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PAST (PAUL MINER)



* Pre-history of formal methods at NASA Langley (late ‘70s — early ‘80s
e Visit by RSRE in Summer 1987 -- VIPER
* Langley Formal Methods Research 1988 to present



Fault Tolerant Systems (Mid ‘70s to Early ‘80s)

Two competing developments for proof of concept of
ultra-reliable computer systems for aircraft control

* Software-Implemented Fault-Tolerance (SIFT)
— Design — SRI; Implementation — Bendix

— SIFT - Design and analysis of a fault-tolerant
computer for aircraft control, Wensley, et al. 1978
https://ntrs.nasa.gov/citations/19790041705

— Included some formal analysis

— Original formulation of Byzantine Fault Tolerance
https://lamport.azurewebsites.net/pubs/pubs.pdf

\

* Fault-Tolerant Multiprocessor (FTMP) = e BTy ——
— Design — Draper Labs; Implementation — Collins '

— FTMP - A highly reliable Fault-Tolerant
Multiprocessor for aircraft, Hopkins, et al. 1978
https://ntrs.nasa.gov/citations/19790041704



https://ntrs.nasa.gov/citations/19790041705
https://lamport.azurewebsites.net/pubs/pubs.pdf
https://ntrs.nasa.gov/citations/19790041704

VIPER

In the mid 1980s, the Royal Signals and Radar

Establishment (RSRE) at Malvern developed the

Verifiable Integrated Processor for Enhanced

Reliability (VIPER)

e John Cullyer of the RSRE visited NASA Langley in
the summer of 1987.

e This visit resulted in the establishment of the
formal methods research team at NASA Langley.

e |Initial activity was to task Computational Logic,
Inc. to provide an independent assessment of the
VIPER verification claims

— Report on the formal specification and partial
verification of the VIPER microprocessor, Bishop
Brock and Warren Hunt, 1991
https://ntrs.nasa.gov/citations/19910018472
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Presenter Notes
Presentation Notes
Photo of VIPER taken by Paul Miner on June 11, 2025


https://ntrs.nasa.gov/citations/19910018472

In-house team started in 1988
— Ricky Butler (team lead)
— Mix of civil servants and on-site contractors

— Initial focus on fault tolerant systems and digital
hardware design

MOU with RSRE Malvern

External contracts beginning in 1989

— SRl International

— Computational Logic, Inc.

— Odyssey Research Associates
Early activities focused on pairing formal methods
specialists with industry partners

— Desire to ground research in relevant applications

Early Formal Methods at LaRC

Langley’s Formal Methods Program hosted one of
the earliest websites describing formal methods

— Residual pieces are here:
e https://shemesh.larc.nasa.gov/fm/oldfm/

— More recent, but still old:

* https://shemesh.larc.nasa.gov/fm/fm-now-
contract.html

— Current site:
* https://shemesh.larc.nasa.gov/fm/index.html

Next slide: Participants of the 15t NASA Langley Formal
Methods Workshop from August 1990

How many can you identify?


https://shemesh.larc.nasa.gov/fm/oldfm/
https://shemesh.larc.nasa.gov/fm/fm-now-contract.html
https://shemesh.larc.nasa.gov/fm/fm-now-contract.html
https://shemesh.larc.nasa.gov/fm/index.html
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Presenter Notes
Presentation Notes
Photo available online at https://shemesh.larc.nasa.gov/NFM2010/extras/lfm1990.jpg 


Thanks to the College of William and Mary:

* \Verification of Fault-Tolerant Clock Synchronization Systems, Paul S. Miner, 1992.
Master’s Thesis, College of William and Mary
— https://scholarworks.wm.edu/etd/1539625738/

— 1993 NASA Technical Paper version
* https://ntrs.nasa.gov/citations/19940012976

| still use derivatives of this work decades later


https://scholarworks.wm.edu/etd/1539625738/
https://ntrs.nasa.gov/citations/19940012976

PRESENT (PAUL MINER & NATASHA NEOGI)



The Different Types of Formal Methods at NASA Today

Although the use of mathematical logic is a unifying theme across the discipline of
formal methods, there is no single best "formal method".

NASA’s use of formal methods spans multiple centers (e.g., LaRC, JSC, ARC, JPL, etc.) and
employs multiple different techniques (and tools)

U C VIC OC
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Application domains (i.e., space, aeronautics, etc.) can require different modeling
methods and different proof approaches.

Different phases of the life-cycle may be best served by different tools and techniques.

Credit: https://shemesh.larc.nasa.gov/fm/
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Presenter Notes
Presentation Notes
Theorem prover might be best used to analyze the correctness of a RTL level description of a Fast Fourier Transform circuit, whereas algebraic derivational methods might best be used to analyze the correctness of the design refinements into a gate-level design.



