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Abstract

Landslide inventories support both post-event response and predictive model evaluation, but it
remains challenging to create public, current, comprehensive, and accurate landside inventories.
In response to this need, thousands of rainfall-triggered landslides were mapped and organized
within the National Aeronautics and Space Administration’s Cooperative Open-Online Landslide
Repository (COOLR), which contains over 11,000 landslide reports from the Global Landslide
Catalog. Recently, 22 inventories containing thousands of rainfall-triggered landslides have been
added to COOLR, which was re-organized to better accommodate large landslide inventories. All
the data are available on the “Landslide Viewer” web application, which also shows referenced
and imported landslide inventories from other researchers. The new inventories are each connected
to a landslide-triggering rainfall event, and therefore their date of occurrence was usually known.
Landslide events were found by searching through credible sources or due to an external request
for support during a disaster response. In either case, high-resolution imagery was utilized to
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digitize the landslides in the region. The resulting data can be used for various purposes, such as
model training and validation. To demonstrate their potential, satellite precipitation was analyzed
with reference to the new inventories. The precipitation analysis highlights the potential of daily
satellite precipitation estimates in areas with limited ground precipitation observations. Some of
the heavy precipitation events were underestimated, but many were captured and could inform
future landslide hazard assessment.

Keywords: Landslides, Landslide Inventory, COOLR, Satellite, Precipitation
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1. Introduction

The accuracy and composition of landslide inventories varies widely. Creating a global, up-to-
date, comprehensive, and accurate landside inventory is a challenge, due to varying collection
methods, numerous types and causes of landslides, and the large effort required to create a global
inventory of any kind. The National Aeronautics and Space Administration (NASA) recently
updated its Cooperative Open Online Landslide Repository (COOLR) to include a series of
major landslide events.

Landslide mapping can be accomplished using manual or automated methods. In manual
mapping, a human digitizes landslides via visual interpretation of imagery, which tends to
produce fewer false positives. However, this method can be labor- and time-intensive, and the
quality is variable and dependent on the experience of the human analyst. Automated mapping
involves the use of supervised or unsupervised classification techniques to detect landslides from
satellite imagery. Pixel-based (Nichol and Wong, 2005; Borghuis et al., 2007; Parker et al.,
2011; Burrows et al., 2019, 2020; Jung and Yun, 2020), Object-based (Martha et al., 2010,
2016; Lu et al., 2011; Stumpf and Kerle, 2011; Holbling et al., 2012, 2015; Amatya et al., 2019,
2021a, 2021b; Adriano et al., 2020; Esposito et al., 2020; Comert, 2021) and deep-learning
based (Ghorbanzadeh et al., 2019; Sameen and Pradhan, 2019; Meena et al., 2021; Nava et al.,
2022; Bhuyan et al., 2023) methods have been used extensively for landslide mapping. These
methods can quickly map large areas but can produce more false positives, requiring further
corrections (Li ef al., 2014). In this paper, we utilized both manual mapping and an automated
landslide mapping approach, called Semi-Automatic Landslide Detection (Amatya et al., 2021a,
2021b).

Although many individual landslide inventories have been published, relatively few compilations
of multiple inventories have been made publicly available. Institutional restrictions on data
republication are probably an important limiting factor, but the labor and computing costs
associated with maintaining up-to-date repositories may also be significant. A common challenge
to these efforts is standardization of diverse datasets (Grignon et al., 2004). Due to the challenge
of producing a single landslide inventory at scale, national landslide inventories often represent a
compilation across multiple pre-existing inventories (Devoli et al., 2007; Trigila et al., 2010;
Mirus et al., 2020), and these are sometimes made openly available. Fewer examples are
available at the international level. Sometimes multiple inventories may be compiled to produce
an open landslide susceptibility map or other product (Gilinther et al., 2014; Wilde et al., 2018),
but without publishing the merged inventory (Herrera et al., 2018). The pre-eminent example of
an open repository of multiple landslide inventories, a collection of earthquake-induced
landslides is redistributed through the U.S. Geological Survey ScienceBase platform (Tanyas et
al.,2017). This database is intended to enhance sharing of information across the research
community, as well as improving the estimation of impacts from future earthquakes. In this
paper, we describe updates to COOLR, another global repository of landslide data, including the
production of dozens of new landslide inventories.

