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Abstract 33 
 34 
Landslide inventories support both post-event response and predictive model evaluation, but it 35 
remains challenging to create public, current, comprehensive, and accurate landside inventories. 36 
In response to this need, thousands of rainfall-triggered landslides were mapped and organized 37 
within the National Aeronautics and Space Administration’s Cooperative Open-Online Landslide 38 
Repository (COOLR), which contains over 11,000 landslide reports from the Global Landslide 39 
Catalog. Recently, 22 inventories containing thousands of rainfall-triggered landslides have been 40 
added to COOLR, which was re-organized to better accommodate large landslide inventories. All 41 
the data are available on the “Landslide Viewer” web application, which also shows referenced 42 
and imported landslide inventories from other researchers. The new inventories are each connected 43 
to a landslide-triggering rainfall event, and therefore their date of occurrence was usually known. 44 
Landslide events were found by searching through credible sources or due to an external request 45 
for support during a disaster response. In either case, high-resolution imagery was utilized to 46 



   
 

   
 

digitize the landslides in the region. The resulting data can be used for various purposes, such as 47 
model training and validation. To demonstrate their potential, satellite precipitation was analyzed 48 
with reference to the new inventories. The precipitation analysis highlights the potential of daily 49 
satellite precipitation estimates in areas with limited ground precipitation observations. Some of 50 
the heavy precipitation events were underestimated, but many were captured and could inform 51 
future landslide hazard assessment. 52 
 53 
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1. Introduction 55 
 56 
The accuracy and composition of landslide inventories varies widely. Creating a global, up-to-57 
date, comprehensive, and accurate landside inventory is a challenge, due to varying collection 58 
methods, numerous types and causes of landslides, and the large effort required to create a global 59 
inventory of any kind. The National Aeronautics and Space Administration (NASA) recently 60 
updated its Cooperative Open Online Landslide Repository (COOLR) to include a series of 61 
major landslide events.  62 
 63 
Landslide mapping can be accomplished using manual or automated methods. In manual 64 
mapping, a human digitizes landslides via visual interpretation of imagery, which tends to 65 
produce fewer false positives. However, this method can be labor- and time-intensive, and the 66 
quality is variable and dependent on the experience of the human analyst. Automated mapping 67 
involves the use of supervised or unsupervised classification techniques to detect landslides from 68 
satellite imagery. Pixel-based (Nichol and Wong, 2005; Borghuis et al., 2007; Parker et al., 69 
2011; Burrows et al., 2019, 2020; Jung and Yun, 2020), Object-based  (Martha et al., 2010, 70 
2016; Lu et al., 2011; Stumpf and Kerle, 2011; Hölbling et al., 2012, 2015; Amatya et al., 2019, 71 
2021a, 2021b; Adriano et al., 2020; Esposito et al., 2020; Comert, 2021) and deep-learning 72 
based (Ghorbanzadeh et al., 2019; Sameen and Pradhan, 2019; Meena et al., 2021; Nava et al., 73 
2022; Bhuyan et al., 2023) methods have been used extensively for landslide mapping. These 74 
methods can quickly map large areas but can produce more false positives, requiring further 75 
corrections (Li et al., 2014). In this paper, we utilized both manual mapping and an automated 76 
landslide mapping approach, called Semi-Automatic Landslide Detection (Amatya et al., 2021a, 77 
2021b). 78 
 79 
Although many individual landslide inventories have been published, relatively few compilations 80 
of multiple inventories have been made publicly available. Institutional restrictions on data 81 
republication are probably an important limiting factor, but the labor and computing costs 82 
associated with maintaining up-to-date repositories may also be significant. A common challenge 83 
to these efforts is standardization of diverse datasets (Grignon et al., 2004). Due to the challenge 84 
of producing a single landslide inventory at scale, national landslide inventories often represent a 85 
compilation across multiple pre-existing inventories (Devoli et al., 2007; Trigila et al., 2010; 86 
Mirus et al., 2020), and these are sometimes made openly available. Fewer examples are 87 
available at the international level. Sometimes multiple inventories may be compiled to produce 88 
an open landslide susceptibility map or other product (Günther et al., 2014; Wilde et al., 2018), 89 
but without publishing the merged inventory (Herrera et al., 2018). The pre-eminent example of 90 
an open repository of multiple landslide inventories, a collection of earthquake-induced 91 
landslides is redistributed through the U.S. Geological Survey ScienceBase platform (Tanyaş et 92 
al., 2017). This database is intended to enhance sharing of information across the research 93 
community, as well as improving the estimation of impacts from future earthquakes. In this 94 
paper, we describe updates to COOLR, another global repository of landslide data, including the 95 
production of dozens of new landslide inventories. 96 
 97 
The new inventories correspond to 22 rainfall events that occurred in the years 2019-2023 and 98 
contain over 15,000 landslides (Figure 1). The new point-based inventories are hosted within 99 
COOLR and can be viewed and downloaded on NASA’s Landslide Viewer 100 
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(http://www.landslides.nasa.gov/viewer). COOLR already contains the Global Landslide Catalog 101 
(GLC), a large inventory of rainfall-triggered landslides that have been recorded by news media 102 
or other sources (Li et al., 2014; Kirschbaum et al., 2015). The new inventories can be used for 103 
training or validating landslide predictive models, such as the Landslide Hazard for Situational 104 
Awareness (LHASA) model (Stanley et al., 2021). In addition, these data could be used for 105 
evaluating the connection between landslide events and satellite precipitation datasets, an 106 
example explored in this paper. 107 
 108 

