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Abstract13

This paper introduces the sixth paradigm of scientific discovery: accelerated knowledge14

discovery (AKD). This paradigm is defined by the full integration of AI into the research15

workflow as a cognitive collaborator and co-investigator alongside human scientists. AKD16

emerges from the convergence of advanced AI models, autonomous agentic systems, and17

human-AI collaboration.18

AKD accelerates the research cycle by reducing the time from conceptualization19

to discovery. It automates labor-intensive tasks such as literature review, hypothesis gen-20

eration, experimental design, data analysis, modeling, simulation, and manuscript draft-21

ing. In well-defined domains, AKD can transform the scientific method into a contin-22

uously adaptive cycle, where outputs from each phase inform the next. These closed-loop23

scientific workflows shorten discovery timelines and reduce overhead. In addition to the24

scientific speed up, AKD targets an increase in the quality of research allowing for more25

systematic discovery of knowledge.26

AKD’s success depends on principled, trustworthy design. This requires a holis-27

tic approach that emphasizes explainability, reproducibility, robustness, adaptability, and28

transparency. Key requirements include alignment with open science principles, strong29

human oversight, scientific accountability, and rigorous provenance tracking. Human re-30

searchers remain ultimately responsible for scientific integrity, ethical reasoning, and in-31

terpretation, with AI serving as an augmentative partner.32

Although the proposed approach applies to any environment targeting scientific dis-33

covery, this paper highlights AKD’s potential to advance NASA’s science mission, given34

the agency’s vast data assets, complex objectives, and interdisciplinary challenges. By35

integrating NASA’s data, foundation models, scalable computing, and knowledge frame-36

works, AKD can accelerate discovery and foster innovation across its scientific portfo-37

lio.38

Plain Language Summary39

This paper introduces a new way of doing science called accelerated knowledge dis-40

covery (AKD). AKD uses artificial intelligence (AI) not just as a tool, but as an active41

partner that works alongside scientists to help make discoveries faster. With recent ad-42

vances in AI, like powerful language models and smart software agents, scientific research43

can become more efficient and more creative.44

AKD helps speed up many parts of the research process, including reviewing past45

studies, coming up with new ideas, designing experiments, analyzing data, building mod-46

els, and even writing up results. In some cases, these AI systems can run a full cycle of47

scientific work almost automatically, where each step helps improve the next, reducing48

time and effort while opening the door to new kinds of questions and discoveries.49

While AKD can be applied to any scientific environment, this paper explores how50

it could be especially useful for NASA, which deals with massive amounts of data and51

complex scientific challenges. By combining AI with NASA’s data and research tools,52

AKD could help solve big problems faster and support breakthroughs across many ar-53

eas of science.54

1 Introduction55

The scientific process has continually evolved in response to the emergence of new56

tools, technologies, and data sources. These evolutions have been driven by paradigm57

shifts in scientific methodologies, each one expanding the boundaries of inquiry and re-58

defining what is knowable. From early empirical observations to the modern frontier of59
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AI-assisted research, each paradigm has enabled scientists to ask fundamentally new types60

of scientific questions. Understanding this progression is essential to anticipating and shap-61

ing the next transformative change.62

We are now approaching another inflection point: the full integration of AI into63

the scientific research workflow. This position paper describes the impending shift and64

argues that, to be successful, the transformative technologies in development must be65

grounded in principled, trustworthy design and aligned with responsible AI and open sci-66

ence practices.67

1.1 AI Integration into Scientific Processes68

Recent research demonstrates that AI, especially large language models (LLMs),69

is already transforming key steps of the scientific process. For instance, Ren et al. (2025)70

showed that LLM-powered scientific agents can employ prompt-based planning, utilize71

multiple memory modalities (e.g., historical context, external knowledge bases), and in-72

teract with toolsets to perform complex tasks such as literature review, hypothesis gen-73

eration, and information synthesis. These agents streamline labor-intensive processes like74

information retrieval, screening, and summarization, enhancing the reasoning capacity75

of AI and infusing efficiency into research workflows.76

Studies such as Dawid et al. (2025) further highlight how domain-specific AI agents,77

when combined with appropriate human oversight, can accelerate many aspects of sci-78