The new inventories correspond to 22 rainfall events that occurred in the years 2019-2023 and
contain over 15,000 landslides (Figure 1). The new point-based inventories are hosted within
COOLR and can be viewed and downloaded on NASA’s Landslide Viewer



101 (http://www.landslides.nasa.gov/viewer). COOLR already contains the Global Landslide Catalog
102 (GLC), a large inventory of rainfall-triggered landslides that have been recorded by news media
103 or other sources (Li et al., 2014; Kirschbaum et al., 2015). The new inventories can be used for
104  training or validating landslide predictive models, such as the Landslide Hazard for Situational
105  Awareness (LHASA) model (Stanley et al., 2021). In addition, these data could be used for

106  evaluating the connection between landslide events and satellite precipitation datasets, an

107  example explored in this paper.
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112 2. Methodology
113
114  2.1. Landslide Mapping
115

116  2.1.1. Information sources

117  Multiple sources of information fed the digitization of landslide events. Sometimes, the NASA
118  Disasters Program (https://appliedsciences.nasa.gov/what-we-do/disasters) notified our team of a
119  landslide occurrence. The Disasters Program activates the Disasters Response Coordination

120  System (DRCS) (https://appliedsciences.nasa.gov/what-we-do/disasters/disasters-response-

121  coordination-system) when there is an external request for Earth observation (EO) data or hazard
122 products to support a disaster response. When the DRCS activated for a landslide-related event,
123 the landslide mapping process began. In addition, trustworthy websites such as the International
124 Disasters Charter (IDC) (https://disasterscharter.org) and Floodlist (https://floodlist.com/) were
125  used to find rainfall-triggered landslide events to digitize. Both sources were filtered by hazard
126  type, location, and date. The overall methodology and decision process for mapping landslide
127  events is shown in Figure 2.
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Figure 2. Flowchart showing each step of the landslide inventory creation process.
2.1.1. Data

To precisely map individual landslides, a surface-reflectance product with 4-bands (Red, Green,
Blue and Near-Infrared) from PlanetScope (Planet Team, 2017) was used. The imagery was
available through the NASA Commercial Satellite Data Acquisition (CSDA) Program
(https://earthdata.nasa.gov/esds/csdap). The PlanetScope imagery had a 3-meter daily resolution.
The high temporal frequency gave the greatest chance of finding a cloud-free image from both
before and after each rainfall event, which helped attribute each landslide to the rainfall event.

If landslides were mapped for a disaster response, it was often difficult to find a post-event
cloud-free image as some areas may remain cloudy for many days. In those cases, imagery
sources were checked daily until clear imagery became available. In some regions, it was often
hard to find a cloud-free image from within a narrow time window before and after the event.
This phenomenon can reduce the overall precision of the product, but the date of the imagery
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used for digitization was provided in the data attributes to provide context for each mapped
inventory. Errors were possible in both manual and automatic mapping. False negatives might
have occurred if the area of interest excluded nearby landslides or if landslides were overlooked
due to spectral characteristics. False positives could have occurred due to unrelated changes or
damage to the landscape that looked like a landslide. Finally, false positives and false negatives
were manually corrected during the quality assurance/quality control (QAQC) process.

