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Abstract—NASA is conducting a series of field evaluations
between 2022 through 2030 to develop and demonstrate, in an
operational environment, new technologies supporting efficient
airspace operations. As part of the evaluations, NASA deployed
the Machine Learning Airport Surface Model to enable pre-
departure Trajectory Option Set rerouting in the North Texas
airspace. After a successful field evaluation in North Texas, the
Houston airspace was selected as a new location to validate
scalability of the approach and benefits. This paper provides
shadow mode validation results of the Machine Learning Airport
Surface Model running in the Houston airspace. Shadow mode
consists of the system running passively in real-time while
generating predictions for departures and arrivals, but without
users acting on system recommendations. The shadow evaluation
is an important step towards validation to ensure behavior of
the system and machine learning algorithms running in real-time
matches results generated in offline training.
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I. INTRODUCTION

For efficient airspace operations, the National Aeronautics
and Space Administration (NASA) develops technologies
through the Airspace Operations and Safety Program with
work being executed by the Air Traffic Management - eXplo-
ration (ATM-X) Project. Within the ATM-X Project, the Dig-
ital Information Platform (DIP) Sub-project has established
partnerships with the Federal Aviation Administration (FAA),
the National Air Traffic Controllers Association (NATCA),
five major US airlines and one regional airline (American Air-
lines, Delta Air Lines, jetBlue Airways, Southwest Airlines,
United Airlines, and Envoy Airlines) to conduct a series of op-
erational evaluations [1]. The field evaluations bring together
a cloud based ecosystem of digital services, test vehicles,
and partnerships with major US flight operators to develop
and demonstrate, in an operational environment, concepts and
technologies supporting efficient airspace operations.

The activities will consist of four operational evaluations
between 2022 and 2030. A core concept of the evaluation
series is that each capability does not live in isolation,
rather the technologies are designed to build on and extend
capabilities developed in previous evaluations. This enables
the introduction of incremental capabilities that can be tested
and evaluated in a crawl, walk, run approach.

The first evaluation is focused on single flight pre-departure
Trajectory Option Set (TOS) rerouting. To enable this,
NASA developed the Collaborative Digital Departure Reroute
(CDDR) system that alerts flight operators to pre-departure
reroute opportunities and enables electronic coordination be-
tween flight operators and Air Traffic Control (ATC) via a
NASA user interface [2]. The capability was initially devel-
oped as part of NASA’s Airspace Technology Demonstration
2 (ATD-2) Sub-project and deployed to the North Texas
airspace including: Dallas/Fort Worth International Airport
(KDFW) and Dallas Love Field Airport (KDAL) Air Traffic
Control Towers, Dallas-Fort Worth TRACON (D10), Fort
Worth Air Route Traffic Control Center (ZFW), American
Airlines Integrated Operations Center, Southwest Airlines
Network Operations Center, and Envoy Airlines Headquarters
[3], [4].

The CDDR system developed under ATD-2 demonstrated
efficiency benefits [4], however, was designed as a mono-
lithic decision support tool that had challenges with scaling
across the National Airspace System (NAS). To address these
challenges, NASA’s DIP Sub-project put the CDDR system
through digital transformation resulting in a scalable system
leveraging modern Machine Learning (ML) techniques, de-
signed with a service oriented architecture, and deployed in a
cloud environment [5]. The DIP system was initially validated
in the North Texas airspace in field evaluations between 2022
through 2024 [1].

After validating the DIP CDDR system in North Texas,
NASA worked with FAA and NATCA to identify a new
location in the NAS to validate scalability of the approach and
architecture. NASA investigated the top 10 busiest Terminal
Radar Approach CONtrol (TRACON) facilities across the
NAS and Houston TRACON was selected in coordination
with stakeholders as the location for a 2025 field evaluation
of the DIP CDDR system.

After selection of the Houston airspace, NASA conducted
a series of observations in Houston between September 2024
through January 2025 including: George Bush Interconti-
nental Airport (KIAH), William P Hobby Airport (KHOU),
Houston TRACON (I90), and Houston Center (ZHU). After
researching the airspace, a set of initial capabilities were
deployed to Houston and NASA worked with ATC and flight



operator stakeholders to refine the capabilities over time.
This paper provides shadow mode validation results of the

ML Airport Surface Model in the Houston airspace. The ML
Airport Surface Model is the underlying CDDR predictive
engine powering the pre-departure TOS rerouting evaluation.
Shadow mode consists of the system running passively in real-
time while generating predictions for departures and arrivals,
but without users acting on the reroute recommendations. The
shadow evaluation is an important step towards validation to
ensure behavior of the system and ML algorithms running
in real-time matches results generated in the offline training.
After validation, the system will be used for a field evaluation
in Houston to capture and report out efficiency benefits.