 109 
Figure 1. Locations of the new landslide inventories. 110 

 111 
2. Methodology 112 
 113 
2.1. Landslide Mapping 114 
 115 
2.1.1. Information sources 116 
Multiple sources of information fed the digitization of landslide events. Sometimes, the NASA 117 
Disasters Program (https://appliedsciences.nasa.gov/what-we-do/disasters) notified our team of a 118 
landslide occurrence. The Disasters Program activates the Disasters Response Coordination 119 
System (DRCS) (https://appliedsciences.nasa.gov/what-we-do/disasters/disasters-response-120 
coordination-system) when there is an external request for Earth observation (EO) data or hazard 121 
products to support a disaster response. When the DRCS activated for a landslide-related event, 122 
the landslide mapping process began. In addition, trustworthy websites such as the International 123 
Disasters Charter (IDC) (https://disasterscharter.org) and Floodlist (https://floodlist.com/) were 124 
used to find rainfall-triggered landslide events to digitize. Both sources were filtered by hazard 125 
type, location, and date. The overall methodology and decision process for mapping landslide 126 
events is shown in Figure 2. 127 
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  128 

 129 
Figure 2. Flowchart showing each step of the landslide inventory creation process. 130 

 131 
2.1.1. Data 132 
 133 
To precisely map individual landslides, a surface-reflectance product with 4-bands (Red, Green, 134 
Blue and Near-Infrared) from PlanetScope (Planet Team, 2017) was used. The imagery was 135 
available through the NASA Commercial Satellite Data Acquisition (CSDA) Program 136 
(https://earthdata.nasa.gov/esds/csdap). The PlanetScope imagery had a 3-meter daily resolution. 137 
The high temporal frequency gave the greatest chance of finding a cloud-free image from both 138 
before and after each rainfall event, which helped attribute each landslide to the rainfall event.  139 
 140 
If landslides were mapped for a disaster response, it was often difficult to find a post-event 141 
cloud-free image as some areas may remain cloudy for many days. In those cases, imagery 142 
sources were checked daily until clear imagery became available. In some regions, it was often 143 
hard to find a cloud-free image from within a narrow time window before and after the event. 144 
This phenomenon can reduce the overall precision of the product, but the date of the imagery 145 
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used for digitization was provided in the data attributes to provide context for each mapped 146 
inventory. Errors were possible in both manual and automatic mapping. False negatives might 147 
have occurred if the area of interest excluded nearby landslides or if landslides were overlooked 148 
due to spectral characteristics. False positives could have occurred due to unrelated changes or 149 
damage to the landscape that looked like a landslide. Finally, false positives and false negatives 150 
were manually corrected during the quality assurance/quality control (QAQC) process.  151 
 152 
2.1.2 Manual Mapping 153 
 154 
When NASA was alerted to a potential landsliding event, the first step was to download clear 155 
pre-event and post-event imagery. The threshold for determining a “clear” image was 30% cloud 156 
cover, but we manually selected the best available image for mapping each landslide event. Once 157 
both were available, the clear pre-event imagery was compared with clear post-event imagery. If 158 
new landslides were identified, the next step was to determine whether manual digitization or 159 
machine learning would be used to map landslides. Most inventories were manually digitized. 160 
The manual process to digitize landslides was comprised of visualizing and comparing the pre- 161 
and post- event imagery in Esri ArcGIS Pro software. The region of interest was visually 162 
inspected to capture as many landslides as possible, with closer attention paid to steeper terrain, 163 
especially near streams and in forested areas. A point was placed at the suspected initiation zone 164 
of each landslide based on the topography of the region. We decided to map the landslides as 165 
points instead of polygons because adding a point at the suspected initiation zone is much faster, 166 
enabling us to map many landslides in a short amount of time. To ensure we captured all the 167 
landslides in the given region, we reviewed the entire administrative district mentioned in the 168 
source for the event (typically a county). If no administrative district was mentioned in the 169 
source, we reviewed the imagery at least 25 kilometers out from the furthest landslide found in 170 