2.1.2 Manual Mapping

When NASA was alerted to a potential landsliding event, the first step was to download clear
pre-event and post-event imagery. The threshold for determining a “clear” image was 30% cloud
cover, but we manually selected the best available image for mapping each landslide event. Once
both were available, the clear pre-event imagery was compared with clear post-event imagery. If
new landslides were identified, the next step was to determine whether manual digitization or
machine learning would be used to map landslides. Most inventories were manually digitized.
The manual process to digitize landslides was comprised of visualizing and comparing the pre-
and post- event imagery in Esri ArcGIS Pro software. The region of interest was visually
inspected to capture as many landslides as possible, with closer attention paid to steeper terrain,
especially near streams and in forested areas. A point was placed at the suspected initiation zone
of each landslide based on the topography of the region. We decided to map the landslides as
points instead of polygons because adding a point at the suspected initiation zone is much faster,
enabling us to map many landslides in a short amount of time. To ensure we captured all the
landslides in the given region, we reviewed the entire administrative district mentioned in the
source for the event (typically a county). If no administrative district was mentioned in the
source, we reviewed the imagery at least 25 kilometers out from the furthest landslide found in
all directions. When each new inventory was completed, it was shared with the requester for the
ongoing disaster response and published within COOLR.

2.1.3. Semi-Automatic Landslide Detection (SALaD) system

When we identified an event that seemed too large to manually map, the Semi-Automatic
Landslide Detection (SALaD) algorithm was utilized (Amatya et al., 2021b). SALaD uses
object-based image analysis and machine learning to automatically map landslides. To ensure
that only landslides induced by that rainfall event were mapped, a change detection-based
version of SALaD called SALaD-CD (Amatya et al., 2021b) was used. First, pre- and post-event
imagery of the area of interest was downloaded. Next, training data was created to represent a
sample of landslides in the region of interest, to improve accuracy. Pre- and post-event imagery
was used to generate metrics that highlight change such as Normalized Difference Vegetation
Index (NDVI) difference, Principal Component Analysis (PCA) and Independent Component
Analysis (ICA). The post-event image was segmented to create objects (Comaniciu and Meer,
2002). The mean of NDVI difference, PCA and ICA of each object was used for landslide
classification using a Random Forest (RF) model (Breiman, 2001). Once SALaD-CD finished
running, either the output was posted with only a few corrections (mostly removing clouds) or a
full QAQC was performed before publishing to COOLR. SALaD-CD outputs landslide
polygons. In this case, the polygons were converted to initiation points before QAQC, because
performing corrections was faster on points than on more complex polygons. The initiation point
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was assumed to be the highest elevation in the landslide polygon boundary, based on the NASA
Digital Elevation Model (NASA JPL, 2020). Missing landslide initiation points due to
amalgamation of landslides while generating polygons were added manually. If the mapping was
performed due to a request from an external organization working a hazard response in real-time,
the output of SALaD-CD was shared as soon as possible. After the immediate response, each
inventory was reviewed before it was ingested into COOLR.

2.2. COOLR Incorporation

All of the newly digitized landslide event inventories were added to COOLR, NASA’s landslide
database, which is displayed within NASA’s Landslide Viewer. However, the pre-existing
repository structure did not differentiate between event-based and report-based landslide
inventories. Previously, COOLR contained two layers that hosted all the landslide data: a point
layer and a polygon layer. These contained landslides reported by citizen scientists (Juang et al.,
2019), landslides recorded in the GLC by NASA staff (Dandridge et al., 2023), and inventories
that were shared by external researchers. The database structure had been developed around the
GLC, a report-based inventory. For this reason, the schema was not ideal for representing event-
based inventories, which can have thousands of spatially precise landslide points per event. To
better represent the new inventories, COOLR was updated to contain four layers: event-based
layers in point and polygon format, and report-based layers in point and polygon format.

Both the event- and report-based layers contain external landslide inventories with the attributes
updated to match the COOLR schema. External inventories contained within COOLR will be
identified as such within the “Event Title” or “Imported Event Source Catalog” fields. If an
external inventory was published via an online service, the service was added directly to
Landslide Viewer as a separate layer. These inventories can be viewed in Landslide Viewer
within the “map layers” list under “External Landslide Catalogs (Referenced)”. The goal was to
have Landslide Viewer as comprehensive as possible for all public-facing landslide inventories.

The attributes within the event- and report-based landslide inventories differ slightly and can be
seen in Table 1 below.

Attribute Description

Event Title (events, reports) A title often describing the method for mapping the event, the
location, and the date of the event.

Event Date (events, reports) | The date the landslide(s) most likely occurred.