entific inquiry. Importantly, these systems are designed to augment—not replace—human79

researchers. They aim to enhance scientific productivity while maintaining rigor and ac-80

countability. For example, AI Scientist-v2 (Yamada et al., 2025), an advanced agentic81

system, demonstrated the ability to autonomously generate a peer-reviewed workshop82

paper. While this system exhibited high autonomy, human researchers were still respon-83

sible for selecting the best ideas and final output, illustrating a collaborative approach84

guided by human input. Similarly, the AI Cosmologist (Moss, 2025) has automated work-85

flows in astronomy and cosmology research by integrating agents for literature search,86

data analysis, and result synthesis. The system can generate LaTeX-ready manuscripts,87

visualizations, and bibliographies, reducing the time and effort required to communicate88

research results in complex domains.89

1.2 The Sixth Paradigm: Accelerated Knowledge Discovery90

Inspired by these advancements, we introduce the sixth paradigm, accelerated knowl-91

edge discovery (AKD), characterized by the convergence of advanced AI models, autonomous92

agentic systems, and human-AI collaboration (see Figure 1). AKD transcends previous93

paradigms by integrating all modes of inquiry into a coherent, intelligent, and iterative94

scientific process.95

Historically, scientific progress can be characterized as evolving via five paradigms:96

(1) empirical observation, (2) theoretical modeling, (3) computational simulation, (4) data-97

intensive discovery, and (5) AI/ML-driven inference (Ioannidis, 2024). The fourth paradigm98

emphasized managing massive datasets and introduced scalable data infrastructure, meta-99

data standards, and the prioritization of reproducibility (Gray, 2009). The fifth paradigm100

built on this evolution by focusing on the use of machine learning to develop predictive101

models and identify complex patterns (Ioannidis, 2024), and enabling innovations like102

digital twins.103

The emergence of AKD signals a shift in how AI is and will be used—not just as104

an analytical engine, but as a cognitive partner. Agentic systems now exhibit contex-105

tual awareness, decision-making capability, and the ability to execute workflows across106

the entire scientific lifecycle, from hypothesis formulation and experimental design, to107
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Figure 1. Illustrative mockup of an accelerated knowledge discovery system in use. In this

scenario, a researcher is investigating oil palm classification and engages the accelerated knowl-

edge discovery system to identify current knowledge gaps, recommend suitable datasets and

models, and suggest new avenues for future research. This example highlights how accelerated

knowledge discovery can intelligently orchestrate the research process by synthesizing existing

knowledge, surfacing relevant resources, and proposing actionable next steps to expedite scientific

discovery.

data interpretation and knowledge refinement. Unlike earlier paradigms, AKD integrates108

all previous modes of inquiry into a cohesive, intelligent, iterative process.109

This reframing positions AI as a “thinking partner,” coupling human insight and110

intuition with computational power and automation. Human researchers guide scope,111

define scientific constraints, and bring ethical reasoning and creativity, while AI agents112

contribute speed, scalability, and reasoning support. In this collaborative paradigm, AI113

operates not simply as a tool but becomes a co-investigator, working across data-rich and114

tool-diverse ecosystems such as those found at NASA.115

This paper outlines the concept of accelerated knowledge discovery anchored in re-116

sponsible AI and open science. The paper also discusses how AKD can support NASA’s117

science goals by supporting complex research workflows and leveraging the existing data118

and information systems.119

2 Science at NASA120

NASA’s science enterprise is vast, covering a broad spectrum of research areas—from121

understanding Earth’s complex systems to exploring distant galaxies and investigating122

the fundamental origins of life. While exploration remains a core part of its identity, NASA’s123

scientific scope (NASA’s Science Vision - NASA Science, 2016) extends well beyond dis-124

covery for its own sake. NASA’s science vision emphasizes a commitment to generating125
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actionable knowledge that informs public policy, supports environmental stewardship,126

advances technological innovation, and deepens our understanding of the universe. As127

such, NASA’s mission inherently addresses fundamental scientific questions about our128

planet, our solar system, and the broader cosmos. These central questions, shaped by129

evolving scientific priorities and global challenges, inspire NASA’s science ventures: How130

