

- 1 **Title:** An Economic Impact Assessment of the Use of Earth Observation Information in Flood Hazard
2 Communication
- 3 **Authors:** Richard Bernknopf*, American Geosciences Institute, Alexandria, VA, USA, ORCID ID: 0000-0002-
4 7137-9703, *Corresponding author rbern@unm.edu
- 5 Yusuke Kuwayama, University of Maryland, Baltimore County, School of Public Policy, Baltimore, MD. USA,
6 ORCID ID: 0000-0001-8933-9876
- 7 Benjamin Zaitchik, Johns Hopkins University, Department of Earth and Planetary Sciences, Baltimore, MD, USA
- 8 Matthew Rodell, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- 9 Augusto Getirana, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- 10 Andrea Thorstensen, St. Cloud State University, Department of Atmospheric and Hydrologic Sciences, St. Cloud,
11 MN, USA
- 12 Samiha Shahreen, Resources for the Future, Washington, DC, USA
- 13 **Funding:** The research for this analysis was supported by NASA Grant NNX17AD72G.
- 14 **Acknowledgements:** The authors thank Craig Broadbent BYU-Idaho for suggesting the nonparametric Mann-
15 Whitney test for whether the two sample means of the flood forecast empirical adjustments are equal. The authors
16 appreciate the North Central River Forecast Center personnel for conducting retrospective model runs and producing
17 the associated figure.
- 18 **Competing Interests:** The authors have no relevant financial or non-financial interests to disclose.
- 19 **Author Contributions:** All authors contributed to the study design and implementation. All authors read and
20 approved the final manuscript.
- 21

22 **Abstract**

23 Flood hazard forecasts are critical information to reduce the impacts of a disaster. Improved operational forecasts
24 can lead to timelier decisions, which translates into more cost-effective pre-flood mitigation decisions. In this paper,
25 we quantify this economic value of an improved forecast for two types of independent empirical adjustments to
26 National Weather Service Ensemble Streamflow Prediction (ESP). The North Central River Forecast Center
27 (NCRFC) adjusts the ESP to produce an operational seasonal river discharge forecast with forecaster intervention
28 and complements the forecast with an experimental empirical soil moisture adjustment from the Gravity Recovery
29 and Climate Experiment (GRACE). In a retrospective case study, we apply the complementary NCFRC + GRACE
30 forecast to increase the confidence in implementing flood mitigation earlier in flood hazard planning. Specifically,
31 we focus on the reforecast of the 2011 spring season for the Sheyenne River in North Dakota and find that flood
32 protection decisions in Valley City, ND could have been made 5 days earlier and mitigation costs could have been
33 reduced by \$1.7 million.

34

35 **Keywords:** Flood forecasting, Earth observation, Hazard warning, Cost effectiveness,

36

37 **Title:** An Economic Impact Assessment of the Use of Earth Observation Information in Flood Hazard

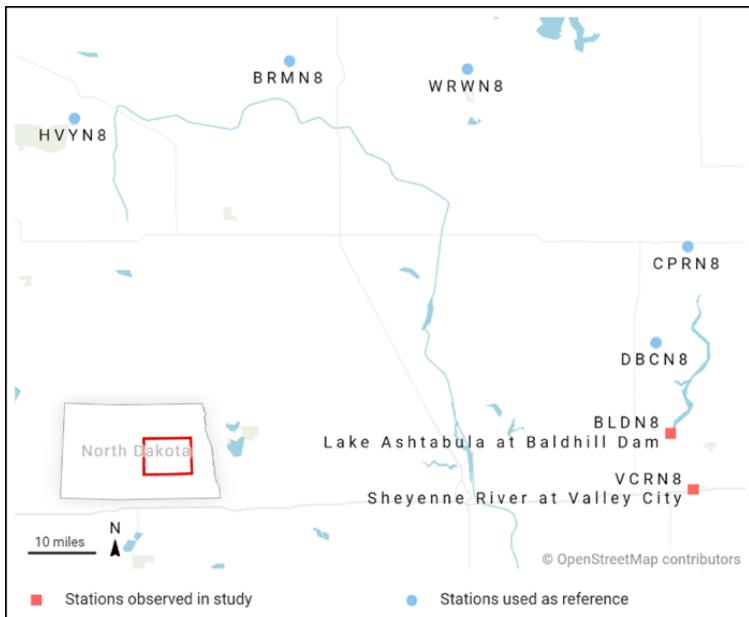
38 Communication

39 1 **Introduction**

40 The societal costs of flooding have increased in the United States over the last several decades as more people and
41 property locate in harm's way (Davenport et al. 2021, Pielke and Downton 2000). Some of these costs are associated
42 with community preparation for potential floods, which must be balanced against the value of damages that are
43 expected to be avoided from community preparation should a flood take place. Decisions surrounding community
44 preparation are, in turn, driven by different forms of flood hazard information. For example, decisionmakers may
45 use river discharge forecasts to determine the extent and timing of expenditures that reduce flood risk. Thus,
46 improved flood hazard information can generate socioeconomic benefits by helping communities achieve a more
47 cost-effective balance between meeting damage avoidance objectives and undertaking costly mitigation actions. The
48 case study is conducted using a severe flood that occurred in spring of 2011 to study the potential benefit of a
49 consolidated message to communicate timely, accurate hazard information for pre-flood mitigation actions.

50 Damages from the 2011 flood convinced stakeholders in Valley City, ND to pursue permanent flood protection
51 (North Dakota State Water Commission 2019), making it a particularly salient case for studying the economic
52 impacts of different approaches to flood forecast.

53 In this paper, we present a framework based on information theory to: (1) Quantify the value of new data products in
54 flood hazard communications, and (2) Estimate the value of a new data product (GRACE), which has not been done
55 before in the flood hazard communication context. Specifically, if the probability of water flow exceeds a
56 community determined hazard threshold, a decision is made to undertake pre-flood mitigation (*Schueneman 2011*).


57 As the forecasted flood severity increases, protection will require decisions to invest more resources to attain
58 damage avoidance objectives, and in turn impose greater mitigation costs on communities. Moreover, there is a
59 tradeoff between forecast accuracy and forecast timeliness; forecasts become more accurate as the forecasting period
60 shortens (e.g., a 7-day forecast vs. a 1-month forecast), but longer forecasting periods give decisionmakers more
61 time to implement mitigation actions, with potential associated cost savings (Lawrence 1999). We estimate the
62 monetary savings derived from the integration of NASA Gravity Recovery and Climate Experiment soil moisture
63 information into the National Weather Service operational flood forecast. The socioeconomic benefits estimated in

64 our framework are thus based on the value of forecast timeliness—that is, earlier hazard communications with the
65 equivalent accuracy are beneficial because they allow for earlier community preparation.

66 Our analysis is based on the Community Hydrologic Prediction System (CHPS), which houses a probabilistic suite
67 of models that was developed by the National Weather Service (NWS) to assist communities to respond effectively
68 to flood risk (NOAA 2019, Restrepo 2017). Forecasting products like CHPS rely on many sources of information
69 about past and current hydrologic conditions. Furthermore, new sources of data such as communication with local
70 forecasters and remotely sensed indicators can be added as post-processed empirical adjustments. The value of the
71 information used for an adjustment is positive if decisions based on CHPS with the adjustment, relative to the case
72 in which decisions are based on CHPS without the adjustment, lead to reductions in societal losses from flooding
73 that exceed any additional costs associated with community preparation.

74 Herein we assess the value of adjusting an operational flood forecast by using a soil moisture analysis that
75 incorporates the NASA Gravity Recovery and Climate Experiment data assimilation system (GRACE-DA).
76 GRACE-DA is a research-grade system that combines terrestrial water storage estimates from the GRACE satellite
77 mission with a physically based land surface model to generate gridded estimates of hydrological states and fluxes.
78 Earlier efforts in which GRACE-DA has been applied was to monitor the severity of droughts as an input to the US
79 Drought Monitor, the analysis in that application focused on a long duration event that had regional impacts rather
80 than a seasonal flooding episode (Bernknopf et al 2018). More generally, our study adds to the literature on
81 economic impact assessments of Earth observation-based services and tools applied to other decision contexts such
82 as water resource management (Stroming et al. 2020), wildfire assessment (Bernknopf et al. 2020), and public health
83 (Borowitz et al. 2023, Pakhtigian et al. 2024).

84 We use a Bayesian decision framework (Economou et al. 2016) to evaluate the economic benefits of adding the signal
85 from a GRACE-DA soil moisture estimate to CHPS as a complementary input into an operational forecast. We
86 conduct a case study in the Sheyenne River subbasin in North Dakota, shown in Figure 1, to assess whether an
87 operational river stage forecast is improved by constructing a consolidated reforecast incorporating GRACE-DA
88 information and quantify the economic benefits of the improved forecast.