Section II provides background about previous NASA field
demos leading to the ATD-2 CDDR system and Section III
discusses the digital transformation resulting in the DIP ML
Airport Surface Model. Section IV provides details about the
Houston airspace and Section V provides validation results
for the ML predictive services. Section VI details directions
for future work and Section VII provides concluding remarks.

II. BACKGROUND ON NASA FIELD EVALUATIONS

NASA has a long history of developing and field testing
new technologies in the NAS to help manage airspace oper-
ations. This work started in the early 1990’s with the Traffic
Management Advisor (TMA) [6] and the Center TRACON
Automation System (CTAS) [7]. The CTAS/TMA tools de-
veloped by NASA were evaluated at the Fort Worth Air Route
Traffic Control Center [8] and later tech transferred to the
FAA and became Time Based Flow Management (TBFM)
[9]. TBFM is a core Decision Support Tool (DST) for time-
based management in the en route and terminal environments.

Building on work done for arrivals, departures and surface
operations were incorporated using Trajectory Based Oper-
ations (TBO) concepts by NASA, the FAA, and industry to
improve the flow of traffic into and out of the nation’s busiest
airports. NASA developed technologies for specific phases
of flight were integrated [10] across surface [11]–[13] and
airspace domains [14] and deployed as the Integrated Arrival
Departure and Surface (IADS) traffic management system [4],
[15] in 2017 to Charlotte Douglas International Airport as part
of NASA’s ATD-2 Sub-project. The IADS system was devel-
oped in alignment with FAA’s Surface Collaborative Decision
Making (S-CDM) Concept of Operations [16] and refined
over time [17]. This technology was transferred to the FAA
and lessons learned incorporated into the surface management
solution known as Terminal Flight Data Manager (TFDM)
[18].

The IADS systems generated predictions including but not
limited to airport configuration, runway assignment, unim-
peded taxi times, and arrival ON times [17]. The airport
surface model predictions were used as input to the IADS Ter-
minal Scheduler which applied all known constraints across
each airport surface and the terminal boundary to generate
predictions for the Estimated Take Off Time (ETOT) for
each departure flight [19]. To generate the airport surface
model predictions, the IADS system relied upon detailed

adaptation developed for each individual airport and the
terminal airspace.

Adaptation for each airport requires creating a detailed
structure of a link-node network defining the gate loca-
tions, ramp and taxiway structure, and runway locations. The
adaptation goes beyond defining the physical structure of
the airport and also requires detailed knowledge from ATC
encoded in decision trees including departure fix to runway
mappings and other local knowledge that might be applied
to the airport or airspace. Creation of the adaptation is often
a manual process that requires significant time and effort to
both build and maintain.

The system as developed under ATD-2 was designed as
a monolithic DST, leveraging physics-based models with
adaptation, which created a bottleneck to scalability [5].
To align with the FAA’s vision for an Info-Centric NAS
and to address scalability challenges, the DIP Sub-project
applied a digital transformation to the IADS system. The
digital transformation led to the ML Airport Surface Model
leveraging modern ML techniques in place of legacy physics-
based models, developed with a service-oriented architecture,
and deployed in a cloud environment.

III. MACHINE LEARNING AIRPORT SURFACE MODEL

Starting with the IADS monolithic decision support tool,
key capabilities were broken out as individual services. For
predictive services, ML was applied to replace the physics-
based services that relied on adaptation. Outputs of each in-
dividual service are made available through well defined Ap-
plication Programming Interface (API) deployed on NASA’s
Digital Information Platform (DIP) [20]. Each service can
be consumed and used as a building block for downstream
service developers. By making the services available through
API, others can benefit from the ML Airport Surface Model
accelerating the development cycle for new capabilities that
require these foundational data elements.

Figure 1 shows a detailed view of the ML Airport Sur-
face Model architecture. The ML Airport Surface Model is
deployed as a service-oriented architecture in which each
logical service is distinct with well-defined inputs and outputs.
The ML Airport Surface Model starts at the bottom of the
figure from a foundation of raw data feeds including FAA
System Wide Information Management (SWIM) data feeds
and other available airline or airport data feeds. The raw
data feeds contain valuable data, but can provide inconsistent
information on the same flight that is difficult to reconcile in
a real-time environment.