all directions. When each new inventory was completed, it was shared with the requester for the 171 
ongoing disaster response and published within COOLR. 172 
 173 
2.1.3. Semi-Automatic Landslide Detection (SALaD) system 174 
 175 
When we identified an event that seemed too large to manually map, the Semi-Automatic 176 
Landslide Detection (SALaD) algorithm was utilized (Amatya et al., 2021b). SALaD uses 177 
object-based image analysis and machine learning to automatically map landslides. To ensure 178 
that only landslides induced by that rainfall event were mapped, a change detection-based 179 
version of SALaD called SALaD-CD (Amatya et al., 2021b) was used. First, pre- and post-event 180 
imagery of the area of interest was downloaded. Next, training data was created to represent a 181 
sample of landslides in the region of interest, to improve accuracy. Pre- and post-event imagery 182 
was used to generate metrics that highlight change such as Normalized Difference Vegetation 183 
Index (NDVI) difference, Principal Component Analysis (PCA) and Independent Component 184 
Analysis (ICA). The post-event image was segmented to create objects (Comaniciu and Meer, 185 
2002). The mean of NDVI difference, PCA and ICA of each object was used for landslide 186 
classification using a Random Forest (RF) model (Breiman, 2001). Once SALaD-CD finished 187 
running, either the output was posted with only a few corrections (mostly removing clouds) or a 188 
full QAQC was performed before publishing to COOLR. SALaD-CD outputs landslide 189 
polygons. In this case, the polygons were converted to initiation points before QAQC, because 190 
performing corrections was faster on points than on more complex polygons. The initiation point 191 
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was assumed to be the highest elevation in the landslide polygon boundary, based on the NASA 192 
Digital Elevation Model (NASA JPL, 2020). Missing landslide initiation points due to 193 
amalgamation of landslides while generating polygons were added manually. If the mapping was 194 
performed due to a request from an external organization working a hazard response in real-time, 195 
the output of SALaD-CD was shared as soon as possible. After the immediate response, each 196 
inventory was reviewed before it was ingested into COOLR. 197 
 198 
2.2. COOLR Incorporation 199 
 200 
All of the newly digitized landslide event inventories were added to COOLR, NASA’s landslide 201 
database, which is displayed within NASA’s Landslide Viewer. However, the pre-existing 202 
repository structure did not differentiate between event-based and report-based landslide 203 
inventories. Previously, COOLR contained two layers that hosted all the landslide data: a point 204 
layer and a polygon layer. These contained landslides reported by citizen scientists (Juang et al., 205 
2019), landslides recorded in the GLC by NASA staff (Dandridge et al., 2023), and inventories 206 
that were shared by external researchers. The database structure had been developed around the 207 
GLC, a report-based inventory. For this reason, the schema was not ideal for representing event-208 
based inventories, which can have thousands of spatially precise landslide points per event. To 209 
better represent the new inventories, COOLR was updated to contain four layers: event-based 210 
layers in point and polygon format, and report-based layers in point and polygon format.  211 
 212 
Both the event- and report-based layers contain external landslide inventories with the attributes 213 
updated to match the COOLR schema. External inventories contained within COOLR will be 214 
identified as such within the “Event Title” or “Imported Event Source Catalog” fields. If an 215 
external inventory was published via an online service, the service was added directly to 216 
Landslide Viewer as a separate layer. These inventories can be viewed in Landslide Viewer 217 
within the “map layers” list under “External Landslide Catalogs (Referenced)”. The goal was to 218 
have Landslide Viewer as comprehensive as possible for all public-facing landslide inventories.  219 
 220 
The attributes within the event- and report-based landslide inventories differ slightly and can be 221 
seen in Table 1 below. 222 
 223 
Attribute Description 
Event Title (events, reports) A title often describing the method for mapping the event, the 

location, and the date of the event.  
Event Date (events, reports) The date the landslide(s) most likely occurred.  
Event Time (approximate) 
(events, reports) 

The approximate time the landslide(s) occurred. 