can we monitor and understand the complexity of Earth systems? How does the Sun shape131

the heliosphere and influence planetary environments? How do planets and the build-132

ing blocks of life emerge from cosmic origins? What can space-based biological and phys-133

ical experiments reveal about life’s fundamental processes? And, ultimately, are we alone134

in the universe?135

Seeking answers to these profound questions requires coordinated, interdisciplinary136

research that integrates observational science, theoretical modeling, high-performance137

simulation, and rigorous experimentation across a wide range of domains. NASA’s Sci-138

ence Mission Directorate (SMD) is responsible for managing this complex research port-139

folio. The SMD oversees mission planning, fosters collaboration, and supports scientific140

leadership across five primary divisions: Astrophysics, Biological and Physical Science,141

Earth Science, Heliophysics, and Planetary Science. These divisions rely on a diverse and142

sophisticated array of platforms including space telescopes, planetary rovers, Earth-observing143

satellites, and the International Space Station (ISS) to collect critical scientific data.144

The data volume generated by these platforms is immense and perpetually increas-145

ing. Over time, even a single mission can generate petabytes of data consisting of nav-146

igation measurements, multimodal and multi-scale observations, as well as calibration147

and validation datasets. Managing this level of data complexity demands robust infras-148

tructure for end-to-end data stewardship that includes meticulous curation and devel-149

opment of data discovery, access, and analysis solutions. In alignment with its Open Sci-150

ence mandate, NASA ensures that its extensive data holdings are publicly available via151

platforms such as Earthdata (Earth Science Data Systems, 2025), the Heliophysics Data152

Portal (NASA, 2025a), the Planetary Data Ecosystem (PDE) (NASA, n.d.-b), Open Sci-153

ence Data Repository (OSDR) (NASA, n.d.-a), NASA/IPAC Infrared Science Archive154

(IRSA, n.d.) and the cross-disciplinary Science Discovery Engine (SDE) (NASA, n.d.-c).155

However, the scale, heterogeneity, and disciplinary fragmentation of NASA’s sci-156

entific data ecosystem present formidable challenges. Extracting insights from these rich157

datasets requires more than conventional analytical approaches. This is precisely the en-158

vironment where agentic AI systems, such as those envisioned under the AKD paradigm,159

offer transformative potential. These intelligent systems can orchestrate complex scien-160

tific workflows, coordinating across disparate data sources, computational tools, and dis-161

ciplinary models, to spur discovery, improve efficiency, and support NASA’s multifaceted162

science mission.163

3 Accelerated Knowledge Discovery (AKD)164

The emergence of the sixth paradigm of AKD is not the result of a single techno-165

logical breakthrough. Rather, the new paradigm reflects the convergence of multiple, ma-166

turing technologies that span artificial intelligence (AI), modern data infrastructures, and167

evolving scientific workflows. These technologies have progressed in parallel, creating the168

foundational conditions necessary to build intelligent, connected, and highly adaptive169

systems. While the fifth paradigm was marked by the adoption of AI tools for data-driven170

modeling and analysis, AKD employs AI in a fundamentally different way. Research pro-171

cesses infused with AKD leverage generative and reasoning-based AI not just as tools,172

but as co-designers of scientific workflows along with humans. This role shift from pas-173

sive tool to active partner in research is a defining characteristic of AKD.174
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Earlier paradigms were rooted in a dominant tool or method, such as the rise of175

computing or the advent of large-scale data collection. AKD, however, is inherently in-176

tegrative, bringing together advanced AI models (e.g., large language models and plan-177

ning agents), scalable computational infrastructure (e.g., cloud computing), and struc-178

tured knowledge frameworks (e.g., knowledge graphs). This technological convergence179

enables the development of scientific workflows that are context-aware, iterative, and ca-180

pable of supporting sophisticated reasoning across disciplines. AKD systems are not just181

faster—they are more adaptive, enabling a fundamentally modified approach to discov-182

ery.183

For an organization like NASA, the significance of AKD is especially evident. NASA’s184

broad spectrum of missions, the diversity of its observational instruments, and the vol-185

ume and complexity of its data ecosystem demand more than piecemeal solutions. AKD186