89

90 Figure 1. Sheyenne River sub-basins and USGS gaging stations. Site location data from Water Quality
 91 Portal (<https://www.waterqualitydata.us/provider/NWIS/USGS-ND/>).

92 The remainder of the paper is organized as follows. The next section describes the decision context for our benefits
 93 assessment and presents an economic model of the benefits of natural hazard damage reduction and public sector
 94 responsibilities linked to natural hazard and risk communications. The third section describes a conceptual
 95 framework for linking data for flood hazard forecasts to public information dissemination and, ultimately,
 96 socioeconomic value. The concept of an information structure is introduced and explained in the application of
 97 floods as a mapping of scientific data into a measurable space of signals and messages that translates physical
 98 measurement of flood stage hazard from a state of nature to a probability (Lawrence 1999). The fifth section
 99 describes an economic analysis of the value of a consolidated NCRFC + GRACE-DA adjusted forecast to reduce
 100 delay in mitigative actions, informed by an experimental reforecast of the 2011 flood in Valley City, ND and
 101 decisions made regarding community assets and infrastructure. The case study is followed by discussion and
 102 conclusion sections.

103 2 **Background**

104 2.1 Decision context

105 Flood warning systems research was initiated in the late 1960s by the US Army Corps of Engineers (USACE) New
106 York District (Porter et al. 2011). USACE concluded that a 48-hour advanced warning could reduce riverine flood
107 damage in the Passaic River Basin in New Jersey by up to 35 percent. Models were initially deterministic.
108 Deterministic models provide a single realization of a simulated process and use this single realization to derive any
109 required design, planning, or management products. Deterministic hydrologic models are likely to produce model
110 outputs with lower variance than experienced (Farmer and Vogel 2016).

111 Currently, public sector responsibilities and availability of climatological and meteorological data dictate what
112 methods and models are inputs to an operational forecast. Responsibility for inland flood hazard and risk
113 communication has been entrusted to NWS and USACE. NWS issues warnings and other risk communications that
114 involve potential high volume river discharges (Pappenberger et al. 2015) and for delivering flood hazard
115 information to the entire United States (Roe et al. 2007 and NOAA 2019). NWS defines stages for multiple flood
116 severity levels, including: Bankfull/Action Stage represents when action is taken for possible high water. Water may
117 cause minor impacts and be a nuisance to persons near the stream. Local governments or agencies may take actions
118 to reduce property damage and danger to life. Minor Flood Stage represents the level some property flooding and
119 public threat may occur. Roadways, trails, park land, and private property near the stream may become flooded; that
120 creates a hazard to lives, property, or commerce. Moderate Flood Stage represents a level such that flooding of
121 structures and main roadways may occur. Residences and numerous roadways near the stream may become flooded,
122 creating disruptions to daily life. Evacuations may be necessary. Major Flood Stage represents extensive flooding of
123 structures, main roadways, and other flooding of critical infrastructure may occur. Schools, hospitals, police stations,
124 fire stations, residences, businesses, and roadways may become flooded. Evacuations may be necessary, and
125 significant disruptions to daily life could be anticipated (https://www.weather.gov/lot/hydrology_definitions). The
126 issuance of flood advisories or warnings is linked to Flood Stage (NWS 2021). Both Moderate and Major Flooding
127 Stage are associated with the issuing of flood warnings.

128 Communities depend on accurate river discharge estimates and flood forecasts from the NCRFC for minimizing
129 hazard risk in the central US. The NCRFC covers parts of nine states and a small portion of Canada, spanning an
130 area of about 350,000 mi². It includes portions of three major watersheds: the Mississippi River Basin, the western

131 portion of the Great Lakes Basin, and Hudson Bay (the area of interest for this study). Although NCRFC river flow
132 forecasts are issued routinely in many locations to support activities such as navigation and hydropower, forecasts at
133 additional designated forecast points are issued when rivers exceed or are forecast to exceed a stage threshold known
134 as the “forecast issuance stage,” which for most forecast locations is the “bankfull” or “action stage” as defined in
135 the federal responsibilities.

136 The USACE risk assessments mandate flood emergency action plans and risk management decisions that pertain to
137 dams and levee systems (USACE 2020). In “A Guide to Public Alerts and Warnings for Dams and Levee
138 Emergencies,” USACE outlines the required contents for communication through an alert and warning (USACE
139 2019). This document points out the different roles that USACE and NWS play in flood hazard and risk
140 communication. In contrast to NWS flood severity levels, USACE hazard communications are defined as Alert,
141 Watch, and Warning.

142 2.2 Flood hazard estimation

143 An operational river discharge forecast is comprised of a series of steps that is initiated with historical data and
144 physical process models that are transformed into a seasonal river discharge forecast. The framework to produce a
145 forecast requires interaction between a forecaster and a suite of models, leading to adjustments that reconcile
146 differences between model predictions and post-modeling updates with empirical observations to improve flood
147 forecasts (Restrepo 2017). An adjusted forecast is meant to decrease the uncertainty associated with the timing and
148 severity of a flood. An NCRFC river flood stage s forecast $FS(s; t)$, where $s = 0, 1, \dots, 4$, for $0 = \text{Normal Pool}$, $1 =$
149 Action Stage , $2 = \text{Minor Flood Stage}$, $3 = \text{Moderate Flood Stage}$, and $4 = \text{Major Flood Stage}$, and $t = 1, \dots, T$
150 indexes the time period of the forecast that is communicated as a probability of exceeding a river discharge rate
151 (Restrepo 2017).

152 CHPS includes models that comprise the Ensemble Streamflow Prediction (ESP) System, which is a seasonal
153 probabilistic hydrologic forecast that utilizes historical precipitation data as input to the NCRFC hydrologic forecast.
154 When the historical precipitation of individual observation years is applied to the current model state (especially soil
155 moisture and snowpack), a conditional ensemble of model runs is produced. The conditional ensemble can then be
156 compared to the historical, streamflow-based probabilities of exceedance, providing a contextual look at how the
157 current conditions compare to other years during the same season. These long-range forecasts provide information

158 on future river stage, flow, and/or volume. Minimally, a forecast is issued at the end of a month for the upcoming
159 three-month period that shows how current conditions impact the likelihood of a significant flooding event.¹ CHPS
160 integrates frequent empirical observations to update modeled river discharge rates and deliver an operational
161 forecast of water flows to government agencies and other stakeholders. The NCRFC conceptual model for soil water
162 storage is based on the Sacramento Soil Moisture Accounting Model (SAC-SMA) that is applied with an amount of
163 water to enter the hydrologic system, either via rain or snowmelt. The SAC-SMA is the precipitation/runoff model
164 used by the NCRFC to generate river forecasts. In the SAC-SMA, rainfall is partitioned into surface runoff and
165 infiltration that is governed by the upper zone soil moisture states and the percolation rate into a lower zone, and
166 model calibration is based on river response under different flow regimes (Loren et al. 2007). Manual model
167 calibration is carried out periodically at NCRFC by hydrologists who are experts on the subbasins if/when
168 unmodified streamflow simulations systematically drift from newer observations.

169 GRACE-DA assimilates GRACE satellite observations (Tapley et al. 2004) of terrestrial water storage anomalies
170 into an advanced Land Surface Model (LSM) to improve model simulation of terrestrial water storage and
171 associated hydrological fluxes. The version of GRACE-DA used here assimilates GRACE-derived monthly
172 terrestrial water storage anomalies to the NASA Catchment Land Surface Model (CLSM). It has been implemented
173 for CONUS (Zaitchik et al. 2008; Houborg et al. 2012; Kumar et al. 2016) and global extents (Li et al. 2019). The
174 model is forced by high resolution, observation- and atmospheric analysis-based meteorological data, and it also
175 incorporates high resolution soil, vegetation, and topographic information. Together with the ensemble Kalman
176 smoother data assimilation scheme, these high-resolution inputs enable the model to downscale the monthly, coarse
177 resolution (effectively about 150,000 km² at mid-latitudes) GRACE observations to produce daily or better output
178 on the model's 0.125° grid. GRACE-DA simulations, then, integrate information from meteorological data,
179 landscape parameters, model physics, and GRACE observations. In this study we do not attempt to disentangle the
180 contribution of each to the quality of the simulation. GRACE-DA outputs include the states and fluxes of the land
181 surface water and energy balances.

182 Working with NCRFC forecasters, we examined forecasts with and without GRACE-DA adjustments. We focus on
183 the severe flood that occurred in spring of 2011 and use it to study the potential benefit of a consolidated message to

¹ <https://www.weather.gov/media/serfc/EnsemblesfactsheetESP.pdf>.

184 communicate timely, accurate hazard information for pre-flood mitigation actions. Damages from the 2011 flood
185 convinced stakeholders in Valley City, ND to pursue permanent flood protection (North Dakota State Water
186 Commission 2019), making it a particularly salient case for studying the economic impacts of different approaches
187 to flood forecasts.