Framework for the elicitation, formalization and
understanding of requirements

Allows its user to enter hierarchical system
requirements in a structured natural language.
— Requirements written in this language are assigned
unambiguous semantics.
Supports user in understanding semantics and
reformulating requirements if applicable
— natural language description,
— formal mathematical logics,
— diagrams, and
— interactive simulation.
Export requirements into forms that can be used

by a variety of analysis tools, such as Cocosim,
Simulink Design Verifier, and CoPilot.

Technical POC: Anastasia Mavridou, (anastasia.mavridou@nasa.gov)

Formal Specification: Formal Requirements Elicitation Tool (FRET)

r- captures

FRETish

when in cruising mode, the
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sing, Response = (altitude_hold => maintain_altitude).
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maintain altitude)} |

connects + exports

FRET Variable Name T

" 1de_hold_autopiiot component.

CoCoSim
Lustre
CoPilot
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Presenter Notes
Presentation Notes
Fret is a framework.  
Structured natural language, we want to be able to write requirements that can be analyzed with out putting extra effort to put requirements in formal.

*Formalized Fretish…proved correctess of translation into LTL.  



Model Checking: UPPAAL & Lost Link Case Study

 Modeling, validation and verification of real-time . T T
systems modeled as networks of timed automata, "0 e ke i 5
extended with data types (bounded integers, S | —
arrays, etc.) L S

e Supports modelling of non-deterministic processes . . s s s s

with finite control structure and real-valued clocks, rmrE S
communicating through channels or shared .
variables

* Uppaal consists of three main parts: 1 T |

Slow Fast

— a description language—system behavior described as
networks of timed automata extended with clock and
data variables.
— a simulator—validation tool which enables examination

globalAttribute == ATTRIBUTE_INDEX

of possible dynamic executions of a system during early  soecn 0w
design (or modeling) stages.

containsindex =getindexOfValue()

valueFunction
addValue()

— a model-checker—tool that checks invariant and
o . . nestedCheckArray[globallndex] == OPERATOR_ID
reachability properties by exploring the state-space of a

system Technical POC: Natasha Neogi, natasha.a. neogi@nasa.gov
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Presenter Notes
Presentation Notes
a description language—non-deterministic guarded command language with data types (e.g. bounded integers, arrays, etc.). It serves as a modeling or design language to describe system behavior as networks of automata extended with clock and data variables. 
a simulator—validation tool which enables examination of possible dynamic executions of a system during early design (or modeling) stages and thus provides an inexpensive mean of fault detection prior to verification by the model-checker which covers the exhaustive dynamic behavior of the system. 
a model-checker—tool that checks invariant and reachability properties by exploring the state-space of a system, i.e., reachability analysis in terms of symbolic states represented by constraints.



Theorem Proving: Prototype Verification System (PVS) & CD&R

PVS Environment allows for the formal \
S— iIc¥Rous

specification and verification of complex

systems DAIDALUS R el

PVS consists of a specification language, an

interactive theorem prover and a number of Watring and
Recovery
other features... Bande. At

The specification language of PVSis basedon
classical, typed higher-order logic. Corectve Band,
The PVS theorem prover provides a collection
of powerful primitive inference procedures

that are applied interactively under user
guidance within a sequent calculus framework.

Sot=t,
" Corrective Band,
No Alert

LoWC

‘H’ t=1‘0
Serves as a productive environment for o.d:z( No At
constructing and maintaining large ntruder Daidalus n use in the MACS
. . simulation environment
formalizations and proofs

Technical POC: C. Munoz, cesar.a.munoz@nasa.gov https://shemesh.larc.nasa.gov/fm/ICAROUS/ 1,4



Presenter Notes
Presentation Notes
PVS Environment allows for the formal specification and verification of complex systems 
PVS consists of:
 a specification language, 
a large number of predefined theories, 
a type checker, 
an interactive theorem prover that supports the use of several decision procedures and 
a symbolic model checker.
It also includes various utilities including a code generator and a random tester, documentation, formalized libraries, and examples that illustrate different methods of using the system in several application areas. 
The specification language of PVS is based on classical, typed higher-order logic.  
The PVS theorem prover provides a collection of powerful primitive inference procedures that are applied interactively under user guidance within a sequent calculus framework. 
The primitive inferences include propositional and quantifier rules, induction, rewriting, simplification using decision procedures for equality and linear arithmetic, data and predicate abstraction, and symbolic model checking.
Serves as a productive environment for constructing and maintaining large formalizations and proofs
Can formally model cyber-physical systems and their attendant safety properties
Extend embedding of differential dynamic logic to model mode changes for hybrid systems
Formally model properties to be monitored
Verify properties over formal model