Event Time (approximate) The approximate time the landslide(s) occurred.
(events, reports)

Name of Information Source | The source of information for an event, such as a citation for

(events, reports) the landslide inventory, a news article, etc.

Link to Information Source The link to the information source or the publication

(events, reports) referenced.

Event ID (events, reports) A unique identifier assigned to each landslide that will remain

constant over time.




Event Description (events,
reports)

Describes the landslide event in more detail. Provides context
to the situation, such as more details about the location, trigger,
etc.

Landslide Trigger (events,
reports)

The cause of the landslide, such as earthquake, rainfall, etc.

Event Location (events,
reports)

Describes where the landslides occurred geographically.

Associated Storm Name
(events, reports)

The name of the storm that caused the landslide, if applicable.

Country Code (events,
reports)

The 2-digit country code defined in ISO 3166-1.

Country Name (events,
reports)

The full name of the country the landslide(s) occurred in.

Event Comments (events,
reports)

Any additional information about the landslide that wasn’t
captured in the other attributes, especially information on
source reliability or process.

Latitude (events, reports)

Latitude of the landslide.

Longitude (events, reports)

Longitude of the landslide.

Landslide Category (reports)

The type of landslide that occurred, such as rockslide, debris
flow, mudslide, etc.

Administrative Division

The administrative division the landslide report is located in.

(reports)

Closest Gazetteer Point The closest geographical dictionary reference point to the
(reports) reported landslide event.

Distance to Gazetteer Point The distance to the closest gazetteer point.

(reports)

Estimated Size (reports)

Estimated size of the landslide based on the report.

Imported Event Source
Catalog (reports)

An abbreviation identifying the relevant landslide inventory.
For example, GLC = Global Landslide Catalog.

Imported Event Source ID
(reports)

If the landslide report was imported from another source, the
ID of that source is listed here.

Landslide Setting (reports)

The environment where the landslide occurred.

Last Edited Date (reports)

The latest date the landslide report was edited within the
attribute table.

Link to Photo (reports)

If there is a photo within the landslide report source, it is linked
here.

Location Accuracy (reports)

A radius around the reported location within which the
landslide is believed to have occurred.

Number of Fatalities (reports)

Estimated number of fatalities associated with the landslide.

Number of Injuries (reports)

Estimated number of injuries associated with the landslide.

Submitted Date (reports)

The date the landslide report was reviewed by NASA and
submitted into the public-facing COOLR database.

Citation (events)

The citation for each landslide inventory. Users should
reference this field when utilizing the event-based data within
COOLR.
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Imagery Type for Digitizing | The type of imagery used to manually or automatically digitize

(events) the landslide event. Normally, both pre- and post-event
imagery is used and noted here.
Method (events) The type of process used to digitize the landslides, either

“manual” or “automatic”.

Satellite Imagery Date Before | The date(s) of the satellite image used for digitization pre-
Event (events) event.

Satellite Imagery Date After | The date(s) of the satellite image used for digitization post-
Event (events) event.

Table 1. Attribute names and definitions for both the event- and report-based landslide layers in
COOLR.

2.3. Satellite Precipitation Analysis

Satellite precipitation enables a global view of extreme rainfall that may be the harbinger of
subsequent major landslide events. To evaluate this connection and examine the potential for
better detection, the following precipitation analysis was conducted. The analysis used
precipitation estimates derived from satellite remote sensors to provide context of the
precipitation in the area for each landslide event. Due to the landslides being located in remote
areas across the world, precipitation from gauges was sometimes unavailable. Additionally, since
the time of day the precipitation event occurred was not documented in the landslide inventory,
the precipitation analysis was conducted using daily estimates instead of sub-daily estimates.
Daily cumulative precipitation estimates from the Global Precipitation Measurement (GPM)
mission were used. Specifically, estimates were from the V07 final run product from the
Integrated Mult-satellitE Retrievals for GPM (IMERG) were used for the precipitation analysis
and are available at https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDF.07/
(Huffman et al., 2023). The multi-satellite precipitation estimate from the product was the only
variable used in the analysis. All available daily precipitation estimates at the time of writing,
June 1, 2000, through March 31, 2024, were used in the analysis. Once data were downloaded,
the overall extent of the bounding area for each landslide event was used to extract precipitation
pixels for each day in the study period (Figure 3). Each GPM IMERG pixel was 0.1° in spatial
resolution. Due to the variations in landslide event bounding area, the number of pixels from
GPM IMERG varied. From the daily precipitation pixels extracted, the maximum daily
precipitation was determined for each bounding area. This maximum daily cumulative
precipitation was used in the analysis to determine the mean recurring interval and percentile
rank.

