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Abstract. Volcanic emissions from the Tajogaite volcano, located on the Cumbre Vieja edifice on the island of La Palma (Ca-
nary Islands, Spain), caused significant public health and aviation disruptions throughout the volcanic event (19 September — 13
December 2021, officially declared over on 25 December). The Instituto Geografico Nacional (IGN), the authority responsible

for volcano surveillance in Spain, implemented extensive scientific monitoring to track volcanic activity and to provide a robust
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estimation of the volcanic plume height using a video-surveillance network. In parallel, the State Meteorological Agency of
Spain (AEMET), in collaboration with other members of ACTRIS (Aerosol, Clouds, and Trace Gases Research Infrastructure)
in Spain, in collaboration with other institutions, carried out an unprecedented instrumental deployment to assess the atmo-
spheric composition impacts of this rare event. This effort included a network of aerosol profilers surrounding the volcano.
A total of four profiling instruments were installed on La Palma: one MPL-4B lidar and three ceilometers. Additionally, a
pre-existing Raman lidar on the island contributed valuable data to this study.

In this study, the eruptive process was characterised in terms of the altitude of the dispersive volcanic plume (h,), measured
by both IGN and AEMET-ACTRIS, and the altitude of the eruptive column (h..), measured by IGN. Modulating factors such
as seismicity and meteorological conditions were also analysed. The results confirmed the existence of three distinct eruptive
phases, encompassing a range of styles from Strombolian explosive to effusive activity.

The consistency between the two independent and complementary datasets (hq ren and hqg agnET) Was assessed through-
out the eruption (mean difference of 258.6 m). Furthermore, a comparison of hg 4 gy g7 With the Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) aerosol layer height product (ALH¢c a1 10 p) revealed a systematic underestimation by the
satellite product, with a mean difference of 615.0 m (392.2 m if 6 October is excluded from the analysis).

Finally, the impact of using h.. in estimating SOz emissions from the NASA M SV OLSO2LA4 satellite-based product was
evaluated. When a fixed plume altitude of 8 km was used instead of the observed h.., the total SO, mass was significantly
underestimated by an average of 56.2%, and by up to 84.7% in some cases. These findings underscore the importance of

accurately determining the volcanic plume height when deriving SO, emissions from satellite data.

1 Introduction

Anthropogenic aerosols, as one of the major drivers of climate change, have attracted significant scientific attention for decades.
Natural aerosols, such as dust, volcanic particles, and sea salt, have also been thoroughly studied in recent decades, particularly
in relation to their radiative forcing (Boucher et al., 2013; Masson-Delmotte et al., 2021; Forster et al., 2021). Volcanic aerosols,
both tropospheric and stratospheric, have a primary impact on atmospheric chemistry, climate, and the radiative budget. More-
over, they play a critical role in public health, civil aviation, the economy, and ecosystems (Carn et al., 2017; Karagulian et al.,
2010; Kampouri et al., 2020; Aubry et al., 2021; Nogales et al., 2022).

Volcanoes primarily emit gaseous species, including water vapour (H2O), carbon dioxide (C'O3), and sulfur dioxide (SO2),
the latter being the most abundant gas released during volcanic activity (Gebauer et al., 2024). Primary aerosols can be directly
emitted at the vent, such as ash and sulfate aerosols (Karagulian et al., 2010). Secondary sulfate aerosols are formed through
in-plume conversion of SO5 into sulfuric acid droplets via gas-phase oxidation (Boichu et al., 2019; Kampouri et al., 2020),

along with other sulfate-bearing compounds (Gebauer et al., 2024). The efficiency of this conversion process from primary to
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secondary aerosols is influenced by several factors and generally increases with temperature and relative humidity (Gebauer
et al., 2024, and references therein). These newly formed sulfate aerosols can subsequently grow via coagulation and conden-
sation during downwind transport (Aubry et al., 2021), significantly affecting atmospheric chemistry on local scales. Their
impacts include drastic changes in atmospheric chemistry, the degradation of air quality, and their role as cloud condensation
nuclei (CCN) and ice-nucleating particles (INPs) (Pappalardo et al., 2004; Kampouri et al., 2020; Aubry et al., 2021; Gebauer
et al., 2024). Taking into account that the lifetime of sulfate aerosols is much longer than that of primary volcanic emissions
(typically 1.3 weeks in the troposphere and several years in the stratosphere), secondary volcanic aerosols can be transported
over long distances, potentially exerting a global impact on the climate system (Pappalardo et al., 2004; Gebauer et al., 2024),
such as increasing the Earth’s albedo or contributing to ozone depletion in the stratosphere. The amount of the incoming solar
radiation scattered from these emitted atmospheric components, and therefore the radiative effect and the impact of the vol-
canic aerosols, depends on the location of the volcanic layer, the size of the emitted particles (Marshall et al., 2020) but also the
nature of the volcanic aerosol. While volcanic sulfates are expected to be non-absorbing fine-mode, spherical particles mainly
scatterers of solar radiation, volcanic ash is observed to be irregular coarse-mode and more absorbing particles (Ansmann et al.,
2012; Sellitto and Briole, 2015).

Tropospheric volcanic aerosols resulting from smaller eruptions and sustained magmatic or hydrothermal degassing remain
largely understudied due to the lack of ‘near-source’ characterisations (Mather et al., 2003; Sellitto et al., 2016; Taquet et al.,
2025). Despite their shorter atmospheric residence time, these aerosols are expected to significantly affect air quality, as they
can be emitted either into the planetary boundary layer or the free troposphere, depending on the interaction between atmo-
spheric vertical structure and plume height. Moreover, they may influence cloud cover and cloud radiative properties (Mather
et al., 2003). As a result, the overall impact of such weak volcanic eruptions is currently not well represented in climate models
(Sellitto et al., 2016).

The eruptions of the Eyjafjallajokull volcano in Iceland during April and May 2010 provided the scientific community with
an unprecedented opportunity to study, in near-real time, the role of volcanic aerosols in the climate system. The event also
had a major impact on air traffic and the global economy, as the volcanic plume was transported over Europe (Ansmann et al.,
2010, 2011, 2012; Sicard et al., 2012; ACTRIS 2021, and references therein). As noted by Ansmann et al. (2012), this eruption
triggered significant advancements in lidar technology and promoted its broader deployment by research and environmental
institutions, given the suitability of lidar systems for detecting transported aerosol plumes at high altitudes.

Lidar has proven to be a particularly effective technique for identifying the height of both the eruptive column (h..) and the
subsequent downwind or dispersive plume (hg), as well as for distinguishing between different aerosol particle types within
the volcanic layer, ranging from fine-mode sulfates to coarse ash particles. Furthermore, lidar has been shown to be a valuable
tool for estimating aerosol mass concentration in volcanic plumes as a function of altitude (Ansmann et al., 2011; Gasteiger
et al., 2011; Marenco and Hogan, 2011; Ansmann et al., 2012; Sicard et al., 2012; Miffre et al., 2012; Pappalardo et al., 2013).

Other ground-based techniques, such as video-surveillance systems, weather radars, infrasound, and lightning detection,

have also been used to estimate plume top height (Lamb et al., 2015). Among these, video-surveillance systems offer a partic-
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ularly promising and easily automatable solution for near-real-time estimation of h.. during emergency events (Scollo et al.,
2014; Kampouri et al., 2020).