To address this challenge, NASA developed logic that could
resolve data processing and mediation complexities. Much of
this work is embodied in the Fuser service [21]. Both the
Fuser and the ML Airport Surface Model are intended to
supplement existing and planned FAA capabilities such as the
SWIM data feeds. The Fuser framework mediates between
the disparate sources of data, pulling in the right data, at
the right time. The Fuser leverages heuristics and analysis
on which data source is best to use for a specific need and
provides access to the information in a well-defined, common
data model.



Figure 1: Predictive engine service-oriented architecture.
TFMS: Traffic Flow Management System, TFDM: Terminal
Flight Data Manager, STARS: Standard Terminal Automation
Replacement System, TBFM: Time-Based Flow Manage-
ment, ERAM: En Route Automation Modernization, SWIM:
System Wide Information Management, OIS: Operational
Information System, D-ATIS: Digital-Automatic Terminal
Information Service

The Fuser data is used as input to the airport surface
model orchestrator. The orchestrator also pulls in weather
data, current airport configuration data in the form of Dig-
ital Automatic Terminal Information Service (D-ATIS), and
restriction data from NASA’s Traffic Management Initiative
(TMI) service. The TMI service combines restriction data
from FAA SWIM data feeds with local restrictions only
available on the FAA Operational Information System (OIS)
page. The restriction data is parsed to identify individual
restrictions correlated and assigned at the flight level by the
TMI service prior to being passed as input to the orchestrator.

The orchestrator is responsible for collecting the inputs
required by each ML prediction service and for calling the
ML services in the proper order. Even though each service
is distinct with well defined inputs and outputs, there are de-
pendencies between the different ML prediction services that
need to be accounted for. Figure 1 shows the dependencies
between the services as the output of the airport configuration
service is used as input to the runway service. Similarly, the
output of the runway service is used as input to the taxi
time service and the arrival ON time service. Outputs of the
runway, taxi-time, and arrival ON time services are used as
input to the NAS Terminal Scheduler.

ML techniques have been applied to aviation problems for
many years [22] to develop prediction models. However, the
real challenge isn’t building an ML model; the challenge is
building an integrated ML system and to continuously operate
it in production [23]. Without the proper approach, ML

Figure 2: KIAH runways

applications can easily incur massive ongoing maintenance
costs at the system level [24]. To address this challenge,
in recent years there has been focused work on Machine
Learning Operations (MLOps) to develop infrastructures and
platforms for end-to-end life-cycle management of ML [23],
[25], [26].

For deployment of the ML Airport Surface Model, we
adopt MLOps best practices across the real-time system
and the offline training infrastructure [5]. The adoption of
MLOps best practices helps reduce risk in deployment by
ensuring both the models and the pipelines feeding the models
are consistent between the offline training infrastructure and
the real-time deployment. MLOps best practices also allow
for automation, reproducibility, monitoring, and continuous
integration of ML into production software.

IV. HOUSTON AIRSPACE

Houston TRACON contains two major airports, George
Bush Intercontinental Airport (KIAH) and William P Hobby
Airport (KHOU), and six additional small regional airports.
These airports share 15 departure fixes and 11 arrival fixes
along the terminal boundary.

KIAH airport contains five runways, see Figure 2. Typi-
cally, departures are assigned to the diagonal runways (15L,
15R, 33L, 33R). During time periods of high demand, ATC
will offload additional departure demand to one of the three
parallel runways (8L, 8R, 9, 26L, 26R, 27). Arrivals will
typically be assigned to one of the three parallel runways.

ATC will communicate to stakeholders of the system which
runways are available for departures and arrivals through D-
ATIS. D-ATIS provides text messages to aircraft, airlines,
and other users outside the standard reception range of
conventional ATIS via landline and data link communications
to the cockpit [27]. D-ATIS includes weather information,
runway serviceability and any other information considered
necessary to maintain a safe ATC environment at an airport.

D-ATIS runway information is converted to a text string
representing available runways. For example, when departures
are able to use runways 33L and 33R D-ATIS will be con-
sumed and translated into a string in the form D 33L 33R.



This information from D-ATIS is critical to ensure runway
predictions are aligned with the actual operations.

V. VALIDATION IN HOUSTON AIRSPACE

Validation of the ML Airport Surface Model includes of-
fline validation of the ML models and real-time performance
monitoring. The goal of the validation is to ensure the real-
time system metrics match the offline validation and that the
system accuracy is high enough for operational use. Accuracy
of the ML models is critical to ensure the pre-departure
reroute recommendations provided to flight operators are
accurate and the actual delay savings when a flight is rerouted
matches the predicted delay savings [1], [3], [4].

For each ML model, we report the date range for training
and testing and the associated features used. For the real-time
system, the performance was evaluated on over five months of
data ranging between 2024-07-01 through 2025-01-15. Each
ML model running in the real-time system was developed and
deployed using XGBoost [28].