provides support with crafting experiments, analyzing multimodal datasets, and bridg-187

ing disciplinary boundaries by strategically employing technology. These agentic systems188

are capable of navigating NASA’s vast, heterogeneous data and tool landscape, reveal-189

ing scalable, responsive pathways to insight.190

Several converging technologies underpin AKD’s capabilities. First, generative AI191

and LLMs function as powerful reasoning engines that can interpret complex natural lan-192

guage prompts and synthesize knowledge from large, diverse sources. Second, domain-193

specialized foundation models, trained on NASA’s multimodal scientific data, enable rapid194

deployment of tailored applications such as real-time flood detection or predictive solar195

flare forecasting. Third, agentic AI frameworks support intelligent agents capable of de-196

composing research goals into sub-tasks, planning workflows, and autonomously execut-197

ing scientific tasks using available tools and services.198

Another foundational component of AKD is explicit knowledge representation. Knowl-199

edge graphs (KGs) formally describe entities, relationships, and properties across scien-200

tific domains, forming a structured substrate for AI reasoning. These representations en-201

able AI systems to detect patterns, reason across heterogeneous data sources, and in-202

tegrate diverse information streams while adhering to scientific constraints. In effect, KGs203

act as both map and filter, providing the contextual grounding needed for scientifically204

coherent automation.205

To fully realize AKD’s potential, a robust computational infrastructure is also es-206

sential. High-performance computing (HPC) resources will be required for developing,207

training, and fine-tuning large-scale AI models for specific scientific domains. In paral-208

lel, cloud platforms will play a critical role in enabling flexible, on-demand inferencing209

and scalable deployment of agentic workflows. This combination of HPC and cloud com-210

puting forms the backbone of AKD, providing the adaptability and throughput needed211

to support real-time, data-intensive, and scalable scientific processes.212

Ultimately, AKD represents a deliberate shift away from tool-centric workflows to-213

ward integrated, intelligent systems that learn, reason, and iterate in collaboration with214

human scientists. The paradigm offers a systematic approach for transforming the speed,215

scale, and reproducibility of scientific discovery, making AKD particularly well-suited216

to the complexity of NASA’s mission-driven research challenges.217

4 Reimagining Scientific Workflows with AKD218

The sixth paradigm of accelerated knowledge discovery is defined by its symbiotic219

human-AI design, augmenting human intellect rather than replacing it. AKD blends AI’s220

speed and scale with uniquely human creativity, judgment, and contextual awareness,221

making human-in-the-loop (HITL) design a foundational principle. Human researchers222

guide inquiry, provide oversight, and interpret results, while AI agents manage compu-223
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Figure 2. Illustration of the scientific discovery process and key points of AI integration.

This figure depicts the major stages of the scientific research lifecycle, ranging from hypothesis

generation to experimentation, analysis, interpretation, and dissemination. The illustration high-

lights where AI, particularly within the accelerated knowledge discovery framework, can be fully

integrated to augment and accelerate each phase of the workflow.

tations, data analysis, and workflows. This approach transforms scientific workflows into224

adaptive, iterative research cycles.225

Throughout the scientific lifecycle, AKD enables a reimagined partnership between226

researchers and intelligent systems (see Figure 2). During the proposal development phase,227

AI agents can help formulate competitive grant applications, including generating required228

open science data management plans (OSDMPs) and structuring proposals for obser-229

vational campaigns, such as those requesting time on major astronomical platforms like230

the Hubble or James Webb Space Telescopes. These agents can suggest appropriate fund-231

ing opportunities, ensure alignment with agency guidelines, and assist with administra-232

tive formatting, allowing scientists to focus on articulating their core research objectives.233