The magnitude of SO mass loadings (or emitted fluxes) and the height of the volcanic plume are key parameters for mon-
itoring volcanic activity and estimating the radiative and climatic impacts of volcanic eruptions (Theys et al., 2013; Marshall
et al., 2020; Fedkin et al., 2021). Sulfur emission rates during eruptions can be quantified through direct observations from
various platforms (Kremser et al., 2016), including satellite remote sensing and in situ measurements (Masson-Delmotte et al.,
2021). Satellite-based hyperspectral spectrometers operating in the ultraviolet (UV) have provided frequent and increasingly
accurate observations of global SOs levels. These observations rely on retrieval algorithms that process backscattered radiance
measurements to estimate both SO mass loadings and plume height (Fedkin et al., 2021; Carn et al., 2016, 2017; Carn, 2022).
According to Theys et al. (2013) and Carn (2022), the greatest source of uncertainty in estimating SO5 mass loadings in the
lower troposphere arises from the limited a priori knowledge of volcanic plume altitude. SO5 retrievals are more accurate for
plumes located above the SO cloud and snow/ice layers, with overall uncertainties typically ranging from 20-30% (Carn,
2022).

The 2021 volcanic eruption on La Palma (Canary Islands, Spain) served as a natural laboratory for studying the eruptive
process and its impacts from multiple perspectives (e.g., Romén et al., 2021; Sicard et al., 2022; Bedoya-Veldsquez et al.,
2022; Carracedo et al., 2022; Nogales et al., 2022; Cérdoba-Jabonero et al., 2023; Milford et al., 2023; Taquet et al., 2025).
The evolution and long-range transport of the volcanic plume have been the subject of numerous studies, including its disper-
sion toward the Iberian Peninsula (Salgueiro et al., 2023), southern France (Bedoya-Veldsquez et al., 2022), and Cape Verde
(Gebauer et al., 2024). This study aims to present the unprecedented instrumental coverage deployed during the Tajogaite
(Cumbre Vieja) eruption (19 September to 25 December 2021) by the Instituto Geogréfico Nacional (IGN), the Spanish State
Meteorological Agency (AEMET), and other Spanish members of ACTRIS (Aerosol, Clouds and Trace Gases Research In-
frastructure) to monitor the atmospheric impact of this rare event. As the institution responsible for volcano surveillance in
Spain, IGN implemented extensive monitoring from the beginning of the eruption, including robust estimations of the volcanic
plume height using a video-surveillance system. This quantification was incorporated into the PEVOLCA (Steering Commit-
tee of the Special Plan for Civil Protection and Attention to Emergencies due to Volcanic Risk) reports (PEVOLCA, 2021),
the VONA (Volcano Observatory Notice for Aviation) alerts, and the regular reports submitted to the Toulouse VAAC (Vol-
canic Ash Advisory Centre) during the crisis (VAAC, 2022; Felpeto et al., 2022). In parallel, AEMET-ACTRIS established a
network of aerosol profilers around the volcano to provide a complementary and reliable estimation of the dispersive plume
altitude. A total of four profiling instruments were deployed on La Palma, in addition to one pre-existing instrument, all located
within 15 km of the volcano. These included one Raman lidar (ARCADE), one Micropulse Lidar (MPL), and three ceilome-
ters (Vaisala CL51, Vaisala CL61, and Lufft CHM-15k). The information obtained from these profilers was compared with
the dispersive plume height (h,) estimated by IGN’s video-surveillance system and were also used in PEVOLCA Committees.
This approach enabled the retrieval of both the eruptive column height (k.. ) and the altitude of the dispersive plume (k).

The manuscript is organised as follows. Section 2 describes the main features of the volcanic eruption. Section 3 describes

the IGN and AEMET-ACTRIS monitoring networks as well as the auxiliary information used in this study. The main results are
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presented in Section 4, including the description of the volcanic event using the information of the volcanic plume altitudes and
modulating factors (Section 4.1). The evaluation of satellite-based products is included in Section 4: CALIPSO (Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observations), CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) aerosol
height (Sections 4.2), and the estimation of SO5 volcanic emissions using multi-satellite UV-based observations (Section 4.3).

Finally, Section 5 presents the summary and conclusions that are extracted from this work.

2 Tajogaite 2021 volcanic eruption

On 19 September 2021, at the Cumbre Vieja volcanic edifice, an eruption began. The initial phase was a fissural eruption, and
over the 85 days, that the eruption lasted, we had changes in the activity. PEVOLCA Committee declared officially the end of
the eruption on 25 December (which ended on 13 December from a seismic perspective) (PEVOLCA, 2021). In September
2022, nearly one year after the eruption began, the volcano on Cumbre Vieja was officially named Tajogaite, a traditional
toponym of Guanche origin used by locals to refer to the upper part of the affected area.

This eruption is considered the most significant volcanic event in Europe over the past 75 years due to the substantial amount
of SO, released into the atmosphere and the extensive damage caused by lava flows (Rodriguez et al., 2022). It is also regarded
as the longest-lasting historical eruption on the island. The eruption led to the evacuation of more than 7000 residents, with
severe consequences for public health and a profound impact on the island’s economy. These effects persist, owing to the vast
lava fields (extending over an area of about 1219 ha), widespread destruction of infrastructure, homes, and farmland, and the
continued emission of volcanic gases in an area heavily reliant on tourism. Flight operations were also significantly disrupted:
26% of scheduled flights at La Palma Airport were cancelled, 34% due to airport closures caused by ash accumulation, and
the remaining 66% due to the presence of volcanic ash in the airspace (Benito et al., 2023). Initial estimates place the total
economic losses at over 1025 million USD (Benito et al., 2023).

Multiple summit vents emerged during the nearly three months of volcanic activity, exhibiting a range of eruptive styles—from
Strombolian explosions to effusive phases—resulting in violent ash-rich eruptions, lava fountains, gas emissions, and extensive
lava flows. The main volcanic edifice, a cinder cone that reached an altitude of 1121 m above ground level (a.g.l.), was formed
in the northwestern sector of the Cumbre Vieja rift (Carracedo et al., 2022; Felpeto et al., 2022; Romero et al., 2022; Benito
et al., 2023).

Although the eruption was predominantly characterised by Strombolian basaltic activity, different eruptive phases were
observed throughout the entire eruption period (del Fresno et al., 2022; Milford et al., 2023; Benito et al., 2023). As noted by
Milford et al. (2023), these phases were distinguishable based on variations in surface and satellite-derived SO5 emission rates.
According to their results, the initial phase of the eruption exhibited the highest SOz and ash emissions, with an accumulated
SO4 output of 1.59 Mt. This was followed by a marked decline in emissions during a second phase, beginning around 7
November, with an accumulated SO5 emission of 0.25 Mt. According to Benito et al. (2023), nine different eruptive phases
can be identified in terms of seismological data (epicenters, hypocenters and magnitude/depth of earthquakes). del Fresno et al.