Since the exact date and time of the reported event might not be accurate, and GPM IMERG
precipitation estimates are in UTC, precipitation within 5 days before and after the reported
event date were analyzed to ensure the precipitation event was fully captured. The maximum
daily precipitation value that occurred within 5 days before and after the reported event date was
used to define the precipitation amount for each event (Figure 3).
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Figure 3. Example of the precipitation analysis completed for each landslide event using the
maximum daily precipitation during the + 5 days of the reported event date. The map and time
series shows the analysis for the South Africa (12-April-2022) landslide event. In the map, each
red dot represents a mapped landslide location. In the time series plot, the daily maximum
precipitation, daily mean precipitation, and cumulative precipitation are shown for each day. The
reported landslide event date is highlighted by a red triangle, while the maximum daily
precipitation used for the calculation of the recurring interval is highlighted by the dark red
rectangle. This example highlights the use of the maximum precipitation that occurred on the
reported event date.
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The precipitation amount was used in the calculation of the recurring interval. The recurring
interval was calculated by averaging the time between precipitation events that had a daily
precipitation equal to or higher than the determined amount (Perica ef al., 2018). For example,
the South Africa (12-April-2022) event had a maximum daily precipitation of 209.9 mm that
occurred on the reported event date. The 209.9 mm was the precipitation amount used to
determine the number of events that occurred during the IMERG record. The time difference
between these events was then averaged to determine the recurring interval. For this amount,
there were 3 days that were more than or equal to 209.9 mm within the IMERG record, including
the event (Figure 4). The average time between the events was 9.87 years. Additionally, the
percentile rank of the threshold was calculated for each amount to determine the percentage of
days that were less than the event amount. All precipitation analysis was completed using the R
software (“R Core Team,” 2024).

7 7

2002-07-19
| .
0 50

3 4
£
E o femmmemm e e Y Q—
~ o — L ]
c QY
:i% [ ] L ]
& o
e
o
e
o )
> 2
‘©
()
o o
] _
< s}

D —

I I I
2000 2010 2020
Date

11



283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

Figure 4. Time series of daily maximum precipitation for the South Africa bounding area with
the red dotted line highlighting the maximum precipitation (green dot) within the + 5 days of the
reported event that occurred on the reported event date, the maximum precipitation on the
reported event date, 12-Apr-2022. The outline of each map corresponds to the maximum
precipitation point on the time series plot below each map. Only the event dates that were equal
to or more than the threshold for the event are shown.

3. Results

The newly mapped inventories (shown in Table 2) included 15,274 landslide points. Each
landslide point in the new event inventories represented one landslide on the ground, as seen in
Figure 5.

Five landslide events were mapped for April and July, while zero landslide events were mapped
for January, June, November, and December (Figure 6). Seven of the 22 events were associated
with a named storm, but these storms did not necessarily produce more landslides. The
inventories for both Tropical Storm Megi and Hurricane Fiona contained fewer than 25
landslides, while some unnamed rainfall events triggered more than 1,000 landslides.
Nevertheless, Typhoon Egay and Hurricane Agatha each triggered more than 3,000 landslides.
The most common source reporting major landslide events was the IDC (Figure 6). Only one
new event inventory was automatically digitized, because most landslide events initially seemed
small enough to map manually. However, a few events had thousands of landslides; in those
instances, it would have been a better use of resources to have utilized SALaD-CD.