In the domain of literature review and knowledge synthesis, LLM-powered agents234

can conduct large-scale searches, extract key findings, identify knowledge gaps, and dis-235

till emerging trends from vast scientific corpora. These agents may analyze user-supplied236

bibliographic databases (e.g., BibTeX files), highlight important excerpts, and generate237

accessible summaries of complex technical material. However, it is the human researchers238

who define the research question, guide the AI’s strategy, and evaluate the contextual239

relevance and factual accuracy of the synthesized insights, ensuring scientific rigor is main-240

tained.241

For hypothesis generation, AKD agents can identify statistically significant corre-242

lations, extrapolate trends, and reason across domains to propose novel, testable hypothe-243

ses. When integrated with structured knowledge graphs, these agents can anchor gen-244

erated hypotheses in existing scientific understanding, reducing the risk of spurious or245

implausible suggestions. Scientists, in turn, engage in evaluating the novelty, feasibility,246
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and theoretical soundness of these hypotheses, refine them based on their domain-specific247

insights, and prioritize those that are most promising for follow-up investigation.248

In the experimental design phase, AKD systems can optimize parameters, suggest249

alternative configurations, and even autonomously design entire experimental workflows250

in closed-loop systems. They can simulate multiple design scenarios to assess trade-offs251

and highlight the most informative pathways forward. Human researchers define the ex-252

perimental constraints, validate AI-generated designs, and adjust for real-world condi-253

tions that may not be fully represented in models or simulations.254

During data analysis and interpretation, AKD workflows streamline data prepro-255

cessing, feature engineering, and modeling, reducing the manual burden on scientists and256

accelerating time-to-insight. AI agents assist with pattern recognition, anomaly detec-257

tion, and statistical validation, while human scientists choose appropriate methods, eval-258

uate data quality, interpret the significance of results, and place findings within the broader259

scientific context.260

In the realm of modeling and simulation, AKD systems support the development261

of data-driven models and the construction of fast emulators for computationally expen-262

sive physical simulations. These agents can learn novel functional mappings from em-263

pirical or simulated data and aid in the fine-tuning of foundation models (FMs) for spe-264

cific domains. They also automate the exploration of high-dimensional parameter spaces,265

enabling comprehensive simulation explorations. Yet, the validation of these models, in-266

cluding their realism, theoretical underpinnings, and boundary conditions, remains in267

the hands of human experts.268

Crucially, AKD must be aligned with open science principles to promote transparency,269

reproducibility, and collaboration. AI agents can assist in automating documentation,270

managing metadata, enforcing FAIR (Findable, Accessible, Interoperable, and Reusable)271

practices, and ensuring that research artifacts such as data, code, models, and workflows272

are well-curated and openly available. This alignment with institutional and governmen-273

tal mandates, such as NASA’s SPD-41a directive, helps embed openness into the scien-274

tific workflow from the beginning.275

In the scientific writing and dissemination phase, AI tools within the AKD frame-276

work can support researchers by drafting preliminary text, generating figures and tables277

from data, formatting references, and checking grammar and style. However, the con-278

struction of the scientific argument, the articulation of insights, and the responsibility279

for accuracy and interpretation remain firmly with the human authors. AI serves to stream-280

line the process, not to substitute scholarly authorship.281

AKD can also play a role in enhancing peer review. AI agents can assist review-282

ers by flagging methodological issues, checking citation completeness, evaluating dataset283

quality, and suggesting relevant literature. Nonetheless, final judgments regarding nov-284

elty, methodological soundness, and broader impact continue to rest with human review-285

ers. In AKD, AI remains an assistant to human expertise, not a replacement.286

Finally, AKD supports scientist training and continuous learning. AI systems can287

help researchers better understand scientific papers, technical reports, or codebases by288

offering guided explanations and tutorials tailored to their existing knowledge. They can289

also recommend new skill development pathways, such as learning programming languages290

or statistical techniques, and provide real-time, interactive support for troubleshooting291

or building conceptual understanding.292

Taken together, these capabilities point to the viability of closed-loop scientific work-293

flows (CLSWs) under the AKD paradigm. In such workflows, outputs from one phase,294

such as automated data analysis, immediately inform the next, such as hypothesis re-295

finement or targeted experimentation. Because these workflows operate within an ex-296
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Table 1. Descriptions of AKD technological components, their functionality, and purpose

AKD Technol-
ogy

Purpose Functionality

Generative AI &
Large Language
Models

Synthesize knowledge from
vast, diverse data; generates
hypotheses, literature reviews,
and summaries

Act as the cognitive engine in-
terpreting complex inputs and
outputs within workflows

Domain-Specific
Foundation
Models

Tailored AI models specialized
in specific scientific domains;
facilitate tasks like prediction
and anomaly detection

