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SHOWCASE AND COMPARISON OF THREE 
METHODS FOR VISUALIZING NEAR-EARTH 

SATELLITE CONJUNCTION EVENTS 

Erick H. White* and Luis G. Baars* 

The field of satellite conjunction assessment, dating back to the early NASA 

Space Shuttle Program, is a cornerstone of modern space safety with the goal of 

keeping spacecraft safe from potentially catastrophic collisions, especially those 

that could produce debris that could lead to further collisions. This paper explores 

and compares three different methods for visualizing near-Earth satellite conjunc-

tion events (ellipsoid, bananoid, and point cloud), including mathematical deriva-

tions, analysis of use cases, and comparisons to currently employed methods (con-

junction plane plots and wireframe ellipsoids). Parallels are highlighted between 

these visualization methods and the corresponding probability of collision calcu-

lation methods developed by NASA CARA. A discussion is included of future 

visualization considerations for one-cloud/one-surface views and for non-near-

Earth (e.g., cislunar) conjunctions. 

I. INTRODUCTION 

The field of satellite conjunction assessment, dating back to the early National Aeronautics and Space 

Administration (NASA) Space Shuttle Program, is a cornerstone of modern space environment awareness 

and safety, with the goal of keeping spacecraft in orbit safe from potentially catastrophic collisions, especially 

those which could produce debris that could further harm the orbital environment.1 A conjunction event is a 

close approach between two orbiting objects (satellites, debris, etc.) with the potential for collision at the time 

of original identification in the screening. Assessing the risk of such an event is typically done using the 

probability of collision (Pc) metric, originating with Foster and Estes in 1992 and having since been greatly 

improved by Alfano, Hall, and others.2,3,4 However, despite the utility of representing the likelihood of a 

collision as a single quantitative value, such a metric does little to enhance the understanding of satellite 

conjunction events, especially in cases where common Pc calculation assumptions are violated. Understand-

ing conjunction events, especially high-risk ones, is critical to making informed mission decisions; addition-

ally, knowing how satellite collision risk is evaluated, especially in edge cases, can help owner/operators 

(O/O’s) better understand the risk to their missions. 

A. Common Pc Calculation Assumptions 

With the tremendous volume of objects NASA’s Conjunction Assessment Risk Analysis (CARA) team 

has to analyze daily, it is necessary to develop fast algorithms for quickly evaluating satellite encounters and 

determining whether they merit closer analysis (possibly followed by a risk mitigation maneuver). While this 

analysis makes use of techniques such as screening volumes to detect potential high-risk events for analysis, 
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such methods are outside the scope of this paper, which will instead focus on analyzing conjunctions that 

have already been detected.1 

A common set of assumptions, applicable to approximately 93% of conjunctions with usable data ana-

lyzed by CARA, is that of rectilinear motion, negligible relative velocity uncertainty, and time-invariant 

relative position covariance matrices.2 These assumptions are used in the 2D-Pc method of estimating colli-

sion probabilities (described further below), which is widely applicable due to the extremely short effective 

duration of the vast majority of events (on the order of fractions of a second).5 However, there exist cases in 

which these assumptions are violated, such as those with low relative velocities, long propagation times, or 

high-eccentricity orbits; in such cases, the 2D-Pc method no longer produces accurate Pc estimates and more 

computationally intensive methods must be utilized instead.4 Critically for this analysis, these assumptions 

also affect the appearance of the conjunction event in regards to the shapes of the point clouds and/or surfaces 

used to represent it, as discussed later in the paper. 

B. The Pc Multistep Algorithm 

The Pc Multistep algorithm, explained in detail by Hall et al. (2023)*, derives a method for progressively 

relaxing layers of simplifying assumptions as required to converge on an accurate Pc.4 The assumption-by-

assumption method of the Pc Multistep algorithm closely follows the visualization use case flow covered in 

this paper and is therefore described here in some detail. This paper will also follow the same general scheme 

of assumption removal, starting with the most assumptions (ellipsoid representation) and then removing some 

(“bananoid” representation) and nearly all (point cloud representation) on an as-needed basis. 

The first step of the multistep algorithm uses the 2D-Pc method using the assumptions given above to 

simplify the problem of Pc calculation to a single numerical integral as derived by Alfano in 2005 (in turn 

from the original two-dimensional integral derived by Foster and Estes in 1992).2,3 Assuming the incoming 

data is of usable quality (true for approximately 93% of conjunctions analyzed by CARA), the multistep 

algorithm first attempts to use 2D-Pc as it is the most efficient of the estimation methods.4 The algorithm 

checks for usage violations for this method (e.g., rectilinear assumption violations) and, if it finds none, 

returns the Pc from this calculation. If a 2D-Pc method violation is found, the algorithm proceeds on to the 

2D-Nc method described by Hall et al. (2023), which performs a two-dimensional numerical integration over 

the unit sphere to calculate Pc values. If a 2D-Nc method violation is found, the algorithm then resorts to the 

more accurate 3D-Nc method, described by Hall (2021), which requires an additional integration over time.4,6 

According to Hall et al. (2023), approximately 5% of encounters with valid data (in the 2021-2022 time 

period covered) require the use of 2D-Nc and only around 0.3% require the use of 3D-Nc.4 It is, however, 

worth noting that some of these are due to conservative estimates applied when evaluating usage violations; 

in reality, some of the conjunctions that use these semi-analytical methods report values very close to those 

given by the 2D-Pc method.4 For encounters which violate assumptions for all three of these semi-analytical 

methods, the Pc Multistep algorithm resorts to using Monte Carlo methods in one of two forms: Simplified 

Dynamics Monte Carlo (SDMC), which propagates from the time of closest approach, and Brute Force Monte 

