Numerical Investigation of Propeller-Wing Interaction Noise with Scattering and Shielding

Maks J. Groom, 1 Beckett Y. Zhou, 1 and Leonard V. Lopes 2

31st AIAA/CEAS Aeroacoustics Conference, July 2025

Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology
 Aeroacoustics Branch, NASA Langley Research Center

Introduction

Installed propellers are significant noise sources in Urban Air Mobility (UAM) concepts.

Introduction

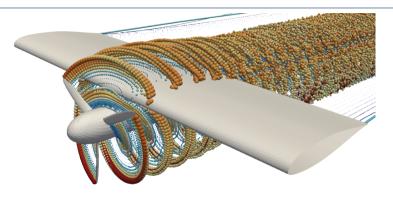
Installed propellers are significant noise sources in Urban Air Mobility (UAM) concepts.

► There is a need for efficient numerical prediction methodologies for design, optimization, control, operation, etc.

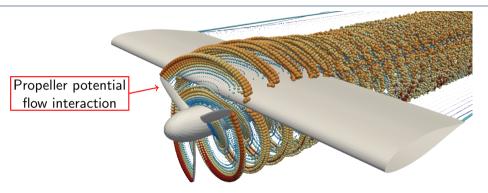
Installed propellers are significant noise sources in Urban Air Mobility (UAM) concepts.

- ► There is a need for efficient numerical prediction methodologies for design, optimization, control, operation, etc.
- Existing options are very computationally expensive, even for tonal noise.

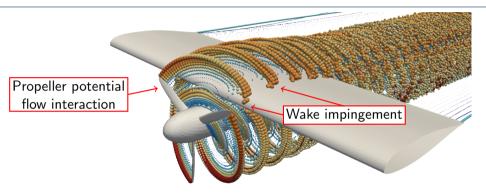
Introduction

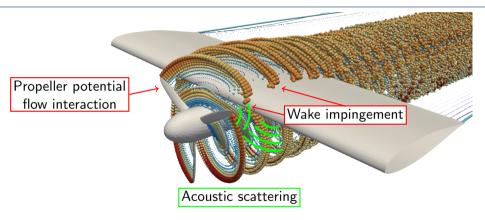


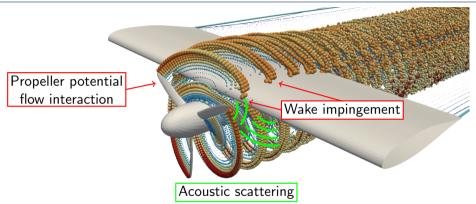
Installed propellers are significant noise sources in Urban Air Mobility (UAM) concepts.

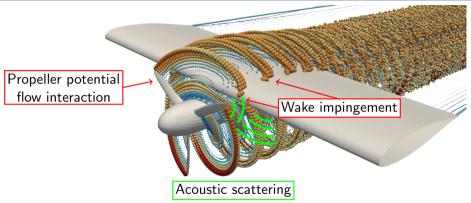

- ► There is a need for efficient numerical prediction methodologies for design, optimization, control, operation, etc.
- Existing options are very computationally expensive, even for tonal noise.

Objective: develop an efficient prediction approach for installed propeller tonal noise with suitability for full-vehicle design and optimization tasks.









How can we efficiently capture each interaction mechanism in a numerical approach suitable for design optimization tasks?

How can we efficiently capture each interaction mechanism in a numerical approach suitable for design optimization tasks?

Which mechanism(s) dominate the overall installation effect?

Aerodynamic solver: DUST¹
3D panel-vortex particle method (VPM)

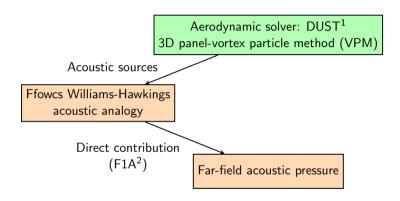
¹Tugnoli et al., Aerospace Science and Technology 2021 Vol. 115.

²Farassat, NASA/TM-2007214853.

³Ghorbaniasl, Carley, and Lacor, AIAA Journal 2013 Vol. 51 No. 3.

 $\label{eq:Aerodynamic solver: DUST1} \mbox{3D panel-vortex particle method (VPM)}$

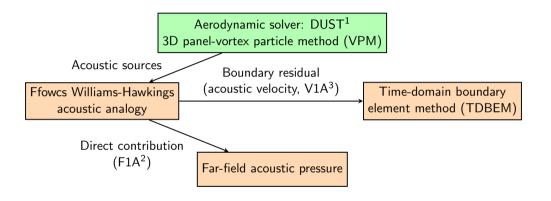
Acoustic sources


Ffowcs Williams-Hawkings acoustic analogy

¹Tugnoli et al., Aerospace Science and Technology 2021 Vol. 115.