A. Departure Runway Model Accuracy

The departure runway model assigns each departure to a
runway that is within the set of active D-ATIS departure
runways. Features of the model include: binary variable if
the flight plan has been filed, departure fix name, D-ATIS
airport configuration, wake vortex categorization, Airport
Surface Detection Equipment Model X (ASDE-X) latitude,
and ASDE-X longitude. Using these features, the model pre-
dicts the departure runway starting 3 hours before departure
through the OFF event (actual take off time). The training and
testing for the ML departure runway model was done with
one year of data between 2022-07-01 through 2023-07-01.

Figure 3 shows the accuracy of the departure runway
model. The top subplot shows the confusion matrix results
from the offline validation on a test set. The horizontal
axis represents the predicted runway and the vertical axis
represents the true runway the flight used. The true runway
is determined by processing the flown trajectory data and
cross referencing the trajectory to the known positions of the
runways. Each grid cell of the confusion matrix represents
the percentage of overall demand that falls into that grid cell.

The bottom subplot of Figure 3 shows the accuracy of the
ML departure runway model running in the real-time system
colored in blue and labeled ML. The horizontal axis is the date
and the vertical axis is the percentage of flights with a correct
runway prediction. The runway prediction is sampled at the
OUT event. We sample the prediction at the OUT (actual off
block time) event because the decision to reroute flights for
the CDDR service is often made by flight operators just prior
to pushback.

In addition to the ML departure runway model, the real-
time system also enables ATC to input a taxi plan which is a
Decision Tree (DT) that defines the departure fix to runway
mapping. When ATC enters a taxi plan, it defines the load
balancing strategy for departures across the different runways.
The taxi plan empowers ATC to have control over the runway
assignments in contrast to the ML departure runway model
which is trying to predict the runway assignments. The bottom

Figure 3: Departure runway accuracy

subplot of Figure 3 shows the accuracy of the departure
runway assignment generated by the ATC taxi plan running
in the real-time system colored in orange and labeled DT.

As can be seen in Figure 3, the ML departure runway model
running in the real-time system had an overall accuracy of
83.6%, which matches the 83.5% accuracy expected from
offline validation. It is also interesting to see that the ML
accuracy in the real-time system is similar to the performance
generated by ATC taxi plan which had overall accuracy
of 83.9%. This is encouraging and indicates the predictive
engine is capable of running with or without ATC inputs.

The results in the bottom subplot of Figure 3 compare
the ML departure runway model to the ATC taxi plan with
predictions made at the OUT event. One benefit of the ML
models is that the predictions can improve as flights move
towards the runway. This is in contrast to the ATC taxi plan
assignments which are defined by a static decision tree and
do not update unless ATC changes the taxi plan.



Figure 4: 2025-01-12 departure runway prediction accuracy

Consider Figure 4 which compares the ML departure
runway model results to the ATC taxi plan results for a single
day on 2025-01-12. The top subplot shows the local time of
day on the horizontal axis. The bar chart shows the count of
departures in the given time bin and the line chart shows the
departure runway accuracy for the ML model and the ATC
taxi plan in blue and orange, respectively. The bottom subplot
shows the accuracy of the ML model and the ATC taxi plan
as a function of time before the OFF event.

As can be seen in the bottom subplot of Figure 4, the
accuracy of the ATC taxi plan in orange shows constant
performance 1 hour before departure through the OFF event.
In contrast, the ML departure runway model shows constant
performance up until the OUT event, and then the model
accuracy improves after OUT and before OFF. The ML de-
parture runway model improves after the OUT event because
of the ASDE-X latitude and longitude features.

After pushback, as the flight taxies towards the runway,
the ASDE-X surface surveillance information is provided
to the ML model and the model learns that flights located
at different locations on the surface are more likely to use
specific runways. For example, when a physical queue builds
at a particular runway, knowing the ASDE-X latitude and
longitude for flights will enable the model to know a particular
flight is in or near the physical queue, and thus very likely to
use that runway.

Figure 5: KIAH departure flows

B. Departure Runway Model Improvements

During time periods of high departure demand, ATC will
often offload some of the departure demand to a third runway
to reduce queue size and taxi times. An example of a load
balancing strategy is shown in Figure 5. The top subplot of
Figure 5 shows a scenario where departures are assigned to
runways 15L and 15R and the associated departure fix to
runway mappings. The bottom subplot of Figure 5 shows
a scenario where departures are assigned to runways 15L,
15R, and 9 where North departures have been offloaded to
the third runway 9. This dynamic use of the airspace helps
ATC increase efficiency of the operations.