Carlo (BFMC), which propagates from epoch.4,7 Under a hundredth of a percent of encounters with valid 

data require Monte Carlo methods (although they are used optionally for high-interest events where obtaining 

very accurate results is critical).4 

C. Overview of Current Visualization Methods and Their Drawbacks 

NASA CARA often makes use of the conjunction plane plot for conjunction visualization. This visuali-

zation style makes use of the 2D-Pc method assumptions to collapse the three-dimensional space the satellites 

are traveling in to a two-dimensional plane in which the analysis is performed by marginalizing the distribu-

tion in the direction of the relative velocity vector.1 The primary and secondary object covariance matrices 

are assumed to represent statistically independent distributions, allowing them to simply be added together; 

the size of the objects is represented by a combined hard-body radius (HBR), which is the sum of the radii of 

the spheres entirely circumscribing each object.1,8 In the event that one of the hard-body radii is uncertain 
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(e.g., for a piece of orbital debris with a size characterized by radar observations), an effective HBR can be 

constructed as described by Hall et al. (2023).4 The primary object is centered at the origin while the second-

ary is placed along the positive 𝑥-axis at a distance equal to the nominal miss distance.4 The primary is 

surrounded by a circle with radius equal to the combined hard-body radius; the overlap between this circle 

and the distribution (represented by an ellipse, a series of ellipses, a Monte Carlo point cloud, or some com-

bination thereof) then illustrates the conjunction.1,4 Alternate representations (e.g., the one derived by Alfano 

(2005)) center the secondary at the origin and align the covariance ellipse with the axes; these correspond to 

a translation and rotation of the axes but are otherwise mathematically equivalent.3 

  

 

Figure 1. Primary-aligned (left) and distribution-aligned (right) conjunction plane layouts. Figure 

courtesy of NASA.1 

 

 

Figure 2. A typical conjunction plane plot of a high-relative-velocity conjunction satisfying the 2D-Pc 

method assumptions (hereafter “Case A”). Figure courtesy of Hall et al.4 
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Figure 3. A conjunction plane plot of a high-relative-velocity conjunction violating the 2D-Pc 

method assumptions (hereafter “Case B”). Figure courtesy of Hall et al.4 

 

 

Figure 4. A conjunction plane plot of a low-relative-velocity conjunction violating the 2D-Pc 

method assumptions (hereafter “Case C”). Figure courtesy of Hall et al.4 
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Figure 2 shows a conjunction satisfying the 2D-Pc method assumptions, while Figure 3 and Figure 4 

demonstrate violations of the 2D-Pc algorithm. The conjunction shown in Figure 3 has a covariance ellipse 

that diverges significantly from the actual distribution away from the nominal miss vector (black point), 

leading to an overestimation of the Pc; Figure 4 illustrates a Pc underestimation for a similar reason. 

The conjunctions shown in Figure 2, Figure 3, and Figure 4 will be used consistently throughout this 

paper as demonstrations of three distinct conjunction geometries to test each visualization model. 

 

Figure 5. Three-dimensional wireframe covariance ellipsoid visualization method. 

Another visualization method uses three-dimensional wireframe representations of the primary and sec-

ondary covariance ellipsoids, such as in Figure 5 above. In contrast to the conjunction plane method, in 

which the covariances are summed into a joint covariance and the hard-body radii summed into a combined 

hard-body radius, this method preserves the structure of both statistical distributions (that of the primary 

object and that of the secondary object). 

This distinction is critical in analyzing conjunctions visually; while the conjunction plane method better 

represents the mathematical representation used to calculate Pc values semi-analytically, it is not necessarily 

an intuitive representation of the three-dimensional interaction. The two-surface representation is often better 

for seeing the geometry of a conjunction, especially in cases where the surface representing one distribution 

is entirely contained within the other. 

The wireframe representation, while useful intuitively, can be difficult to render and visualize in cases in 

which a covariance ellipsoid is extremely elongated in one direction; in such situations, it may be difficult to 

discern regions of interest and importance during the event. 

D. Note Regarding Conjunction Visualization Plots 

In all subsequent conjunction visualizations, the primary is shown centered in a frame in the upper left, 

the secondary is shown centered at upper right, the lower right corner shows the estimated statistically ex-

pected collision rate over time, and the lower left corner shows information about the conjunction itself, 

including Pc approximations with various algorithms, combined HBR, and peak rate time relative to TCA 

(time of closest approach).6 This layout illustrates both the primary and secondary objects; however, doing 

so often requires significantly different axis scaling across the plots, particularly in cases where the curvilin-

ear nature of a distribution is especially important. In some cases, this leads to the primary and/or secondary 

looking rather different between the two views; this is an artifact of the unequal axis scaling, not a flaw with 

the visualization itself. If desired, these visualizations could be rendered using equal-axis scaling, which is 

effective for many conjunctions; however, for conjunctions with probability density functions (PDFs) that 
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are greatly extended in one direction (such as one those shown in Figure 3 and Figure 4), this often results in 

a visualization that fails to properly illustrate the regions of intersection. 

Figure 2, Figure 3, and Figure 4 use unequal axis scaling in the bottom plots, while the upper-left plots 

use equal-axis scaling; note the difference in the visibility of detail and shape for these plots. Since the ap-

proach used in this study considers a two-surface/two-cloud representation, there is no equivalent to the 

zoomed-in HBR plot shown in the upper right of the CARA conjunction planes; individual zoomed views 

are used for the same purpose instead. Notably, unequal axis scaling may lead to a somewhat distorted rep-

resentation of a conjunction by dramatically enhancing curvilinear effects. While this is certainly a drawback 

of this style of visualization, emphasizing such curvature effects is a focus of this study and so this method 

will be used throughout. 

In all following plots, the yellow surface/cloud represents the PDF of the uncertainty distribution of the 

primary object, while the magenta surface/cloud represents the PDF of secondary object. The corresponding 

mean orbits are shown as bold lines of the same colors. 

