Plants prefer ammonium as a N source: Implications for space crop production.

<u>Luke Fountain</u>¹, Tyler DeScenza², Elison Blancaflor³, Ray Wheeler⁴, Gioia Massa³

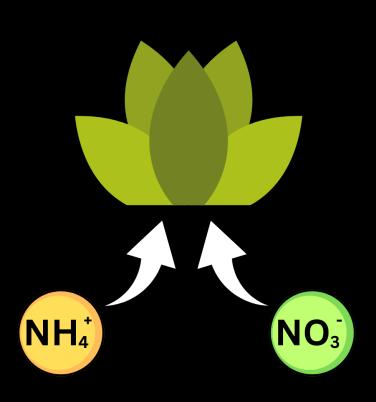
¹ NASA Postdoctoral Program, Kennedy Space Center, FL, USA

²Florida Institute of Technology, Melbourge, FL, USA

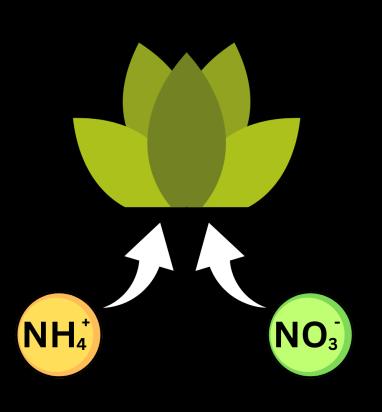
³ Exploration Research and Technology, Kennedy Space Center, FL, USA

⁴ NASA Retired

Space Ecology Workshop, Aug. 8th-9th 2025

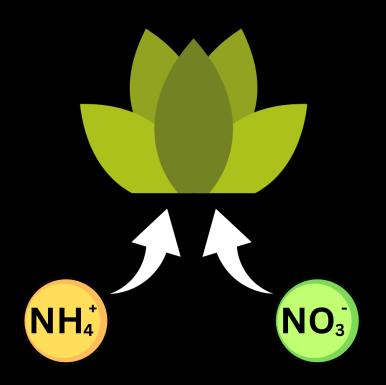


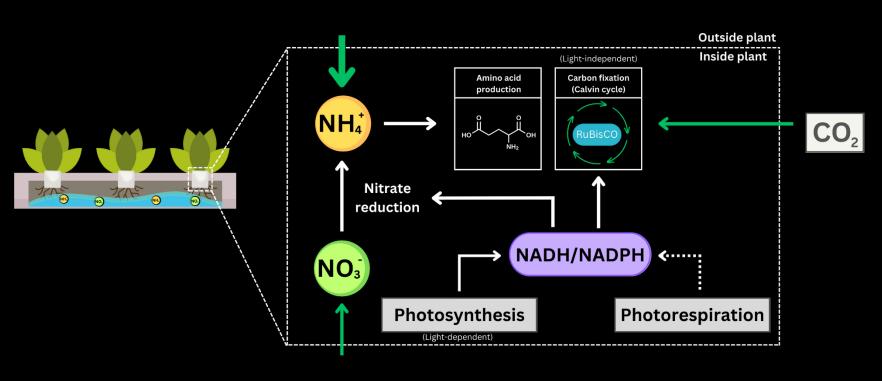
luke.l.fountain@nasa.gov


Nitrogen (N) uptake and preference

- Crucial nutrient for plant survival
- Inorganic forms used in agriculture
- Major inorganic forms include ammonium (NH₄⁺) and nitrate (NO₃⁻)
- Plants can show preference for different N forms
- Key factors include environment, physiology and growth substrate.

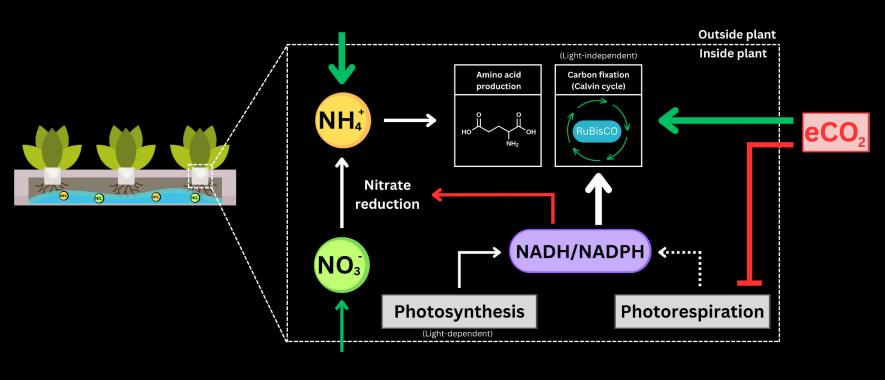
Nitrogen (N) uptake and preference


- N preference is plastic, driven by the dominant pool of N in a given environment.
- Nitrification is a major driver in agricultural soils.
- In hydroponics systems, dominant N pool is driven by the nutrient solution, and physiology becomes more important.