Provide domain expertise, work-
ing closely with generative
models for accurate reasoning

Domain-Specific
Foundation
Models

Tailored AI models specialized
in specific scientific domains;
facilitate tasks like prediction
and anomaly detection

Provide domain expertise, work-
ing closely with generative
models for accurate reasoning

Agentic AI
Frameworks

Intelligent systems that au-
tonomously plan, execute, and
manage scientific workflows and
tasks

Coordinate the execution of
tasks, integrating generative AI
outputs and foundation model
predictions

Explicit Knowl-
edge Represen-
tation

Structured knowledge graphs
providing formalized descrip-
tions of entities, relationships,
and scientific constraints

Provides contextual grounding,
guiding agentic decision mak-
ing and ensuring coherent AI
reasoning

Robust Compu-
tational Infras-
tructure

High-performance computing
and scalable cloud platforms
enabling computationally inten-
sive tasks

Supports the entire techno-
logical ecosystem, ensuring
scalability, responsiveness, and
real-time capabilities

plicitly defined scope and a curated catalog of tools and services, they can be executed297

safely, reproducibly, and cost-effectively. Routine, data-heavy tasks such as ingestion,298

preprocessing, model selection, and metric evaluation can be handled autonomously, while299

human scientists remain engaged in setting the research agenda, interpreting results, and300

ensuring that scientific rigor is maintained. Through this tight coupling of automation301

and oversight, AKD transforms the sixth paradigm from a visionary ideal into an op-302

erational reality available today (see Table 1).303

A key application of AKD is the development of closed-loop scientific workflows304

(CLSWs) which are self-updating research cycles that operate within clearly defined con-305

straints (see Figure 3). These workflows are characterized by four essential components.306

First, they are grounded in a well-defined scientific scope, captured as machine-readable307

descriptions of research questions, hypotheses, metrics, and accepted data domains. Sec-308

ond, they operate with a limited inventory of tools and services including datasets, mod-309

els, simulators, and compute functions, each documented with metadata and accessible310

via stable APIs or function-calling schemas. Third, they include an autonomous engine311

that adapts static workflows into dynamic processes, refining hypotheses and reallocat-312

ing computational effort based on evolving insights. Finally, human-in-the-loop safeguards313

ensure scientific validity, ethical compliance, and interpretability. Within NASA’s op-314
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Figure 3. Conceptual representation of closed-loop scientific workflows. This figure illustrates

closed-loop scientific workflows as automated, self-updating cycles of experimentation that oper-

ate within clearly defined scientific scopes and tool boundaries. These workflows iteratively refine

hypotheses, trigger targeted analyses or simulations, and integrate new data, enabling adaptive

and efficient scientific discovery within the accelerated knowledge discovery framework.

erational context, CLSWs powered by AKD can significantly shorten discovery timelines315

and reduce the overhead associated with manual iterative tasks.316

5 Building Trust and Mitigating Risks in AKD317

The integration of agentic AI into scientific workflows under the AKD paradigm318

holds tremendous promise for accelerating discovery, but this approach also introduces319

significant risks that must be proactively mitigated. Without strong ethical foundations320

and robust operational safeguards, AKD systems may produce flawed or irreproducible321

scientific results, misallocate research resources, or erode public trust in the scientific en-322

terprise. In the context of AKD, trustworthiness must encompass far more than model323

accuracy. Work conducted in an AKD framework requires a holistic approach grounded324

in principles such as explainability, reproducibility, robustness, adaptability, and trans-325

parency. These principles are essential to ensuring that AI-generated outputs are both326

scientifically valid and ethically sound.327

While agentic AI systems offer powerful capabilities such as scale, speed, adaptive-328

ness, and even a form of computational creativity, these same strengths can create and329

exacerbate risks. These include the generation of plausible but incorrect results, automa-330

tion bias, reduced scientific accountability, and a loss of experimental and computational331

reproducibility. Thus, realizing AKD’s potential requires more than technical advance-332

ment; successful implementation demands the development of well-defined, enforceable333

safeguards. These safeguards must include risk-aware system design, strong human-in-334