II. METHOD 1: ELLIPSOID REPRESENTATION 

The ellipsoid representation, as shown by Alfano and Oltrogge (2018), is both the most computationally 

straightforward method and the method utilizing the strongest assumptions. The ellipsoid method represents 

uncertainty distributions as shells (solid or wireframe) corresponding to a desired enclosed percentage of the 

satellite’s PDF (or, equivalently, a surface representing 𝑛 standard deviations along each axis of the distribu-

tion, here referred to as an 𝑛-𝜎 surface). In contrast to the wireframes used by Alfano and Oltrogge (2018), 

this paper focuses on semitransparent ellipsoidal shells, which better illustrate the overlap of the probability 

distributions and the intersections of the surfaces. 

The ellipsoid method provides accurate visualizations for conjunctions in which the 2D-Pc method pro-

vides an accurate Pc estimate with no usage violations. Using Cartesian covariance matrices to generate the 

ellipsoids implicitly assumes that the distributions of the satellites’ state vectors are Gaussian in Cartesian 

space; while this is often nearly true for times sufficiently close to epoch, this approximation becomes invalid 

with increasing propagation time. This non-Gaussian nature is not negligible for low relative velocity con-

junctions and for some high-velocity conjunctions where TCA and the time of peak PDF overlap are suffi-

ciently temporally separated. Sabol et al. (2010) further discusses the Gaussian approximation for orbital 

state PDFs in Cartesian space.9 

A. Method Derivation 

Any determination of a tracked satellite’s orbital state will have an associated uncertainty; this can be 

encapsulated in a mean state vector and covariance matrix, which can then be used to generate a multivariate 

PDF describing the likelihood of the satellite having a certain state not necessarily equal to the mean state. 

In Cartesian (rectangular) coordinates, the mean state vector is given by a vector 𝑿̅ ∈ ℝ6, representing the 

three position components followed by the three velocity components as a combined column vector, while 

the associated covariance is given by a matrix 𝐏̅ ∈ 𝕄6(ℝ). The satellite’s position in three-space can be 

represented using a marginalized distribution in ℝ3; denote by 𝒓̅ the positional components of 𝑿̅ and denote 

by 𝐀̅ the position-position components of 𝐏̅. The associated three-dimensional normal probability density 

function, in terms of some arbitrary Cartesian position vector 𝒓, is*10 

𝜌(𝒓; 𝒓̅, 𝐀̅) =
𝑒− 

(𝒓−𝒓̅)T𝐀̅−1(𝒓−𝒓̅)
2

√|2𝜋𝐀̅|
=

𝑒−
ℳ(𝒓;𝒓̅,𝐀̅)

2

√|2𝜋𝐀̅|
 (1) 

 

with ℳ(𝒓; 𝒓̅, 𝐀̅) denoting the squared positional Mahalobis distance. This density function can be repre-

sented visually as a shell (here called 𝜕Ω) such that all points in 𝜕Ω have a constant squared Mahalanobis 

                                                      

* See Notation at the end of this paper for an overview of the mathematical symbols and conventions used throughout. 



 7 

distance 𝐶 from the center of the distribution defined by 𝒓̅ and 𝐀̅. Integrating 𝑓 over Ω (the volume enclosed 

by 𝜕Ω) yields a desired fraction 𝑝 of the total cumulative distribution: 

𝜕Ω = {𝒓 ∈ ℝ3 | ℳ(𝒓; 𝒓̅, 𝐀̅) = 𝐶} 

∭ 𝜌(𝒓; 𝒓̅, 𝐀̅) d𝑉 = 𝑝 

Ω

 

(2) 

(3) 

The positive definite covariance matrix 𝐀̅ can be decomposed using an eigenvector decomposition into 𝐀̅ =
𝐐𝚲𝐐T, where 𝐐 is the orthogonal matrix of the eigenvectors of 𝐀̅ and 𝚲 is the diagonal matrix consisting of 

the (all positive) eigenvalues of 𝐀̅.10 The axes of the ellipsoid are proportional to the inverse squares of the 

eigenvalues, denoted by √𝚲−1, with some scaling factor along each axis dependent on 𝑝 (the desired fraction 

of the PDF enveloped).10 

To generate the covariance ellipsoid numerically, a gridded ellipsoid centered at the origin with axes 

aligned with the coordinate frame axes and scaled according to √𝚲−1 is generated as the base shell. This shell 

is then rotated out of the eigenframe componentwise, with the vector representing each constituent point left-

multiplied by 𝐐; since 𝐐 is orthogonal, this multiplication does not introduce any scaling factor (|𝐐| = 1 or 

|𝐐| = −1, and in the latter case 𝐐 can be made special orthogonal by multiplying one of its columns by −1) 

and the ellipsoid is rotated into the proper orientation.11 The mean vector 𝒓̅ is then added, once again com-

ponentwise, to the rotated ellipsoid to recenter it on the mean positional state. The final ellipsoid 𝜕Ω can then 

also be written as 

𝜕Ω = {𝒓 ∈ ℝ3 | (𝒓 − 𝒓̅)T𝐀̅−1(𝒓 − 𝒓̅) = 𝑛2} (4) 

with 𝑝 = 𝜒3
2(𝑛2); that is, 𝑛2 is the value of the inverse chi-square distribution with three degrees 

of freedom evaluated at 𝑝.10 Note also that, in this manner, an 𝑛-𝜎 surface can be generated (as 

opposed to one containing a fraction 𝑝 of the evaluated PDF) by specifying 𝑛 directly instead of 

calculating it from 𝑝. 

 

 

B. Examples and Analysis 

The event illustrated in Figure 6 is an example of a typical conjunction analyzed by CARA. With a 

relative velocity of 10 km/s and a delay between TCA (when covariance is provided) and the time of peak 

collision rate (when the figure is generated, at the time of minimum Mahalanobis distance between the two 

distributions) of approximately 0.06 seconds, the relative velocity and both covariances can be assumed to 

be constant for the brief duration of the encounter.1,4 In this particular event, the three-sigma surfaces only 

partially intersect each other, leading to a saddle-shaped contour (visible as a dark purple line). 

