NASA Space Technology Update International Planetary Probe Workshop 2025

Michelle M. Munk

NASA-Langley Research Center

Entry, Descent and Landing Systems Capability Lead (SCL)

Land Domain Formulation Lead

Chief Architect (Acting)

Space Technology Mission Directorate

June 23, 2025

SPACE TECHNOLOGY MISSION DIRECTORATE

The work we do today is shaping the missions of the future while delivering the cutting-edge technology that defines American leadership in space exploration for years to come

FOSTER innovation by cultivating breakthrough ideas, embracing risk, and fueling a competitive space economy

U.S. aerospace technology community to improve life here on Earth and in space

STMD Programs – TRL-Based Structure (Current)

Tech Base Functional Domains

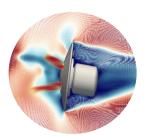
	GO Space Transportation		Advanced P Nuclear Pro		* *	Flight Vehicle Systems (including Ascent Systems) Cryogenic Fluid Management		
	LAND Space to Surface Operations		Deceleration Guidance &	n Systems Nav Systems	* *	Landing Systems & Environments Entry Modeling & Instrumentation		
	LIVE Surface Infrastructure/ Exploration			ver ource Utilization uctures & Construction	* *	Dust Mitigation & Environments Surface Mobility & Transportation Sustainability Surface Habitation Systems & Logistics		
	EXPAND In-Space Infrastructure/ Discovery		Observation In-Space Su		* *	Communications, Positioning, Navigation, & Timing In-Space Servicing, Assembly, & Manufacturing Small Spacecraft & Distributed Systems		
	ENABLE Foundational Capabilities					Advanced Materials, Structures & Manufacturing Advanced Power & Thermal		
Capability Portfolio								
		CATALYS Innovative Mech		• NIAC/CIF/ECI • STRG		PCC • SBIR/STTR • TP/ACO Tech Transfer • Flight Opportunities • Inclusive Innovation		

Land Domain Structure Steering/Control Boards LAND **Existing EDL SCLT Members Space to Surface Operations** MD Liaisons: SMD, ESDMD, ARMD, STMD Other Gov't Agency liaisons Mission Stakeholders Internal and external subject matter experts **LAND** Entry Modeling & Guidance & Landing Systems Deceleration Instrumentation & Environments Navigation Systems (DS) (EM&I) (LS&E) Systems (G&NS)

2024 Integrated Shortfall Ranking – Entry, Descent and Landing

Capability	Integrated Ranking		Org
Entry Descent and Landing	22	1569: High-Mass Mars Entry and Descent Systems	DS
Entry Descent and Landing	24	1571: Navigation Sensors for Precision Landing	G&NS
Entry Descent and Landing	25	1573: Terrain Mapping Capabilities for Precision Landing and Hazard Avoidance	G&NS
Entry Descent and Landing	26	1562: Advanced Algorithms and Computing for Precision Landing	G&NS
Entry Descent and Landing	28	1568: Entry Modeling and Simulation for EDL Missions	EM&I
Entry Descent and Landing	37	1563: Aerocapture for Spacecraft Deceleration and Orbit Insertion	DS
Entry Descent and Landing	43	1565: Assessment and Validation Capabilities for Integrated Precision Landing Systems	G&NS
Entry Descent and Landing	74	1566: Characterization of Plume Surface Interaction	LS&E
Entry Descent and Landing	106	1574: Validated Performance Models for Planetary Parachutes	EM&I
Entry Descent and Landing	131	1564: Aeroshell In-Situ Flight Performance Data During EDL	EM&I
Entry Descent and Landing	143	1570: Lander Capabilities for Soft Touchdown	LS&E
Entry Descent and Landing	146	1567: Entry Capabilities for Small-Scale and Commercial Spacecraft	DS
Entry Descent and Landing	181	1572: Performance-Optimized Low-Cost Aeroshells for EDL Missions	DS

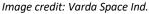
• To obtain the full ranking results, visit: www.nasa.gov/civilspaceshortfalls