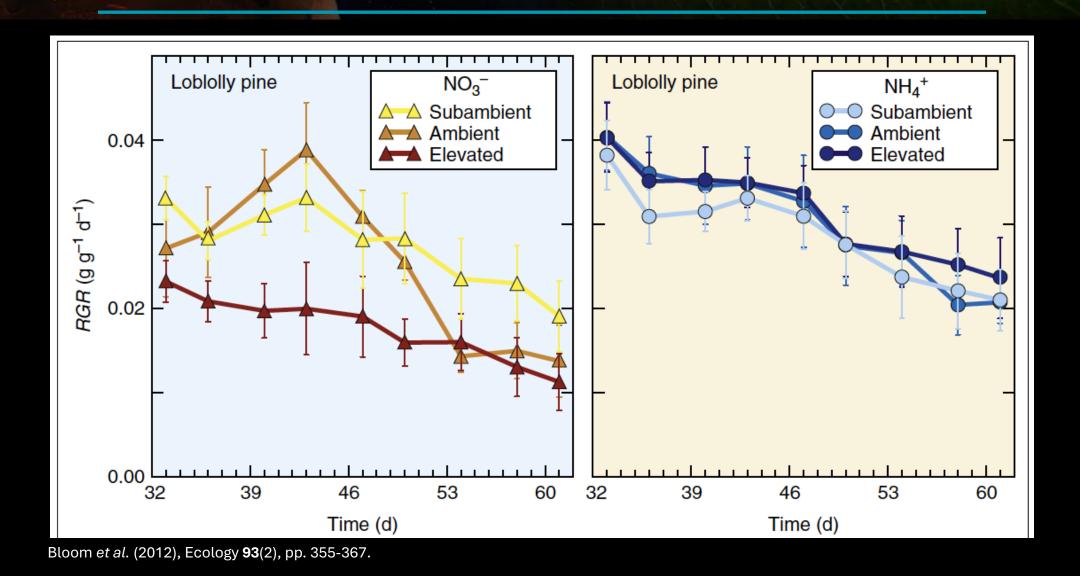

Nitrogen (N) uptake and preference

NH₄⁺ assimilation is ~45 % more energetically efficient than NO₃⁻ assimilation...

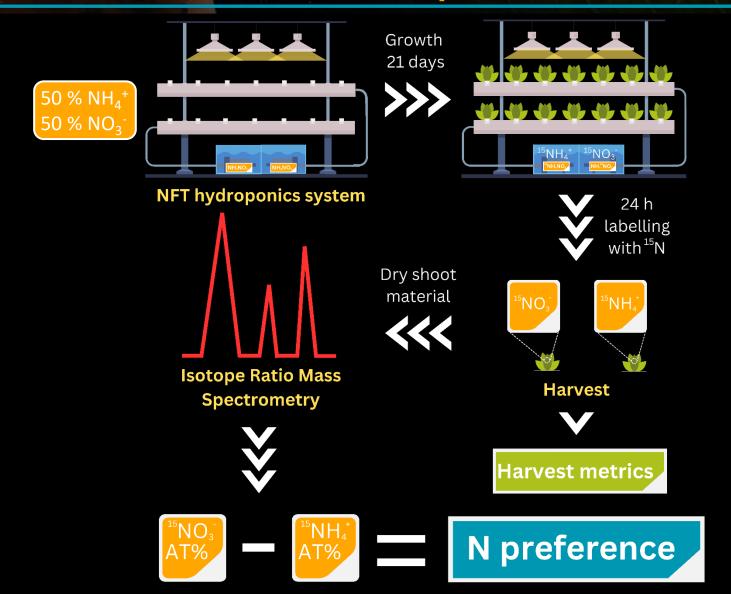
... But NH₄⁺ also becomes toxic to plants at relatively low concentrations (5 mM).