Icarous:
On-board software architecture of formally verified, configurable core algorithms for building safe, autonomous unmanned applications
Includes path planning (RRT, A*, ..), traffic avoidance (DAIDALUS), geofence handling (PolyCARP), autonomous decision making (PLEXIL), merging and spacing, stand-off distance, object tracking
Uses a communication publisher-subscriber middleware: NASA’s cFS with DDS support.
Won 2nd place at the XCELLENCE Awards by the AUVSI in the category of Detect and Avoid solutions
Highly configurable: 
Sensor agnostic: ADS-B, RADAR, V2V
Flight tested on different type of aircraft: small rotorcraft, large fixed wing, manned aircraft. 
Publicly available under NASA’s Open Source Agreement: https://github.com/nasa/ICAROUS

Daidalus
Developed as reference system for UAS Detect and Avoid, supporting RTCA SC-228 (UAS MOPS)
Based on ”Well Clear” definition for UAS 
Provides Alerting (1x1) for situational awareness
Provides Maneuver Guidance (1xN) for PIC maneuver recommendation
Formally verified core algorithms for both alerting and guidance
Version 2:
 Support for dynamic alerting logic (Phase I and Phase II)
Integrated sensor uncertainty mitigation logic 


https://shemesh.larc.nasa.gov/fm/ICAROUS/
mailto:cesar.a.munoz@nasa.gov

odd/even Latitude Longitude
1 bit 17 bits 17 bits

Prime Meridiar

* CPRis used to save message space in ADS-
B position messages

* Formal analysis led to tightening of

decoding requirements, and simplified
calculations.

* Spurred development of a PRECIiSA, a tool
for formal analysis of floating point (IEEE-
754 spec) programs

* Formally verified implementations in

CPR divides the globe into floating point (double) and fixed point

“zones,” and transmits only the (single).

target’s position within the zone. . .r-
The receiver has to determine the © Changes from formal analysis and verified

correct zone for proper decoding. implementation to be in revision C of DO-
260 (ABS-B MOPS)

POC: Aaron Dutle (aaron.m.dutle@nasa.gov)
https://shemesh.larc.nasa.gov/fm/CPR/; https://shemesh.larc.nasa.gov/fm/PRECiSA/

Compact Position Reporting—ADS-B Positioning

Sliding region position
for
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Visualization of loose
requirement for decoding.
Target is within stated
distance threshold, but
decodes incorrectly
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Presenter Notes
Presentation Notes
CPR has impact on people.  Is in standard on every aircraft. 


https://shemesh.larc.nasa.gov/fm/CPR/

Runtime Verification: CoPilot Runtime Verification Framework

* High-assurance RV can be assured like any conventional safety-critical system though the system
under observation cannot
* Far simpler than the System Under Observation (SOU)
 Challenges
— If RV is to ensure safety, the specifications being enforced must be derived from safety analysis
— RV frameworks should generate documentation to support traceability from specification to code
— Assure the correctness of the monitor specifications (e.g., specification written in Regular Languages, LTL,

MTL etc.)
— Assure that the monitors correctly implement the specification S ot
— Assured RV must safely compose with the SUO Variables Libraries
* Copilot RV Framework AN VA
— Haskell based Embedded Domain Specific Language (DSL) ( Copllot Compller )
— Synthesize monitors for real-time embedded systems
— Generates Misra-like C monitors and Verilog S DALLS, mranteM  Monitor Gode (inC) Trigger Handler
* Constant time, constant memory l
— Minimum instrumentation of SUO source code W
— Samples the system under observation © Compler
— Integrated with tool support via Ogma l
* FRET, F/, CSF, MBSE tools etc. Executable Flight

Software

Technical POC: Alwyn Goodloe, a.goodloe@nasa.gov


Presenter Notes
Presentation Notes

Safety-Critical systems – failure can result in loss of life or significant property damage
Subject to regulatory oversight 
Historically very conservative design and development practices 
Guidelines: ARP-4761, ARP-4754, DO-178C
Sophisticated algorithmic methods are enabling increasingly autonomous (IA) systems but sacrifice  predictability 
Machine learning (ML)
Sophisticated planning algorithms

Runtime verification (RV) refers to the use of monitors to observe the behavior of a system and detect if it is inconsistent with a given specification
Monitored system - system under observation (SUO)
RV specifications are written in a decidable logic or appropriate abstract notation 
Regular languages
Linear temporal logic (LTL) 
Metric temporal logic (MTL)
Typically when a monitor detects that a property is violated, it raises an alarm or steers the system to a safe mode of operation
RV frameworks synthesize monitors from specifications

MISRA C is a set of software development guidelines for the C programming language developed by MISRA (Motor Industry Software Reliability Association). Its aims are to facilitate code safety, security, portability and reliability in the context of embedded systems, specifically those systems programmed in ISO C / C90 / C99.