(2022) attended to the variation in the number of events with magnitudes between 2-3 mbLg, as well as changes in the Real-
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time Seismic Amplitude Measurement (RSAM) values using the seismic pattern recorded by the IGN monitoring network
(https://www.ign.es/web/ign/portal/sis-catalogo-terremotos). Such variations can be interpreted as upwards migration of fresh,
SO5-rich magma batches and related degassing processes through the eruptive vents (Palma et al., 2008).

Another notable feature of this volcanic eruption was the relatively low plume height, with a characteristic value of approx-
imately 3500 m a.g.l. (Felpeto et al., 2022; Milford et al., 2023). This low injection height is a key factor in determining the
climatic and air quality impacts of the event. A maximum plume height of 8500 m a.g.l. was recorded just hours before the end

of the eruption, on 13 December, during a final paroxysmal phase (Felpeto et al., 2022; Albertos et al., 2022).

3 Instruments and Methods
3.1 IGN video-surveillance monitoring network

The IGN, as the competent institution for volcano surveillance in Spain, monitored volcanic events in terms of seismic activity,
ground deformation, geochemical and gravimetric parameters, and volcanic plume behaviour. In this context, a monitoring
network based on video-surveillance cameras was implemented to track the altitude of the volcanic plume. This methodology
provided the quantitative characterisation of the volcanic plume required by the PEVOLCA Committees during the crisis.
The results were also incorporated into the VONA (Volcano Observatory Notice for Aviation) alerts and the regular reports
submitted to the Toulouse VAAC (Volcanic Ash Advisory Centre) (VAAC, 2022; Felpeto et al., 2022).

The monitoring network consisted of calibrated webcams that provided scaled images of the volcanic plume. A pre-existing
webcam from the E.U. EELabs project, coordinated by the Instituto de Astrofisica de Canarias (IAC) and located at the Roque
de Los Muchachos Observatory (28.76°N, 17.88°W; approximately 16 km north of the eruption site), was selected as the
reference calibrated webcam. This camera had to meet several criteria to be suitable for measuring the altitude of the volcanic
plume. A favourable location was essential: the camera needed to be situated at a high altitude above sea level and far enough
from the eruption to capture the full extent of the plume, while minimising the effect of plume inclination and the obstruction
by volcanic material. The position and internal settings of the camera had to remain unchanged throughout the eruptive period.
Furthermore, it was necessary to ensure continuous data recording and easy access to the image archive. The IAC camera met
all these requirements and had already been recording prior to the eruption. Additionally, three more webcams were installed
by IGN personnel at different locations surrounding the volcanic vent: Time (28.66°N, 17.94°W), Los Llanos de Aridane
(28.67°N, 17.92°W), and Fuencaliente (28.50°N, 17.85°W). These cameras were used to measure the height of the volcanic
plume from different angles, allowing for a better understanding of the influence of wind on plume dispersion.

To achieve this, it was necessary to determine the scale of the images for a given distance, specifically the distance between
the camera and the volcanic vent. By applying geodetic techniques (trigonometric levelling), various altitudes above ground
level (a.g.l.) were obtained along the eruptive column at specific moments and for selected points. Once these altitudes were
retrieved, they were compared with the corresponding points identified in the images.

To perform direct measurements on the images, a calibrated scale needed to be established (see Fig. 1). The calibration

process involved multiple simultaneous measurements of the same reference points using both image analysis and geodetic
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Figure 1. Calibrated image taken from the IGN-IAC webcam on 13-12-2021 with grid information (AEMET wind speed and wind direction).

methods. A trigonometrical station, located approximately 30 meters from the camera, was used for this purpose. The resulting
scale was used to generate a grid that was automatically superimposed on the images, enabling real-time measurements of the
volcanic plume height on demand. This grid also included wind direction and speed at different altitudes, as presented in Fig.
1, which was crucial for accurate estimation of the column height.

This procedure was also applied to the camera installed at the Time station. For the other two webcams, located in Los Llanos
de Aridane and Fuencaliente, calibration was performed by comparing their images to those from the calibrated reference
camera at Roque de Los Muchachos, taken at the same moments. Unfortunately, the Fuencaliente camera was installed near
the end of the eruption and provided limited useful data.

This technique presents some limitations. Since it relies on visual observations from cameras, it is generally not applicable
during nighttime hours. However, during the most intense eruptive phases, it was possible to observe the eruptive column even
at night. On days with heavy cloud cover or fog, it was also challenging to identify the top of the eruptive column. Similarly,
during certain periods of the eruption, particularly in the final weeks when ash emissions were weak and the volcano exhibited
a pulsating behaviour, emitting discrete ash puffs every few seconds, visibility was significantly reduced.

The IGN altitude database (h.. 1gn and hq 1an) consists of 344 individual altitude measurements corresponding to the erup-
tive column and dispersive volcanic plume heights recorded between 20 September and 13 December 2021. Each observation
was performed at the time when a significant change in the height of the eruptive column was detected. Therefore, it can be

assumed that both series remained relatively stable between consecutive measurements.
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Figure 2. (a) Location of the Canary Islands in the Atlantic Ocean, (b) location of the five AEMET-ACTRIS stations (blue stars) deployed in
La Palma and (c) 3D visualisation generated using the image acquired by one of the Copernicus Sentinel-2 satellites on 3 January 2021. The
red spot marks the location of the volcanic vents. Credits on the map: Google Earth, GRAFCAN and European Union, Copernicus Sentinel-2
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3.2 AEMET-ACTRIS profiling monitoring network

Four stations were strategically deployed in record time around the Tajogaite-Cumbre Vieja volcano by ACTRIS-Spain mem-
bers in collaboration with other institutions (Fig. 2). These stations, equipped with various types of cloud and aerosol profilers,
enabled continuous tracking of the volcanic plume under variable wind conditions throughout the entire eruption, as well as
providing ground-level air quality information and plume height for PEVOLCA reports. In addition to these, one station that
was already installed in La Palma prior to the eruption must also be included.

The characteristics of the five sites, as shown in Fig. 2b, are as follows:

— Roque de los Muchachos (RMO, 28.75°N, 17.88°W, 2423 m): This high-altitude observatory, part of the Instituto de
Astrofisica de Canarias (IAC, https://www.iac.es/), is dedicated to high-quality astrophysical observations. It hosts tele-
scopes and other astronomical instruments from nineteen countries, in addition to an AERONET (Aerosol Robotic Net-
work, https://aeronet.gsfc.nasa.gov) station, which provides valuable aerosol properties information for this site. RMO

is located 16.5 km from the eruptive vents.
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Tazacorte (TAZ, 28.64°N, 17.93°W, 140 m): Situated approximately 4 km from the eruptive vents in the town of Taza-
corte (population ~ 4500) on the eastern flank of La Palma, this station offers an excellent opportunity to study the

aerosol layer near ground level when the predominant trade winds favor the dispersion of the volcanic plume westward.

— Fuencaliente (FUE, 28.49°N, 17.85°W, 630 m): Located on the southern side of La Palma, with a population of fewer
than 2000 people, this station is about 10 km from the volcanic vents. Positioned in a rural background site, it provides

a valuable opportunity to detect the volcanic plume under the prevailing trade wind regime.

— La Palma Airport (LPA, 28.62°N, 17.75°W, 56 m): This station is crucial for providing civil aviation with reliable
information regarding the potential presence of volcanic ash, which can severely impact aircraft fuselages, sensors, and

engines.