After deployment of the ML departure runway models and
evaluating performance in the real-time system, we observed
that one of the biggest challenges for the ML models is
predicting the offloading of demand to the third runway. This
can be seen in the bottom subplot of Figure 4 where the ML
model performance is broken down by actual runway used.
As shown in Figure 4, the ML model performance on runway
9 is much lower than runways 15L and 15R.

The ML model does not perform as well on runway 9
because the model struggles to understand when ATC is
offloading demand to the third runway compared to time
periods when ATC is utilizing runways 15L and 15R only.
Ideally, ATC would communicate when demand is being
offloaded to a third runway through the D-ATIS configuration.



Figure 6: Offline updated ML departure runway accuracy

When ATC is using only the 15s then D-ATIS would read
D 15L 15R, and when they want to offload to 9 it would
read D 15L 15R 9. In practice, we find that ATC will set D-
ATIS departures to D 15L 15R 9 and will determine when
to offload based on their experience without communicating
to stakeholders of the system.

When talking to ATC, we learned that the decision to
offload demand is often based on peak surface traffic leading
to high taxi times. In order to capture this information, we
augmented the ML departure runway model to include local
time of day. Local time of day captures time periods when
demand peaks and ATC is likely to offload departures to
a third runway. When using this feature, it is important to
convert timestamps to local time of day, as opposed to UTC,
since the scheduled demand and bank structure follows the
local time.

Figure 6 shows the accuracy of the updated ML departure
runway model designed to include the additional feature:
local time of day. The horizontal axis represents the runway
predicted by the model and the vertical axis represents the
true runway the flight used. Overall, the updated ML model
using local time of day increased the accuracy to 89.0%
from the original 83.5%. The majority of improvement occurs
on runways that are used predominately for offloading the
demand.

For example, if we look at the bottom row of Figure 6
and compare to the bottom row of Figure 3, we can analyze
the results for flights that actually used runway 9. For the
original model shown in Figure 3, we see that overall 2.7%
of flights used runway 9 and had correct predictions, however,
2.8% of flights used runway 9 and had incorrect predictions.

For flights using runway 9 in the original ML model the
accuracy was around 50%. Compare this to Figure 6 where
we see that overall 4.1% of flights used runway 9 and had
correct predictions, compared to 1.2% of flights using runway
9 with incorrect predictions. For flights using runway 9 in the
updated ML model, the accuracy improved to around 77%.

C. Departure Estimated Take Off Time Accuracy

Outputs from the ML models are passed as inputs to the
terminal scheduler which applies all known constraints at
both the surface and terminal boundary, see Figure 1. The
scheduler outputs the Estimated Take Off Time (ETOT) for
each departure flight. For analysis of departure ETOT pre-
diction accuracy, we restrict our attention to United Airlines
major flights at KIAH, as these flights will participate in
the upcoming field evaluation and provide Earliest Off-Block
Time (EOBT) predictions.

ETOT prediction accuracy was analyzed for the time period
2024-07-01 through 2025-01-15. During this time period
there were 87,138 total United Airlines major flights. To
eliminate outliers from skewing the metrics, we calculate the
ETOT error as the Actual Take Off Time minus the ETOT
sampled at the OUT event. The Inter Quartile Range (IQR)
of the error was calculated as the difference between the
25th and 75th quartile of the distribution of error. Outlier
flights with error beyond the median ±3.5 times the IQR were
excluded from the analysis. Applying this filter for predictions
at the OUT event resulted in 85,399 flights. The same filter
was applied for predictions at spot crossing, resulting in a
total of 82,753 flights for analysis of ETOT predictions.

Figure 7 illustrates the departure ETOT accuracy results.
The top and bottom subplots of Figure 7 show the distribution
of the ETOT error sampled at the OUT event and spot cross-
ing event, respectively. The ETOT error distribution generated
with the ML departure runway model are plotted in blue and
results with the ATC taxi plan to assign departure runways are
plotted in orange. To benchmark the ETOT accuracy results,
the TFMS Estimated Time of Departure (ETD) error is plotted
with a grey line.

The top subplot of Figure 7 illustrates that the standard
deviation (STD) of the ETOT prediction error sampled at the
OUT event using the ML departure runway model and ATC
taxi plan were 7.3 minutes and 7.6 minutes, respectively. Both
methods improved upon the TFMS ETD sampled at the OUT
event which had a STD of error 8.8 minutes. The largest
improvement can be seen along the right tail of the error
distribution where the ML Airport Surface Model is more
accurately predicting long taxi times for delayed flights. The
improved accuracy for delayed flights is important when using
the system to recommend pre-departure reroutes.

