. To find the shade and albedo for each 

landcover class, we imported the canopy cover, albedo, and landcover rasters into QGIS and used the Raster 

Layer Zonal Statistics algorithm, selecting the “Zones layer” (the landcover raster) as the Reference layer, to 

find the mean canopy cover (shade) and albedo in each land cover class. 

 

Table D1 
Biophysical Table 

Lucode Description Shade Kc Albedo Green_area 

0 Unclassified 0 0 0 0 

11 Open Water 0.00930668 1 0.03558867 0 

21 Developed, Open Space 0.21158548 1 0.13902962 0 

22 Developed, Low Intensity 0.09245063 1 0.1396577 0 

23 Developed, Medium Intensity 0.03266511 1 0.15450701 0 

24 Developed, High Intensity 0.00950386 1 0.19655787 0 

31 Barren Land 0.11909935 1 0.1649514 0 

41 Deciduous Forest 0.46666667 1 0.14160579 1 

42 Evergreen Forest 0.46077527 1 0.11732823 1 

43 Mixed Forest 0.49559105 1 0.13204845 1 

52 Shrub/Scrub 0.20152609 1 0.13261597 1 

71 Herbaceuous 0.08008577 1 0.13571433 1 

81 Hay/Pasture 0.11792525 1 0.1474621 1 

82 Cultivated Crops 0.12666965 1 0.13660696 0 

90 Woody Wetlands 0.37859294 1 0.11813085 1 

95 Emergent Herbaceuous Wetlands 0.00924471 1 0.0713674 1 

 
 

 
 
 
 

 
 

 
 