— El Paso (EPA, 28.65°N, 17.87°W, 700 m): Located in the central-northern part of La Palma, the municipality of El Paso
has a population of approximately 7700. The station here is the closest to the volcano, at about 3 km from the volcanic

vents, allowing for early detection of the volcanic plume during its initial stages.

A total of 137 altitudes of the dispersive column (hg, 4 g3 g7) have been included in the comparison analysis, coincident with
those values measured by IGN. Valid hg 4 g e observations from these five profilers have been selected for the comparison
with IGN’s database as those lying in a time interval of £ 5 min around IGN observation time. Taking into account the
inherent problems in retrieving hq 4 gy pr from this on-site profiler network (signal blocking by the dense volcanic plume,
high signal-to-noise ratio (SNR), cloud contamination, or technical problems), we have considered hg 4 er also valid for
the intercomparison provided they lie between two IGN observations, since hq ;e is not expected to change appreciably in
the interval between two consecutive IGN measurements (see Sect. 3.2).

Detailed information on each system that is part of the network will be presented below, including the different method-
ologies used in this monitoring network. The methods used in this network, that is, the Gradient (Flamant et al., 1997) and
the Wavelet Covariance Transform (Brooks, 2003; Baars et al., 2008) methods, were applied to all AEMET-ACTRIS profilers

except the RMO station. These methodologies can be considered equivalent and reliable according to Comeron et al. (2013).
3.2.1 The ARCADE Raman Lidar at Roque de los Muchachos

This was the only existing profiler in La Palma at the time of the eruption, providing the only information about plume height
until the next profiler at Fuencaliente was installed, 11 days after the eruption began. ARCADE is a Raman Lidar system
(Fig. 3a) installed at the Cherenkov Telescope Array Observatory (CTAO) at Roque de los Muchachos Observatory (RMO) in
October 2018, with the aim of providing nightly and seasonal aerosol attenuation profiles of UV light measured for the CTA
two times a day, at sunrise and sunset, in automatic and unattended mode. Since the production of Cherenkov light depends
on the molecular profile, aerosol profiles are required to estimate the attenuation and propagation in CTA observations (larlori
etal., 2019).
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Figure 3. View of the different instruments belonging to the AEMET-ACTRIS profiling network: (a) ARCADE Raman lidar at RMO, (b)
MPL-4B at TAZ, (c) CHM 15k at FUE, (d) CL61 at ELP and (e) CL51 at LPA.

This system is designed to measure elastic and Raman backscattered photons using a 20 cm diameter Newtonian telescope
and a Nd:YAG laser source operating at 355 nm. The laser delivers pulses with a maximum energy of 5-6 mJ and a variable
repetition rate ranging from 1 to 100 Hz (Valore et al., 2017; Iarlori et al., 2019). A second Raman channel for water vapour
was added to retrieve atmospheric water vapour profiles; however, due to the COVID-19 outbreak, the Raman channels have
been offline since 2021. The system was dismantled in October 2023 for future deployment at CTAO-South.

ARCADE is a joint project between CTA members from the National Institute for Nuclear Physics (INFN) and the University
of L’ Aquila.

ha,AEMET Was qualitatively estimated with this instrument from 19 September to 27 October at two fixed times per day
(06:00 and 19:00 UTC). A total of 18 hq arar e values were retrieved using this method. The estimation was based on visual
inspection of the aerosol backscatter profiles, when available. No more sophisticated retrievals were available from ARCADE-
CTA during this period. Nevertheless, the plume altitude measurements provided by this instrument have been included in
this study, as they represent the only available information on the volcanic plume during the initial phase of the eruption and
were the sole profiler data from the northern part of La Palma until the CL61 at El Paso station became operational on 25
October. This information proved to be extremely valuable during the eruptive process, with some of the ARCADE-derived
altitudes reportedly used by PEVOLCA. From 27 October 2021 onwards, a technical issue prevented the ARCADE team from

continuing plume monitoring, and the instrument’s operation was definitively discontinued.
3.2.2 MPL-4B micropulse lidar at Tazacorte

The MPL-4B is a micropulse lidar (Campbell et al., 2002; Welton and Campbell, 2002) installed at Tazacorte station on
15 October 2021 (Fig. 3b), 25 days after the eruption started. This instrument belongs jointly to the Universitat Politecnica
de Catalunya (UPC) and the Instituto Nacional de Técnica Aeroespacial (INTA). MPL operates continuously (24/7) with a
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relatively high frequency (2500 Hz) and low-energy (~ 7 pJ) using a Nd:YLF laser centred at 532 nm. As a part of NASA/M-
PLNET (https://mplnet.gsfc.nasa.gov, last access: 15 March 2022), this system provides vertical profiles of clouds and aerosols
with a 1-min temporal resolution and 75 m of vertical resolution. MPL-4B also includes polarisation capabilities, which are
particularly useful to distinguish between spherical and non-spherical particles (Flynn et al., 2007).

The methodology used to retrieve hq 4 g pr from this instrument is based on in-house algorithms, as described in Cérdoba-
Jabonero et al. (2018); Sicard et al. (2022); Cérdoba-Jabonero et al. (2023). In our case, the range-square-corrected lidar signal
(RSCS) was integrated over a £5-minute interval around the IGN observation time in order to retrieve the height corresponding
to the peak of the uppermost volcanic plume. A reference RSCS value at 8 km was used, and a simple threshold method (Melfi
et al., 1985) was applied to the RSCS profiles (Measures, 1984) to detect cases of signal blocking or strong attenuation. Further
details on the algorithms employed in this study can be found in Sicard et al. (2022); Cérdoba-Jabonero et al. (2023).

A total of 24 altitudes retrieved with this MPL instrument constitute the final hg 4 g g data series.
3.2.3 Lufft CHM15k ceilometer at Fuencaliente

This ceilometer (Jenoptik, 2013), belonging to the University of Valladolid, is part of the Iberian Ceilometer Network (Cazorla
et al., 2017). The CHM 15k operates continuously (24/7) with a pulse energy of 8.4 uJ and a repetition frequency of 5-7 kHz
(Fig. 3c). The pulsed Nd: YAG laser emits at 1064 nm, and the backscattered signal is collected using a telescope with a field of
view of 0.45 mrad and a vertical resolution of 15 m. The use of near-infrared (nIR) laser emission minimises uncertainty due
to water vapour absorption, compared to ceilometers operating at lower wavelengths. According to Heese et al. (2010), the full
overlap of the system is reached at approximately 1500 m. Other studies (Cazorla et al., 2017; Romadn et al., 2017; Kotthaus
et al., 2016) report that the maximum detection height of this system is 15360 m a.g.1., and that the overlap-corrected signal
begins at 80 m a.g.l. More technical details about the CHM15k-Nimbus can be found in Jenoptik (2013).

The ceilometer, installed at the Fuencaliente station on 30 September, provided range-corrected backscatter profiles to this
study from all products available in the CHM15k-Nimbus internal software. These profiles were integrated over a +=-5-minute
interval around the IGN observation time. As in the MPL procedure, 8 km was considered the maximum altitude with sig-
nificant aerosol influence. The gradient method (Flamant et al., 1997) was used to detect the uppermost aerosol layer based
on sharp gradients in the backscattered signal, which are sensitive to aerosol concentration. An empirical signal-to-noise ratio
(SNR) threshold of 3 was applied to limit the maximum height at which data are considered reliable (Morille et al., 2007).