The bottom subplot of Figure 7 shows a larger improvement
for ETOT predictions sampled at the spot crossing event. For
ETOT predictions sampled at the spot crossing, the method
using the ML departure runway model and ATC taxi plan
had STD of error 3.8 minutes and 4.1 minutes, respectively.
Both methods show a significant improvement to the TFMS
ETD which had a STD of error 7.9 minutes. The majority of
improvement compared to the TFMS ETD can be attributed



Figure 7: Estimated Take Off Time (ETOT) accuracy

to dynamic updates the ML Airport Surface Model applies at
pushback and spot crossing.

The ETOT prediction for each flight is sampled from the
last prediction prior to the event. Once the event happens,
e.g. at the OUT event when the flight pushes back, the
predictive engine updates to account for the detected activity.
For example, prior to the OUT event the predictive engine will
generate an Unimpeded Take Off Time (UTOT) that is equal
to the Earliest Off Block Time (EOBT) plus the unimpeded
taxi time.

After the flight pushes back, the predictive engine will
update the UTOT to be equal to the Actual Off Block Time
plus the unimpeded taxi time. A similar update occurs at the
spot crossing, where the UTOT will update to be the Actual
Spot Crossing Time plus the unimpeded Airport Movement
Area taxi time. Since predictions are sampled prior to the
event, the predictions represent what decision makers would
rely upon when choosing to reroute flights and will contain
the error associated with the EOBT or the ramp taxi time.

Comparing the top and bottom subplots of Figure 7 allows
us to measure the benefit of updating the predictions based
on the detected actual events. For example, if we look at the
ETOT error STD for predictions made with the ML departure
runway model, we see that just prior to the OUT event the
STD is 7.3 minutes compared to the STD just prior to the
spot crossing is 3.8 minutes. The main difference leading to
the prediction improvement for an individual flight between
the top and bottom subplot, is the UTOT update. In the

top subplot, the UTOT is calculated using the EOBT as the
starting point of the trajectory prior to pushback. In the bottom
subplot, the UTOT is calculated with Actual Off Block Time
(AOBT) after the pushback event as the starting point of the
trajectory.

Prior to the digital transformation that resulted in the ML
Airport Surface Model, the original IADS system continu-
ously detected position of flights off the gate and updated 4-D
trajectory predictions at 10 second intervals. The adaptation
based approach leveraging physics-based 4-D trajectory pre-
dictions generated attractive results for KDFW and KDAL [3],
[4], [17]. The challenge with the adaptation approach, how-
ever, is it took considerable time and effort to build and
maintain for each individual airport and the terminal airspace.
Previous work compared the results of the continuously
updated 4-D trajectory predictions of the IADS system to the
ML Airport Surface Model which only updates the trajectory
at the OUT and spot crossing event [5]. Results showed
the the ML Airport Surface Model could match performance
while only applying two discrete trajectory updates.

D. Arrival Runway Model Accuracy

For analysis of arrival predictions, we started with all
119, 870 arrival flights to KIAH within the time range 2024-
07-01 through 2025-01-15. To eliminate outliers, we calcu-
lated the error in the ON time predictions sampled at the
arrival fix crossing event and the associated IQR. We filter
flights with error beyond the median ±3.5 times the IQR,
resulting in 118, 870 flights for analysis. Input features for
the ML arrival runway model include: arrival fix name, arrival
runway prediction from TBFM, D-ATIS airport configuration,
aircraft engine class, aircraft wake vortex class, last position
latitude, last position longitude, and last position altitude.

Figure 8 shows the offline validation accuracy of the
ML arrival runway model illustrated as a confusion matrix.
The horizontal axis represents the runway predicted by the
model and the vertical axis represents the true runway the
flight used. The true runway is determined by processing the
flown trajectory data and cross referencing the trajectory to
the known positions of the runways. Each grid cell of the
confusion matrix represents the percentage of overall demand
that falls into that grid cell.

The overall accuracy of the ML arrival runway model in
offline validation was 80.5%. As can be seen in Figure 8,
the majority of arrivals use the three parallel runways with
runway 9 being used the least. The limited use of runway 9
for arrivals allows ATC to use runway 9 to offload departure
demand as discussed in Section V-B.