Runtime verification (RV) involves monitors that observe the behavior of a system and detects if it is inconsistent with a given specification
Monitored system - SUO
Specification is written in a decidable logic or appropriate abstract notation 
Regular languages, Linear temporal logic (LTL) , Metric temporal logic (MTL)
When a monitor detects that a property is violated, it may raise an alarm or steer the system into a safe mode of operation
RV frameworks synthesize monitors from specs

Challenge: If RV is to ensure safety, the specifications being enforced must be derived from safety analysis
Copilot case studies: 
Fault-tolerant RV leveraging interactions with industry
Monitoring safe separation of unmanned aircraft
Challenge: RV frameworks should generate documentation to support traceability from specification to code
Copilot: Users place labels in expressions and Copilot generates graphic documentation for monitors
Challenge: Assure the correctness of the monitor specifications 
Copilot has proof tools integrated into the framework to assist in proving monitors correct
Kind2 model checker 
Satisfiability modulo theories (SMT) solver
Challenge: Code generated by RV frameworks are subject to the same sort of common bugs as any software
Copilot approach: Apply static analysis tools to find potential sources of bugs in generated code
Frama-C value analysis tool - abstract interpretation 
Runtime Verification’s RV Match C undefinedness checker


Copilot is a Haskell based Embedded Domain Specific Language (DSL) that synthesize monitors for real-time embedded systems 
Generates Misra-like C monitors
Constant time, constant memory
Minimum instrumentation of SUO source code
Samples system under observation 
Can miss state changes if not sampled


Conclusions
High-Assurance RV will only become a reality if there is ample tool support for verification and validation 
Will require tool builders to focus on reals and floats and engineering math
RV frameworks require collaboration with both static analysis and deductive verification research


My project plans to investigate architectural patterns for trustworthy RV
Different levels of robustness to faults imply different architectural patterns
In cooperation with industrial partners to provide:
Fault models  or more likely some subset of one
An avionics architecture (the more detailed the better)
Work with commercial venders to identify properties to monitor
Identify architectures that both meet safety requirements and possesses the necessary observability 
IMA based, Federated systems (FPGAs)
Investigate ways to express robustness in terms of trace theory		
Examine tradeoffs
Very application specific topics like steering won’t be addressed



Runtime Verification: PyContract and Offline Monitoring

Objective is to analyze a log file produced by a previous run of the SUO
— Less constraints concerning memory use
— Enables use of more expressive monitoring languages

Processing log files often requires performing computation on data in log (e.g., substring
extraction, averaging, etc.)
— Internal DSL (i.e., library in a general-purpose programming language) is often needed

PyContract is a Python library offering a way of writing temporal properties using a
combination of state machines and rule-based programming

— States can be parameterized with data, effectively representing facts, which are stored in the monitor
memory, as is typical for rule-based systems

Monitor is instantiated as a class, with any statistics desired being a part of the monitor
(statistics class)

— Monitor can be fed a trace to verify for desired properties or can be fed events sequentially
(potentially enabling online monitoring)

— Enables various forms of visualization and trace mining
— Potential to exploit links between runtime verification and data analysis

All Credit and Technical POC: Klaus Havelund (klaus.havelund-1@nasa.gov)


Presenter Notes
Presentation Notes
In the broadest sense of the term, it represents the slogan: “get the most out of your runs”.
He has a language for extracting traces from logs.  Which of events from the logs are important.
Language specifying how you extract traces from logs and then using model checking to verify properties over those traces.  (5 years) 
Another use of RT verification is to run them on the logs which are already there.  Offline runtime verification.  
Parallelizing SPIN for explicit state model checking.  Gotten good work on clusters.


I conceptualized and developed during 1998 the first prototype of the Java PathFinder model checker, Java PathFinder 1 (JPF1), a translator from Java to Promela, the modeling language of the SPIN model checker. JPF1 translates a large non-trivial subset of Java 1.0 into Promela, allowing model checking of the Java program.I was later involved in the initial phase of the development of Java PathFinder 2 (JPF2-...), the second generation of Java PathFinder. The current Java PathFinder project has been run by Willem Visser. JPF2 is written in Java and model checks Java bytecode directly. 
I worked for during 1996-1997 at Aalborg University Center with Kim Larsen. Here I studied various protocols from Bang & Olufsen using the UPPAAL real-time model checker. We found a bug that had gone unexplained for 10 years, although its precense was known. The error became important due to a transition from hand-held remote controls to automated control.



Other Techniques for V&V

e Abstract Interpretation—PRECISA, etc.
* SAT/SMT Solving—Integrated into multiple frameworks/tools

e Static analysis of code—AdaStress, ReFlow, etc.