Using this methodology, a total of 63 altitudes were included in the final hgq 4 gy g7 dataset.
3.2.4 Vaisala CL51 ceilometer at La Palma Airport

The CL51 ceilometer (Fig. 3d) operates continuously (24/7), using a pulsed laser emitter centred at 910 nm to measure
backscattered radiation via a telescope in a coaxial configuration with an avalanche photodiode detector. This configuration
allows the system to achieve an overlap height as low as 50 m, according to the manufacturer (Bedoya-Veldsquez et al., 2022).
The spatial and temporal resolutions of the CL51 are 10 m and 15 s, respectively. The capability of this instrument for aerosol

retrieval has been validated in several studies (e.g., Bedoya-Veldsquez et al. (2021, and references therein)), and specifically
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applied to the La Palma volcanic eruption in Bedoya-Velasquez et al. (2022). The methodology used to retrieve the temporal
evolution of attenuated backscatter profiles is described in the latter study and is based on the Continuous Wavelet Covariance
Transform (WCT) method (Brooks, 2003; Baars et al., 2008; Morille et al., 2007).

This instrument was installed at La Palma Airport on 7 October and contributed a total of 26 altitudes to the final hg AErmET

dataset.
3.2.5 Vaisala CL61 lidar ceilometer at El Paso

The Vaisala CL61 ceilometer (Fig. 3e) is a novel, high-performance instrument capable of depolarisation measurements, de-
signed for unattended 24/7 operation under all weather conditions. It uses a single avalanche photodiode detector along a
coaxial optical path. The CL61 operates at a wavelength of 910.5 nm, with a vertical resolution of 4.8 m, a temporal resolution
of up to 5 s, and a maximum range of up to 15400 m. Its patented optical design enables the use of a narrow spectral bandwidth,
which minimises water vapour absorption and ensures wavelength stability across varying temperatures.

The transmitter operates at a pulsing frequency of 9.5 kHz, with an average laser power of 40 mW and a pulse length of
160 ns (Full Width at Half Maximum, FWHM). The CL61 also incorporates an enhanced single-lens optical system with
a coaxial configuration for both transmitted and received signals, featuring individual overlap functions calibrated for each
instrument. This optimised overlap function enables the reliable detection of atmospheric layers at low altitudes.

The attenuated backscatter profiles are pre-calibrated for liquid water clouds at the Vaisala facilities, following the method-
ology described in O’Connor et al. (2004). Since the CL61 uses the same receiver module for both cross-polarised (x-pol) and
parallel-polarised (p-pol) signals, no additional receiver sensitivity calibration is required.

A similar methodology to that described in the previous section for the CL51 was applied to the CL61 to retrieve attenuated
backscatter profiles, following Bedoya-Veldsquez et al. (2022).

Six altitudes retrieved by the CL61 at the El Paso station were included in the final hg A pr dataset.
3.3 Auxiliary information
3.3.1 Raw real-time Seismic Amplitude Measurement (RSAM)

Seismic records and ground deformation analyses are critically important for monitoring eruptive events (Carracedo et al.,
2022). The Real-time Seismic Amplitude Measurement (RSAM), based on the vertical component of broadband seismic data,
is widely recognised as a reliable indicator of magma transport from depth to the surface vent (Endo and Murray, 1991;
Bartolini et al., 2018).

In this study, RSAM data were extracted from the IGN permanent seismic network at the CENR station (28.63°N; —17.85°W;
1208 m a.g.l.), the closest station to the Tajogaite eruption site. This station is equipped with a three-component broadband
seismic sensor and has been operating continuously since 2017. Following del Fresno et al. (2022), RSAM was calculated using
dedicated software (ThomasLecocq/ssxm: RSAM/RSEM — SSAM/SSEM easy code), applying 10-minute time windows. The

resulting time series were normalised by subtracting the median and dividing by the standard deviation.
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3.3.2 Meteorological information: Altitude of the Trade Wind Inversion (TWI) and wind speed/direction

Radiosonde vertical profiles are launched daily at 00:00 and 12:00 UTC from AEMET’s Giiimar station (28.32°N, 16.38°W;
105 m a.g.l.). This site is a World Meteorological Organization (WMO) Global Climate Observing System (GCOS) Upper-Air
Network (GUAN) station (no. 60018) located on the eastern coast of Tenerife, leeward of the prevailing trade wind flow due
320 to the presence of a central ridge in the Giifmar Valley, which reaches elevations above 2100 m a.g.l. This station has been
providing upper-air profiles since 2003, measuring temperature, pressure, and humidity using Vaisala RS92 radiosondes, along
with wind speed and direction obtained via a Global Positioning System (GPS) wind-finding system (Carrillo et al., 2016).
Atmospheric profiling was also conducted on La Palma (28.63°N, 17.91°W, 295 m a.s.l.) during the volcanic eruption, from
6 November 2021 to 26 December 2021 at 11 UTC, with the collaboration of AEMET and Unidad Militar de Emergencias
325 (UME). At this temporary station, the same Vaisala RS92 radiosondes were deployed to characterise the atmosphere near the
volcano. This site shared similar geographic conditions to Giiimar station, being located on the eastern coast of La Palma, also
leeward of the prevailing trade wind flow and downstream from the island’s central ridge (Cumbre Vieja), which reaches a
maximum elevation of 1949 m a.g.l.
The trade wind inversion height was estimated following the methodology described in Carrillo et al. (2016), based on the
330 analysis of the temperature lapse rate, water vapour mixing ratio, and wind components on both AEMET stations (at Tenerife
and La Palma).

In addition, daily wind speed and direction profiles from the AEMET numerical weather prediction (NWP) model HARMONIE-
AROME (HIRLAM-ALADIN Regional/Meso-scale Operational NWP in Euromed) Version 43h2.1.1 were used. Data were
extracted from the grid point closest to the eruptive centre. This model has a spatial resolution of 2.5 x 2.5 km?2, a temporal

335 resolution of 3 h (with forecasts up to 72 h), and includes 65 vertical levels. Further details about the HARMONIE-AROME

model can be found in Bengtsson et al. (2017).
3.3.3 Satellite derived SO5 and aerosol Layer Height (LH)

TROPOMI (TROPOspheric Monitoring Instrument) is a sensor onboard the polar, low-Earth orbiting Copernicus Sentinel-5

Precursor (S-5P) platform, capable of providing SO- altitude layer information as a near-real-time operational product. This

340 product is generated by the German Aerospace Center (DLR) using the Full-Physics Inverse Learning Machine (F'P-ILM)

algorithm. The SO, layer height (SO2LH) product was developed by Hedelt et al. (2019) using a combination of principal

component analysis (PCA) and a neural network (NN), with an expected accuracy of less than 2 km for SO5 vertical column
densities (VCD) greater than 20 DU (Hedelt et al., 2019; Koukouli et al., 2022; Hedelt et al., 2025).