Figure 9 shows the results of the arrival runway predictions
running in the real-time system. To baseline the system,
we utilized arrival runway predictions from FAA’s TBFM
between 2024-07-01 through 2024-12-17 and with NASA’s
ML arrival runway model between 2024-12-18 through 2025-
01-15. In the top subplot of Figure 9, the horizontal axis is
the date and the vertical axis is the accuracy percentage. The
accuracy for each individual day is shown with a dot and
the seven day rolling average is shown with a solid line. The
prediction accuracy for TBFM is illustrated in grey and the



Figure 8: Offline arrival ML runway accuracy

prediction accuracy for the ML arrival runway model is shown
in blue.

The bottom subplot of Figure 9 shows the data source of the
arrival runway prediction. If the TBFM system is predicting
the runway, the data is labeled as TBFM and colored in grey.
As the flight is handled by I90 TRACON, ATC has the ability
to assign the flight to a runway and provide this information
in the scratch pad. If the scratch pad entry is made, the arrival
runway is no longer a prediction and the flight is assigned to
the given runway. Flights with scratchpad entries are labeled
as STARS and colored in green to illustrate what percentage
of flights when crossing the arrival fix have a prediction
compared to a runway assignment. Starting on 2024-12-18
the ML arrival runway model was used for all flights and
labeled in the bottom subplot as ML.

As can be seen in Figure 9, the ML arrival runway model
running in the real-time system had an overall accuracy of
79.9% which matched the 80.5% accuracy from the offline
validation. The overall accuracy of TBFM combined with
ATC scratch pad entries was 65%. The large improvement
in arrival runway prediction accuracy comparing the ML ap-
proach to TBFM is consistent with prior results at KDFW [5].

E. Arrival Estimated On Accuracy

To evaluate the accuracy of the ML arrival Estimated ON
(EON) model, we filter flights to the 118, 870 flights used
in the analysis of Section V-D. Input features for the ML
arrival EON model include: current timestamp, departure
stand actual time, departure stand initial time, departure run-
way scheduled time, timestamp first tracked, arrival runway
scheduled time, last position latitude, last position longitude,
last position altitude, TBFM arrival runway, TBFM arrival

Figure 9: Real-time arrival runway accuracy

runway ETA, TBFM stream class, TBFM arrival meter fix,
ML model arrival runway, airline, and aircraft type.

Figure 10 shows the results of the ML arrival EON model
compared to the TBFM Estimated Time of Arrival (ETA)
used as a benchmark. In the top subplot, the horizontal axis
represents the date and the vertical axis represents the STD
of the error measured as the Actual ON minus the predicted
ON sampled at the arrival fix crossing. The STD for each day
is plotted with a small dot and the seven day rolling average
is shown with a solid line. As can be seen, the average STD
of error for the EON prediction was 2.2 minutes compared
to the benchmark TBFM ETA which had 3.0 minute STD of
error.

As shown in Figure 9, the real-time system had a large
improvement in arrival runway prediction accuracy starting on
2024-12-18 when we transitioned from using TBFM arrival
runways to the ML arrival runway prediction. When looking
at the ML arrival EON model accuracy in Figure 10, we
don’t see an improvement in arrival ON prediction accuracy
because the ML arrival EON model is using input features
that include both the TBFM arrival runway prediction and the
ML arrival runway prediction. Therefore, the ML arrival EON
model was benefiting from the improved runway predictions
throughout the entire time range between 2024-07-01 and
2025-01-15.

The middle subplot of Figure 10 compares the distribution
of the ML arrival EON error and the benchmark TBFM
ETA error colored in blue and grey, respectively. The ML
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arrival EON error had a mean value of 0.3 minutes with STD
of error 2.2 minutes resulting in 68.9% of arrivals landing
within ±2 minutes of the prediction. The TBFM ETA error
had a mean value of 2.7 minutes with STD of error 3.0
minutes resulting in 46.7% of arrivals landing within ±2
minutes of the prediction. The improvement of the arrival
EON predictions compared to TBFM benchmark is consistent
with prior results at KDFW [5].

The bottom subplot of Figure 10 shows the distribution of
the ML arrival EON error broken out by the actual runway
the flight landed on. It is interesting to see the difference
in the shape of the distribution for different runways. Some
runways show a unimodal distribution of error whereas some
runways show a heavy right tail with bimodal distribution.

Comparing the bottom subplot of Figure 10 with the confu-
sion matrix shown in Figure 8, we see that the heavy right tails
and bimodal distribution of error is associated with flights that
land on runways with higher runway prediction error. This
shows that one of the biggest contributions to error when
predicting arrival ON times is associated with incorrectly
predicting the runway the flight will use. This result increases
the value of the runway prediction accuracy improvement
shown in Figure 9 as the more accurate predictions from the
ML arrival runway model can improve predictions of arrival
ON.