Figure 6 shows the climatic variation between the new landslide events mapped using the
Koppen-Gieger climate classification (Beck ef al., 2023). Most landslides were mapped in the
tropical monsoon (Am) and tropical savannah (Aw) climate areas, but many were also mapped in
in temperate climates, including Cwa (dry winter, hot summer), Cwb (dry winter, warm
summer), and Cfa (no dry season, hot summer).

Event | Event # Of. Province/ Associated Mapping qu pen
D Date Landslides Municipality Country Storm Method Climate
Mapped Name Class
23-
1 Apr- 57 K‘;:?j;lllu_ i(;rlitcl; Manual Cfa
2019
15-
2 Feb- 69 Petropolis Brazil Manual | Cfa, Cfb
2022
3 2;8‘;; 77 Rio de Janeiro Brazil Manual éfg :Agrfll;
10- Bavba Tropical
4 Apr- 23 Vil}IagZ Philippines Storm Manual Af
2022 Megi

12




12- KwaZulu- South
5 Apr- 870 Natal Africa Manual | Aw, Cfa
2022
22- KwaZulu- South
6 May- 5 Natal Africa Manual Cfa
2022
28-
7 May- 24 Recife Brazil Manual | Am, Aw
2022
30- Hurricane | SALaD- Aw
8 May- 3,862 Oaxaca Mexico Acatha cD Cwl;
2022 £
19- . .
9 Sep- 20 Puerto Rico United Humcane Manual | Af, Cfb
States Fiona
2022
28- Tropical
10 Oct- 213 Maguindanao | Philippines Storm Manual Af
2022 Nalgae
19- Sdo Sebastiao,
11 Feb- 330 Ubatuba, and Brazil Manual Aféf%fa’
2023 Ilhabela
12 6;(\)/[2?_ 45 lye agt;?fy Indonesia Manual Af
13- Blantyre Malawi, Cyclone Aw,
13 Mar- 1,813 Milange’ Mozambiq Freddy Manual Cwa,
2023 ue Cwb
Democratic
14 3-Apr- 22 Nord-Kivu | Republic of Manual Af, Am,
2023 Ctb
the Congo
2- Western
15 May- 156 . Rwanda Manual | Aw, Csb
Province
2023
16 92_(”)1121;— 176 H;;Zgz?}? I India Manual Cwa
15-Jul- Kyeongbuk South
17 2023 159 I}’Irovifr%lce Korea Manual Dwa
18 127 (—)legl- 48 Quetame Colombia Manual ésf;’)f‘grflk’)
. Af, Am
26-Jul- Cordlllhera e Typhoon C’wa ’
19 3,183 Admin Philippines Manual ’
2023 Region Egay Cwb,
Cfa, Cfb
20 2§ (_)le;l_ 361 Quanzhou China Fl];}g) 1?5?1(;? Manual Cfa