²Farassat, NASA/TM-2007214853.

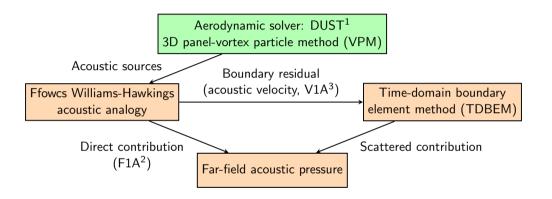
³Ghorbaniasl, Carley, and Lacor, AIAA Journal 2013 Vol. 51 No. 3.



¹Tugnoli et al., Aerospace Science and Technology 2021 Vol. 115.

²Farassat, NASA/TM-2007214853.

³Ghorbaniasl, Carley, and Lacor, AIAA Journal 2013 Vol. 51 No. 3.



¹Tugnoli et al., Aerospace Science and Technology 2021 Vol. 115.

²Farassat, NASA/TM-2007214853.

³Ghorbaniasl, Carley, and Lacor, AIAA Journal 2013 Vol. 51 No. 3.

¹Tugnoli et al., Aerospace Science and Technology 2021 Vol. 115.

²Farassat, NASA/TM-2007214853.

³Ghorbaniasl, Carley, and Lacor, AIAA Journal 2013 Vol. 51 No. 3.

Acoustic Scattering

Acoustic propagation problem: inhomogeneous convective wave equation with sound-hard boundary condition on scattering surfaces.

Acoustic propagation problem: inhomogeneous convective wave equation with sound-hard boundary condition on scattering surfaces.

$$\left(\frac{1}{c_0^2} \left(\frac{\partial}{\partial T} + U_i \frac{\partial}{\partial X_i}\right)^2 - \frac{\partial^2}{\partial X_i^2}\right) \phi = S(X, T)$$
(1a)

Acoustic propagation problem: inhomogeneous convective wave equation with sound-hard boundary condition on scattering surfaces.

$$\left(\frac{1}{c_0^2}\left(\frac{\partial}{\partial T} + U_i \frac{\partial}{\partial X_i}\right)^2 - \frac{\partial^2}{\partial X_i^2}\right)\phi = S(X, T)$$
 (1a)

$$u_i'N_i = \frac{\partial \phi}{\partial X_i}N_i = \frac{\partial \phi}{\partial N} = 0 \text{ on } \Gamma$$
 (1b)

Acoustic propagation problem: inhomogeneous convective wave equation with sound-hard boundary condition on scattering surfaces.

$$\left(\frac{1}{c_0^2} \left(\frac{\partial}{\partial T} + U_i \frac{\partial}{\partial X_i}\right)^2 - \frac{\partial^2}{\partial X_i^2}\right) \phi = S(X, T)$$
 (1a)

$$u_i'N_i = \frac{\partial \phi}{\partial X_i}N_i = \frac{\partial \phi}{\partial N} = 0 \text{ on } \Gamma$$
 (1b)

Direct contribution from acoustic analogy does not automatically satisfy (1b) unless aerodynamic solution fully resolves the acoustic field.

⁴Groom, Pullin, Zhou, and Wang, AIAA 2024-2810

⁵Groom, Zhou, and Lopes, AIAA 2024-3039

Galerkin TDBEM is used to include the effect of non-compact solid bodies on propagation by enforcing the acoustic boundary condition.

▶ Well-suited to propeller noise: rotating, transient, and broadband sources

⁴Groom, Pullin, Zhou, and Wang, AIAA 2024-2810

⁵Groom, Zhou, and Lopes, AIAA 2024-3039

- ▶ Well-suited to propeller noise: rotating, transient, and broadband sources
- Natural coupling with time-domain aerodynamic solvers

⁴Groom, Pullin, Zhou, and Wang, AIAA 2024-2810

⁵Groom, Zhou, and Lopes, AIAA 2024-3039

- Well-suited to propeller noise: rotating, transient, and broadband sources
- Natural coupling with time-domain aerodynamic solvers
- ► Useful numerical properties: quasi-best approximation and unconditional stability

⁴Groom, Pullin, Zhou, and Wang, AIAA 2024-2810

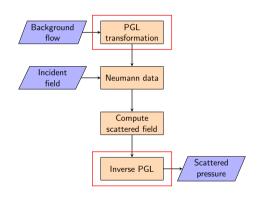
⁵Groom, Zhou, and Lopes, AIAA 2024-3039

- ▶ Well-suited to propeller noise: rotating, transient, and broadband sources
- Natural coupling with time-domain aerodynamic solvers
- Useful numerical properties: quasi-best approximation and unconditional stability
- ► Analytical validation cases presented in previous work^{4,5}