— Does not require execution of code

— Lexical analysis of the program syntax

— Investigates and checks the structure and usage of individual statements; often automated
* Dynamic analysis of code (RACE, etc.)

— Involves running the system (testing)

— Program run formally under controlled conditions with specific results expected
— Path and Branch Testing

* Note that Simulation & Testing explore some of the possible behaviors and scenarios of a
system (CocoSim & Lustre, etc.):

— They leave open the problem of possible edge cases in the unexplored scenarios.


Presenter Notes
Presentation Notes
PRECiSA (Program Round-off Error Certifier via Static Analysis) is a fully automatic analyzer for the estimation of round-off errors of floating-point valued functional expressions. This research tool computes an over-approximation of the round-off error of a given floating-point expression and also generates a formal certificate that ensures the correctness of the computed estimation. This certificate relies on a formalization of floating-point arithmetic developed in the Prototype Verification System (PVS). 

ReFlow is a fully automatic floating-point code extractor. Given a PVS real-valued program and the target floating-point precision (single or double), ReFlow generates the corresponding floating-point C implementation. The generated C code is annotated with ACSL (ANSI/ISO C Specification Language ) contracts that relate the floating-point implementation with the real-valued program specification. ReFlow relies on the static analyzer PRECiSA to compute sound round-off error estimations and the corresponding PVS proof certificate that guarantee their correctness.

Static Analysis of Code:  (reflow with precisa, do V&V on annotated code)

Ames absrttract interpreter
CocoSim and Lustre.


FUTURE (NATASHA NEOGI)



Verification and Validation of Increasingly Automated (IA) Systems
— Properties of Concern: Safety, Liveness, Security, Fairness...
* Human Machine Teaming Interactions
— Role Allocation: Authority and Responsibility
* Bounding Behavior of IA Functions in Uncertain Environments

— Contingency Management
— Fault Containment

— Heterogeneous Vehicles Photo
. Credits:
— Mixed ConOps NASA Ames
 Trusted Decision Making Eesea“h
enter
— Adaptive/Non-Deterministic https://www.
o . nasa.gov/dire
— Shifting control paradigm ctorates/arm
d/aosp/amp/

e Certification & Operational Approval
* Public Acceptance/Trust

20



FM for CPS: Distributed Hierarchical Framework for Spacecraft Autonomy

Distributed and hierarchical approach to system monitoring and control is a key idea in
the Modular Autonomous Systems Technology (MAST) framework
— Allows for variable autonomy

Framework enables a component-based architecture that provides interfaces and
structure to developing autonomous technologies

Supports communication and transparent interfaces between components
Enforces a strict command and telemetry flow as a systems engineering tool

Framework has a path to formal analysis and will create assume-guarantee contracts as
long as the autonomous technology components can be verified individually

— Inclusion of contract-based design concepts encourages design for verification methodologies

— Supports component-level verification

— Plays important role in overall system verification

Facilitates data logging via its integration with the Lightweight Accumulator Gathering
Efficiently in Real-time (LAGER) logging software

All Credit and Technical POC: Julia Badger (julia.m.badger@nasa.gov)



Al/ML Verification Challenges

_ Traditional (Physical) Components ML (Software) Components

Criteria Criteria are simple (e.g., failure/breakage rate etc.) for Complexity of ML and its interdependence on its domain
the component as a whole. and environment make it difficult to have explicit and
precise articulation of meaningful criteria that can be
measured.

Feasibility of Testing For physical artifacts, limited testing provides compelling Limited testing of ML cannot provide compelling evidence
evidence of quality, with the continuity of physical of behavior under all conditions.
phenomena allowing widespread inferences to be drawn
from only a few sample points.

Process & Product Underlying principle of statistical quality control is that More rigorous ML design processes will likely lead to
Correlation sampling the product coming out of a process gives a better quality ML components. However, this correlation is
measure of the quality of the process itself, which in turn not sufficient as the sole provider of evidence, as
will determine the quality of items that are not sampled. correlation does not imply causation.

Adapted from: National Research Council. 2007. Software for Dependable Systems: Sufficient Evidence?. Washington, DC: The National Academies Press. https://doi.org/10.17226/11923.



Using Formal Methods for Al/ML Verification

e Testing for ML components is indispensable.

— However, testing alone is insufficient, as it is unclear what coverage means in terms of ML
components.

e Simulation and analysis can provide needed checks for ML components.

Checking that components in
aggregate achieve
appropriate system-level
effects

Validation of environmental Feasibility or satisfiability Verification of code
assumptions, interface analysis of temporal implementation against

assumptions, and constraints behaviors component specifications

— However, simulation and analysis is insufficient due to model inaccuracy, incorrect assumptions (e.g.,
environmental, operator response, execution platform), etc.