The conjunction event in Figure 7 shows a strong failure case of the ellipsoid representation. The ex-

treme elongation of the primary covariance in the in-track direction leads to a PDF that does not follow the 

shape of the orbit; the non-Gaussian nature of the PDF in Cartesian coordinates becomes evident in such 

cases and thus this representation is not useful for this particular conjunction.9 The 2D-Pc method signifi-

cantly overestimates the more accurate 2D-Nc and 3D-Nc methods (by almost two orders of magnitude); 

this overlap is not evident in the figure since the ellipsoids are propagated along curvilinear trajectories, but 

would be were they propagated along rectilinear ones (as is done by 2D-Pc). The apparent overlap in the 

top right panel of this figure is a result of one ellipsoid being entirely in front of the other; this becomes ap-

parent if the viewing angle is changed, but results in the relative angle being harder to distinguish. 

Figure 8 shows another failure case of the ellipsoid representation. In this instance, the peak PDF over-

lap time occurs relatively long (nearly 47 seconds) after TCA; along with the low relative velocity of the 

encounter, this means that covariance curvilinear effects already become evident in this case and using the 

Cartesian covariance produces an incorrect final result. The 2D-Pc method underestimates the probability 
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of collision by nearly 19 orders of magnitude, meaning that if the ellipsoids were propagated along rectilin-

ear trajectories (instead of the curvilinear ones used in figure generation), there would likely be no overlap 

at all. 

 

Figure 6. A three-sigma ellipsoid representation of Case A. The mean states of the primary and sec-

ondary are represented with a diamond and a square respectively. 

 

 

Figure 7. A three-sigma ellipsoid representation of Case B. The mean states of the primary and 

secondary are represented with a diamond and a square respectively. 
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Figure 8. A three-sigma ellipsoid representation of Case C. The mean states of the primary and 

secondary are represented with a diamond and a square respectively. 

C. Advantages and Disadvantages of Ellipsoid Representation 

 

Figure 9. A comparison of a rectilinear covariance ellipsoid (red) and Monte Carlo point cloud 

(blue) illustrating the effects of PDF curvature. Note the unequal axes scales, particularly in the in-

track direction. 

The main advantages of the ellipsoid representation are its ease of generation and ease of intuitive under-

standing. Each ellipsoid can be generated centered at the origin, then transformed into the correct frame with 

minimal computation. For cases in which a user desires a large number of visualizations or a visualization 

animation, this computational simplicity can lead to significant speed advantages, especially critical for time-
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sensitive decision-making. Additionally, illustrating the overlap of two ellipsoids is relatively simple; Fig-

ure 6, Figure 7, and Figure 8 achieve this using transparency effects, but numerical methods such as those 

shown by McMahon et al. (2015) can produce the same effect.12 

The main disadvantage of the ellipsoid visualization method is its misleading representation of non-rec-

tilinear cases. As illustrated in Figure 7, the axes of a covariance ellipsoid have no curvature; therefore, they 

are unable to follow the orbit of a target and may lead to a poor representation of the actual overlap of the 

two uncertainty PDFs. Curvilinear coordinates (such as orbital elements) address this issue, as discussed by 

Hoots (2001).13 Figure 9 compares the rectilinear-assumption ellipsoid and a Monte Carlo point cloud sam-

pled from a multivariate normal random distribution in equinoctial space (as discussed later); the ellipsoid 

diverges significantly from the actual distribution, especially in the in-track direction. In the above example, 

the three-sigma ellipsoid shell contains only approximately 32% of the Monte Carlo points (as opposed to 

the 97.07% expected). 

The ellipsoid representation also suffers from sampling issues for highly extended shells, for which either 

a high number of sampling points must be used to prevent low resolution in regions of high curvature or the 

surface must be sampled dynamically (e.g., according to local curvature), both solutions which remove some 

of the computational simplicity that make this method attractive in the first place.14  

III. METHOD 2: BANANOID REPRESENTATION 

The “bananoid” representation (so called due to its banana-like shape in extended cases) was recently 

implemented by the CARA team and based on methods formulated by Hall (2025a).15 As with the ellipsoid 

method, the bananoid method represents both the primary and secondary object PDFs as shells or wireframes, 

illustrating the relationship between both in three-dimensional space as well as the intersection of the two 𝑛-

𝜎 surfaces. Whereas the ellipsoid method represents the PDFs of the primary and secondary objects using 

surfaces derived from their Cartesian covariance matrices, the bananoid method instead derives its surfaces 

from their equinoctial element covariance matrices. 

The bananoid representation is most representative of cases that use 2D-Nc or 3D-Nc calculation methods. 

The method removes the implicit rectilinear assumption present in the ellipsoid by determining the surface 

in equinoctial space instead of Cartesian space; this uses the equinoctial orbital elements as described by 

Hernando-Ayuso et al. (2023).16 Poore et al. (2016) discusses the effects of covariance shape with particular 

regards to Pc calculation.17 The utility of equinoctial coordinates manifests itself in two separate cases. 