13




5 Dien Bien,
21 Aug- 1,950 Lai Chau, Sgn Vietnam Manual Cwa,
La, Lao Cai, Cwb
2023 .
Yen Bai
6- Am
22 Aug- 1,811 Chittagong | Bangladesh Manual ’
2023 Cwa
313 Table 2. The 22 new landslide events. Dates were reported in the local time zone.
314
315 1 '
316 Figure 5. PlanetScope imagery from 17-Jul-2023 (left) and 31-Aug-2023 (right) showing
317 landslide event points from a rainfall event in Vietnam (5-Aug-2023). Located at 21° 47’ 38.19”
318 N 103° 57° 05.05”E. Image © 2023 Planet Labs PBC.
319
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Figure 6. Inset A shows landslide event distribution by month. Inset B shows the different types
of sources used to identify the presence of a rainfall-induced landslide event, triggering the
landslide mapping process. “Other” includes a variety of news articles. Inset C shows a treemap
of the number of landslides by inventory and Koppen-Gieger climate classification (Beck et al.,
2023). Each subgroup represents the number of landslides within the climate class for each
landslide event inventory. Several landslide events that occurred during a single event were
geographically located across multiple climate classes.
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Section 2.3. describes an example use case for these inventories. The recurring interval using the
maximum daily cumulative precipitation varied from 15 days for the Colombia (17-Jul-2023)
landslide event to more than 11 years for the Indonesia (6-Mar-2023) landslide event (Table 3)
with the average recurring interval for all events being 3.1 years. All the precipitation events had
percentile ranks more than the 93" percentile of all maximum cumulative daily precipitation.
Furthermore, 86% of the precipitation events had percentile ranks of more than the 99
percentile for the location. This means that 19 of 22 landslide events had precipitation higher
than 99% of all maximum cumulative daily precipitation recorded by GPM IMERG for the study
area. According to daily IMERG, eighteen events had the most precipitation fall the day before,
on the reported event date, or the day following the reported event date. Three of the twenty-two
events had the most precipitation fall more than one day before the reported event. Interestingly,
one event had the highest precipitation fall five days following the reported event, Brazil (15-
Feb-2022). This suggests that IMERG underestimated the rainfall for the event. According to
Alcantara et al. (2023), a strong mesoscale convective system produced rainfall of 258 mm
within 3 hours on February 15, 2022, but the maximum daily IMERG precipitation was less than
20 mm on 15-Feb-2022. Additional analysis using the sub-daily precipitation estimates from
IMERG did not yield better results for the Brazil event. While the 30-minute IMERG
precipitation observed the storm event, the estimated precipitation was much lower than the radar
or gauge precipitation presented in Alcantara et al. (2023). The event with the longest recurring
interval, the Indonesia event (6-Mar-2023), is discussed in more detail below.

Date of Maximum Maximum Recurring
Event c e . o . Number of
Country Date Precipitation Precipitation Davs Interval
(mm/day) (mm/day) y (years)
South Africa 232-0A11;r- 22-Apr-2019 73.5 14 1.64
. 15-Feb-
Brazil 2022 20-Feb-2022 22.0 524 0.05
. 02-Apr-
Brazil 2022 1-Apr-2022 133.1 8 3.05
e 10-Apr-

Philippines 2022 10-Apr-2022 186.8 14 1.63
South Africa 122'622“ 12-Apr-2022 209.9 3 9.87
South Africa 222'(%?' 21-May-2022 110.5 5 4.96

. 28-May-
Brazil 2022 25-May-2022 143.6 14 1.69
. 30-May-
Mexico 2002 30-May-2022 148.3 2 5.00
. 19-Sep-
Puerto Rico 2022 18-Sep-2022 188.0 5 4.86
e 28-Oct-
Philippines 2022 27-Oct-2022 119.5 9 2.52
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362
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364

. 19-Feb-
Brazil 2023 19-Feb-2023 97.3 19 1.29
. 6-Mar-
Indonesia 2023 3-Mar-2023 286.9 3 11.05
Malawi, 13-Mar-
Mozambique 2023 13-Mar-2023 168.3 4 6.68
3-Apr-
Congo 2023 31-Mar-2023 26.7 152 0.16
2-May-
Rwanda 2023 2-May-2023 62.3 29 0.80
India 9-Jul-2023 8-Jul-2023 155.2 16 1.53
15-Jul-
South Korea 2023 14-Jul-2023 105.9 37 0.64
. 17-Jul-
Colombia 2023 17-Jul-2023 32.6 557 0.04
e 26-Jul-
Philippines 2023 26-Jul-2023 317.8 7 3.18
. 28-Jul-
China 2023 28-Jul-2023 89.6 45 0.53
. 5-Aug-
Vietnam 2023 5-Aug-2023 121.5 94 0.25
Bangladesh 6;3%" 6-Aug-2023 336.9 4 7.02
Table 3. Precipitation for each landslide event, selected from a ten-day window around the
reported date.