188 The event also is convenient for our analysis because the GRACE-informed soil moisture and groundwater
189 indicators were, in this case, an improvement relative to CHPS. This allows us to use the 2011 flood as a test case of
190 a good forecast. We emphasize that our results are not a claim that the GRACE-DA system, as currently
191 implemented for CONUS, offers consistent or reliable benefit for this river basin. In fact, when we looked at other
192 years with more moderate flooding (2004, 2009, 2010, and 2013) we found that GRACE-DA performance relative
193 to CHPS was decidedly mixed. This clearly indicates that the present GRACE-DA system, which is a national-scale
194 application that has not been evaluated or optimized for application to this basin, would require further development
195 to maximize its value for the region.

196 2.3 Economic benefits of improved forecasts

197 When the NCRFC receives data updates, it is diligent in revising the forecast to improve the effectiveness of the
198 planned response. However, there is remaining uncertainty in the forecast that can lead to losses from inefficient
199 timing of proactive mitigation actions. Once the warning is issued, uncertainty in the forecast can result in having to
200 pay for damages after an event occurs or incurring unnecessary pre flood mitigation costs.

201 River discharge forecasts are often used to determine temporary actions such as the pre-flood installation of clay
202 levees, sandbags, and Hesco barriers.² If the expected probability of a major flood is high for a particular flood
203 event, adjustments that generate a forecast with a longer lead time allow communities to save resources that would
204 otherwise be used for unexpected changes in mitigation plans. For example, delaying action results in the
205 community rushing to install levees and barriers that cost more due to less advance notice and greater materials and
206 labor costs. By avoiding this type of implementation delay, a timely verified forecast yields monetary savings. In

² A Hesco barrier is a flood control measure that is a steel wire crate lined with a plastic canvas and then filled with dirt to form a wall of protection. <https://archive.kpcc.org/news/2016/01/11/56742/army-corps-to-shore-up-la-river-with-hesco-barrier/>

207 what follows, we compare actions taken with and without an augmented information structure that includes the
208 current CHPS forecast and independent GRACE-DA soil moisture data.

209 **3 Model framework**

210 3.1 Data for flood hazard forecasts

211 The data input for a CHPS flood forecast represents a particular information structure, which we represent using the
212 variable θ . The physical process simulations contained in the ESP generate a probabilistic estimate of the volume of
213 water within a subbasin and contains: the interaction between soil moisture and rainfall runoff, snow accumulation
214 and melt; response of a watershed in terms of runoff volume and timing of an input of rainfall; in-channel flow
215 analysis, floodplain determination, and routing; and reservoir impacts (Restrepo 2017). We call this information
216 structure $\theta = 0$ and consider it the reference case in our analysis. The information structure $\theta = 0$ yields a flood
217 stage forecast $FS_0(s; t)$.

218 There are a variety of test metrics available to verify the forecast probabilities from the ESP. These metrics are used
219 to evaluate specific attributes of forecast quality, such as reliability and discrimination (Brown et al. 2010). The
220 conceptual models are analyzed and adjusted on a daily basis with the goal of accurately simulating streamflow
221 while maintaining reasonable model water-basin states of nature. An adjustment, aka a “mod,” can be made to the
222 models when necessary and justified under an alternative information structure, say, $\theta = 1$. Forecast adjustments
223 include precipitation type (rain or snow), amount and areal extent of snow cover, melt rate, amount of water in any
224 conceptual storage, amount of rain, and amount of runoff that go into the conceptual models. The NCRFC sends the
225 forecast data to the local Weather Office for production and released to the public. We use $FS_1(s; t)$ to represent this
226 forecast.

227 Based on the premise that an independent data source can increase the statistical confidence of a forecast, an
228 information structure could be made more informative with the addition of a confirmatory signal from an external
229 observing source such as GRACE-DA. In this counterfactual case, we employ GRACE-DA as an independent data
230 source that can allow for a second contemporary adjustment to the ESP. We label this information structure as $\theta = 2$
231 and the associated forecast as $FS_2(s; t)$.

232 The benefit of making model adjustments based on external observing systems is that they can help guide the
233 forecaster. Here we build a consolidated hazard communication $FS_{12}(s; t)$ to produce a forecast that uses $FS_1(s; t)$
234 and $FS_2(s; t)$ that yields a forecast with greater informativeness.

235 3.2 Uncertain river discharge forecasts and public information dissemination

236 Flood hazard warning systems link scientific and loss data for a warning-outcome combination. A hazard warning
237 communication employs an estimate of the exceedance probability (EP), in this case, a probability that river
238 discharge will exceed a flood stage level, to inform stakeholders when to take actions to avoid damage (Economou
239 et al. 2016). Relevant and accurate data are usable and more valuable in a river discharge forecast if they are timely.
240 However, more accurate information may take longer to produce.

241 In our modeling framework, we assume that a flood hazard evolves with the passage of time as does the forecast to
242 predict the onset of a major flood. In the first period following initiation of the process, the decision involves
243 whether to issue a warning based upon $FS_\theta(s; 1)$, the message available at time $t = 1$. For each successive time
244 period of the forecast, a message includes a new component and all past signals and is potentially revised until the
245 end of the planning horizon $t = T$, when a flood has occurred or the flooding season has ended. The conditional
246 probability that represents an adjusted operational forecast is $FS_\theta(s; t)|FS_0(s; t)$, where $\theta = 1, = 2$, or $= 12$. These
247 conditional probabilities inform the selection of mitigation actions, and because the conditional probabilities can
248 vary across information sets, different information sets can lead to different mitigation actions.

249 The expected payoff of a timely decision is a sequential decision problem of level exceedance probabilities over a
250 prespecified time horizon. In each time period prior to a major flood, a mitigation decision is made whether to invest
251 in flood loss avoidance. However, the probability of a major flood hazard changes over time, and while a delay to
252 take action implies the continuation of the existing action, it could be a suboptimal choice. The societal loss from not
253 being able to make informed decisions is the cost of implementation delay. To represent this decision, given the
254 messages received, the decisionmaker chooses to implement a pre-flood mitigation measure if the forecasted flood
255 stage level $FS_\theta(s; t)$ is greater than or equal to the probability of exceeding a predefined river discharge rate \overline{EP} :

$$256 d_{i,t} = \begin{cases} 1 & \text{if } FS_\theta(s; t)|FS_0(s; t) \geq \overline{EP} \\ 0 & \text{if } FS_\theta(s; t)|FS_0(s; t) < \overline{EP} \end{cases} \quad (1)$$

257 where d_{it} is a binary variable that equals 1 if the decisionmaker chooses to implement a pre flood mitigation
258 measure and equals 0 if the decisionmaker decides to delay an action. \overline{EP} is the maximum exceedance probability
259 that can be tolerated by the stakeholders. Estimation of \overline{EP} is an integral component of pre flood hazard
260 communication, management decision and associated costs. Decisions to communicate and take action by the
261 USACE involve \overline{EP} s of 50% and 30% for a specific flood stage threshold (Schueneman 2011).

262 The total cost of mitigation, given actions taken by the decisionmaker $d_{i,t}$, is a standard sum of fixed and variable
263 costs of mitigation given by:

$$264 \quad \sum_{t=1}^T [\bar{c}_{is} + (T - t)c_{is}] \cdot d_{i,t} \quad (2)$$

265 where \bar{c}_{is} is the expected mitigation cost of a pre flood mitigation measure in location i for flood stage s and c_{is} is
266 the additional cost associated with delaying a decision to mitigate by one time period. The per-period delay cost c_{is}
267 is multiplied by the number of time periods before the flood event that the mitigation action is taken, $T - t$, in order
268 to obtain the total cost of delay.

269 To identify the least cost decision for $d_{i,t}$, alternative information structures can be compared using their relative
270 uncertainties (Lawrence 1999). In the statistical decision we can evaluate whether consolidating two independent
271 observations in FS_{12} is more informative in a flood hazard message when used together as complimentary
272 information. In essence, we can pool the observations from both sets of post processing data, which increases the
273 precision of the forecast. Thus, the decisionmaker's actions can be reframed as based on whether independent
274 observations are members of the same set among information structures θ , for flood forecasts FS_θ .

$$275 \quad d_{i,t} = \begin{cases} 1 & \text{if } FS_1(s; t) \in FS_{12} \\ 0 & \text{if } FS_1(s; t) \notin FS_{12} \end{cases} \quad (3)$$

276 One way to determine if the consolidated message FS_{12} is from the same probability distribution as the adjusted
277 current operational forecast FS_1 is using a Mann – Whitney U test (van Doorn et al. 2021, Ermakova et al. 2018).
278 This test statistic ranks the data of the FS_θ distributions to be compared by providing a measure of their statistical
279 similarity (Conover 1980). If the Mann-Whitney U test null hypothesis, $H_0: FS_{12} = FS_1$ is accepted, then there is no
280 difference between the two distributions. On the other hand, if the alternative hypothesis, $H_0: FS_{12} \neq FS_1$, is
281 accepted, there is a difference in the distributions (Whitney 1997). Accepting the null hypothesis suggests there is an

282 increase in the precision of the operational forecast by adding independent observations to the existing forecaster
283 adjustment (Lee 1989). The combined observations in FS_{12} increase the statistical confidence in the forecast
284 (Devore and Peck 1997). With more input to the empirical component, FS_{12} would provide a positive economic
285 value for a reduced implementation delay.