⁴Groom, Pullin, Zhou, and Wang, AIAA 2024-2810

⁵Groom, Zhou, and Lopes, AIAA 2024-3039

Background Flow

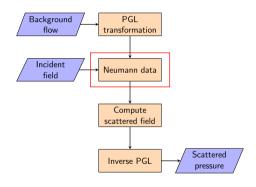


Approximate mean background flow with uniform free-stream and simplify to rest-medium via Prandtl-Glauert-Lorentz (PGL) transformation:

$$\frac{1}{c_0^2} \frac{D^2 \phi}{DT^2} - \frac{\partial^2 \phi}{\partial X_i^2} = S(X, T)$$

$$\Rightarrow \frac{\partial^2 \bar{\phi}}{\partial t^2} - \frac{\partial^2 \bar{\phi}}{\partial x_i^2} = s(x, t) \quad (2a)$$

$$\frac{\partial \phi}{\partial N} = 0 \text{ on } \Gamma \Rightarrow \frac{\partial \bar{\phi}}{\partial n} = 0 \text{ on } \Gamma$$
 (2b)



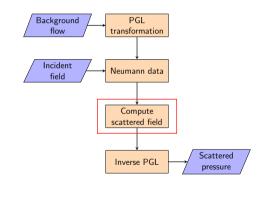
Evaluate residual from incident field:

$$\frac{\partial \bar{\phi}_i}{\partial n} = -g(x, t). \tag{3}$$

Scattered field must be a homogeneous solution satisfying a Neumann boundary condition to cancel the residual:

$$\frac{\partial \bar{\phi}_s}{\partial n} = g(x, t). \tag{4}$$

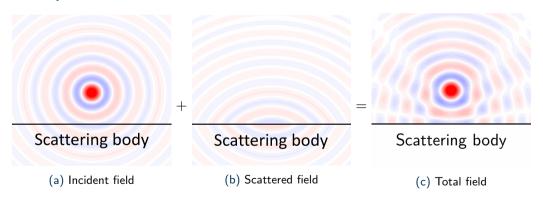
Scattered Field


We represent $\bar{\phi}_s$ with a surface distribution the double layer potential $\psi = [\bar{\phi}_s]$:

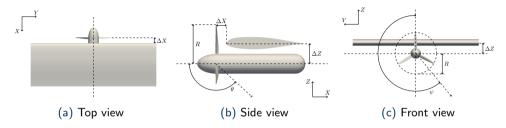
$$\bar{\phi}_s(x,t) = \int_0^t \int_{\Gamma} \frac{\partial G}{\partial n_y} \psi(y,\tau) dy d\tau, \quad (5)$$

where $G(x, t; y, \tau) = \frac{\delta(t-\tau-|x-y|)}{4\pi|x-y|}$.

The first kind retarded potential boundary integral equation (RPBIE) relates g to the unknown layer potential:

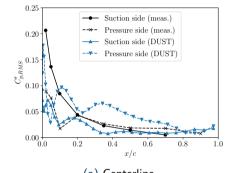

$$g(x,t) = \int_0^t \int_{\Gamma} \frac{\partial^2 G}{\partial n_x \partial n_y} \psi(y,\tau) dy d\tau \qquad (6)$$

Total Field



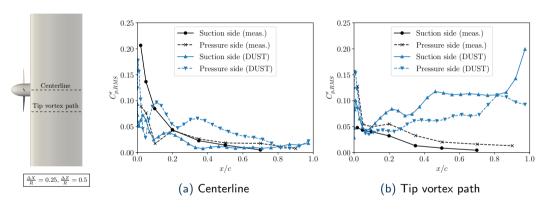
Total field $(\bar{\phi} = \bar{\phi}_i + \bar{\phi}_s)$ forced by the source distribution now satisfies the acoustic boundary condition:

Propeller-Wing Configuration


Propeller-wing geometry from Zawodny et al.⁶, consisting of a three-bladed propeller installed on a nacelle below a rectangular wing. The wing leading edge is located at $(\Delta X, 0, \Delta Z)$ relative to the center of the propeller disk. The flyover observer array is located 3.5 m from the propeller axis at an azimuthal angle $\psi = 220^{\circ}$.

⁶Zawodny, Boyd, and Nark, AIAA 2021-0714.