The hg aemET dataset was used by Hedelt et al. (2025) to validate TROPOMI SO, layer heights during the La Palma

345 volcanic eruption. Altitude differences, based on median TROPOMI SO, LH, were found to range between 1-3 km, decreasing

to around 1 km for cloud fractions below 0.5. TROPOMI LH slightly underestimates the hq ApvET Measurements, but the two

datasets are correlated, with a correlation coefficient of » = 0.74 (Hedelt et al., 2025).
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Another satellite sensor used in this context to provide information on the aerosol LH is CALIOP. CALIOP is part of the
CALIPSO mission providing global atmospheric profiles since June 2006 (Winker et al., 2009, 2013). This instrument orbits the

350 Earth in a sun-synchronous orbit, acquiring lidar backscatter profiles at 532 nm and 1064 nm, including polarisation capabilities
at 532 nm (Winker et al., 2013). Level 2 version 4.2 aerosol layer information product (https://subset.larc.nasa.gov/calipso/)

with a 5 km of spatial resolution was used to provide information on the aerosol layer top altitude. The CALIOP layer detection

algorithm is described in detail in Vaughan et al. (2009).
3.3.4 Satellite-derived volcanic SO5 emissions

355 In this study, we used the estimated volcanic SOz mass loading from the Tajogaite eruption, as provided by NASA’s M SVOLSO2L4
multi-satellite product (Carn et al., 2016; Carn, 2022). This independent database contains all significant volcanic eruptions
detected from space, offering daily estimates of volcanic SO, emissions. Since 2018, the product has relied on three space-
borne UV sensors to retrieve SO- column amounts: the Ozone Monitoring Instrument (OMI) (Carn et al., 2013), the Ozone
Mapping and Profiler Suite (OMPS) (Carn et al., 2015, 2016), and the TROPOspheric Monitoring Instrument (TROPOMI)

360 (Theys et al., 2017, 2021). Infrared (IR) satellite observations have also been used to detect SO2 emissions not captured by
UV sensors, thereby refining the UV-based product. These IR sensors include the Atmospheric Infrared Sounder (AIRS) (Prata
and Bernardo, 2007), the Moderate Resolution Imaging Spectroradiometer (MODIS) (King et al., 2003), and the Infrared At-
mospheric Sounding Interferometer (IASI) (Clarisse et al., 2012), which are used for both refinement and validation purposes.

MSVOLSO2L4 is a multi-satellite, Level 4 version 4 volcanic sulfur dioxide long-term global database product that

365 estimates the total SO- mass (in metric tons) within a volcanic cloud by combining SO- column data with information on
plume altitude. The latter is a critical parameter, typically obtained from direct observations (e.g., pilot reports or ground-based
measurements). In the absence of such observations, a default plume altitude is assumed based on the eruption style (effusive
or explosive) and magnitude, inferred from the Volcanic Explosivity Index (VEI).

For the initial stages of the La Palma eruption, the NASA team assumed a default injection height of 8 km, which was used

370 in the default SO, mass estimates. Once a profiling network was established on La Palma, a revised product was generated for
this study using the observed plume-top height (h..), derived on-site using the IGN video-surveillance method.

A comparative analysis between the default 8 km-based retrievals and the adjusted SO, emissions, based on ground-based
plume height measurements, provides valuable insight into the impact of plume altitude assumptions on the derived SO5

budgets.

14


https://subset.larc.nasa.gov/calipso/

375

380

385

390

395

400

405

4 Results

4.1 Description of the eruptive event in terms of tracers of the volcanic plumes (h;) and modulating factors (RSAM
and TWI)

The height reached by the eruptive column depends on both volcanological and meteorological parameters, as well as their
interaction. According to Girault et al. (2016), key factors influencing the rise of an eruptive volcanic column (h..) include
the total grain size distribution of emitted volcanic particles, the amount of gas released during magma fragmentation, and
atmospheric crosswinds. Other studies (e.g., Woodhouse et al., 2016; Rossi et al., 2019) also highlight the importance of
parameters such as vent radius, plume temperature at the vent, upward velocity, and the wind entrainment coefficient.

The dispersive plume height (h) refers to the altitude reached by the volcanic plume as it is transported and shaped by
thermodynamic processes, including atmospheric stratification, wind direction, and turbulence.

The eruptive column height measured by the IGN (A, r¢n) is shown in Fig. 4(a), along with the dispersive plume height (h4)
obtained from both the IGN and AEMET-ACTRIS networks (hq ron and hq Agnm ET, respectively). hee ran and hg rgn cor-
respond to 344 measurements made by the IGN at times when a significant change in column height was observed. hg agnm ET
(137 altitudes) were retrieved concurrently with the IGN observations using the methodology described in Sect. 3.3 for each
of the five profiling stations in the network (integrated over a =5-minute interval around the IGN observation time). Yellow
bands indicate days affected by dust conditions over La Palma, as defined by Milford et al. (2023) (26 September - 3 October;
7-8 October; 19-21 October). The presence of the Saharan Air Layer (SAL) can influence the altitude of the aerosol layer as
a result of its effect on vertical stratification and atmospheric stability. According to Barreto et al. (2022), the SAL appears
as a well-stratified layer capped by a temperature inversion located between ~ 6.3 km in summer (when the dusty air moves
westwards over the subtropical North Atlantic as an elevated layer over the Marine Boundary Layer, MBL) and 2.4 km in
winter (when the dust layer is confined at lower levels).

An important modulating factor of the altitude of the eruptive column is the eruptive dynamics, which can be parameterised
using proxies such as SO, emissions (Milford et al., 2023) or seismic activity (Lépez et al., 2017; Bartolini et al., 2018). The
evolution of the eruptive process during the Tajogaite eruption is shown in Fig. 4(b), represented by the RSAM signal.

Following Girault et al. (2016); Milford et al. (2023), another key factor that modulates the injection height of volcanic
emissions is the prevailing meteorological conditions. Wind speed and direction are fundamental variables that influence the
direct transport and dispersion of the volcanic plume. In addition, the presence of thermal inversions has a critical effect on the
vertical extent, mixing, and dispersal of volcanic emissions. As demonstrated by Milford et al. (2023), a shallower temperature
inversion (TWI) confines the volcanic plume to lower levels of the troposphere, with significant implications for air quality and
civil aviation safety.