the-loop oversight, and alignment with long-standing norms of scientific integrity. Cru-335
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cially, the lessons from ongoing discussions in AI ethics must be translated into concrete336

operational practices embedded directly within the design and deployment of AKD sys-337

tems.338

5.1 Core Requirements for Trustworthy AKD339

5.1.1 Alignment with Open Science Principles340

Open science principles, originally developed to enable collaboration and transparency341

among human researchers, are even more vital in a future where AI becomes a full par-342

ticipant in the scientific process. Agentic systems developed under AKD must be inten-343

tionally aligned with these principles to ensure that the research they support is trans-344

parent, interpretable, and verifiable. This alignment not only reinforces trust in scien-345

tific findings but also helps prevent the spread of misinformation or low-quality results.346

To uphold open science principles (NASA Open Science Training Team, 2025; Ra-347

machandran et al., 2021), AKD systems must provide built-in support for many scien-348

tific products:349

1. Open Data: All datasets generated or used by AKD agents must be made openly350

accessible, reusable, and accompanied by appropriate metadata, attribution, and351

licensing terms.352

2. Open Code: All software, scripts, and workflow logic developed or executed by353

AKD systems must be shared under clear open licenses, allowing others to inspect,354

adapt, or reuse them.355

3. Open Results: Scientific outputs, including intermediate results, workflows, pro-356

tocols, and technical notes, must be made publicly available in accessible repos-357

itories, extending beyond final published papers.358

4. Reasoning Transparency: AKD systems must share workflow reasoning steps359

openly, enabling peers to evaluate underlying assumptions and identify potential360

limitations.361

5.1.2 Human Oversight and Scientific Accountability362

Human oversight is a necessity in AKD. Every critical decision point in the scien-363

tific workflow must be designed to allow human scientists to intervene: to direct or redi-364

rect agents, inspect reasoning steps, override automated outputs, and independently val-365

idate results. The ultimate responsibility for interpreting and disseminating scientific con-366

clusions must remain with human researchers.367

AKD systems must be transparent by design to support the rigor of scientific in-368

quiry. Opaque “black-box” systems are insufficient unless their reasoning is traceable and369

explainable. In particular, AI-generated outputs should include citations to peer-reviewed370

literature or validated datasets and support on-demand fact checking (Marinescu et al.,371

2025). Tools like FactReasoner demonstrate the feasibility of assessing factual accuracy372

by decomposing responses into atomic claims and verifying them against trusted sources.373

Moreover, scientists must be informed about the limitations and assumptions be-374

hind the AI tools they use. AKD systems must clearly disclose any model constraints,375

uncertainties, or potential biases—especially in high-impact or sensitive research con-376

texts. These systems should also be designed to identify contradictory findings, highlight377

underrepresented perspectives, and surface data gaps that could affect the validity of con-378

clusions.379

All outputs should be accompanied by structured logs and documentation that al-380

low users to trace back reasoning processes, audit intermediate steps, and pinpoint po-381

tential sources of error.382
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5.1.3 Reproducibility and Provenance383

Reproducibility is a cornerstone of scientific rigor, and this element of gold stan-384

dard science is even more critical in AI-augmented discovery workflows. Within AKD,385

reproducibility should be understood as the ability of independent researchers to repli-386

cate results using the same data, code, and workflow configurations. Although achiev-387

ing perfect reproducibility with LLMs and other stochastic systems can be difficult due388

to inherent randomness, it is not unattainable.389

With careful logging, rigorous version control, and consistent parameter constraints,390

LLM-based outputs can be made more reproducible. Therefore, reproducibility should391

be treated as a design goal within all AKD workflows.392

To support this, AKD systems must have some standardized characteristics and393

outputs:394

1. Automated logging of datasets, model architectures, preprocessing steps, hyper-395

parameters, and execution environments;396

2. Timestamped records of agent workflows, decisions, tool invocations, and human397

interactions; and398

3. Saveable and shareable workflows that can be re-executed under identical condi-399

tions and audited for process integrity.400

Agentic AI poses additional challenges due to its stateful and dynamic nature. The401

complexity underpinning agentic processes requires provenance tracking that goes be-402

yond inputs and outputs to include the decision-making logic and reasoning paths fol-403

lowed by agents. Therefore, AKD systems should support the following aspects of prove-404

nance identification:405

1. Workflow-level explainability, allowing researchers to understand logic and flow;406

2. Integrated versioning across data, models, and tools; and407

3. Easy access to intermediate steps and reasoning logs to support review, reproducibil-408

ity, and debugging.409

These safeguards should not be retrofitted. Instead, safety must be built into the410

design from the outset. Trustworthiness should be an intrinsic design value, not an af-411

terthought.412

Together, these scientific trustworthiness imperatives form the foundation of the413