* Formal methods can provide guarantees for ML components.
— Formal methods can provide formal proofs of correctness.
— Formal methods techniques often lack scalability.



FM for Al: Plan Execution Interchange Language (PLEXIL) (1)

* PLEXIL is a NASA-developed plan

execution language for representing
plans for automation, as well a

Verifiable Correct Planning

technology for executing these Model-Based
plans on real or simulated systems. Environment Generator
e PLEXIL5 is a NASA-LaRC developed l
formal operational semantics of
PLEXIL
Model-Checker
— Provides a reference implementation PLEXIL
of the PLEXIL executive PLEXILS

— Uses theorem-proving and model-
checking for the formal verification of

plans and plan executions.


Presenter Notes
Presentation Notes
“Mars missions will see unavoidable communication delays of up to 20 minutes each way, as well as periodic communication blackout of up to two weeks” (State-of-the-Agency for EIO)​

Autonomous plan execution is unavoidable. ​
Verifiable correct planning and plan execution is fundamental for safety, autonomy, adaptability of spacecraft operations on highly uncertain and hazardous environments.

A plan execution language is a specialized language for specifying control strategies that command and monitor a variety of systems such as spacecrafts, robots, instruments, and habitats. 
PLEXIL is a NASA-developed plan execution language for representing plans for automation, as well a technology for executing these plans on real or simulated systems.

PLEXIL5 is a NASA-LaRC developed formal operational semantics of PLEXIL, which is freely available under NASA Open Source Agreement.
PLEXIL5 provides a reference implementation of the PLEXIL executive. 
PLEXIL5 uses theorem-proving and model-checking for the formal verification of plans and plan executions. 

Collab between people who know how to write plans, people who write the language, and people who can formally verify those plans. (Ames & Langley)

PLEXIL is developing language at Ames.  They’re working with us to make sure the language is well designed.  (Features and semantics).  Formal semantics of the language can be explored.  
Making sure the plans do what they’re supposed to do. Make sure the language is well defined
Executive is flying every week.  Runtime program that runs plexil plans.  Because plexil doesn’t have to be compiled, requirements to upload the new plan is not as serious as code that is going to be compliled.  Can send new plans every week to satellite.
The fact that executive runs correctly is important.  Executive is the VM that runs programs, and if it is wrong.



* PLEXIL is a NASA-developed plan
execution language for representing
plans for automation, as well a
technology for executing these
plans on real or simulated systems.

e PLEXILS is a NASA-LaRC developed
formal operational semantics of
PLEXIL

— Provides a reference implementation
of the PLEXIL executive

— Uses theorem-proving and model-
checking for the formal verification of
plans and plan executions.

FM for Al: Plan Execution Interchange Language (PLEXIL) (I1)

Run-Time Verification of Plan Execution

-

Ny
4

Run-Time Monitor
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Presenter Notes
Presentation Notes
“Mars missions will see unavoidable communication delays of up to 20 minutes each way, as well as periodic communication blackout of up to two weeks” (State-of-the-Agency for EIO)​
​
Autonomous plan execution is unavoidable. ​
Verifiable correct planning and plan execution is fundamental for safety, autonomy, adaptability of spacecraft operations on highly uncertain and hazardous environments.

A plan execution language is a specialized language for specifying control strategies that command and monitor a variety of systems such as spacecrafts, robots, instruments, and habitats. 
PLEXIL is a NASA-developed plan execution language for representing plans for automation, as well a technology for executing these plans on real or simulated systems.

PLEXIL5 is a NASA-LaRC developed formal operational semantics of PLEXIL, which is freely available under NASA Open Source Agreement.
PLEXIL5 provides a reference implementation of the PLEXIL executive. 
PLEXIL5 uses theorem-proving and model-checking for the formal verification of plans and plan executions. 

Collab between people who know how to write plans, people who write the language, and people who can formally verify those plans. (Ames & Langley)
PLEXIL is developing language at Ames.  They’re working with us to make sure the language is well designed.  (Features and semantics).  Formal semantics of the language can be explored.  
Making sure the plans do what they’re supposed to do. Make sure the language is well defined
Executive is flying every week.  Runtime program that runs plexil plans.  Because plexil doesn’t have to be compiled, requirements to upload the new plan is not as serious as code that is going to be compliled.  Can send new plans every week to satellite.
The fact that executive runs correctly is important.  Executive is the VM that runs programs, and if it is wrong.