286 A second outcome of accepting H_0 is that the current operational forecast is verified, and justifies an earlier action to
287 mitigate a potential disaster. If the adjusted forecasts do not meet the condition in the null hypothesis and the
288 forecasts are significantly different, further adjustment could be needed and the decision will be delayed until the
289 next forecast.

290 3.3 Value of Information (VOI)

291 We rely on the Value of Information (VOI) framework to estimate the economic value of the flood hazard forecasts.
292 The framework compares outcomes in two different states of the world: a “reference case” in which decisionmakers
293 take action based on FS_1 and a “counterfactual case” in which they take action using FS_{12} . The difference in the
294 societal value of the economic outcomes between these two information cases yields the VOI of FS_{12} . While
295 alternatives to the VOI framework, such as qualitative preference elicitation, exist for characterizing the societal
296 value of forecasts, we choose to rely on VOI in this application because the theory of information structures as
297 relating to forecasts, the optimization problem that leads to the selection of mitigation decisions, and quantitative
298 measures of mitigation cost all can be linked within one quantitative model.

299 In the analysis of short term pre flood protection, economic value of forecast information is defined as the value of
300 avoided losses, expressed in dollars, associated with timely implementation of mitigation. However, if there is
301 uncertainty in a forecast, there is a deviation from the expected value for losses, which increases with distance from
302 the mean. This deviation from the expected value can result in a delayed or inaccurate forecast that can create
303 considerable uncertainty and increased decision risk. If the decision risk can be reduced, there is a savings that
304 accrues to the hazard communication. We evaluate whether the consolidated message, the counterfactual, would
305 provide that payoff as a reduction in the protection costs of a timelier hazard warning.

306 To formalize this payoff, let d_{it}^0 represent the mitigation actions taken by the decisionmaker using forecast
307 probabilities from the ESP and let d_{it}^θ represent the mitigation actions taken using the adjusted forecast probabilities.

308 The VOI of a forecast is the difference between the costs of mitigation, as defined in Equation 2, resulting from
309 actions defined in d_{it}^{θ} and d_{it}^0 :

310 $VOI_{\theta} = \sum_{t=1}^T [\bar{c}_{is} + (T-t)c_{is}] \cdot d_{it}^0 - \sum_{t=1}^T [\bar{c}_{is} + (T-t)c_{is}] \cdot d_{it}^{\theta}$ (4)

311 We apply this equation in the reforecast example to estimate the economic value of an improvement in the timeliness
312 of delivering the message with no loss of accuracy.

313 4 **The 2011 flood in Valley City, ND**

314 The 2011 flood in Valley City, ND was documented as a 100-year recurrence (KLJ 2016). The gage height data
315 plotted in Table 1 show how the flooding evolved in the vicinity of Valley City below Baldhill Dam, which controls
316 water coming down the river from Lake Ashtabula (USGS stream gage 05058000, BLDN8) and near downtown
317 Valley City (USGS stream gage 05058500, VCRN8)³.

318 Table 1. USGS gage 05058500 height* [ft] from 2/15/2011 to 6/15/2011

Date and Time	Gage Height [ft]
02/15/2011 12:00 CST	5.50
02/22/2011 12:00 CST	4.87
03/01/2011 12:00 CST	4.81
03/07/2011 12:00 CST	4.56
03/15/2011 12:00 CST	4.29
03/22/2011 12:00 CST	6.25
03/29/2011 08:15 CDT (MIN)	3.33
04/01/2011 12:00 CDT	4.68
04/07/2011 12:00 CDT	10.95
04/15/2011 12:00 CDT	20.27
04/18/2011 20:30 CDT (MAX)	20.66
04/22/2011 12:00 CDT	19.34
05/01/2011 12:00 CDT	16.75
05/07/2011 12:00 CDT	14.50
05/15/2011 12:00 CDT	11.53
05/22/2011 12:00 CDT	8.96

³ https://waterdata.usgs.gov/nwis/uv?site_no=05058500.

06/01/2011 12:00 CDT	7.11
06/07/2011 12:00 CDT	8.11
06/15/2011 12:00 CDT	6.85

319 Source: [https://nwis.waterdata.usgs.gov/nwis/uv?format=html&period=&begin_date=2011-06-18&cb_00065=on&site_no=05058500](https://nwis.waterdata.usgs.gov/nwis/uv?format=html&period=&begin_date=2011-01-31&end_date=2011-06-18&cb_00065=on&site_no=05058500).

321 *Gage height (also known as stage) is the height of the water in the stream above a reference point. Gage height
 322 refers to the elevation of the water surface in the specific pool at the streamgaging station, not along the entire
 323 stream. Gage height also does not refer to the depth of the stream (<https://help.waterdata.usgs.gov/tutorials/surface-water-data/how-do-i-interpret-gage-height-and-streamflow-values>) except for the unique case where gage zero is
 324 exactly at the bottom of the stream.

326 The city's total emergency measures for a 100-year flood event require an estimated 380,000 sandbags and 180,000
 327 cubic yards (CY) of clay. On April 15, 2011 the Detroit Lakes Tribune (DLT) reported that Valley City needed to add
 328 a foot and a half to the already installed levees to protect the area against what is expected to be a record crest of
 329 21.2 to 21.5 feet on the Sheyenne River by Tuesday (April 19, 2011) (DL-Online 2011). The rush to install higher
 330 levees occurred following the news that more water had to be released from Baldhill Dam. It was the second
 331 surprise surge in a week for people living beneath the dam.

332 In response, Valley City and Barnes County purchased 400,000 sandbags with the goal of raising levees to 24 feet
 333 (reported by City Administrator Jon Cameron, 04/15/2011). An additional 80 National Guardsmen were requested to
 334 join the 106 already on duty. The USACE planned to increase Baldhill Dam outflows on April 15 from 6,500 cubic
 335 feet per second (CFS) up to 7,000 CFS. On April 17 or April 18, the USACE again intended to increase flows from
 336 Baldhill to 7,500 CFS, which would be a record discharge rate for the dam. The releases from Baldhill Dam were
 337 necessary to make room for additional inflows and to keep Lake Ashtabula from topping the dam in an uncontrolled
 338 release. The increased flow from the dam releases was expected to raise the river in Valley City to 21.2 to 21.5 feet.

339 The “2011 USACE Valley City Flood Field Report” provides a review of what occurred prior to and during the flood
 340 event (Schueneman 2011). Valley City decisionmakers intervene when the river stage reaches 17 to 17.5 feet. They
 341 developed a three-phase flood mitigation plan using clay levees, sandbags, and Hesco barriers, and given an
 342 assessment of initial hydrographs, aimed to implement protective measures between April 13 and 15. However, as

343 portrayed by the DLT, the flood crest forecasts were dynamic, often shifting after the completion of each mitigation
344 response phase, prompting multiple revisions to the city's operations. The crest of the flood was at 20.66 ft and
345 7,270 CFS on April 18 at the aforementioned USGS stream gage in Valley City (see Table 1).

346 Tables 2 and 3 present salient statistics of the 2011 event, which was declared a federal disaster (FEMA 2011).
347 Following the flood, a Valley City Commissioner presented the types of property values at risk and the associated
348 protection and response costs (ND State Water Commission October meeting 2011). The flood was modeled as a
349 500-year recurrence with a height of approximately 21 feet. Table 2 illustrates the extensive impact on real estate if
350 an emergency levee were to fail. Ultimately, the community incurred various costs that, for the most part, avoided
351 substantial damage to its real estate. Table 3 shows that primary impacts were mainly limited to roads and bridges.

352

353 Table 2. Valley City, ND values at risk in Spring 2011.

	Floodway	100 Year Floodplain	500 Year Floodplain	Total
Residential	\$11,065,800	\$38,111,200	\$17,932,000	\$67,109,900
Commercial	\$8,932,100	\$14,419,800	\$16,878,500	\$40,230,400
Exempt (est.)	\$30,249,586	\$54,995,997	\$24,682,435	\$109,928,018
Total	\$50,247,486	\$107,526,997	\$59,493,835	\$217,268,318

354 Source: Testimony of M. Pedersen, Valley City Commissioner, Water Topics Committee, October 10, 2011.

355 Table 3. Valley City, ND flood costs, estimated protection cost savings from an improved hazard communication
356 with a reforecast of the river discharge and flood stage level in Spring 2011.