The first use case for the bananoid representation of an 𝑛-𝜎 surface occurs in cases of highly extended 

PDFs. In these cases, the distribution of the positional components lies along the curvature of the orbit rather 

than centered on the tangent plane to the orbit; such a distribution is not normal in Cartesian space and is 

therefore impossible to achieve using ellipsoids alone.9 Hoots (2001) demonstrates that orbital state distribu-

tions preserve Gaussianity provided that they are expressed in a coordinate system in which the equations of 

motion are linear; while Hoots (2001) uses Keplerian elements with mean motion and mean anomaly, the use 

of alternate equinoctial elements, as discussed by Hernando-Ayuso et al. (2023), is also permissible and 

results in fewer singularities.13,16  

The other main use case for the bananoid representation is conjunctions in which the time of peak PDF 

overlap occurs relatively far away from TCA, therefore requiring covariance propagation. Hall (2025b) dis-

cusses the use of equinoctial state transition matrices (STMs) in propagating error while preserving covari-

ance realism; remaining in the equinoctial space, therefore, allows for the creation of realistic surfaces de-

picting satellite position PDFs.18 

A. Method Derivation 

Recall the previous definition of a satellite’s nominal state and covariance matrix in Cartesian space as a 

vector 𝑿̅ ∈ ℝ6 and matrix 𝐏̅ ∈ 𝕄6(ℝ). Similarly to the ellipsoid representation, the bananoid representation 

is based off a user-determined fraction of the PDF to be enveloped by the surface; unlike the ellipsoid repre-

sentation, however, the associated PDF is not assumed to be normal in Cartesian space.13 
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Based on the user’s selected fraction of the PDF to be enveloped, an associated Mahalanobis distance can 

be determined which is then used to calculate the boundary of the surface. The surface itself is determined 

numerically as a series of curves of equal Mahalanobis distance spaced along a central curve of minimum 

Mahalanobis distance which intersects the nominal trajectory at the mean point 𝒓̅. The surface is defined 

using two parameters, 𝜏 and 𝜙, where 𝜏 varies along the direction of the orbit (i.e., as a latitude-like param-

eter) and 𝜙 is an azimuthal angle (i.e., a longitude-like parameter).15 

The boundaries of 𝜏 are determined using an iterative process (similar to that described by Hall (2021)) 

and a concept here referred to as a 𝜏-plane.6 The total number of 𝜏-planes is a user-controlled parameter in 

the generation of the surface; a higher number of 𝜏-planes leads to a higher-resolution grid. Each 𝜏-plane is 

perpendicular to the local nominal velocity vector 𝑽̂ and is therefore equivalent to the 𝑁-𝐵 plane in the body-

centered 𝑉𝑁𝐵 (or 𝑁𝑇𝑊) frame.15,19 For each value of 𝜏 (measured in seconds relative to the time of interest), 

the nominal Cartesian position state vector 𝑿̅𝜏 is calculated by propagating from the mean equinoctial state 

𝑬̅. The vector 𝑿̃ = 𝑿̅𝜏 is selected as the first center of linearization for a Taylor expansion to obtain the point 

of minimum Mahalanobis distance in the 𝜏-plane. For each iteration, a covariance matrix 𝐏̃ associated with 

the state 𝑿̃ is calculated as6,15 

𝐏̃ = 𝛙̃𝓟̅𝛙̃T 

𝛙̃ =
𝜕𝑿̃

𝜕𝑬̃
 

(6) 

(7) 

 

where 𝓟̅ is the equinoctial covariance matrix of the mean state at the time of interest and 𝛙̃ is the Jacobian 

matrix encoding the partial derivatives of the Cartesian and equinoctial state vectors at the center of lineari-

zation. An effective mean state is then calculated as6,15 

𝑿̆ = 𝑿̃ + 𝛙̃(𝑬̅ − 𝑬̃) (8) 

This effective mean state is then used, along with a predicted velocity from the equinoctial distribution, to 

generate a new 𝑿̃; this process is iterated until the minimum Mahalanobis distance converges.6,15 If the min-

imum Mahalanobis distance in a given 𝜏-plane is greater than 𝑛, that 𝜏-plane is beyond the bounds of the 

surface. Otherwise, the point of minimum Mahalanobis distance 𝑿̆ with associated covariance matrix 𝐏̃ is 

selected as the center of a second Taylor series expansion, this one to determine all points with a squared 

Mahalanobis distance equal to 𝑛2.6,15 This yields a quadratic expression in terms of 𝑤, the distance on the 𝜏-

plane to the 𝑛-𝜎 surface measured from the minimum Mahalanobis distance point, which has the form 

ℳ = (𝒓 − 𝒓̆)T𝐀̃−1(𝒓 − 𝒓̆) = 𝒜𝑤2 + ℬ𝑤 + 𝒞 = 𝑛2 (9) 

derived by expressing 𝒓 in terms of 𝑤, 𝜙, 𝑵̂, and 𝑩̂. The coefficients 𝒜, ℬ, and 𝒞 then depend on 𝒓̆, the 

positional component of 𝑿̆, and 𝐀̃, the position-position component of 𝐏̃.15 Iterating over a sufficient number 

of 𝜙 points yields a closed, convex curve of points lying on the surface of bananoid. 

B. Examples and Analysis 

Figure 10 illustrates a conjunction satisfying the rectilinear assumption; such an event is not one that 

necessitates the bananoid representation for accurate analysis (note the identical appearance of Figure 6) but 

nonetheless serves as a qualitative verification of its correctness. 
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Figure 10. A three-sigma bananoid representation of Case A. The peak overlap point is represented 

with a white star. 

 

Figure 11. A three-sigma bananoid representation of Case B. The peak overlap point is repre-

sented with a white star. 
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Figure 12. A three-sigma bananoid representation of Case C. The peak overlap point is repre-

sented with a white star. 