Name of Information Source 
(events, reports) 

The source of information for an event, such as a citation for 
the landslide inventory, a news article, etc. 

Link to Information Source 
(events, reports) 

The link to the information source or the publication 
referenced. 

Event ID (events, reports) A unique identifier assigned to each landslide that will remain 
constant over time. 
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Event Description (events, 
reports) 

Describes the landslide event in more detail. Provides context 
to the situation, such as more details about the location, trigger, 
etc. 

Landslide Trigger (events, 
reports) 

The cause of the landslide, such as earthquake, rainfall, etc. 

Event Location (events, 
reports) 

Describes where the landslides occurred geographically. 

Associated Storm Name 
(events, reports) 

The name of the storm that caused the landslide, if applicable. 

Country Code (events, 
reports) 

The 2-digit country code defined in ISO 3166-1. 

Country Name (events, 
reports) 

The full name of the country the landslide(s) occurred in. 

Event Comments (events, 
reports) 

Any additional information about the landslide that wasn’t 
captured in the other attributes, especially information on 
source reliability or process.  

Latitude (events, reports) Latitude of the landslide. 
Longitude (events, reports) Longitude of the landslide. 
Landslide Category (reports) The type of landslide that occurred, such as rockslide, debris 

flow, mudslide, etc. 
Administrative Division 
(reports) 

The administrative division the landslide report is located in. 

Closest Gazetteer Point 
(reports) 

The closest geographical dictionary reference point to the 
reported landslide event. 

Distance to Gazetteer Point 
(reports) 

The distance to the closest gazetteer point. 

Estimated Size (reports) Estimated size of the landslide based on the report. 
Imported Event Source 
Catalog (reports) 

An abbreviation identifying the relevant landslide inventory. 
For example, GLC = Global Landslide Catalog.  

Imported Event Source ID 
(reports) 

If the landslide report was imported from another source, the 
ID of that source is listed here. 

Landslide Setting (reports) The environment where the landslide occurred. 
Last Edited Date (reports) The latest date the landslide report was edited within the 

attribute table. 
Link to Photo (reports) If there is a photo within the landslide report source, it is linked 

here. 
Location Accuracy (reports) A radius around the reported location within which the 

landslide is believed to have occurred.  
Number of Fatalities (reports) Estimated number of fatalities associated with the landslide. 
Number of Injuries (reports) Estimated number of injuries associated with the landslide.  
Submitted Date (reports) The date the landslide report was reviewed by NASA and 

submitted into the public-facing COOLR database. 
Citation (events) The citation for each landslide inventory. Users should 

reference this field when utilizing the event-based data within 
COOLR. 
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Imagery Type for Digitizing 
(events) 

The type of imagery used to manually or automatically digitize 
the landslide event. Normally, both pre- and post-event 
imagery is used and noted here. 

Method (events) The type of process used to digitize the landslides, either 
“manual” or “automatic”.  

Satellite Imagery Date Before 
Event (events) 

The date(s) of the satellite image used for digitization pre-
event. 

Satellite Imagery Date After 
Event (events) 

The date(s) of the satellite image used for digitization post-
event. 

Table 1. Attribute names and definitions for both the event- and report-based landslide layers in 224 
COOLR. 225 