FEMA 2011	Cost	Damage
Total public assistance cost estimate	\$43,547,540	
ND State Water Commission 2011		
Cost to protect Valley City	Total: \$8,800,000	

	Emergency Dike Construction and Flood Preparation: \$5,170,000 Removal of Dikes, Sandbags and Debris: \$1,800,000 Repairs to Streets and Sanitary Sewer: \$1,750,000 Buildings and Utilities: \$80,000	
Federal and state share	\$7,661,000	
City of Valley City	\$1,043,000	
Road damage		\$640,000
Storm Sewer station		\$74,000

357 Sources: Costs and damages: FEMA Disaster Declaration (FEMA 2011) and ND State Water Commission October
358 meeting (2011).

359 On the other hand, preparation and public assistance costs for mitigation and response were significant as estimated
360 by FEMA, North Dakota government, and Valley City authorities. A summary of the actions undertaken by Valley
361 City agencies and the costs of each phase are listed in Table 4. Phase 1 of the mitigation plan involved stockpiling
362 clay for bridge closures and raising the embankments of lower elevation reaches up to 22.5 feet, which required
363 58,000 CY of clay for emergency levees that were built between April 2 and 9. Phase 2 entailed increasing the
364 protective measures if conditions warranted. If so, 1.5 feet would be added to existing levees using 65,000 CY of
365 clay. The second mitigation action began on April 11 (flooding was occurring) and was completed on April 14, but
366 the following day's forecast showed the river cresting at 21.5 feet, necessitating all levees to be raised to 24 feet and
367 the construction of contingency levees behind all sandbag and Hesco lines. This undertaking required an additional
368 40,000-50,000 CY of clay for a total of 123,000 CY. Phase 3 was set as the response at an EP of 30% for a major
369 flood event without waiting for a change in conditions and concluded on April 19.

370 Table 4. 2011 Emergency Levee Construction Cost

Emergency levees for risk management	Phase 1	Phase 2	Phase 3 planned (Counterfactual)	Phase 3 implemented (Reference)

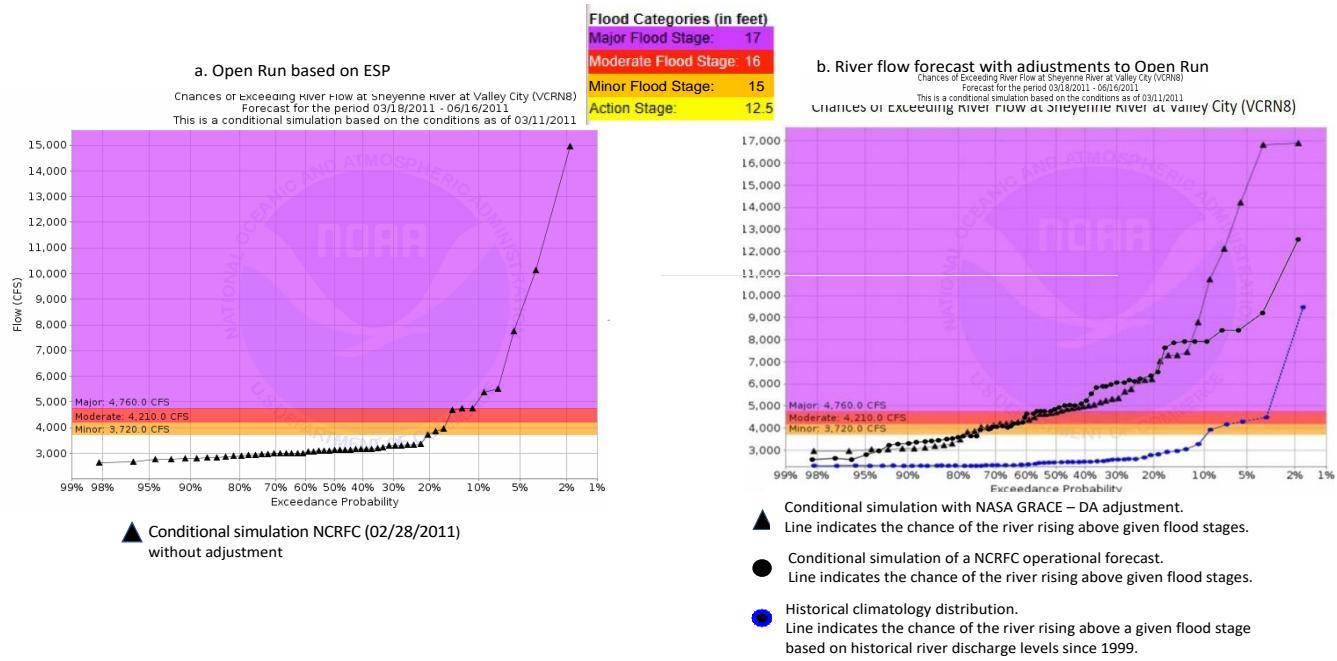
Protection Effectiveness	Protect City to 50% event (19.1-feet)	Phase 1 and if conditions warrant raise to 30% event (20.4-feet)	Protect City to 30% event (20.4-feet)	Protect City to 24-feet and construct contingency levees behind all sandbag and Hesco lines
Effort	5-6 days, 12 hrs. per day	4-5 days, 24 hrs. per day	9-10 days, 24-hrs per day	City priorities: 1. Downtown business district 2. Valley City State University 3. Remaining areas
Total cost			\$1.3M	\$3.02M

371 Source: R. Schueneman, Field Report, Sheyenne River, Valley City in Barnes County, ND, May 2011

372 The effort required the coordination of several entities, including the National Guard and the city's police and fire
 373 departments. Officials met daily at the peak of the flood event, and generally every other day at both ends of the
 374 timeline. Flood impacts included the closure of five of the city's eight bridges, operational pressures on the sewer
 375 system with the onset of higher river flows, and the plugging of sluice gates on 80 of the levee system's culverts and
 376 drainage basins. While bridge closures restricted access across the city, an evacuation plan was available to
 377 residents. The provision of a "hot spot" list prepared by the USACE also enabled Valley City to prioritize
 378 historically vulnerable locations for protective measures.

379 **5.0 Analysis**

380 In our area of interest, the NCRFC issues flood forecasts when there is an indication of near-term higher river flow
 381 stages in communities along the Sheyenne River that could require action for flood protection. In addition, USACE
 382 Flood Control officials must decide whether to release water from Lake Ashtabula that can increase flow through
 383 Valley City and affect both the city and nearby croplands. As described earlier, as part of the forecast process, the
 384 performance of outputs from the ESP (also known as the Open Run) is compared to past observations in the
 385 historical climatological distribution, and based on the comparison, the forecaster may decide to perform some


386 modifications. Once the forecaster judges that the comparison is acceptable, the forecast FS_1 is made official and is
387 distributed to the corresponding weather forecast offices for publication online. Further adjustments can be made to
388 the amount of precipitation forcing if the observations look questionable. One justification would be to add signals
389 from GRACE-DA to produce another independent adjusted forecast, FS_2 . In the present study, only the root zone
390 soil moisture output from GRACE is incorporated into FS_2 , as the SAC-SMA framework allows for a mapping
391 between the root zone and the conceptual model storages (Koren et al. 2007). It does not directly model
392 groundwater. The percent saturation as estimated from GRACE is determined from the soil layers and then
393 converted to a level of “fullness” of the conceptual SAC-SMA storages. With these soil moisture states updated, the
394 conditional simulations are rerun to produce the GRACE-DA exceedance probabilities.

395 A non-operational copy or “standalone” instance of CHPS is used to produce the retrospective example below in
396 which we show that the GRACE-DA adjustment can enable an earlier decision for mitigation. The resulting
397 consolidated message FS_{12} would reduce decision maker uncertainty through an increase in the statistical
398 confidence of a forecast (Sinn 1983). Thus, pooling observations in FS_{12} can be considered an accurate, and
399 potentially earlier hazard communication with relatively greater informativeness. Consistent with our conceptual
400 framework above, we estimate \bar{c}_{is} and $(T - t)c_{is}$, where the second metric represents the additional mitigation cost
401 caused by delay in a decision in Spring 2011.

402 During the early spring of 2011, the probabilistic seasonal river discharge forecast signaled a low river flow. In our
403 analysis, we use estimates that reflect Baldhill Dam releases and VCRN8 to represent potential impacts to the Valley
404 City community. The March 11 ESP simulation for the period between March 18 and June 17 is shown as the
405 graphed black line in Figure 2a. Inspection shows the threshold for taking action is below the minor flood stage,
406 when the river flow is at an expected 3,125 CFS. For the ESP forecast, the lowest flood stage of 15 ft (3,720 CFS)
407 has an $EP = 20\%$ at the Valley City gage as shown in orange, and an $EP = 10\%$ for a major flood stage 17 ft
408 (4,760 CFS) shown in purple.