Figure 11 illustrates a particularly important use case for the bananoid covariance representation. Notice 

how the curvature of the primary surface closely follows the curvature of the primary orbit (solid yellow 

line), to the point that the two overlap in some areas; this is in contrast to the same conjunction as represented 

by the ellipsoid method in Figure 7. Being able to visualize curved PDFs, which more closely resemble the 

reality of satellite state distributions, is the primary advantage of this method over the ellipsoid.13 

Figure 12 illustrates the use of the bananoid surface in visualizing a conjunction for which the peak over-

lap time occurs significantly after TCA. Similarly to the contrast between Figure 11 and Figure 7, the bana-

noid better represents the PDF curvature due to covariance propagation.18 

C. Advantages and Disadvantages of Bananoid Representation 

The greatest benefit of the bananoid representation is its ability to represent a satellite’s PDF as an accu-

rate surface or wireframe, allowing for easier visualization of aspects of a conjunction such as intersection 

regions or fully-overlapping PDFs; the accuracy is lost in the ellipsoid representation and the surface is lost 

in the point cloud representation. The bananoid is also a good way to represent covariance propagation ef-

fects; in cases in which the user opts to generate an animation instead of a still-frame, especially if the ani-

mation is over a long time period, the increasing size of the PDF (especially in the in-track direction) can be 

seen by the corresponding increase in the size of the surface.13,18 

Unfortunately, the bananoid representation does have several drawbacks. These largely stem from the 

fact that the bananoid, although familiar as a distribution shape, has only recently been parameterized math-

ematically by the CARA team; therefore, as the theory is still in development, it has yet to be tested to the 

extent that ellipsoids and Monte Carlo simulations have been.13,15 Coppola and Tanygin (2015) derive a 

method to display a similar surface to the bananoid (referred to as a “bent ellipsoid”) using a system called 

downrange coordinates; however, these do not appear to be used extensively, nor were they a focus of com-

parison for this study.20 These coordinates are shown to be effective at modeling non-Gaussian behavior by 

Sabol et al. (2010), but ignore cross-correlational terms between position and velocity by keeping them com-

pletely separate (as opposed to combining them as equinoctial elements do); the full effects of this on the 

shape of the surface are not entirely clear.9,20 

One flaw of the current theory is that, for highly-extended PDFs, the expected percentage of the distribu-

tion enveloped by the surface (as defined by the user) diverges from the actual amount numerically measured 
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using a comparison of the surface and a Monte Carlo point cloud. It is unclear as of yet how this deviation 

relates to the derivation of the surface; however, as the surface is based on first-order approximations, it is 

likely that this is an effect of the surface growing more distant from the center of linearization.18 Higher-

order approximations have not yet been explored. 

Another flaw with the bananoid (and the theory behind it) is similar to the issue of improper sampling in 

the ellipsoid representation, but manifests differently; since the surface itself is determined parametrically in 

a latitude/longitude fashion, improper sampling can lead to entirely incorrect surfaces, rather than simply 

low-resolution ones. The current solution uses an algorithm to determine the number of grid lines to allocate 

based on local curvature of the surface; however, this adds complexity to the representation and thus results 

in it being slower than the ellipsoid representation. 

IV. METHOD 3: POINT CLOUD REPRESENTATION 

The point cloud representation of a conjunction is the most representative of the actual probability distri-

butions of both the primary and secondary satellites, with the shapes, relative densities, and extents of both 

PDFs evident. The point cloud representation uses Monte Carlo sampling in equinoctial coordinates to visu-

alize both PDFs and therefore most closely aligns with the BFMC and SDMC Pc calculation methods; disre-

garding the two-body motion assumption (which is used when propagating all covariances in this study), the 

only assumption made by the Monte Carlo point cloud representation is that the distributions of the satellites’ 

orbital states are Gaussian in equinoctial space, an assumption discussed by Sabol et al. (2010).4,7,9  

A. Method Derivation 

Consider once again the nominal state vector 𝑿̅ ∈ ℝ6 and covariance matrix 𝐏̅ ∈ 𝕄6(ℝ). Both of these 

can be converted into the equinoctial coordinate frame using the equations and Jacobian matrix given by 

Vallado and Alfano (2015)21 

𝓟̅ = 𝐉̅ 𝐏̅ 𝐉̅T 

𝐉̅ =
𝜕𝑬̅

∂𝑿̅
 

(10) 

(11) 

 

where 𝓟̅ is the equinoctial covariance matrix, 𝑬̅ is the equinoctial state, and 𝐉̅ is the Jacobian matrix to convert 

from Cartesian to equinoctial coordinates. Since the distribution of orbital states is assumed to be Gaussian 

in the equinoctial space, this PDF can then be sampled using Monte Carlo methods; these samples are then 

converted back into Cartesian space to retrieve the positional components of the state vectors.7,9  

It is important to note that the Cartesian and equinoctial states are both six-dimensional, yet the final 

visualization is rendered in three dimensions. The reason for this is that the three velocity dimensions in 

Cartesian space are marginalized out of the resulting distribution; a full representation of the state distribution 

would additionally include velocity vectors for each point in the distribution. These are omitted for clarity 

(and would not be viable in the ellipsoid and bananoid representations, which consider a position distribution 

only). 

Figure 13 illustrates a conjunction in which the Monte Carlo point cloud, despite being accurate, is a poor 

choice for visualization. Since the clouds differ so greatly in size, the zoomed-in primary view contains few 

secondary cloud points, while the secondary-centered view fails to illustrate the intersection of the primary 

and secondary clouds. 

Figure 14 demonstrates a better use case for the point cloud visualization. Due to the extended primary 

PDF, the rectilinear assumption fails and semi-analytical or numerical methods must be used instead; the 

point cloud method, thanks to its lack of simplifying assumptions, illustrates the true shape of the distribution 

in Cartesian space (see Figure 9 for a comparison of this conjunction with the ellipsoid method). Both clouds 

are sampled equally and are clearly visible in both frames, including the region of intersection. Additionally, 

the relative densities of the clouds at the point of intersection is evident and illustrates the difference in the 

densities of the PDFs in the intersection region. 
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B. Examples and Analysis 

 

Figure 13. A Monte Carlo point cloud (with 10000 samples per cloud) representation of Case A. 

 

Figure 14. A Monte Carlo point cloud (with 10000 samples per cloud) representation of Case B. 
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Figure 15. A Monte Carlo point cloud (with 10000 samples per cloud) representation of Case C. 

Figure 15 once again shows a suboptimal use case for the point cloud visualization. While it does suc-

cessfully show the curvature of the secondary PDF in the secondary-centered plot, it once again undersamples 

the secondary in the primary-centered view. While the number of samples is adjustable, experimenting to 

produce the correct number can be costly in regards to CPU time, particularly if two clouds barely intersect; 

the implementation used to generate the figures for this paper allows for different primary and secondary 

sampling counts, simplifying this process, but it can be costly nonetheless. 