 226 
2.3. Satellite Precipitation Analysis 227 
 228 
Satellite precipitation enables a global view of extreme rainfall that may be the harbinger of 229 
subsequent major landslide events. To evaluate this connection and examine the potential for 230 
better detection, the following precipitation analysis was conducted. The analysis used 231 
precipitation estimates derived from satellite remote sensors to provide context of the 232 
precipitation in the area for each landslide event. Due to the landslides being located in remote 233 
areas across the world, precipitation from gauges was sometimes unavailable. Additionally, since 234 
the time of day the precipitation event occurred was not documented in the landslide inventory, 235 
the precipitation analysis was conducted using daily estimates instead of sub-daily estimates. 236 
Daily cumulative precipitation estimates from the Global Precipitation Measurement (GPM) 237 
mission were used. Specifically, estimates were from the V07 final run product from the 238 
Integrated Mult-satellitE Retrievals for GPM (IMERG) were used for the precipitation analysis 239 
and are available at https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDF.07/ 240 
(Huffman et al., 2023). The multi-satellite precipitation estimate from the product was the only 241 
variable used in the analysis. All available daily precipitation estimates at the time of writing, 242 
June 1, 2000, through March 31, 2024, were used in the analysis. Once data were downloaded, 243 
the overall extent of the bounding area for each landslide event was used to extract precipitation 244 
pixels for each day in the study period (Figure 3). Each GPM IMERG pixel was 0.1° in spatial 245 
resolution. Due to the variations in landslide event bounding area, the number of pixels from 246 
GPM IMERG varied. From the daily precipitation pixels extracted, the maximum daily 247 
precipitation was determined for each bounding area. This maximum daily cumulative 248 
precipitation was used in the analysis to determine the mean recurring interval and percentile 249 
rank.  250 
 251 
Since the exact date and time of the reported event might not be accurate, and GPM IMERG 252 
precipitation estimates are in UTC, precipitation within 5 days before and after the reported 253 
event date were analyzed to ensure the precipitation event was fully captured. The maximum 254 
daily precipitation value that occurred within 5 days before and after the reported event date was 255 
used to define the precipitation amount for each event (Figure 3).  256 
 257 
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 258 
Figure 3. Example of the precipitation analysis completed for each landslide event using the 259 

maximum daily precipitation during the ± 5 days of the reported event date. The map and time 260 
series shows the analysis for the South Africa (12-April-2022) landslide event. In the map, each 261 

red dot represents a mapped landslide location. In the time series plot, the daily maximum 262 
precipitation, daily mean precipitation, and cumulative precipitation are shown for each day. The 263 

reported landslide event date is highlighted by a red triangle, while the maximum daily 264 
precipitation used for the calculation of the recurring interval is highlighted by the dark red 265 

rectangle. This example highlights the use of the maximum precipitation that occurred on the 266 
reported event date. 267 

 268 
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The precipitation amount was used in the calculation of the recurring interval. The recurring 269 
interval was calculated by averaging the time between precipitation events that had a daily 270 
precipitation equal to or higher than the determined amount (Perica et al., 2018). For example, 271 
the South Africa (12-April-2022) event had a maximum daily precipitation of 209.9 mm that 272 
occurred on the reported event date. The 209.9 mm was the precipitation amount used to 273 
determine the number of events that occurred during the IMERG record. The time difference 274 
between these events was then averaged to determine the recurring interval. For this amount, 275 
there were 3 days that were more than or equal to 209.9 mm within the IMERG record, including 276 
the event (Figure 4). The average time between the events was 9.87 years. Additionally, the 277 
percentile rank of the threshold was calculated for each amount to determine the percentage of 278 
days that were less than the event amount. All precipitation analysis was completed using the R 279 
software (“R Core Team,” 2024). 280 
 281 

 282 
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Figure 4. Time series of daily maximum precipitation for the South Africa bounding area with 283 
the red dotted line highlighting the maximum precipitation (green dot) within the ± 5 days of the 284 

reported event that occurred on the reported event date, the maximum precipitation on the 285 
reported event date, 12-Apr-2022. The outline of each map corresponds to the maximum 286 

precipitation point on the time series plot below each map. Only the event dates that were equal 287 
to or more than the threshold for the event are shown. 288 

 289 
3. Results 290 
 291 
The newly mapped inventories (shown in Table 2) included 15,274 landslide points. Each 292 
landslide point in the new event inventories represented one landslide on the ground, as seen in 293 
Figure 5. 294 
 295 
Five landslide events were mapped for April and July, while zero landslide events were mapped 296 
for January, June, November, and December (Figure 6). Seven of the 22 events were associated 297 
with a named storm, but these storms did not necessarily produce more landslides. The 298 
inventories for both Tropical Storm Megi and Hurricane Fiona contained fewer than 25 299 
landslides, while some unnamed rainfall events triggered more than 1,000 landslides. 300 
Nevertheless, Typhoon Egay and Hurricane Agatha each triggered more than 3,000 landslides. 301 
The most common source reporting major landslide events was the IDC (Figure 6). Only one 302 
new event inventory was automatically digitized, because most landslide events initially seemed 303 
small enough to map manually. However, a few events had thousands of landslides; in those 304 
instances, it would have been a better use of resources to have utilized SALaD-CD.  305 
 306 
Figure 6 shows the climatic variation between the new landslide events mapped using the 307 
Koppen-Gieger climate classification (Beck et al., 2023). Most landslides were mapped in the 308 
tropical monsoon (Am) and tropical savannah (Aw) climate areas, but many were also mapped in 309 
in temperate climates, including Cwa (dry winter, hot summer), Cwb (dry winter, warm 310 
summer), and Cfa (no dry season, hot summer).  311 
 312 