Indonesia: March 6, 2023

An IDC activation for the 6-Mar-2023 landsliding event stated that at least 15 people died after
six days of torrential rains and that seasonal rains and high tides contributed to the flooding and
landsliding in the region (International Disasters Charter, 2023). This event had the longest
recurring interval (Table 3). The precipitation that occurred in Indonesia around the 6-Mar-2023
landslide event was the third highest precipitation for the bounding area from 1-Jun-2000
through 31-Mar-2024, according to IMERG V07 (Figure 7). On 3-Mar-2023, 286.9 mm of
precipitation fell, three days before the reported landslide event date of 6-Mar-2023. The
bounding area for the event was limited to six IMERG pixels, all of which contained oceanic and
terrestrial areas (Figure 7).
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Figure 7. Time series of daily precipitation for the Indonesia event bounding area from 1-Jun-
2000 through 31-Mar-2024 (top left). The maximum precipitation occurred three days before the
event date on March 3, 2023 (bottom) and is highlighted in the red rectangle in the time series
(bottom) and map (top right). Mapped landslides are shown as red dots.

4. Data Availability

The new landslide inventories are available to download in shapefile, csv, and geodatabase
format from Landslide Viewer or by going directly to this link:
https://maps.nccs.nasa.gov/arcgis/apps/MapAndAppGallery/index.html?appid=57412640868348
5799d02e857e5d9521. Landslide Viewer (https://landslides.nasa.gov/viewer) is a web
application to visualize and download various landslide-related datasets (Figure 8). It was
recently updated with Experience Builder, a tool for building geospatial web applications from
Esri. Additional features include aggregation of landslide points, layer reordering, and faster
visualization. In addition to landslide inventories, Landslide Viewer also displays information on
NASA'’s global landslide nowcast, a global landslide susceptibility map, precipitation, and
infrastructure. To download all the landslide inventories within COOLR, it is recommended to
download the geodatabase which contains four layers. In addition, there is a downloadable table
which contains the citations for each landslide event inventory. The new landslide event
inventories discussed in this paper can also be downloaded from Figshare
(https://doi.org/10.6084/m9.figshare.26972467).
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Figure 8. NASA’s Landslide Viewer. The “Download Landslide Catalog” and “Relevant
Publications” links are shown at the top of the page.

5. Data Use and Reuse

The new landslide event inventories could be used for a multitude of analyses, but they have
some important limitations. For example, they can be used to train and validate machine-learning
models like SALaD-CD and LHASA or assess satellite-based precipitation algorithms such as
IMERG. Most of these inventories were manually mapped using 3-meter optical imagery, so the
inventories will not include the smallest landslides. We used a cloud filter of 30% to remove
cloud-covered imagery, but this does not imply that the inventories are significantly incomplete;
all images were manually selected to be favorable for mapping landslides and are unlikely to
have major omissions. Wind throw, clouds, tree cover, shadows, and human judgment all
contribute to uncertainty in these data. Since the type and date of pre- and post- image used for
each inventory is provided in the geodatabase attribute table, users can generally look up the
image and review its quality. Although the core areas of impact were thoroughly mapped, it is
possible more landslides were present far (>25km) outside of the selected administrative district.
Therefore, some landslides may have been missed. We have not conducted a field-based
assessment of these inventories, but we welcome feedback from the community and commit to
correcting known errors.

These events are a small and unrepresentative sample of global landslide activity. For example,
the monthly distribution (Figure 6) does not match that seen in other global datasets (Froude and
Petley, 2018; Dandridge et al., 2023). Therefore, sole reliance on these data is not recommended
for many potential uses, such as the analysis of trends in landslide activity or national hazard-
level comparisons. But once these inventories have been combined with additional datasets,
some topics may become tractable. To show one example of how these data can be used, we
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calculated a recurring interval for each event, based on the IMERG record. Typically, the
recurring intervals are quite short (<3 years), which suggests that satellite-based precipitation
products may underestimate some important storms.

6. Conclusion

We used high-resolution satellite imagery from PlanetScope, manual digitization, and machine
learning to create thousands of event-based landslide points. COOLR was updated to incorporate
both event- and report-based landslide inventories and is displayed within an updated version of
NASA'’s Landslide Viewer. These point-based inventories are not a representative subset of global
landslide occurrence, so some potential uses are unsuitable, including analysis of trends and
international landslide distribution. Further precipitation analysis could illuminate antecedent
conditions for these landslides. We will continue to update COOLR with new events to maintain
an open global landslide repository.
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