Plant growth at eCO₂ under varying N nutrition

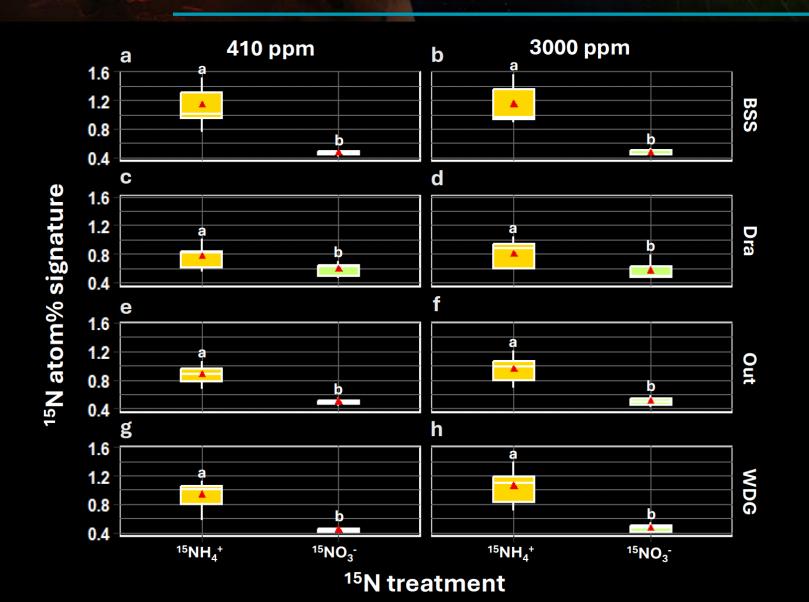

- Reductant (NADH)
 used during C fixation.
- Surplus reducing power available for NO₃⁻ reduction.

Plant growth at eCO₂ under varying N nutrition


- Reducing power diverted to fix additional C.
- Inhibition of photorespiration through altered CO₂:O₂ ratio.
- Less reductant available for NO₃⁻ reduction.

Plant growth at eCO₂

- 1. Docancidate space crops prefer NH, as a N source under hydroponic cultivation?
- 2. Does ISS-level CO₂ increase plant preference for NH₄⁺ as a N source?