Event 
ID 

Event 
Date 

# of 
Landslides 

Mapped 

Province/ 
Municipality Country 

Associated 
Storm 
Name 

Mapping 
Method 

Köppen 
Climate 

Class 

1 
23-

Apr-
2019 

57 KwaZulu-
Natal 

South 
Africa       Manual Cfa 

2 
15-
Feb-
2022 

69 Petrópolis Brazil       Manual Cfa, Cfb 

3 2-Apr-
2022 77 Rio de Janeiro Brazil       Manual Af, Am, 

Cfa, Cfb 

4 
10-

Apr-
2022 

23 Baybay 
Village Philippines 

Tropical 
Storm 
Megi 

Manual Af 
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5 
12-

Apr-
2022 

870 
KwaZulu-

Natal 
 

South 
Africa       Manual Aw, Cfa 

6 
22-

May-
2022 

5 
KwaZulu-

Natal 
 

South 
Africa       Manual Cfa 

7 
28-

May-
2022 

24 Recife Brazil       Manual Am, Aw 

8 
30-

May-
2022 

3,862 Oaxaca Mexico Hurricane 
Agatha 

SALaD-
CD 

Aw, 
Cwb 

9 
19-
Sep-
2022 

20 Puerto Rico United 
States 

Hurricane 
Fiona Manual Af, Cfb 

10 
28-
Oct-
2022 

213 Maguindanao Philippines 
Tropical 
Storm 
Nalgae 

Manual Af 

11 
19-
Feb-
2023 

330 
São Sebãstiao, 
Ubatuba, and 

Ilhabela 
Brazil       Manual Af, Cfa, 

Cfb 

12 6-Mar-
2023 45 Natuna 

Regency Indonesia       Manual Af 

13 
13-

Mar-
2023 

1,813 Blantyre, 
Milange 

Malawi, 
Mozambiq

ue 

Cyclone 
Freddy Manual 

Aw, 
Cwa, 
Cwb 

14 3-Apr-
2023 22 Nord-Kivu 

Democratic 
Republic of 
the Congo 

      Manual Af, Am, 
Cfb 

15 
2-

May-
2023 

156 Western 
Province Rwanda       Manual Aw, Csb 

16 9-Jul-
2023 176 Himachal 

Pradesh India       Manual Cwa 

17 15-Jul-
2023 159 Kyeongbuk 

Province 
South 
Korea       Manual Dwa 

18 17-Jul-
2023 48 Quetame Colombia       Manual Af, Am, 

Csb, Cfb 

19 26-Jul-
2023 3,183 

Cordillera 
Admin 
Region 

Philippines Typhoon 
Egay Manual 

Af, Am, 
Cwa, 
Cwb, 

Cfa, Cfb 

20 28-Jul-
2023 361 Quanzhou China Typhoon 

Doksuri Manual Cfa 
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21 
5-

Aug-
2023 

1,950 

Dien Bien, 
Lai Chau, Son 
La, Lao Cai, 

Yen Bai 

Vietnam       Manual Cwa, 
Cwb 

22 
6-

Aug-
2023 

1,811 Chittagong Bangladesh       Manual Am, 
Cwa 

Table 2. The 22 new landslide events. Dates were reported in the local time zone. 313 
 314 

315 
Figure 5. PlanetScope imagery from 17-Jul-2023 (left) and 31-Aug-2023 (right) showing 316 

landslide event points from a rainfall event in Vietnam (5-Aug-2023). Located at 21° 47’ 38.19” 317 
N 103° 57’ 05.05”E. Image © 2023 Planet Labs PBC. 318 

 319 
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 320 
Figure 6. Inset A shows landslide event distribution by month. Inset B shows the different types 321 

of sources used to identify the presence of a rainfall-induced landslide event, triggering the 322 
landslide mapping process. “Other” includes a variety of news articles. Inset C shows a treemap 323 
of the number of landslides by inventory and Koppen-Gieger climate classification (Beck et al., 324 

2023). Each subgroup represents the number of landslides within the climate class for each 325 
landslide event inventory. Several landslide events that occurred during a single event were 326 

geographically located across multiple climate classes. 327 
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 328 
 329 