Using Al/ML for Formal Verification ()

* Aiding specifier in writing a specification

— Suggesting or accessing templates for common specification patterns and data structures in
the formal tool (caveat: must be checked by specifier)

— Suggesting a code implementation based on specification (caveat: must be checked by
specifier)
e Searching for information, models, techniques, and methods related to a given
framework or tool

— Searching for a lemma in a proof library
— Suggesting a next step in a proof
* Proof repair and change management

— Checking whether alterations to a proof (e.g., adding a new case, changing assumptions, etc.)
break it

— Suggesting structures by which proof can be repaired (e.g., using same inductive method,
providing schema for cases, etc.) thereby leveraging how proof was previously done


Presenter Notes
Presentation Notes
Simple tasks
Looking for info
Fixing proof
Give me a data type with this structure

Using ML in theorem provers…ask Cesar for insight
(1) Help the specifier to write the specification.  I want specification of list with these poperties in PVS.  It will create something wrong, but you will get a template for things that you do all the time.
Use it for writing python code.  Can do with PVS.
(2) Looking for info on theorem prover.  Looking for a lemma that proves things.  Get some suggestions on what lemma to use.  Should be a better way to find a lemma.  Look for information in a sophisticated way that is not just textual (GREP)
(3) Proof repair.  Change specification by adding new case, will break with new case.  Most of the time it is easy to see how that new case can be treated up to some point (you are using induction, provide schema, and then you have to actually prove new case).  
AI does not have to invent proof.  Mimic what you have done for other case.   
If this is a new case, you can leverage how you proved the old cases.  



(Selected) Remaining Challenges for FM

e Scalability and Complexity

— Language, technique, and tool scalability
— Verification at scale (i.e., parallelization)
— Modelling and abstraction

— Time and cost constraints

Education and Training

— Of the FM users

— Of the FM developers

Ease of Use and Interpretability

— Specialized expertise
— Ambiguous results
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Presenter Notes
Presentation Notes
Scalability and Complexity
Verification at scale.  Millions of computers.  Can do a lot more things.  Submit a query to SMT solver and have a million desktops.
Tricky in that you will get a million answers.  What do you do with them?   If you get a proof certificate for each one of them, you need to check the certificate.  
You can ask a different question of each computer, but you’ve got to manage how you put the answers together (some of which may be wrong)
Education and Training
Of the FM developers 
Ease of Use and Interpretability
What does it mean when you run checker on 100 different computers and get 100 different answers



Summary Thoughts

* FM can detect defects earlier in life cycle

* FM can be applied at various levels of resource investment

* FM can be integrated within existing project process models

 FM can improve quality assurance when applied judiciously to appropriate projects

* FM can enable the assurance of systems not currently amenable to traditional practices
However:

* FM are not a panacea, but can increase confidence in a product’s reliability if applied with care
and skill

 FM are very useful for consistency checks, but FM cannot assure completeness of a specification

* Judicious application of FM to suitable project environments is critical if benefits are to exceed
costs
— Scalability
— Reusability

* FM and problem domain expertise must be fully integrated to achieve positive results


Presenter Notes
Presentation Notes
Simple tasks
Looking for info
Fixing proof
Give me a data type with this structure
AI may be good in sensing:  Understanding what cameras are picking up.  
Perception Problem. 
Formal methods to software developers or engineers without much effort from developer. The way that we build these technologies to make it accessible.  
Advantage of using higher order theorem prover means you can specify an embedding (you can have a language which is a sublanguage of PVS).
If you like the way of specifying hybrid programs (hybrid systems), create an embedding in PVS, write it like in HS, and write proof using differential dynamic logic.  
Embedding is key to approaching theorem prover to put things in the way engineers use/write their own things
Use language that they use:  Plaidvpus.  Write hybrid programs he way that you do 



BACKUPS



What is Formal Methods?

* "Formal Methods” refers to mathematically rigorous techniques and tools for the specification,
design and verification of software and hardware systems.

* The phrase "mathematically rigorous" means that the specifications used in formal methods are
well-formed statements in a mathematical logic and that the formal verifications are rigorous
deductions in that logic (i.e., each step follows from a rule of inference and hence can be
checked by a mechanical process.)

S —)

Occasional mathematical Fully formal specification
notation embedded in English languages with a precise
specifications semantics

* Formal methods can:
— Be a foundation for describing complex systems
— Be a foundation for reasoning about systems
— Provide support for program development
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Presenter Notes
Presentation Notes
We are using the term formal methods to refer to a particular collection of knowledge. Just as the plural-sounding term fluid dynamics is treated as singular, so too may the term formal methods be treated as singular.



Why use Formal Methods?

* The value of formal methods is that they provide a means to symbolically
examine the entire state space of a system design and establish a
correctness or safety property that is true for all possible inputs.

e Several approaches are used to address the state explosion problem
associated with real systems:

— Apply formal methods to requirements and high-level designs where most of the
details are abstracted away

— Apply formal methods to only the most critical components

— Analyze models of software and hardware where variables are discretized and ranges
drastically reduced.