C. Advantages and Disadvantages of Point Cloud Representation 

The major benefit of the point cloud representation is the lack of simplifying assumptions leading to an 

accurate visualization of the conjunction environment. Removing the need to approximate an 𝑛-𝜎 surface 

semi-analytically eliminates the somewhat complicated formulation required to generate the bananoid sur-

face, which itself is intended to address the inaccuracies of the ellipsoid surface; this makes the Monte Carlo 

point cloud representation the most mathematically simple of the three visualizations. This also makes it a 

benchmark for the other two representations (and any future methods), serving as a sort of “truth” for the 

appearance of a conjunction event.9  

Since the point cloud is the most mathematically straightforward of the three methods, it is also easier to 

verify, experiment with, and modify on a case-by-case basis. The development of more accurate theories and 

models would not render the point cloud method obsolete, as it has the potential to do to the other methods; 

instead, a simple alteration of the underlying distribution would once again produce an accurate covariance 

representation in light of new information.7 

The point cloud representation does have several major drawbacks that prevent it from being viable for 

large-scale use. The most prohibitive of these is computational time; while rendering a modest amount of 

points can be done fairly quickly on modern CPUs, rendering the amount of points necessary to show highly-

extended distributions in sufficient detail becomes untenable if a large number of conjunctions need to be 

processed (or if an animation of an event needs to be generated).1 

The point cloud representation can also fail to provide a clear visualization of PDF intersections. Although 

the region of overlap between two clouds may be apparent (depending on the local densities of the clouds), 
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the exact boundary between two point clouds is rarely clear, especially for cases in which the two local cloud 

densities differ. 

Sample density can also be an issue, as dense sampling results in higher computational costs; this is 

particularly apparent in extended PDFs, where a zoomed-in view of a given region (e.g., with a focus on a 

portion of the cloud that may be intersecting another PDF) may have so few points as to not present a com-

prehensive picture of the situation. Dynamically sampling points based on the region of interest can result in 

oversampling elsewhere, once again affecting performance. 

V. USE CASE ANALYSIS 

The ellipsoid representation can be used in a majority of conjunctions due to the large number of events 

satisfying the rectilinear assumption.1 In these cases, ellipsoids accurately illustrate both the primary and 

secondary PDFs; since the typical duration of conjunctions satisfying the rectilinear assumption is short, there 

is negligible change in the covariances due to propagation and therefore little change in the ellipsoids (as-

sumed to be none when analyzing the conjunction using the 2D-Pc method).1,4 Since the generation of the 

ellipsoids is fast and rectilinear conjunctions make up the majority of high-Pc events analyzed by CARA, the 

ellipsoid method can be used to produce visualizations efficiently (e.g., for O/O’s or other analysts) on short 

notice.4 

The bananoid representation can likely be used for nearly all remaining conjunctions that fail to satisfy 

the rectilinear assumption. Since the bananoid surfaces can be modified to envelop a user-specified percent-

age of the PDF (or, equivalently, a selected 𝑛-𝜎 surface), it is easy to generate surfaces of the size required 

to show intersection by determining the Mahalanobis distance between the center of each distribution and 

the peak overlap point.4,6 This is not possible in curvilinear cases using only the ellipsoid representation and 

can be prohibitively inefficient using the point cloud representation if the peak overlap point is sufficiently 

distant from the mean states of both objects. 

The bananoid surface visualization method requires more research to determine the limitations of its use; 

however, testing with numerous conjunctions appears to produce accurate surfaces, an encouraging result for 

more widespread implementation. 

The point cloud representation is ideally used for conjunctions in which even the bananoid surface is 

insufficient or for high-interest events (HIEs) which require further analysis. This includes conjunctions with 

very extended primary and/or secondary PDFs, as well as potentially multi-encounter conjunctions which 

violate the 3D-Nc assumptions. The point cloud representation is also ideal if a visualization of variable den-

sity in the PDFs is desirable; by removing the need for a surface entirely, an end user can distinguish regions 

of high and low risk visually prior to a more in-depth analysis. 

It is also possible to transform a point cloud into a shell representation similar to that of the bananoid by 

first trimming the cloud down to those points within a certain Mahalanobis distance in equinoctial space, 

then converting back to Cartesian space and forming a surface with the points closest to the exterior of the 

remaining cloud. If inadequate samples are used, however, this produces an irregular (i.e., bumpy) surface, 

possibly leading to misinterpretation of the PDF shape and scale. This surface generation method also re-

quires significantly more computation than the bananoid method and therefore increased runtime. 

 

VI. FUTURE WORK 

The bulk of the research required to build upon this work will be in the process of making improvements 

to the bananoid representation method, either through further development of the mathematics behind the 

model or through computational efficiency improvements of its implementation. This research will allow for 

the bananoid method to be applied much more widely in the two-body-style conjunction visualizations, po-

tentially superseding the less accurate ellipsoid or less computationally efficient point cloud; however, before 

the bananoid can be deployed reliably, significantly more testing and verification of the theory is necessary.15 
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A different path of research, and one potentially both more illuminating and more important, is that of 

cislunar conjunction visualization. As described by Holzinger, Chow, and Garretson (2021), describing tra-

jectories in cislunar space is much more difficult than describing orbits assuming only one gravitationally 

significant body (the Earth), even accounting for perturbations.22 Among other issues, orbital elements often 

do not provide an accurate representation of cislunar trajectories, rendering many tools and assumptions cur-

rently used for orbital analysis (e.g., two-line element sets [TLEs]) useless.22 NASA’s Multimission Auto-

mated Deepspace Conjunction Assessment Process (MADCAP) currently aims to perform conjunction as-

sessment for cislunar space (and beyond); however, a lack of a central catalogue of cislunar objects and a 

lack of realistic covariances for objects that are screened makes this a challenging effort.1,23 Visualizing cis-

lunar conjunctions would aid not only in analysis, but also in building an understanding of the cislunar envi-

ronment and the geometry of deep-space mission interactions. Approaching this problem will require careful 

consideration of the covariances used for propagation, as equinoctial elements will no longer be viable; real-

istic covariances in cislunar space and beyond are currently still an open topic of research.1,22,23 