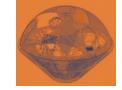

Entry Modeling & Instrumentation (EM&I) Capability

EM&I Shortfalls

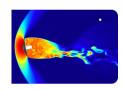
- 1568: Entry Modeling and Simulation for Entry, Descent and Landing (EDL) Missions
- 1564: Aeroshell In-Situ Flight Performance Data During EDL
- 1574: Validated Performance Models for Planetary Parachutes

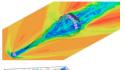
Envisioned Content


Multi-disciplinary Modeling



Advanced Ground Test Capabilities


Advanced Numerics



Validation through Hypersonic Testbeds

Existing Content

AerosciencesTPS material response/failureParachutes

Entry Systems Modeling

Validation through ground and flight test

ACCESS STRI

Dragonfly Entry Aerosciences Measurements (DrEAM)

 Instrumenting the aeroshell for Titan entry model validation

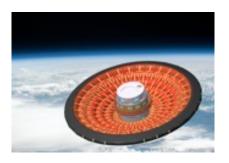
SciFli ACOs: Airborne observation to obtain reentry data

- Sierra Space
- SpaceX

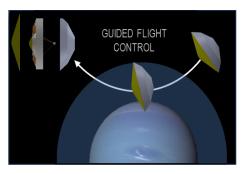
DAVINCI Instrumentation (VISTA)

 Instrumenting the probe for Venus entry model validation

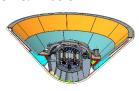
Deceleration Systems (DS) Capability

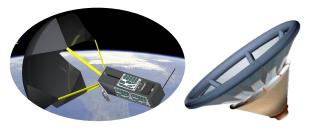

DS Shortfalls

- 1566: High-Mass Mars Entry and Descent Systems
- 1572: Performance-Optimized Low-Cost Aeroshells for Entry, Descent & Landing Missions
- 1563: Aerocapture for Spacecraft Deceleration and Orbit Insertion
- 1567: Entry Capabilities for Small-Scale and Commercial Spacecraft

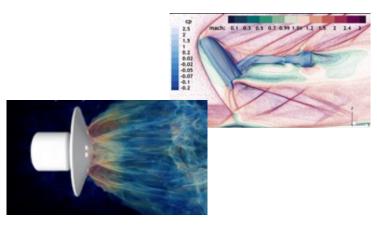

Existing Content

HIAD Development/Application


• Vulcan Engine Reuse System TP (ULA)


Envisioned Content

Aerocapture
Demonstration & Infusion

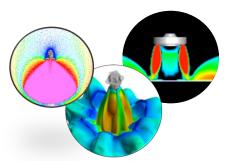


Robust, Low-Cost Structures & TPS

Advanced Deceleration Devices

Retropropulsion

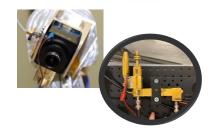
- · Supersonic wind tunnel testing
- Use of GPUs for CFD/visualization (w/DoE)


Landing Systems & Environments (LS&E) Capability

LS&E Shortfalls

- 1562: Characterization of Plume Surface Interaction (PSI)
- 1570: Lander Capabilities for Soft Touchdown

Envisioned Content

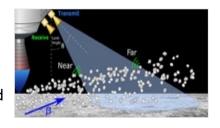

PSI Fundamental Modeling, Simulation & Validation

Touchdown Attenuation Systems & Assessments

Mission PSI Assessment & Prediction

Test & Flight Instruments for PSI Characterization & Mitigation

Existing Content



SCALPSS

 Evolving stereo camera systems to measure PSI on Commercial Lunar Payload Services (CLPS) and other landers

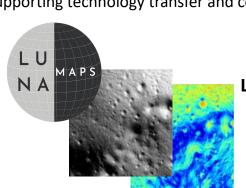
PSI Instrumentation

- Sensor(s) for time-evolving surface topography for erosion
- Sensor(s) for ejecta velocity and energy flux for near-field and far field damage and site alteration

PSI Ground Testing (HLS funded)

- Scaled PSI testing at 100 Pa using lunar regolith simulant for large lunar landers
- Evaluating requirements for a Marsrelevant PSI test

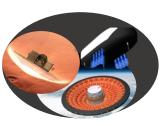
Guidance & Navigation Systems (G&NS) Capability