— Analyze system models in a hierarchical manner that enables "divide and conquer”
— Automate as much of the verification as possible



Formal Specifications

Formal Specifications:

Have their syntax and semantics rigorously defined

Have a precise form, perhaps mathematical

Eliminate imprecision and ambiguity

Provide a basis for mathematically verifying equivalence between specification and implementation
May be hard to read without training

A Formal Specification has two parts:

Logical Theory: Means by which one reasons about specifications, properties and programs

* First order predicate calculus (quantification over variables); Second order predicate calculus (quantification over
relations); Temporal logic etc.

— Structuring Theory: Defines elements being reasoned about

Property Oriented Formal Specification: State desired properties in a purely declarative way
— Algebraic: Data type viewed as an algebra, axioms state properties of data type’s operations
— Axiomatic: Uses first order predicate logic, pre and post conditions
— Operational Specification: Describe desired behaviour by providing model of system
Model Oriented Formal Specification: Provide direct way of describing system behaviour (sets,
sequences, tuples, maps) :
— Abstract Model (in terms previously defined mathematical objects eg., sets, sequences, functions, etc.)
— State machines



Model Checking

Model checking describes a system and its states by means of logical notions called a
Formal Specification. It then applies an automatic logic checker to verify correctness.
— Formal Specification: Model M of a particular logical theory.

— Property to Verify: Formula ¢ of the chosen logical language.

— Verification Method: Check whether the model M satisfies the property ¢: M E ¢.

Note that in a time varying setting, the truth of a formula becomes a dynamic notion:
the formula can be true in one state of the system and false in another state.
— Formal Specification: The Model M is a Transition System (e.g., state machine, hybrid automaton etc.).
— Property to Verify: Formula ¢ is expressed in a Temporal Logic (e.g., Linear Temporal logic etc.).
— Verification Method: Check whether the transition system M satisfies the TL property ¢: M E ¢.

Model Checking has the following attributes:

— Itis fully automatic, and it does not require user supervision;

— When the design fails to satisfy a property, the method produces a counterexample that shows a
behavior which falsifies that property;

— The advent of Symbolic Model Checking allows one to describe implicitly an astronomic number of
states.



Theorem Proving

* Formal verification involves the use of logical and computational methods to establish
claims over a system via a proof, when both are expressed in precise mathematical terms
— Most conventional proof methods can be reduced to a small set of axioms and rules in any number of
foundational systems.
* Theorem provers can help establish a claim by:
— finding the proof, and/or
— verifying that a purported proof is correct.

 Theorem provers can be automated or interactive:

— Automated theorem proving focuses on finding the proof

* Resolution theorem provers, tableau theorem provers, fast satisfiability solvers, etc., provide a means of
establishing the validity of formulas in propositional and first-order logic

* Hard to guaranteed soundness and it is difficult to ensure that the results they deliver are correct.
— Interactive theorem proving focuses on verifying the proof is correct.

— Every claim is supported by a proof in a suitable axiomatic foundation = every rule of inference is
justified by appealing to prior definitions and theorems, all the way down to basic axioms and rules.

— Requires deep understanding and interaction from users



Runtime Verification

 Runtime verification (RV) refers to the use of
monitors to observe the behavior of a system
and detect if it is inconsistent with a given
specification
— Monitored system - system under observation (SUO) e

* RV specifications are written in a decidable logic
. . Low Confidence Function
or appropriate abstract notation

Inputs

— Regular languages
— Linear temporal logic (LTL)
— Metric temporal logic (MTL)

* Typically, when a monitor detects that a Run Time Monitoring of

Input

Allocation

Plant and Environment
Response

High Conf_ldence Trusted
Function —————)

Output

Safe Operation &

property is violated, it raises an alarm or steers e 72
the system to a safe mode of operation

RV frameworks automatically synthesize
monitors from specifications
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Presenter Notes
Presentation Notes
RTA concept elements:
RTA Architectural Pattern 
Safety Monitor and Safety Preservation Function
RTA Development Process
Tailorable level of rigor based on safety criticality



@ Problem and Goal

Problem

« The inability to establish appropriate assurance for
Al/ML components leaves us unable to effectively
manage their risks and benefits.

— Drives cost of development uneconomically high

— Delays adoption of AI/ML at scale in safety critical
systems

— Results in unknown and unmanageable risks

Goal

* Discover and define what constitutes sufficient
scientific-based evidence to substantiate a safety
claim related to an Al/ML component performing a
safety-critical function.

Al/ML will not see widespread adoption in safety-critical aviation systems until it is properly assured.

Artificial
Intelligence

Machine Learning

Deep Learni
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