VI. FUTURE WORK

Future work will use the validated ML Airport Surface
model and DIP CDDR system in the Houston airspace to
demonstrate benefits associated with pre-departure rerouting.
An important outcome of this future work is to ensure the
DIP CDDR system and operational benefits are scalable to
other locations across the NAS beyond North Texas.

NASA will also investigate the use of existing FAA infras-
tructure including TFMS Pre-Departure Reroute (PDRR) and
Route Amendment Dialogue (RAD) to facilitate the reroute
request and flight plan amendment [29]. Combining NASA’s
ML Airport Surface Model with existing FAA infrastructure
for the electronic coordination between flight operator and
ATC can unlock benefits without requiring any deployment
of NASA user interfaces into ATC facilities.

During the investigation of the Houston airspace, NASA
also identified an opportunity to use the arrival predictions to
increase the use of Established on Required Navigation Per-
formance (EoR) procedures at KIAH airport. KIAH currently
has EoR procedures, however, ATC has challenges clearing
flights to fly the EoR because not all flights are equipped and
capable (mixed equipage environment).

In coordination with Houston TRACON, NASA developed
a tool that identifies equipped aircraft and leverages the arrival
runway and estimated ON predictions to help TRACON
controllers load balance the arrival demand and potentially
increase the use of EoR. The EoR decision support tool will
continue to mature and be evaluated throughout the Houston
field evaluation.

VII. CONCLUSION

NASA’s ML Airport Surface Model is the result of digital
transformation from a legacy monolithic decision support
tool to a scalable system developed with a service oriented
architecture, leveraging modern ML techniques, and deployed
in a cloud environment. After validating the ML Airport
Surface Model in the North Texas airspace, NASA worked
with FAA and NATCA to identify the Houston airspace
to validate scalability of the approach and conduct a field
evaluation in 2025 to demonstrate efficiency benefits resulting
from pre-departure Trajectory Option Set rerouting.

This paper provides shadow mode validation results of
the ML Airport Surface Model running in the Houston
airspace between 2024-07-01 through 2025-01-15. Shadow
mode consists of the system running passively in real-time
while generating predictions for departures and arrivals, but
without users acting on the system recommendations. The
shadow evaluation is an important step towards validation to
ensure behavior of the system and ML algorithms running in
real-time matches results generated in offline training.

Validation results for departures showed that the ML
departure runway model running in real-time matched the
expected offline validation results. The biggest challenge with
the ML departure runway model was shown to be time periods
when ATC offloads demand to a third runway but does not
communicate the strategy to stakeholders. To address this, an
additional feature was included to the ML departure runway
model to account for time of day and the accuracy was shown



to increase from 83% to 89%. The majority of improvement
was shown to occur on runways that are used predominately
for offloading the demand.

The Estimated Take Off Time (ETOT) prediction accuracy
was shown to be similar when using either the ML departure
runway model or the ATC taxi plan to generate runway
assignments. The ETOT accuracy sampled at the pushback
event was measured to have a standard deviation of error
7.3 minutes when using the ML models compared to 7.6
minutes when using the taxi plan. It was encouraging to see
the runway and ETOT predictions when using ML can match
performance of the ATC taxi plan as this indicates the system
can be used with or without ATC input.

The ETOT accuracy was shown to outperform the bench-
mark TFMS Estimated Time of Departure (ETD) when sam-
pled at both the OUT event and the spot crossing event.
At the OUT event, the largest improvement was for flights
experiencing large taxi times which is important when using
the system to recommend pre-departure reroutes. At the spot
crossing event, the majority of improvements with ETOT
predictions is associated with the dynamic updates the ML
Airport Surface Model applies to the unimpeded trajectory.

Validation results for arrivals showed that the ML arrival
runway model running in real-time matched the expected
offline validation results. The ML arrival runway model gen-
erated 79.9% accuracy which matched the offline validation
80.5% accuracy results. The real-time ML arrival runway
model showed an improvement over the benchmark TBFM
arrival runway predictions which generated 65% accuracy.

Similarly, the ML arrival estimated ON time showed an
improvement over the benchmark TBFM ETA prediction
accuracy resulting in mean error 0.3 minutes with 2.2 minute
STD of error compared to mean error 2.7 minutes with
3.0 minute STD of error. Accuracy of the arrival runway
predictions were shown to be a large driver of the accuracy
for arrival ON time predictions.

Overall, shadow validation results for both the departures
and arrivals was encouraging and an important step towards
an operational evaluation. Future work will use the validated
systems for both departures and arrivals to improve efficiency
of the Houston airspace. Results from the Houston field
evaluation will be reported and lessons learned will be shared.
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