409 Figure 2b illustrates the historical climatology distribution, represented by the blue line with circles, the NCRFC
410 adjusted forecast (FS_1), represented by the black line with circles, and the GRACE-DA adjusted forecast (FS_2),
411 represented by the black line with triangles. The March 2 FS_1 forecasts a major flood with potential disastrous
412 consequences (see Table 5). The forecast for the period March 7 – June 5 as shown in Table 5 has an $EP = 50\%$

413 for a flood height of 17.2 ft (in excess of 4,760 CFS) and an $EP = 30\%$ for a flood height of 18.6 ft. Expected
 414 flood height increased to 17.2 feet, which could trigger a response for a Phase 1 response of the Valley City flood
 415 management plan that was completed. Phase 2 also was completed, but the updated forecast necessitated higher
 416 protective barriers and more labor cost. As conditions changed rapidly, the updated operational forecast produced
 417 exceedance probabilities for flood height enumerated in Table 5 and shown in Figure 2b.

418
 419 Figure 2. Exceedance probabilities and flood stage for historical, current operational NCRFC, and GRACE-DA
 420 adjusted forecasts for the period of 3/18/2011 – 6/18/2011 (images courtesy of NCRFC)

421 A decision was made by the community to consider undertaking Phase 3 to protect the city. However, there was
 422 uncertainty because the forecasts changed frequently, which affected the city's operations and dam release
 423 expectations.

424 Table 5. Estimated flood height at VCRN8 for 3/7/2011 – 6/5/2011

$EP(FS_{03022011})$	90%	80%	70%	60%	50%	40%	30%	20%	10%
Flood height in feet	12.8	14.0	14.8	15.9	17.2	17.5	18.6	19.0	20.9

425 Source: NWS North Central River Forecast Center, 1026 AM CST, MAR 02 2011

426 FS_2 includes a 3-month forecast of root zone soil moisture wetness from GRACE-DA shown in Figure 3. The map
 427 shows the approximate area of the Sheyenne River basin outlined by the red circled area and the location of Valley
 428 City just inside the circle. The map also illustrates that basin wetness is considerably above average during the
 429 forecast period and that Valley City could experience high river flows. The impact of the GRACE-DA adjustment
 430 can be seen in Table 6 and is represented in Figure 2b by the black line with triangles. The ESP shows an $EP =$
 431 50% for a 3,100 cfs river flow until April, which is below any flood stage level. Of particular interest is the
 432 GRACE-DA adjusted forecast for March 18 – June 17. This is the period when FS_1 forecasts are greater than 4,750
 433 cfs on March 2 in Table 5 and for FS_2 on March 1 in Table 6, confirming the operational forecast. Thus, for this
 434 critical period, the GRACE-DA and NCRFC forecasts were messaging that a major flood risk should be of concern
 435 to decision makers as early as March 2.

436

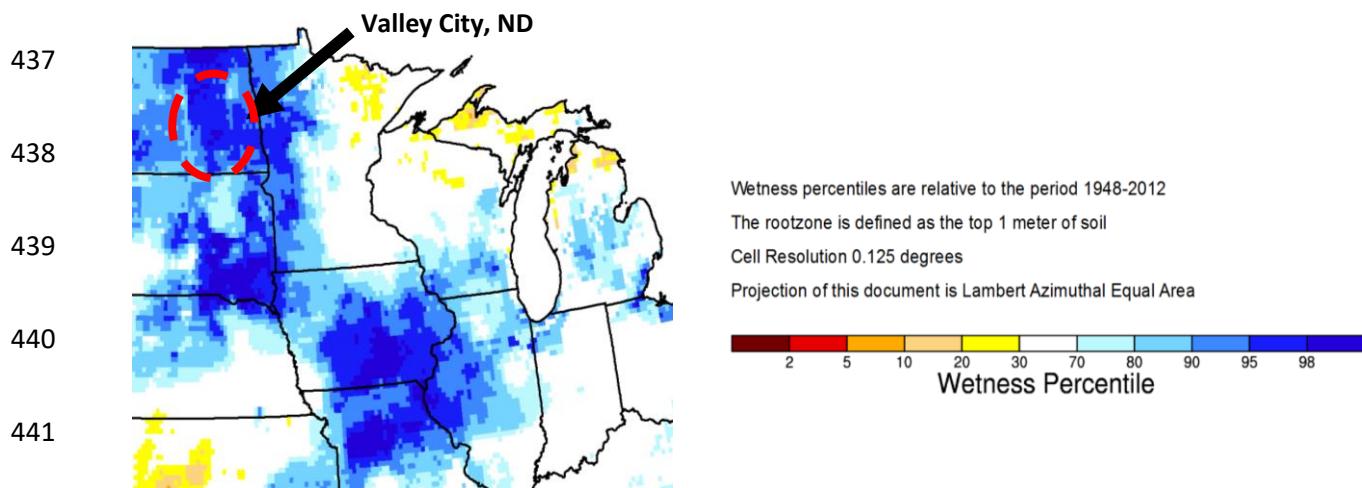


Figure 3. GRACE – based root zone soil moisture drought indicator 2/28/2011 (<https://nasagrace.unl.edu>)

Table 6. Sheyenne River discharge and flood risk forecasts for January – July 2011 with an Open run (ESP) and a
 GRACE-DA adjustment for the Valley City, ND at USGS river gage 05058500

VCRN8 QINER	10% [cfs]	20% [cfs]	50% [cfs]	Flood risk (%)	Major flood risk (%)
Open (ESP) 01/18/2011 – 04/17/2011	4,841.5264	3,514.3191	3,022.6165	< 20%	10%
GRACE adjust 01/01	4,475.1245	3,500.7190	2,994.4163	< 20%	< 10%

01/18/2011 – 04/17/2011					
Open (ESP)	5,317.7290	4,590.9248	3,126.7170	< 10%	15%
02/18/2011 – 05/17/2011					
GRACE adjust 02/01	6,598.2358	5,016.8271	3,081.0168	< 10%	20%
02/18/2011 – 05/17/2011					
Open (ESP)	5,372.3296	3,723.9202	3,125.0171	< 10%	15%
03/18/2011 – 06/17/2011					
GRACE adjust 03/01	10,733.8594	6,198.2339	4,722.4253	75%	50%
03/18/2011 – 06/17/2011					
Open (ESP)	10,559.5576	8,192.2441	5,075.5273	> 98%	75%
04/18/2011 – 07/17/2011					
GRACE adjust 04/01	12,752.9688	11,063.7607	8,726.9473	> 98%	> 98%
04/18/2011 – 07/17/2011					

445 Source: Michael DeWeese, Development and Operations Hydrologist National Weather Service North Central River
 446 Forecast Center 2019

447 For the consolidated message $FS_{12}(s; t)$ to be useful, we test whether the conditional probabilities from the two
 448 forecasts come from the same underlying population and can be used together. We do this with a Mann – Whitney U
 449 test in which the null hypothesis H_0 is that $p(FS_1(s; 03022011)) = p(FS_2(s; 03012011))$. We applied the test for
 450 the two black exceedance probability curves in Figure 2b. In a two-tailed test, if the test statistic U_{obs} is less than or
 451 equal to the critical value U_{crit} , H_0 is rejected in favor of H_1 which is the alternative hypothesis that the two
 452 populations are not equal. We find that $U_{obs} = 14.5$ for the NCRFC curve ($n = 8$) and $U_{obs} = 21.5$ for the GRACE-DA
 453 curve ($n = 6$). U_{crit} values for the test are 8 for a 0.05 level of significance and 4 for a 0.01 level of significance.
 454 Because $U_{obs} > U_{crit}$ for both levels of significance, we cannot reject H_0 . We thus cannot reject that the exceedance
 455 probabilities and river flows with NCRFC and GRACE-DA in $FLS_{12}(s; t)$ forecasted flood stages are derived from
 456 the same statistical population. This outcome of the test suggests that the GRACE-DA forecast could assist the NWS
 457 and the USACE in making hazard communications more temporally reliable.

458 Concurrence of the two adjusted forecasts signaled a greater mitigation effort could have been implemented earlier
459 with no loss of accuracy. On March 2, the consolidated forecast met the requirement of $d_{i,t} = 1$. A second
460 independent adjustment could have changed the action date to $t - 5$ rather than at $t + 1$, which was the April 18 –
461 July 1 forecast, executed just as the flood was occurring on April 11. In Valley City, the consolidated forecast would
462 have communicated greater urgency for Mitigation Phase 3 implementation earlier, which could have reduced the
463 cost of protection. $FS_{12}(s; t)$ provides an incremental economic value that stems from the addition of the GRACE-
464 DA adjustment input to the mitigation timeliness (Qian et al 2009, Gossner 2000). By using the consolidated
465 forecast, Valley City could have chosen to employ Mitigation Phase 3 by March 18, 2011.