 330 
Section 2.3. describes an example use case for these inventories. The recurring interval using the 331 
maximum daily cumulative precipitation varied from 15 days for the Colombia (17-Jul-2023) 332 
landslide event to more than 11 years for the Indonesia (6-Mar-2023) landslide event (Table 3) 333 
with the average recurring interval for all events being 3.1 years. All the precipitation events had 334 
percentile ranks more than the 93rd percentile of all maximum cumulative daily precipitation. 335 
Furthermore, 86% of the precipitation events had percentile ranks of more than the 99th 336 
percentile for the location. This means that 19 of 22 landslide events had precipitation higher 337 
than 99% of all maximum cumulative daily precipitation recorded by GPM IMERG for the study 338 
area. According to daily IMERG, eighteen events had the most precipitation fall the day before, 339 
on the reported event date, or the day following the reported event date. Three of the twenty-two 340 
events had the most precipitation fall more than one day before the reported event. Interestingly, 341 
one event had the highest precipitation fall five days following the reported event, Brazil (15-342 
Feb-2022). This suggests that IMERG underestimated the rainfall for the event. According to 343 
Alcantara et al. (2023), a strong mesoscale convective system produced rainfall of 258 mm 344 
within 3 hours on February 15, 2022, but the maximum daily IMERG precipitation was less than 345 
20 mm on 15-Feb-2022. Additional analysis using the sub-daily precipitation estimates from 346 
IMERG did not yield better results for the Brazil event. While the 30-minute IMERG 347 
precipitation observed the storm event, the estimated precipitation was much lower than the radar 348 
or gauge precipitation presented in Alcantara et al. (2023). The event with the longest recurring 349 
interval, the Indonesia event (6-Mar-2023), is discussed in more detail below. 350 
 351 

Country Event 
Date 

Date of Maximum 
Precipitation 

(mm/day) 

Maximum 
Precipitation 

(mm/day) 

Number of 
Days  

Recurring 
Interval 
(years) 

South Africa 23-Apr-
2019 22-Apr-2019 73.5 14 1.64 

Brazil 15-Feb-
2022 20-Feb-2022 22.0 524 0.05 

Brazil 02-Apr-
2022 1-Apr-2022 133.1 8 3.05 

Philippines 10-Apr-
2022 10-Apr-2022 186.8 14 1.63 

South Africa 12-Apr-
2022 12-Apr-2022 209.9 3 9.87 

South Africa 22-May-
2022 21-May-2022 110.5 5 4.96 

Brazil 28-May-
2022 25-May-2022 143.6 14 1.69 

Mexico 30-May-
2022 30-May-2022 148.3 2 5.00 

Puerto Rico 19-Sep-
2022 18-Sep-2022 188.0 5 4.86 

Philippines 28-Oct-
2022 27-Oct-2022 119.5 9 2.52 
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Brazil 19-Feb-
2023 19-Feb-2023 97.3 19 1.29 

Indonesia 6-Mar-
2023 3-Mar-2023 286.9 3 11.05 

Malawi, 
Mozambique 

13-Mar-
2023 13-Mar-2023 168.3 4 6.68 

Congo 3-Apr-
2023 31-Mar-2023 26.7 152 0.16 

Rwanda 2-May-
2023 2-May-2023 62.3 29 0.80 

India 9-Jul-2023 8-Jul-2023 155.2 16 1.53 

South Korea 15-Jul-
2023 14-Jul-2023 105.9 37 0.64 

Colombia 17-Jul-
2023 17-Jul-2023 32.6 557 0.04 

Philippines 26-Jul-
2023 26-Jul-2023 317.8 7 3.18 

China 28-Jul-
2023 28-Jul-2023 89.6 45 0.53 

Vietnam 5-Aug-
2023 5-Aug-2023 121.5 94 0.25 

Bangladesh 6-Aug-
2023 6-Aug-2023 336.9 4 7.02 

Table 3. Precipitation for each landslide event, selected from a ten-day window around the 352 
reported date. 353 

 354 
Indonesia: March 6, 2023  355 
An IDC activation for the 6-Mar-2023 landsliding event stated that at least 15 people died after 356 
six days of torrential rains and that seasonal rains and high tides contributed to the flooding and 357 
landsliding in the region (International Disasters Charter, 2023). This event had the longest 358 
recurring interval (Table 3). The precipitation that occurred in Indonesia around the 6-Mar-2023 359 
landslide event was the third highest precipitation for the bounding area from 1-Jun-2000 360 
through 31-Mar-2024, according to IMERG V07 (Figure 7). On 3-Mar-2023, 286.9 mm of 361 
precipitation fell, three days before the reported landslide event date of 6-Mar-2023. The 362 
bounding area for the event was limited to six IMERG pixels, all of which contained oceanic and 363 
terrestrial areas (Figure 7). 364 
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365 
Figure 7. Time series of daily precipitation for the Indonesia event bounding area from 1-Jun-366 