A comprehensive view of the eruptive process is presented in Fig. 4, which combines information on plume altitude with
the evolution of the two modulating factors previously described: eruptive dynamics and meteorological conditions. This
multidisciplinary approach allows for a detailed interpretation of the eruption’s progression. Based on the trend in the RSAM

signal (Fig. 4(b)), three distinct eruptive phases can be identified:
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Figure 4. (a) Altitude of the eruptive plume in m a.g.l. measured by IGN (hec,7an) and eruptive dispersion plume (hg) measured by
IGN (hqg,ran) and by AEMET-ACTRIS profiling network (hq,aemET) in five different stations in La Palma. Broken lines represent the
corresponding lowess smoothing for hq 7g~n and hq, 4 ga g7 datasets, and yellow bands indicate the presence of the SAL. (b) Time series of
the raw real-time seismic amplitude measurement (RSAM) measured in Cumbre Vieja by the IGN seismic network. (c) Trade Wind Inversion
(TWI) height (m a.g.l.) measured at 00:00 and 12:00 UTC from Giifmar (Tenerife) station and at 12:00 UTC from La Palma station during

the volcanic eruption (from 6 November 2021).
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Phase I (19-27 September) is marked by alternating Strombolian and Vulcanian activity, including two strong explosive
episodes on 23 and 26 September (Nogales et al., 2022), which led to the highest RSAM value recorded during the entire
eruption (4.4 a.u.). This period coincides with peak values of both eruptive column height (h.) and dispersive plume altitude
(hq), reaching up to 6500 m and 5500 m, respectively. Simultaneously, a downward trend in the trade wind inversion (TWI)
height was observed (Fig. 4(c)), with values decreasing from 2074.7 m to 601.4 m by the end of the phase. Mean TWI
heights during this period were 1576.9 m (12:00 UTC) and 1498.4 m (00:00 UTC), based on radiosonde data from Giiimar.
These conditions suggest a limited surface-level impact of volcanic emissions, as corroborated by surface SOs concentration
measurements reported in Milford et al. (2023).

Phase II (28 September — 2 November) is characterised by predominantly effusive activity with intermittent explosive
events. The RSAM signal in this phase remains mostly between 0 and 1 a.u., with a notable increase from 24 October onwards,
reaching up to 3.1 a.u. (Nogales et al., 2022). This intensification coincides with the second-largest increase in coarse-mode
aerosol fractions during the eruption (25 October — 2 November), detected via ground-based photometry (Bedoya-Veldsquez
et al., 2022). The TWI shows significant variability, peaking at 2780 m on 25 October and dropping to minimum values of
263 m (4 October) and 220-365 m (16-20 October). Average TWI heights were 1039.0 m and 955.9 m at 12:00 and 00:00 UTC,
respectively. During this phase, plume heights remained relatively stable, with mean A, values of 2935.6 m (AEMET-ACTRIS)
and 3374.4 m (IGN). The maximum h.. and hy values (5300 m and 4800 m, respectively) occurred between 17—-18 October.

Phase III (3 November — 13 December) was dominated by low-intensity effusive activity, reflected in RSAM values gen-
erally below 0.5 a.u., with a few sharp peaks above 2 a.u. These peaks correspond to discrete events, including large ash
emissions on 17 November, the opening of a new vent on 28 November, intense explosive activity with shockwaves on 1-2
December, and the final paroxysmal phase with Vulcanian episodes on 13 December (Nogales et al., 2022). Despite the overall
lower eruptive energy, this phase exhibited a stable aerosol layer and notable increases in plume heights, particularly on 12—13
December, when h,. reached 8500 m. TWI values during this period were consistently high, with mean heights of 1712.5 m
(12:00 UTC), 1695.1 m (00:00 UTC) at Giiimar, and 1819.3 m at La Palma (12:00 UTC). The intense seismic activity on 1-2
December also elevated both h.. and hg to approximately 5000 m. Observations by Bedoya-Veldsquez et al. (2022) confirmed
high aerosol optical depth (AOD) coarse-mode values (0.15) during this time.

A key inflexion point between phases II and III is observed as a reduction in RSAM, also identified by Nogales et al. (2022)
and Milford et al. (2023), the latter through daily SO5 emissions from TROPOMI. However, Milford et al. (2023) reported
that surface-level SO5 concentrations did not decrease proportionally to emission rates or seismic signals. This discrepancy is
attributed to the maximum TWI extension during this phase, as seen in Fig. 4(c), with mean heights ranging from 1695.1 m to
1819.3 m. Consequently, this final phase of the eruption had the greatest impact on surface air quality despite exhibiting lower
overall volcanic activity.

Another important aspect shown in Fig. 4(a) is the spatial representativity of the hq 4ga g measurements, which are
derived from the station most affected by the volcanic plume depending on prevailing wind direction. The spatial distribution
of these data reveals a significant bias toward the western side of La Palma Island, as expected, given the predominant trade

wind regime (more than 63.5% of the data in the hy Agp T time series were recorded at the Tazacorte and Fuencaliente
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Figure 5. Wind rose diagrams for the volcanic eruptive column A.. (in m a.g.l.) and HARMONIE wind vectors simulated with the centre in

the volcanic edifice in Cumbre Vieja. Countour lines are represented with the frequency of occurrence in %.

stations). Specifically, the number of plume height measurements per station is as follows: 18 from ORM (mainly restricted to
Phase 1), 24 from TAZ, 63 from FUE, 6 from ELP, and 26 from LPA. This distribution highlights the role of wind direction in
plume transport and vertical dispersion, further evidenced in Fig. 5, which displays the wind rose diagram for the study period.

Finally, regarding the comparison between the two methodologies used to estimate the dispersive plume height (h,), Fig. 4(a)
shows good agreement between the IGN and AEMET-ACTRIS datasets. The average absolute difference between hg ;g N and
ha,aEMm ET throughout the eruptive period was 258.6 m. This high consistency is noteworthy considering the different method-
ologies involved: one based on visual inspection from video-surveillance and the other one from a multi-instrumental approach
including ceilometers and lidars. These differences were further analysed by station to assess their spatial dependence. The
highest absolute difference was observed at El Paso (941.7 m), while the lowest was recorded at Roque de los Muchachos
(139.8 m). In terms of relative differences, the mean deviation between the two datasets was 12.9%. The maximum relative
difference was again found at El Paso (42.7%), with the lowest at Roque de los Muchachos (2.6%). Intermediate relative dif-
ferences were observed at Fuencaliente (8.1%), Tazacorte (19.8%), and La Palma Airport (22.3%). The higher differences ob-
served at El Paso may be attributed to local measurement noise, instrumental limitations or complex topographic effects—exact
explanation to be confirmed. hg oy and hq apa er mean differences for the 35 days affected by the SAL (as indicated in

Milford et al. (2020)) are reduced to 33.4 m (1.1%), highlighting the influence of the SAL on vertical atmospheric stratification
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and the role of the strong temperature inversion at the top of the SAL. This stable layer acts as a physical barrier, hindering the
vertical dispersion of the volcanic plume and confining aerosols within the Planetary Boundary Layer (PBL). This situation
results from the balance between the upward velocity of the volcanic plume and the strength of the inversion layer.

An additional insight from Fig. 4(a) is the relatively small difference between the eruptive column height (h..) and the
dispersive plume height (hy), both measured by IGN, with an average difference of only 236.2 m. Larger differences were
found in the early stages of the eruption and during the final paroxysmal event on 13 December, likely reflecting more vigorous

eruptive dynamics and increased column buoyancy during those phases.
4.2 Comparison between hg 4 gnr e With CALIOP aerosol altitude (ALHc arrop)

A total of 12 CALIOP overpasses during the volcanic eruption were used in this study in the evaluation of the CALIOP level
2 layer information product. The different altitudes (ALHcar70p) corresponding to the highest aerosol layer detected by
CALIOP are shown in Fig. 6 together with the hq AgayET series. A mean difference of 615.0 m was retrieved with a clear
underestimation of the CALIOP altitudes with respect to the ground-based measurements. These overpasses were done at an
average distance of 61.7 km from the volcanic vent, and the AEMET-ACTRIS versus CALIOP differences do not seem to be
dependent on the overpass distance. The maximum difference was observed on 6 October (a discrepancy of 3065.5 km, with
an overpass distance of 28 km). The aerosol layer altitude difference on this particular day is attributed to the presence of a thin
aerosol layer located between approximately 2 and 4 km, as observed by the CHM15k ceilometer at Fuencaliente, with the
PBL situated below (not shown for the sake of brevity). It appears that CALIOP was unable to detect weak backscatter signals,
presumably because they were below its detection threshold. Excluding this day, the mean difference is reduced to 392.2 m.
These differences are consistent with previous studies using ground-based lidar measurements (Perrone et al., 2011; Kim et al.,
2008), as well as with results obtained using other techniques (Hedelt et al., 2019; Tournigand et al., 2020; Nanda et al., 2020;
Chen et al., 2020).