Measuring N preference using ¹⁵N stable isotopes

-ve value =
ammonium
preference

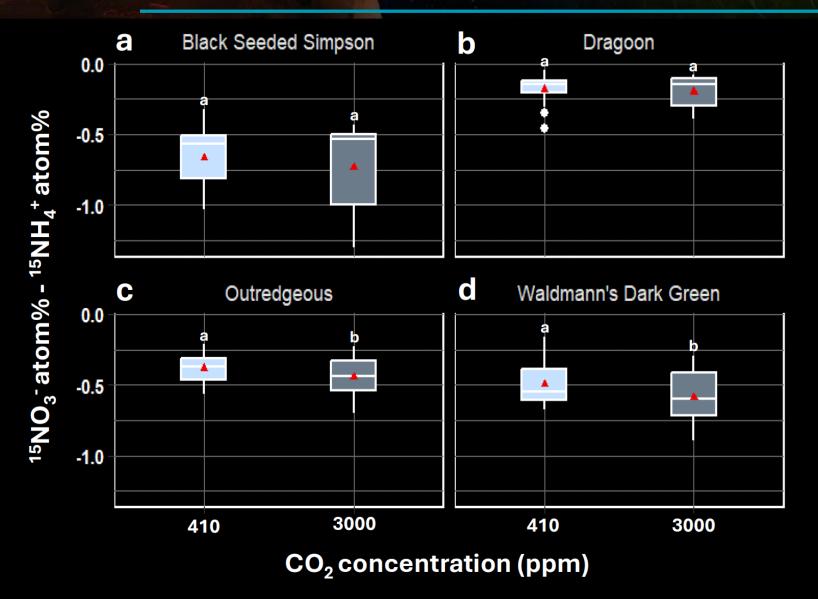
+ve value = nitrate preference

Lettuce N preference under hydroponic cultivation

BSS – Black Seeded Simpson

Dra – Dragoon

Out - Outredgeous

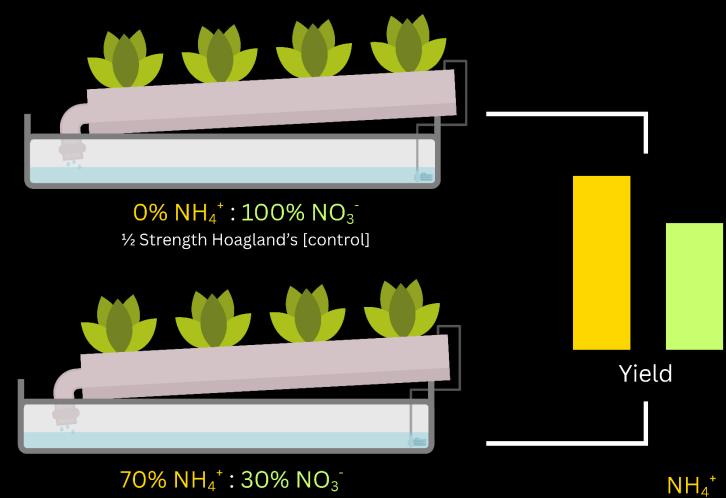

WDG - Waldmann's Dark Green

Heirloom

Grown in space

Groups not sharing a letter are significantly different (p < 0.05, Welch's t-test).

eCO2 increases lettuce preference for ammonium

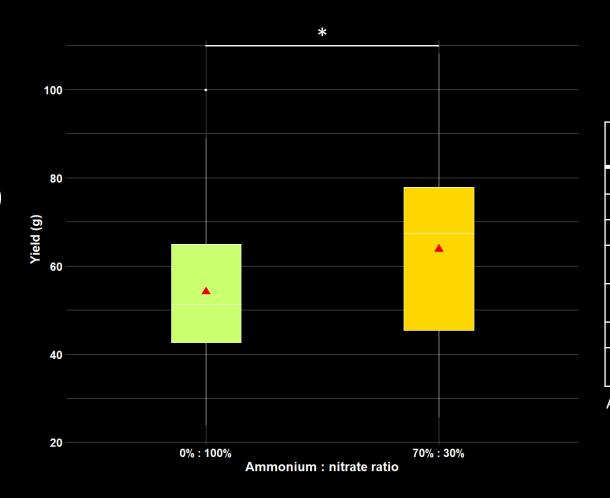


Groups not sharing a letter are significantly different (p < 0.05, one-way ANOVA following mixed-effects modelling).

- 1. Does a mmonium preference translate to improved yield in hydroponic systems with ammonium as a major N source?
- 2. Is any yield increase greater under ISS-level CO₂?

Lettuce cultivation under varying ammonium: nitrate ratios

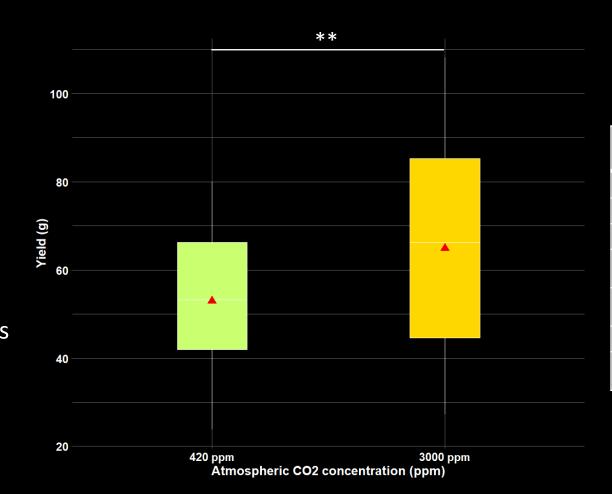
- Two NH₄⁺:NO₃⁻ ratios.
- Two lettuce varieties;
 'Outredgeous' and
 'Dragoon'.
- 28 day growth cycle.
- Ambient (420 ppm) and elevated (3000 ppm) CO₂.