2000 through 31-Mar-2024 (top left). The maximum precipitation occurred three days before the 367 
event date on March 3, 2023 (bottom) and is highlighted in the red rectangle in the time series 368 

(bottom) and map (top right). Mapped landslides are shown as red dots. 369 
 370 
4. Data Availability 371 
 372 
The new landslide inventories are available to download in shapefile, csv, and geodatabase 373 
format from Landslide Viewer or by going directly to this link: 374 
https://maps.nccs.nasa.gov/arcgis/apps/MapAndAppGallery/index.html?appid=574f2640868348375 
5799d02e857e5d9521. Landslide Viewer (https://landslides.nasa.gov/viewer) is a web 376 
application to visualize and download various landslide-related datasets (Figure 8). It was 377 
recently updated with Experience Builder, a tool for building geospatial web applications from 378 
Esri. Additional features include aggregation of landslide points, layer reordering, and faster 379 
visualization. In addition to landslide inventories, Landslide Viewer also displays information on 380 
NASA’s global landslide nowcast, a global landslide susceptibility map, precipitation, and 381 
infrastructure. To download all the landslide inventories within COOLR, it is recommended to 382 
download the geodatabase which contains four layers. In addition, there is a downloadable table 383 
which contains the citations for each landslide event inventory. The new landslide event 384 
inventories discussed in this paper can also be downloaded from Figshare 385 
(https://doi.org/10.6084/m9.figshare.26972467).  386 
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 387 

388 
Figure 8. NASA’s Landslide Viewer. The “Download Landslide Catalog” and “Relevant 389 

Publications” links are shown at the top of the page. 390 
 391 
5. Data Use and Reuse 392 
 393 
The new landslide event inventories could be used for a multitude of analyses, but they have 394 
some important limitations. For example, they can be used to train and validate machine-learning 395 
models like SALaD-CD and LHASA or assess satellite-based precipitation algorithms such as 396 
IMERG. Most of these inventories were manually mapped using 3-meter optical imagery, so the 397 
inventories will not include the smallest landslides. We used a cloud filter of 30% to remove 398 
cloud-covered imagery, but this does not imply that the inventories are significantly incomplete; 399 
all images were manually selected to be favorable for mapping landslides and are unlikely to 400 
have major omissions. Wind throw, clouds, tree cover, shadows, and human judgment all 401 
contribute to uncertainty in these data. Since the type and date of pre- and post- image used for 402 
each inventory is provided in the geodatabase attribute table, users can generally look up the 403 
image and review its quality. Although the core areas of impact were thoroughly mapped, it is 404 
possible more landslides were present far (>25km) outside of the selected administrative district. 405 
Therefore, some landslides may have been missed. We have not conducted a field-based 406 
assessment of these inventories, but we welcome feedback from the community and commit to 407 
correcting known errors.  408 
 409 
These events are a small and unrepresentative sample of global landslide activity. For example, 410 
the monthly distribution (Figure 6) does not match that seen in other global datasets (Froude and 411 
Petley, 2018; Dandridge et al., 2023). Therefore, sole reliance on these data is not recommended 412 
for many potential uses, such as the analysis of trends in landslide activity or national hazard-413 
level comparisons. But once these inventories have been combined with additional datasets, 414 
some topics may become tractable. To show one example of how these data can be used, we 415 
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calculated a recurring interval for each event, based on the IMERG record. Typically, the 416 
recurring intervals are quite short (<3 years), which suggests that satellite-based precipitation 417 
products may underestimate some important storms. 418 
 419 
6. Conclusion 420 
 421 
We used high-resolution satellite imagery from PlanetScope, manual digitization, and machine 422 
learning to create thousands of event-based landslide points. COOLR was updated to incorporate 423 
both event- and report-based landslide inventories and is displayed within an updated version of 424 
NASA’s Landslide Viewer. These point-based inventories are not a representative subset of global 425 
landslide occurrence, so some potential uses are unsuitable, including analysis of trends and 426 
international landslide distribution. Further precipitation analysis could illuminate antecedent 427 
conditions for these landslides. We will continue to update COOLR with new events to maintain 428 
an open global landslide repository. 429 
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