AKD framework as a responsible, science-centric AI approach. By embedding these con-414

ditions early into the design and development of AKD systems, institutions like NASA415

can lead the way in building a future where accelerated discovery is also ethical, trans-416

parent, and reproducible, upholding the core principles of scientific inquiry in the age417

of AI.418

6 Advancing Accelerated Knowledge Discovery at NASA419

AKD is uniquely positioned to enable several of NASA’s science priorities includ-420

ing advancing scientific discoveries and fostering a culture of innovation (NASA Science421

Plan). First, AKD will advance scientific knowledge by making it easier to explore com-422

plex, cross-disciplinary questions such as the search for life elsewhere in the universe. This423

fundamental science question requires data, information and advances from each scien-424

tific division. Each division contributes as follows:425

1. Astrophysics: Understanding how planets form and how to find and study them426

around other stars427
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2. Biological and Physical Science: biological and physical systems in extreme space428

environments to achieve scientific breakthroughs not possible on Earth.429

3. Earth Science: Understanding behind atmospheric emission measurements, which430

can be used to search for signs of life on other worlds.431

4. Heliophysics: addresses how stellar activity and stellar magnetospheres affect plan-432

etary atmospheres and climate.433

5. Planetary Sciences: understanding of how geologic processes on Mars and ocean434

worlds in our solar system might give rise to habitable environments (NASA, 2025b).435

AKD will make it easier for scientists to explore these complex, cross-disciplinary436

questions by providing integrated access to a vast data and information ecosystem. AKD437

will streamline work for domain-specific research as well. Adaptive, AI-enhanced knowl-438

edge discovery scientific workflows can adapt to new observations, evolving models, and439

new hypotheses, dynamically integrating them into ongoing research processes. Such a440

responsive, interconnected approach will not only accelerate the scientific process but441

also foster deeper interdisciplinary research across domains.442

Second, AKD will foster innovation by systematically integrating NASA’s rich data443

and information systems, multimodal foundation models, scalable cloud and high-performance444

computing (HPC) infrastructure, and robust knowledge representation frameworks. In445

addition, AKD will ensure that NASA’s science data are accessible and usable to every-446

one. Through this innovative approach, NASA will move beyond using AI as merely an447

analytical tool and instead embrace an operational future where AI systems function as448

integrated, collaborative partners working alongside human scientists. Finally, as an in-449

vestment in a high intellectual risk/high impact project, AKD will provide a new approach450

towards scientific discovery that has the potential to transform scientific workflows.451

Crucially, trust is the foundation upon which the AKD framework must be built.452

NASA holds a high degree of trustworthiness grounded in a long record of scientific ex-453

cellence, transparency, collaboration and open principles. Given this relationship, AKD454

must incorporate the trustworthiness imperatives outlined previously as essential design455

principles. These include demonstrable system reliability, explainable AI reasoning, de-456

tailed provenance for data and workflows, proactive mechanisms for detecting and mit-457

igating hallucinations and biases, and rigorous adherence to open science principles. The458

consistent use of verified, authoritative sources and the generation of transparent, au-459

ditable logs of all AI decision processes are indispensable for maintaining both scientific460

integrity and public confidence in AKD-driven research.461

Ultimately, NASA’s proposed open, transparent, and rigorously reproducible agen-462

tic framework—designed from the ground up with trustworthiness imperatives at its core—will463

empower breakthrough discoveries across the full spectrum of NASA’s science portfo-464

lio. From deciphering the biology of the smallest cells to unraveling the mysteries of the465

largest galaxies, AKD will serve as an enabler of 21st-century science.466
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