4.3 Impact of the altitude of the eruptive plume on satellite-based SO emission estimation

As already stated in the first part of this paper, the height of the volcanic plume is an important factor to take into account
when it comes to estimating the emission loadings of SO, using satellite observations. Fig. 7 shows the evolution of the
eruptive event in terms of SOs emission (in kt) assuming a standard h.. of 8 km in the first instance, that is, the standard
MSVOLSO2L4 NASA product. In this figure, SO, estimations using h.. gy observations are also included. The change
in the eruptive activity is apparent from this figure, showing a strong decrease in the measured volcanic SO, emissions during
the first days of November. Average SO» during the first phase was 23.8 kt (42.9 kt in the case of the corrected series using
the hec, 1), in the second phase was 17.3 (44.3) kt while this average in the case of the last phase is reduced to 4.7 (10.1) kt.
This decrease is attributed to the change in the eruptive activity observed from the RSAM series in Sect. 4.1. Regarding to
the impact of using a real h.. instead of an a priori value (8 km in the case of La Palma eruption), we observe significant

subestimation of the SO emission mass estimated from the satellite. An average SO, emission flux difference of 17.3 kt has
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Figure 6. Altitude of the dispersion plume hq, 4 g v g1 and aerosol layer height determined from CALIOP (AL Hc arrop) measured during

the entire volcanic eruption, with the distance of the overpass from the volcanic vent (in km) in the colorbar.
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Figure 7. NASA SO, emission mass (in kilotons, kt) calculated as the average of OMI, OMPS and TROPOMI UV backscatter radiances
considering a standard columnar injection height of 8§ km (orange) and the real h.. measured by the IGN (in light red). Dotted vertical lines

represent the three eruptive phases derived from RSAM data series.

been found, with maximum values up to 64.2 kt (found on October 22). Average relative differences of 56.2% have been found

in the whole eruptive process, with maximum values found on October 13 (84.7%).
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5 Summary and Conclusions

This work presents a comprehensive description of the eruptive process that took place on La Palma Island at the Cumbre Vieja
volcanic edifice from 19 September to 13 December 2021. Regarded as the most significant eruption in Europe over the past 75
years in terms of SO, emissions and societal impact, Tajogaite eruption provided a unique natural laboratory to study explosive
volcanic activity from multiple scientific perspectives. This was made possible through an unprecedented collaborative effort
among public institutions, research groups, and private entities, coordinated by IGN and AEMET, within the framework of
ACTRIS and ACTRIS-Spain (ACTRIS 2021).

The characterisation of the eruption focused on key plume tracers, including the height of the eruptive column (A..) and the
dispersive volcanic plume (hy), as well as modulating factors such as seismic activity and meteorological conditions. In this
regard, our results reveal a complex eruptive process characterised by a range of eruptive styles, from explosive Strombolian
phases to predominantly effusive activity. Based on the temporal evolution of the RSAM signal, three distinct eruptive phases
were identified. These phases reflect changes in the eruptive dynamics, plume altitude, and associated seismic and atmospheric
conditions throughout the event.

Two independent and complementary observational techniques were employed to monitor the vertical evolution of the
plume: the video-surveillance system operated by IGN and the profiling network deployed by AEMET-ACTRIS, which in-
cludes ceilometers and lidars positioned strategically around the volcanic vent. This key information was incorporated into the
PEVOLCA reports (in the case of both IGN and AEMET-ACTRIS datasets) during the whole volcanic crisis. The VONA alerts
and the regular reports submitted to the Toulouse VAAC were informed by the IGN dataset.

These two techniques present intrinsic limitations. The first method, based on visual observations from the IGN camera
network, is generally not applicable during nighttime hours. Nevertheless, during the most intense eruptive phases, nighttime
observations were feasible due to the high luminosity of the eruptive column. Additionally, under conditions of dense cloud
cover or fog, the top of the plume was often obscured, making accurate estimations difficult. The second method, based
on vertical profiling using ceilometers and lidars (AEMET-ACTRIS network), only measures the atmosphere directly above
each station. Consequently, plume detection is limited to instances when the volcanic layer is present in the station’s vertical
column. Moreover, the AEMET-ACTRIS dataset integrates data from multiple instruments and locations, which are differently
influenced by the prevailing East-to-West trade wind pattern—resulting in a spatial sampling bias, with over 63.5% of data
originating from Tazacorte and Fuencaliente on the western flank.

The relatively low overall discrepancies found in this study (258.6 m) confirm the coherence between the two retrieval tech-
niques. This supports the combined use of both datasets to improve the robustness of monitoring volcanic cloud heights. This
agreement is noteworthy considering the different methodologies involved: while IGN relies on visual estimation from video-
surveillance footage, AEMET-ACTRIS uses a multi-instrumental approach based on ceilometers and lidars. As demonstrated
by Comeron et al. (2013), the identification of aerosol layers from range-corrected backscatter signals using the gradient and
wavelet transform methods (applied to all AEMET-ACTRIS profilers except the RMO station) can be considered equivalent

and reliable.
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The hq agmEeT dataset was also used to evaluate satellite-derived plume altitudes near the source. Comparisons with the
CALIOP aerosol layer height (ALHc ar70p) showed a mean underestimation of 615.0 m. This value can be reduced to
392.2 m if one specific day, characterised by a thin aerosol layer, is excluded from the comparison.

The impact of assuming a fixed plume height in the estimation of satellite-based SO emissions was also assessed. Two
versions of NASA’s M SV OLSO2L4 product were analysed: (1) an initial estimation assuming a fixed plume height of 8 km
above the vent, and (2) a final version using actual A, values provided by IGN. Our results indicate that assuming a fixed plume
height leads to significant underestimations of SO» mass loadings, with average discrepancies of 56.2% over the eruption and
peak deviations reaching 84.7%. These findings underscore the critical importance of accurate plume height estimation when

quantifying volcanic emissions using satellite data.

Data availability. Data from MPLNET used in the present study can be obtained from https://mplnet.gsfc.nasa.gov/download_tool/ (ac-
cessed on Feb 21, 2025). The vertical soundings can be downloaded from http://weather.uwyo.edu/upperair/sounding.html (accessed on
March 14, 2025). MSVOLSO2L4 is accessible at https://disc.gsfc.nasa.gov/datasets/MSVOLSO2L4_4/summary (accessed on April 15,
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