Another possible avenue of research involves creating a three-dimensional analog of the two-dimensional 

conjunction plane plots to illustrate relative behavior in a manner more similar to that used currently by 

NASA CARA.1 Combining the uncertainty into one surface will yield ellipsoids in rectilinear cases and thus 

be relatively easy to demonstrate; early experimentation using point clouds, however, suggests that more 

exotic shapes can arise, including those with self-intersections and large out-of-plane components. More 

experimentation with these methods is needed before they are viable for production- or analysis-grade visu-

alizations. 

VII. CONCLUSION 

This study explores three methods for the visualization of conjunctions involving two Earth-orbiting bod-

ies (ellipsoid, bananoid, and point cloud) and reviews potential use cases for all three. Additionally, the study 

draws parallels between the methods used for visualization and the methods used to calculate probability of 

collision estimates. 

Given the widespread usability, relatively low cost, and visual utility of the bananoid conjunction visual-

ization method, this study recommends the bananoid method for further research and development for indi-

viduals and groups interested in conjunction visualization. The ability to visualize a wide range of conjunc-

tion events accurately makes it a viable tool for both analysis and intuitive understanding, as well as a step-

ping-stone to visualizing conjunctions that occur in cislunar space and beyond; despite equinoctial elements 

not being applicable beyond Earth’s orbit, the concepts employed in the derivation of the bananoid method 

(using expansions in a separate coordinate system and mapping back to Cartesian space to avoid direct Monte 

Carlo sampling) is applicable to other coordinate systems as well. 

Using the bananoid and point cloud methods in unison for analysis of HIEs additionally offers analysts a 

better understanding of the conjunction environment, both illustrating the probability of a conjunction event 

through the overlap in covariance 𝑛-𝜎 surfaces (something not directly possible using a pure Monte Carlo 

approach) and visualizing the calculations used in Monte Carlo approaches. Where the bananoid surface fails 

for some rare conjunction geometries (such as the one in Case C), the three-dimensional point cloud approach 

can be used not only as an alternative visualization tool, but also as a means by which to understand the 

shortcomings of analytical and semi-analytical Pc calculation algorithms in such events. 

Visualization methods allow for increased understanding of how conjunction geometry and trajectory 

uncertainty impact Pc. For instance, the above methods can be used to visualize a steady climb in Pc followed 

by a sharp drop as primary and secondary covariances start large, shrink towards each other while still over-

lapping, and finally shrink small enough (with measurements closest to TCA) that the overlap rapidly van-

ishes. Such insights are not available from the Pc metric alone (which does not convey any information about 

the geometry of a conjunction) and can help analysts develop a better intuition of conjunction geometries. 

Visualization provides end users not necessarily familiar with the mathematical Pc calculation process with 

a means to understand better the risks posed by conjunctions and the need (or lack thereof) to take action on 

such events. 
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The current lack of a universal tool for conjunction visualization highlights the importance of developing 

such a method in the near future; providing astrodynamicists with the means to better understand the near-

Earth environment in a time when new satellites are being deployed very frequently is critical to ensuring 

both the longevity of missions and the safety of the space environment. 
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NOTATION 

𝒜 Bananoid quadratic equation coefficient 

𝐀̅ The position-position component of a Cartesian covariance matrix 

𝐀̃ 
The position-position component of a Cartesian covariance matrix at the center of lineari-

zation of a Taylor series 

ℬ Bananoid quadratic equation coefficient 

𝑩̂ The binormal vector in the velocity-normal-binormal frame 

𝒞 Bananoid quadratic equation coefficient 

𝑬̅ An equinoctial state vector 

𝑬̃ An equinoctial state vector at the center of linearization of a Taylor series 

𝐉̅ A Jacobian matrix for conversion between Cartesian and equinoctial coordinates 

ℳ(𝒙; 𝝁, 𝚺) 
The squared Mahalanobis distance of the vector 𝒙 from the center of the distribution with 

mean 𝝁 and covariance 𝚺 

𝑵̂ The normal vector in the velocity-normal-binormal frame 

𝐏̅ A Cartesian covariance matrix 

𝐏̃ A Cartesian covariance matrix at the center of linearization of a Taylor series 

𝓟̅ An equinoctial covariance matrix 

𝐐 An orthogonal eigenvector matrix 

𝒓 An arbitrary Cartesian position vector 

𝒓̅ The position component of a Cartesian state vector 

𝒓̆ 
The position component of a Cartesian effective mean state used in minimum Mahalano-

bis distance iteration 
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𝑽̂ The velocity vector in the velocity-normal-binormal frame 

𝑿̅ A Cartesian state vector 

𝑿̃ A Cartesian state vector at the center of linearization of a Taylor series 

𝑿̆ A Cartesian effective mean state used in minimum Mahalanobis distance iteration 

𝚲 A diagonal eigenvalue matrix 

𝜙 A parameter for bananoid generation roughly equivalent to longitude 

𝜌(𝒙; 𝝁, 𝚺) A normal probability density function as a function of 𝒙 with mean 𝝁 and covariance 𝚺 

𝜏 A parameter for bananoid generation roughly equivalent to latitude 

𝜒𝑚
2 (𝑛) The chi-squared distribution with 𝑚 degrees of freedom evaluated at 𝑛 

𝛙̃ 
A Jacobian matrix encoding the partial derivatives of the Cartesian and equinoctial state 

vectors at the center of linearization 

𝜕Ω The boundary of a set Ω 
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