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Introduction to Makel Engineering Inc.
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MEI Formed 1996
• HQ in Chico California
     
Multidisciplinary Team
• Chemical, Mechanical and 

Electrical Engineering
• Technicians and support staff

Facilities
• 16,000 ft2

• Office, laboratories, 
manufacturing

www.makelengineering.com

http://www.makelengineering.com/


MEI Sensing Systems
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❑ Aerospace

▪ Launch Vehicles and ISS

▪ Test Facilities

▪ Planetary Exploration

❑ Defense

▪ Aircraft Life Support Systems

▪ Advanced Propulsion System Sensors

▪ Warfighter Physiological Monitoring

❑ Industrial

▪ Emissions Monitoring

▪ Nuclear Systems Monitoring

▪ Biomedical

DRAGONFLY



Overview

❑Background and Motivation
▪ Need for multi-gas measurement

❑Chemical Sensor Operating Principles
▪ Solid-state microsensors for O2 and CO2

▪ NDIR Sensor for CO2

▪ MEMs sensors for pressure and humidity

❑M-PALSS GEN-1 Sensor Design
▪ Integration of multiple sensor types

❑Prototype Testing and Performance
▪ Measurement accuracy and range

❑Conclusions and Future Work
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Background and Motivation
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Background and Motivation

❑New spacesuits are being developed to support 
exploration objectives to the Moon and beyond

❑Technology gaps have been identified during the 
development of these spacesuits

❑There is a need to monitor multiple species in the 
breathing gas stream (O2, CO2, Humidity)

❑Desirable to monitor trace contaminates

❑Technology development focused on progression 
toward flight qualified design
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Sensor Requirements

❑Current PLSS design only includes nondispersive 
infrared (NDIR) sensors for CO2

▪ NDIR sensors outer mold is approximately 2.3 by 2.2 by 6.1 
inches with 12 VDC power and digital communications

❑Need to measure the major constituents of the 
breathing gas to provide general situational 
awareness

▪ O2 (20-100% ±1%)

▪ CO2 (0-30 torr ±0.3 torr)

▪ H2O (5-90% Relative Humidity ±1%)
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Generation 1 (GEN-1) M-PALSS

❑Multi-Parameter Astronaut Life Support Sensor

▪ O2, CO2 (electrochemical and NDIR), Humidity, and Pressure

❑GEN-1 version suitable for ground testing and 
compatible with existing NASA test equipment

❑Does not meet all requirements for space flight
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Chemical Sensor Operating Principles
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Electrochemical and NDIR Sensing

Solid-State Sensing

▪ Directly transduces a chemical signal to an electrical signal (resistance, current, or 
voltage)

▪ Small and low power

▪ Good match for PLSS situational awareness requirements
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Chemical Sensing
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Nondispersive Infrared (NDIR) CO2 Sensor
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NDIR CO2 Sensor Response Characteristic
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Modified Beer-Lambert Law

𝑭𝑨 = 𝑺𝑷𝑨𝑵(𝟏 − 𝒆−𝒃𝒙𝒄
)

𝑹 = 𝑹𝟎 𝟏 − 𝑺𝑷𝑨𝑵 𝟏 − 𝒆−𝒃𝒙𝒄

𝐹𝐴 ≔ 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒
𝑅 ≔ 𝑁𝐷𝐼𝑅 𝑅𝑎𝑡𝑖𝑜
𝑅0 ≔ 𝑁𝐷𝐼𝑅 𝑍𝑒𝑟𝑜
𝑆𝑃𝐴𝑁 ≔ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑆𝑝𝑎𝑛
𝑏 ≔ 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ
𝑐 ≔ 𝑁𝑜𝑛𝑖𝑑𝑒𝑎𝑙𝑖𝑡𝑦 𝑇𝑒𝑟𝑚



M-PALSS GEN-1 Sensor Design
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GEN-1 Mechanical Design

❑ GEN-1 M-PALSS included both and NDIR CO2 sensor and electrochemical CO2 sensor

❑ GEN-1 Package fits within GS-300/GS-322 enveloped and conforms to existing 
interfaces

❑ Mass 1.22 lbs.
M-PALSS

Rear View

GS300/322 
translucent envelope

4.6 “

2.2 “

1.5 “
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GEN-1 Sensor Detailed Design
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GEN-1 M-PALSS Design
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GEN-1 Sensor Control and NDIR Electronics
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Prototype Testing and Performance
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Reduced Pressure and Thermal Test System

▪ Ranges for gas testing:

▪ O2 0 to 100%

▪ CO2 0 to 30 mmHg

▪ Relative Humidity 0 to 95% (Dew Point 40 to 90 °F)

▪ Pressure 3.5 to 25 psia

▪ Temperature 35 to 125 °F
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Electrochemical CO2 Sensor Response

▪ Humidity compensation required to achieve accuracy requirements 
▪ Time response approximately 12 s
▪ Ongoing work is characterizing long term stability and calibration
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Electrochemical Oxygen High End Sensitivity

▪ +/-1% oxygen sensor accuracy required in the high range from 90 to 100%

▪ Improved bias circuit to maintain constant bias over full oxygen range

▪ Improved sensitivity at high oxygen concentration compared to earlier version
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NDIR CO2 Sensor

▪ Ratio of amplitude of the of the signal to reference channel is proportional to CO2 

partial pressure

▪ Sensitivity is highest in lower CO2 partial pressure range
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Sensor Signal (NDIR Ratio) vs CO2 Partial Pressure at 
Different Sensed Gas Total Pressures

NDIR ratio vs partial pressure data 
agrees with the Modified Beer-
Lambert Law

𝐹𝐴 = 𝑆𝑃𝐴𝑁 1 − 𝑒−𝑏𝑥𝑐

𝐹𝐴 ≔ 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒
𝑏 ≔ 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ
𝑐 ≔ 𝑁𝑜𝑛𝑖𝑑𝑒𝑎𝑙𝑖𝑡𝑦 𝑇𝑒𝑟𝑚
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Pressure Broadening Effect is Compensated Using 
Independent Pressure Sensor
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▪ Magnitude of 

pressure 

broadening effect 

depends on both 

total pressure and 

CO2 partial 

pressure 

▪ Correction 

performed in 

firmware over full 

PLSS operating 

pressure range



Typical Test Profile Used at Different Pressures and 
Humidity Levels
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Chemical 24 hr (ppm) Sensing Technology Status/Issue Risk

Ammonia 20 Potentiometric, 
Chemiresitive (WO3)

Under development Med/High

Carbon 
Monoxide

100 Chemiresistive (TiO2) Selected for GEN-2 Low

Formaldehyde 0.5 Photoionization Under development Medium

Methanethiol (10 to 20)* Photoionization Under development Low/Med

Enhanced Sensing Capability Under Development For 
Next Generation M-PALSS
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*Estimated based on OSHA limits

SMACs (Spacecraft Maximum Allowable Concentrations)



Conclusion and Future Work

▪ Work presented here completed as part of NASA Phase II SBIR 
Contact 80NSSC23CA117.

▪ Solid-state microsensors and NDIR CO2 packaged into a 
prototype that preserves interfaces of current NDIR CO2 
sensors and meets target measurement accuracy.

▪ On-going work to establish long term stability of 
electrochemical sensors.

▪ GEN-2 development is underway including transitioning design 
to meet NASA ionizing environment requirements and 
spaceflight integration into PLSS.
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