466 An implementation delay caused a scramble for resources resulting in a higher price of clay equivalent to \$6.11 per
467 CY placed (Schueneman 2011). The difference in protection cost between the reference $FS_0(s; t)$ and consolidated
468 $FS_{12}(s; t)$ forecasts is the VOI of GRACE-DA. Had the decision been to implement Phase 3 five days earlier as a
469 result of the consolidated forecast, a monetary savings of \$1.7 million could have been realized. This monetary
470 estimate is a quantitative measure of the economic value of GRACE-DA as a value in use.

471 Because this is an ex-post assessment, our VOI estimate is based on realized forecast delays and mitigation costs and
472 is thus not subject to uncertainty. However, as a simple sensitivity analysis, we can discuss the impact of alternative
473 avoided forecast delay times on VOI by assuming that mitigation costs increase linearly with delay time. Under this
474 assumption, cutting the five-day avoided delay time attributable to GRACE-DA by half would reduce the VOI to
475 \$0.85 million, while doubling the avoided delay time would increase the VOI to \$3.4 million. Note that the
476 assumption that mitigation costs increase linearly with delay time is likely to lead to an underestimate of VOI when
477 more delay is avoided.

478 **6.0 Discussion**

479 The spring of 2011 brought the second 100-year flood to the Sheyenne River Basin in 2 years. Following the flood,
480 the city of Valley City proposed a multistep approach for permanent protection of the community. Valley City
481 partnered with the USACE to increase public safety, reduce the dependency on sandbags and Hesco barriers, lower
482 risk of flood damage to neighborhoods, the downtown business district and Valley City State University, increase
483 efficiency of emergency levee construction, and enable permanent flood protection (North Dakota State Water
484 Commission 2011). The State of North Dakota has invested in permanent flood protection for the 100–year flood

485 plain in Valley City over approximately a ten-year period. As of August, 2023, the Valley City program is on hold
486 for the final buildout phase of the project until a Conditional Letter of Map Revision (CLOMR) is submitted to
487 FEMA for the full build out of the permanent flood protection system. The CLOMR will identify any changes to the
488 base flood elevation because of the completed flood protection system and any mitigation required because of
489 impacts to structures (<https://www.newsdkota.com/2023/08/22/valley-city-preparing-4th-phase-of-permanent-flood-protection/>).
490

491 Permanent flood protection for the community is not a certainty, especially as the regional climate changes during
492 the upcoming decades. North Dakota is part of a large area in the northern and central US with projected increases in
493 winter precipitation for the middle of the 21st century (Frankson et al. 2017). Spring precipitation also is projected
494 to increase. The effects of potential flooding in the Valley City 2045 comprehensive plan identifies the areal extents
495 of the impacts for 100 and 500–year floods (Stantec 2019). The report illustrates the dynamic nature of the flood
496 hazard of increasing flood size, greater severity, and higher frequency.

497 As shown in Table 2, the expected damage of the 500-year flood is an additional \$59.2M for Valley City. Most
498 significantly, the greatest impact of a major flood would be on the city’s commercial sector. This forecast for
499 damage would exceed the current plan design and require additional protection above the 100-year flood hazard.
500 Major floods will need to be forecast with increased confidence so that the community can be better prepared. A
501 consolidated forecast with a GRACE-DA adjustment offers a novel form of verification of an operational forecast.
502 In our case study, the $FS_{12}(s; t)$ consolidated forecast would produce a hazard communication that is timelier with
503 no loss in accuracy at less cost (NRC 2003). While the intent is to reduce temporal uncertainty in community
504 mitigation decisions, the innovation of incorporating GRACE-DA requires both capital and labor to accomplish new
505 tasks by the forecaster (Acemoglu and Restrepo 2019). These new tasks can increase the productivity of the forecast
506 via a reduction in decision risk but also requires review and testing.

507 **7.0 Conclusion**

508 We have estimated the VOI of improved timeliness and reliability of a probabilistic operational river discharge
509 forecast with forecaster and GRACE-DA adjustments. The VOI is driven by reductions in the impact of delayed
510 actions from decisions using seasonal flood forecasting and empirical updates. By pooling the observations from
511 both sets of post processing data, an increase in the precision of the forecast is possible. In the example, a 5-day

512 reduction in the timing for executing loss avoidance actions based on a consolidated NCRFC + GRACE-DA forecast
513 for a flood crest greater than expected would have led to savings in mitigation costs. The consolidated forecast can
514 provide more confidence in communications with the USACE and other stakeholders to lower pre-flood mitigation
515 costs to a community. In making this statement, we note that this was a single case study for which GRACE-DA
516 performed well. Prior to operationalizing such a system, one would perform site-specific evaluation and calibration
517 of the forecast system. The latency of GRACE-DA products, which was not an issue in this retrospective analysis,
518 would also need to be minimized. We also did not compare GRACE-DA to other satellite-informed forecast
519 products that might play a similar role; design of an operational system should include a survey of available model
520 and data assimilation options.

521 It is becoming clear from climate projections that permanent protection for the current stage levels for the 100-year
522 event may not be enough. Accurate, timely seasonal forecasts will be of increasing value as the potential severity of
523 major floods increases with time and as groundwater levels rise. Increases in forecast confidence also are important
524 for timely decisions in longer-term planning. Even though a community such as Valley City, ND should continue to
525 prepare to control and avoid flood disasters by investing in permanent structures, emerging trends of warming and
526 increased precipitation mean that protection in a major flood also will require timely, informative flood forecasts.

527

- 528 **References**
- 529 Acemoglu D, Restrepo P (2019) Automation and New Tasks: How Technology Displaces and Reinstates Labor.
- 530 Journal of Economic Perspectives 33:3-30.
- 531 Bernknopf R, Brookshire D, Kuwayama Y, Macauley M, Rodell M, Thompson A, Vail P, Zaitchik B (2018) The
- 532 Value of Remotely Sensed Information: The Case of a GRACE-Enhanced Drought Severity Index. Weather, Climate
- 533 and Society 10:187-203. <https://doi.org/10.1175/WCAS-D-16-0044.1>.
- 534 Bernknopf, R., Kuwayama, Y., Gibson, R., Blakely, J., Mabee, B., Clifford, T.J., Quayle, B., Epting, J., Hardy, T.
- 535 and Goodrich, D., 2020. Monetising the savings of remotely sensed data and information in Burn Area Emergency
- 536 Response (BAER) wildfire assessment. International Journal of Wildland Fire, 30(1), pp.18-29. DOI:
- 537 10.1071/WF19209.
- 538 Borowitz, M., Zhou, J., Azelton, K. and Nassar, I.Y., 2023. Examining the value of satellite data in halting
- 539 transmission of polio in Nigeria: A socioeconomic analysis. Data & Policy, 5, p.e16. DOI: 10.1017/dap.2023.12.
- 540 Brown J, Demargne J, Seo D-J, Liu Y (2010) The Ensemble Verification System (EVS): A software tool for
- 541 verifying ensemble forecasts of hydrometeorological and hydrologic variables at discrete locations. Environmental
- 542 Modelling & Software 25:854-872.
- 543 Conover W (1980) Practical Nonparametric Statistics 2nd edition. John Wiley and Sons, N.Y.
- 544 Davenport F, Burke M, Diffenbaugh N (2021) Contribution of historical precipitation change to US flood damages.
- 545 PNAS 118:1-7. <https://doi.org/10.1073/pnas.2017524118>.
- 546 Devore J, Peck R (1997) Statistics: The Exploration and Analysis of Data, 3rd edition. Duxbury Press, Wadsworth
- 547 Publishing Company, London.
- 548 DL – Online (2011) Valley City fights record flooding along Sheyenne River; Fargo sends 400,000 sandbags west.
- 549 <https://www.dl-online.com/news/560756-valley-city-fights-record-flooding-along-sheyenne-river-fargo-sends-400000-sandbags-west>.
- 551 Economou T, Stephenson D, Rougier J, Neal R, Mylne K (2016) On the use of Bayesian decision theory for issuing
- 552 natural hazard warnings. Proc. R. Soc. A 472: 20160295. <http://dx.doi.org/10.1098/rspa.2016.0295>.