G&NS Shortfalls

- 1571: Navigation Sensors for Precision Landing
- 1562: Advanced Algorithms and Computing for Precision Landing
- 1573: Terrain Mapping Capabilities for Precision Landing and Hazard Avoidance
- 1565: Assessment & Validation Capabilities for Integrated Precision-Landing Systems

Existing Content

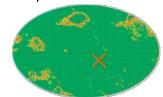
Safe & Precise Landing – Integrated Capabilities Evolution

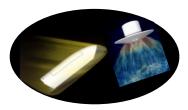

- Developing lidars for active terrain sensing in all lighting
- Implementing convex optimization-based guidance algorithms for real-time trajectory planning
- · Flight testing integrated technologies
- Supporting technology transfer and commercialization

Lunar Navigation Maps

- Developing mapping capabilities for lunar missions that feed forward to Mars
- NASA Tech Transfer underway

Envisioned Content


Guidance, Navigation & Control Systems Studies


Surface-Relative Sensing

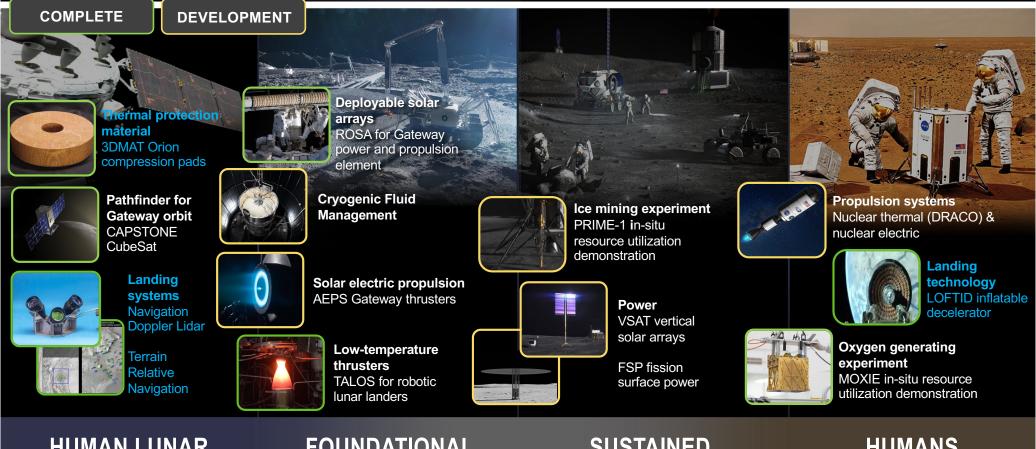
Advanced Algorithms

High-Resolution Surface Hazard Mapping

High-Mach Entry Sensing

Xogdor Tipping Point (Astrobotic)

- Next-generation suborbital rocket for flight demonstrating payloads to higher altitudes and velocities
- Closed-loop capability



SPLICE

Image Credit: Astrobotic

STMD Contributions to Moon & Mars Exploration

EDL Content in blue

HUMAN LUNAR RETURN FOUNDATIONAL EXPLORATION

SUSTAINED LUNAR EVOLUTION

HUMANS TO MARS

Catalysts: Mechanisms to Advance Technologies and Address Shortfalls

LAND will use a variety of tools and mechanisms to address capability shortfalls and nurture the knowledge and talent base for civil space

Contracts

Grants and Cooperative Agreements

Internal Awards

Challenges

Flight Tests

Funded / Unfunded Space Act Agreements

Cross-cutting activities (Inclusive Innovation, NASA I-Corps) and other tools

NASA Innovative Advanced Concepts

Center Innovation Fund / Early Career Initiative

Space Technology Research Grants Prizes, Challenges, and Crowdsourcing

Tipping Point

Announcement of Collaboration Opportunity Small Business Innovation Research / Small Business Technology Transfer

Flight Opportunities

Technology Transfer

Summary

- The new STMD Land domain will address entry, descent and landing capabilities by maturing technologies along the TRL spectrum
 - 4 capability areas included
 - multi-NASA Center leadership
 - Utilizing academia, industry, NASA Centers, and international collaborations
- We have an exciting technology portfolio that will continue to make impacts on the Artemis architecture
- EDL will continue to be a needed capability, supporting human exploration, science missions, and industry endeavors