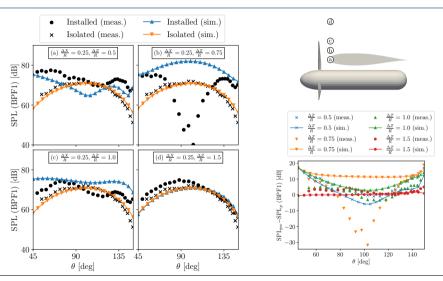
Aerodynamic Results: Unsteady Surface Pressure



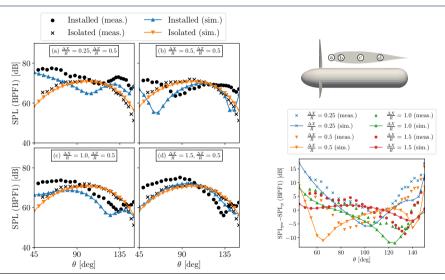
(a) Centerline

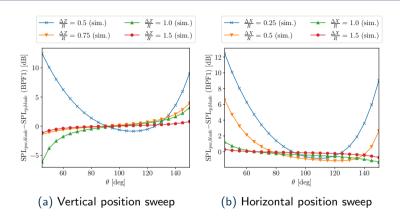
(b) Tip vortex path

Aerodynamic Results: Unsteady Surface Pressure



Significant discrepancies are observed between simulation and experiment, especially at the tip vortex path.

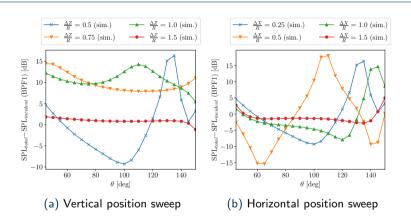

Acoustic Results: Vertical Wing Positions


Acoustic Results: Horizontal Wing Positions

Propeller Potential Flow Interaction

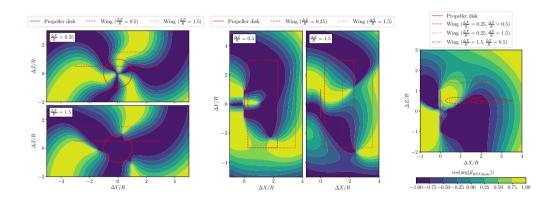
Figures show the difference between installed and isolated blade contributions, indicative of the propeller potential interaction mechanism.

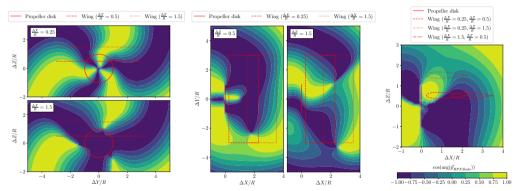
Wake Impingement



Figures show the difference between installed directivities with and without the wing contribution, indicative of the wake impingement interaction mechanism.

Acoustic Scattering




Figures show the difference between installed directivities with and without the scattered contribution, corresponding to the scattering acoustic interaction mechanism.

Incident Acoustic Field

The wing chord is small compared to far-field length scale ($c \approx \lambda/6$) but large compared to near-field length scale ($c \approx 2R$).

Summary

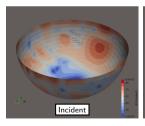
- ► Panel-VPM and TDBEM approaches are coupled to efficiently model tonal propeller-wing interaction noise.
- ► Results show strong potential to capture interaction noise, although discrepancies remain for aspects of the unsteady aerodynamic and acoustic predictions.
- ▶ Breakdowns of acoustic contributions in the installed propeller configurations reveal significant effects from propeller potential interaction, wake impingement, and scattering mechanisms.
- ► The near-field spatial scaling of the propeller acoustic field with the propeller diameter strongly impacts the scattering effect from the wing.

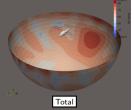
► Higher fidelity aerodynamic solver (URANS)

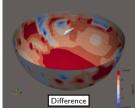
Future Work

- ► Higher fidelity aerodynamic solver (URANS)
- Include additional scattering interactions: scattering of wing-radiated contribution, scattering by nacelle surface

Future Work




- ► Higher fidelity aerodynamic solver (URANS)
- ► Include additional scattering interactions: scattering of wing-radiated contribution, scattering by nacelle surface
- ► Further validation against experimental data


Future Work

- ► Higher fidelity aerodynamic solver (URANS)
- ► Include additional scattering interactions: scattering of wing-radiated contribution, scattering by nacelle surface
- ► Further validation against experimental data
- ► Full vehicle noise with scattering

Acknowledgments

The authors gratefully acknowledge Nikolas Zawodny at the NASA Langley Research Center for providing data and assistance to set up and benchmark the propeller-wing configuration.