- 553 Ermakova A, Gileadi N, Knolle F, Justicia A, Anderson R, Fletcher PC, Moutoussis M, Murray GK (2019) Cost
554 evaluation during decision-making in patients at early stages of psychosis. *Computational Psychiatry* 3:18–39.
555 https://doi.org/10.1162/cpsy_a_00020.
- 556 Farmer W, Vogel R (2016) On the deterministic and stochastic use of hydrologic models, *Water Resources Research*,
557 52:5619–5633. doi:10.1002/2016WR019129.
- 558 Federal Emergency Management Agency (2011) North Dakota Flooding: FEMA-1981-DR Report.
559 <https://www.fema.gov/pdf/news/pda/1981.pdf>.
- 560 Frankson R, Kunkel K, Stevens L, Easterling D, Shulski M, Akyuz A (2017) North Dakota State Climate Summary,
561 NOAA Technical Report NESDIS 149-ND.
- 562 Gossner O (2000) Comparison of Information Structures, *Games and Economic Behavior*, 30:44–63.
563 doi:10.1006/game.1998.0706.
- 564 Houborg R, Rodell M, Li B, Reichle R, Zaitchik, B (2012) Drought indicators based on model-assimilated Gravity
565 Recovery and Climate Experiment (GRACE) terrestrial water storage observations. *Water Resources Research* 48:1-
566 17, <https://doi.org/10.1029/2011WR011291>.
- 567 KLJ (2016) Valley City 100 Year Event Flood Protection, Citywide Planning Draft Report, Project #5416105, Valley
568 City, ND, Prepared for: City of Valley City, ND.
- 569 Koren V, Smith M, Cui Z, and Cosgrove B (2007) Physically-Based Modifications to the Sacramento Soil Moisture
570 Accounting Model: Modeling the Effects of Frozen Ground on the Rainfall-Runoff Process. NOAA Technical
571 Report NWS 52, https://www.weather.gov/media/owp/oh/hrl/docs/NOAA_Technical_Report_NWS_52.pdf.
- 572 Kumar S, Zaitchik B, Peters-Lidard C, Rodell M, Reichle R, Li B, ... Ek M (2016) Assimilation of gridded GRACE
573 terrestrial water storage estimates in the North American Land Data Assimilation System. *Journal of
574 Hydrometeorology* 17:1951–1972.
- 575 Lawrence D (1999) *The Economic Value of Information*. Springer-Verlag, NY.
- 576 Lee P (1989) *Bayesian Statistics: An Introduction*. Oxford University Press, NY.

- 577 Li, B., Rodell, M., Kumar, S., Beaudoin, H., Getirana, A., Zaitchik, B., Goncalves, L., Cossetin, C., Bhanja, S.,
578 Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I., Daira, D., Bila,
579 M., de Lannoy, G., Mocko, D., Steele-Dunne, S., Save, H., and Bettadpur, S. 2019. Global GRACE data assimilation
580 for groundwater and drought monitoring: Advances and challenges. Water Resources Research, 55, p.7564 – 7586,
581 <https://doi.org/10.1029/2018WR024618>.
- 582 Loren V, Smith M, Cui Z, Cosgrove B (2007) Physically-Based Modifications to the Sacramento Soil Moisture
583 Accounting Model: Modeling the Effects of Frozen Ground On the Runoff Generation Process. U.S. Department of
584 Commerce National Oceanic and Atmospheric Administration National Weather Service Technical Report NWS 52,
585 Silver Spring, Maryland 20901.
- 586 National Oceanographic and Atmospheric Administration (2019) Concept of Operations (CONOPS),
587 <https://www.weather.gov/media/organization/WPOD%20CONOPS%2020190916%20final.pdf>.
- 588 National Weather Service (2021) High Water Terminology. <https://www.weather.gov/aprfc/terminology>, accessed
589 August 14, 2021.
- 590 North Dakota State Water Commission (2019) 2019 State Water Development Plan. Bismarck, ND.
591 http://www.swc.state.nd.us/info_edu/state_water_plan/archives/pdfs/2019_Water_Development_Plan.pdf.
- 592 North Dakota State Water Commission (2011) October 10 and 31, 2011. Water Topics Committee Meeting:
593 Appendix D & E. https://www.swc.nd.gov/theswc/meeting_minutes/swc_minutes/2011_10_31.pdf.
- 594 National Research Council (2003) Fair Weather: Effective Partnership in Weather and Climate Services.
595 Washington, DC: The National Academies Press. <https://doi.org/10.17226/10610>.
- 596 Pakhtigian, E.L., Aziz, S., Boyle, K.J., Akanda, A.S. and Hanifi, S.M.A., 2024. Early warning systems, mobile
597 technology, and cholera aversion: Evidence from rural Bangladesh. Journal of Environmental Economics and
598 Management, 125, p.102966. DOI: 10.1016/j.jeem.2024.102966.
- 599 Pappenberger F, Cloke H, Parker D, Wetterhall F, Richardson D, Thielen J (2015) The monetary benefit of early
600 flood warnings in Europe. Environmental Science & Policy 51:278-291.
601 <http://creativecommons.org/licenses/by/4.0/>.

- 602 Pielke R, Downton M (2000) Precipitation and damaging floods: Trends in the United States, 1932–1997. *Journal of*
603 *Climate* 13:3625–3637.
- 604 Porter K, Wein A, Alpers C, Baez A, Barnard P, Carter J, Corsi A, Costner J, Cox D, Das T, Dettinger M, Done J,
605 Eadie C, Eymann M, Ferris J, Gunturi P, Hughes M, Jarrett R, Johnson L, Dam Le-Griffin H, Mitchell D, Morman
606 S, Neiman P, Olsen A, Perry S, Plumlee G, Ralph M, Reynolds D, Rose A, Schaefer K, Serakos J, Siembieda W,
607 Stock J, Strong D, Sue Wing I, Tang A, Thomas P, Topping K, Wills C (2011). Overview of the ARkStorm scenario:
608 U.S. Geological Survey Open-File Report 2010-1312 [<http://pubs.usgs.gov/of/2010/1312/>].
- 609 Qian C, Chen J, Nakagawa T (2009). Comparison of Two Information Structures with Noise and Its Application to
610 Bayes Decision Analysis. *Quality Technology & Quantitative Management.*, 6,:1-10,
611 <http://dx.doi.org/10.1080/16843703.2009.11673180>.
- 612 Restrepo P (2017) The United States National Weather Service Real-Time Flood Forecasting, *Oxford Research*
613 *Encyclopedia of Natural Hazard Science*, DOI:10.1093/acrefore/9780199389407.013.128.
- 614 Roe J, Dietz C, Restrepo P, Halquist J, Hartman R, Horwood R, Olsen B, Opitz H, Shedd R, Welles E (2007).
615 NOAA's Community Hydrologic Prediction System, <https://training.weather.gov/nwstc/CHPS/roe.pdf>.
- 616 Schueneman R (2011). Sheyenne River, Valley City in Barnes County, ND. USACE Flood Event Report B.
- 617 Sinn H-W (1983). *Economic decisions under uncertainty*. North-Holland Publishing Company, Amsterdam.
- 618 Stantec Consulting Ltd (2019). Valley City 2045 Comprehensive Plan, Bismarck, ND. <https://www.vcparks.com/wp-content/uploads/2021/01/Comprehensive-Plan.pdf>.
- 619
- 620 Stroming, S., Robertson, M., Mabee, B., Kuwayama, Y. and Schaeffer, B., 2020. Quantifying the human health
621 benefits of using satellite information to detect cyanobacterial harmful algal blooms and manage recreational
622 advisories in US Lakes. *GeoHealth*, 4(9), p.e2020GH000254. DOI: 10.1029/2020GH000254.
- 623 Tapley B, Bettadpur S, Ries J, Thompson P, Watkins M (2004). GRACE measurements of mass variability in the
624 Earth system. *Science*, 305:503-505.
- 625 US Army Corps of Engineers (2020). *Inundation Maps and Emergency Action Plans and Incident Management for*
626 *Dams and Levee Systems*. Washington, DC.

627 US Army Corps of Engineers Risk Management Center (2019). EP 1110-2-17, A Guide to Public Alerts and
628 Warnings for Dam and Levee Emergencies.

629 <https://www.publications.usace.army.mil/Portals/76/Users/182/86/2486/EP%201110-2-17.pdf?ver=2019-06-20-152050-550>.

631 van Doorn J, van den Bergh Don, Böhm U, Dablander F, Derkx K, Draws T, Etz A, Evans N, Gronau Q, Haff J,
632 Hinne M, Kucharsky Š, Ly A, Marsman M, Matzke D, Gupta A, Sarafoglou A, Stefan A, Voelkel J, Wagenmakers E-
633 J (2021). The JASP guidelines for conducting and reporting a Bayesian analysis, Psychonomic Bulletin and Review,
634 28:813–826. <https://doi.org/10.3758/s13423-020-01798-5>.

635 Whitney J (1997). Testing for differences with the nonparametric Mann-Whitney U test, Journal of Wound Ostomy
636 and Continence Nursing, 24:12. [https://doi: 10.1016/s1071-5754\(97\)90044-9](https://doi: 10.1016/s1071-5754(97)90044-9). PMID: 9213501.

637 Zaitchik B, Rodell M, Reichle, R (2008). Assimilation of GRACE terrestrial water storage data into a land surface
638 model: Results for the Mississippi River basin. Journal of Hydrometeorology, 9:535-548.