Results

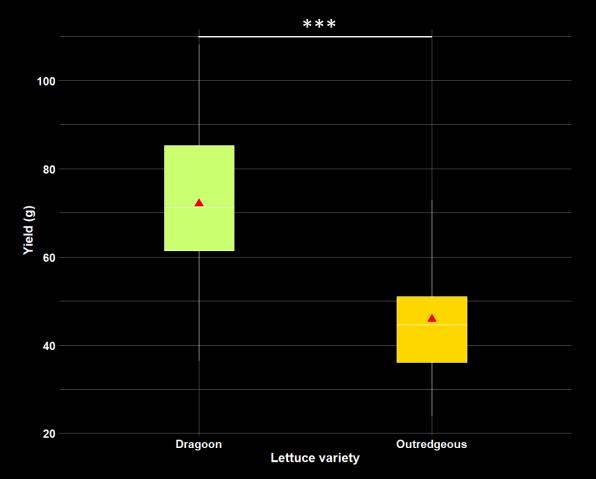
Response variable	F statistic	P value
NH ₄ ⁺ :NO ₃ ⁻ ratio	6.9842	0.0106 (*)
CO ₂	10.6893	0.0018 (**)
Variety	51.4308	1.802e ⁻⁰⁹ (***)
$NH_4^+:NO_3^-$ ratio : CO_2	0.1572	0.6932
NH ₄ ⁺ :NO ₃ ⁻ ratio : Variety	2.5807	0.1138
CO ₂ : Variety	1.4230	0.2379
NH ₄ ⁺ :NO ₃ ⁻ ratio : CO ₂ : Variety	0.0714	0.7903

NH₄⁺ nutrition increases lettuce yield


- Average yield increase of 18 % when NH₄⁺ is present.
- Trend towards higher yield increase for Dragoon (25 %) than Outredgeous (9 %), though not significant.

Response variable	F statistic	P value
NH ₄ ⁺ :NO ₃ ⁻ ratio	6.9842	0.0106 (*)
CO ₂	10.6893	0.0018 (**)
Variety	51.4308	1.802e ⁻⁰⁹ (***)
NH ₄ ⁺ :NO ₃ ⁻ ratio : CO ₂	0.1572	0.6932
NH ₄ ⁺ :NO ₃ ⁻ ratio : Variety	2.5807	0.1138
CO ₂ : Variety	1.4230	0.2379
NH ₄ ⁺ :NO ₃ ⁻ ratio : CO ₂ : Variety	0.0714	0.7903

Elevated CO₂ increases lettuce yield


- Average yield increase of 23 % at 3000 ppm.
- Yield increase higher for Dragoon (26 %) than Outredgeous (16 %), though not significant.
- Difference in yield across CO₂ concentrations appears greater in 0:100 (28 %) compared to 70:30 (17 %), though not significant.

Response variable	F statistic	P value
NH ₄ ⁺ :NO ₃ ⁻ ratio	6.9842	0.0106 (*)
CO ₂	10.6893	0.0018 (**)
Variety	51.4308	1.802e ⁻⁰⁹ (***)
NH ₄ ⁺ :NO ₃ ⁻ ratio : CO ₂	0.1572	0.6932
NH ₄ ⁺ :NO ₃ ⁻ ratio : Variety	2.5807	0.1138
CO ₂ : Variety	1.4230	0.2379
NH ₄ ⁺ :NO ₃ ⁻ ratio : CO ₂ : Variety	0.0714	0.7903

Lettuce yield varies across varieties

• Yield ~56 % higher in Dragoon compared to Outredgeous on average.

Response variable	F statistic	P value
NH ₄ ⁺ :NO ₃ ⁻ ratio	6.9842	0.0106 (*)
CO ₂	10.6893	0.0018 (**)
Variety	51.4308	1.802e ⁻⁰⁹ (***)
NH ₄ ⁺ :NO ₃ ⁻ ratio : CO ₂	0.1572	0.6932
NH ₄ ⁺ :NO ₃ ⁻ ratio : Variety	2.5807	0.1138
CO ₂ : Variety	1.4230	0.2379
NH ₄ ⁺ :NO ₃ ⁻ ratio : CO ₂ : Variety	0.0714	0.7903

Summary

- Plants take up a small baseline amount of nitrate but display significant ammonium preference when cultivated hydroponically.
- Plants with higher N demand typically source the additional N as ammonium.
- Ammonium preference may be further exacerbated by ISS-level CO₂.
- Ammonium-dominant nutrient solutions increase yield of hydroponicallygrown lettuce, though this may be dependent on variety and CO₂ concentration.

Ammonium should be considered as a dominant N source for plants grown hydroponically and/or at high CO₂ in future space crop production scenarios.

Future Directions

- Determine if NH₄+-dominant solutions increase yield in other candidate space crops.
- Explore potential use of plant N uptake strategies to:
 - Minimize nitrate accumulation in salad crops.
 - Manage pH of hydroponic nutrient solutions.

Acknowledgements

Advisors:

Gioia Massa Elison Blancaflor Ray Wheeler

Interns:

Kristen Saban **Annie Shelton** Tyler DeScenza

NASA KSC team

Work funded by NASA **Space Biology**

