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ABSTRACT

This paper introduces a high resolution, machine learning-ready heliophysics dataset derived from NASA’s Solar
Dynamics Observatory (SDO), specifically designed to advance machine learning (ML) applications in solar physics
and space weather forecasting. The dataset includes processed imagery from the Atmospheric Imaging Assembly (AlA)
and Helioseismic and Magnetic Imager (HMI), spanning a solar cycle from May 2010 to July 2024. To ensure suitability
for ML tasks, the data has been preprocessed, including correction of spacecraft roll angles, orbital adjustments,
exposure normalization, and degradation compensation. We also provide auxiliary application benchmark datasets
complementing the core SDO dataset. These provide benchmark applications for central heliophysics and space
weather tasks such as active region segmentation, active region emergence forecasting, coronal field extrapolation,
solar flare prediction, solar EUV spectra prediction, and solar wind speed estimation. By establishing a unified,
standardized data collection, this dataset aims to facilitate benchmarking, enhance reproducibility, and accelerate the
development of Al-driven models for critical space weather prediction tasks, bridging gaps between solar physics,
machine learning, and operational forecasting.

1 Background & Summary

Advancing heliophysics, the study of the Sun and its influence on the solar system, is crucial given space weather’s
tangible impacts on critical infrastructure like communications, navigation, and power grids [1]. NASA’s Solar
Dynamics Observatory (SDO) [2] continually captures extensive (~1.5 TB/day), high-quality multi-instrument solar
data, turning heliophysics into a data-intensive discipline. This vast observational data from SDO offers a unique
opportunity to leverage machine learning (ML) techniques to tackle persistent challenges in solar and heliospheric
physics [3, 4]. However, leveraging SDO data presents notable challenges, including specialized preprocessing and



domain-aware computational capabilities to homogenize the multi-instrument database [5, 6]. A publicly available
SDO-ML-ready dataset exists [5], but its reduced spatial resolution (512x512) limits the full potential of the original
SDO observations.

To address these challenges, we introduce a curated, publicly accessible benchmark dataset from SDO, SuryaBench,
comprising high-resolution observations of the solar surface and atmosphere, which can be used to study diverse
solar and heliospheric phenomena such as flares, coronal holes (CH), active regions (AR), sunspots, solar wind,
and coronal loops. To our knowledge, SuryaBench is the largest curated and homogenized dataset to date, and it
preserves the full 4096 x4096 native spatial resolution of SDO and provides a consistent 12-minute temporal cadence,
enabling high-fidelity analysis for data-driven heliophysics research. The dataset is designed to advance data-driven
heliophysics research and support operational workflows by offering standardized preprocessing, temporal and spatial
homogenization, rich metadata for seamless interoperability, and Al-ready formats, enabling the development and
deployment of large-scale machine learning models, specifically self-supervised learning and foundation models [4],
and a wide spectrum of heliophysics applications.

SuryaBench is designed to enable the development of advanced, physics-informed models for investigating complex
solar phenomena. It features detailed documentation and rich metadata to ensure usability for a wide range of users,
including both heliophysics researchers and machine learning practitioners, regardless of their prior domain expertise.
To provide a comprehensive and reusable testing environment and facilitate synergistic research, SuryaBench offers
standardized application benchmark datasets (hereafter called Datasets, for brevity) for the following six key tasks
in heliophysics: (1) solar flare prediction, (2) active region segmentation, (3) active region emergence prediction, (4)
coronal magnetic field extrapolation, (5) solar irradiance, and (6) solar wind forecasting. Each application benchmark
includes rigorous evaluation protocols and baseline implementations of state-of-the-art machine learning architectures,
such as Residual Networks and U-Net. Ultimately, we envision SuryaBench to serve as a robust data resource for
diverse, cross-cutting heliophysics tasks with spatio-temporal analysis, multimodal data fusion, and interpretability
research. Next, we present a brief overview of selected tasks along with our interdisciplinary motivation for their
inclusion. We note that these applications are by no means comprehensive, yet they are relevant to multiple interacting
phenomena on the Sun and in the heliosphere, and we envision these to serve as the blueprint for the development of
large-scale Al applications using SuryaBench.

At the core of many space weather drivers are active regions (ARs), concentrated areas of magnetic flux that
frequently produce solar flares and coronal mass ejections (CMEs), with direct impacts on satellites and terrestrial
infrastructure [7]. Within ARs, polarity inversion lines (PILs), which are interfaces where magnetic polarities reverse,
are critical sites for energy storage and release, and are strongly associated with solar eruptive activity [8, 9, 10, 11, 12].
Twisted and sheared PIL structures can give rise to current sheets and magnetic reconnection, which are central to flare
and CME initiation. We provide two tasks related to ARs in Datasets DS1 and DS2 (Sec. 2.2.1, 2.2.2), where Dataset
DS1 is focused on segmentation of ARs with PILs and Dataset DS2 is focused on AR emergence prediction. That said,
the emergence and evolution of ARs also significantly affect coronal dynamics, requiring accurate three-dimensional
magnetic field modeling. With Dataset DS3 (Sec. 2.2.3), we provide a task on coronal field extrapolation, which
supports research on magnetic field extrapolation and AR-induced coronal changes.

Various space weather phenomena have the potential to significantly affect both near-Earth space environments
and terrestrial systems. Solar flares, intense eruptions originating in the solar chromosphere and corona, can trigger
geomagnetic storms, impacting terrestrial and space-based infrastructure, and posing risks to astronauts [13, 14].
Similarly, the solar wind, which is a continuous outflow of charged particles from the solar corona, modulates Earth’s
magnetosphere and drives geomagnetic storms with operational implications [1, 15, 16]. We provide two tasks related
to space weather forecasting with Datasets DS4 and DS5 (Sec. 2.2.4, 2.2.5), where Dataset DS4 is focused on flare
prediction and Dataset DSS5 is focused on solar wind prediction. Lastly, solar extreme ultraviolet (EUV) irradiance
plays a key role in shaping Earth’s ionospheric and thermospheric conditions, influencing satellite drag, communication
systems, and GPS accuracy [17, 18, 19, 20]. Dataset DS6 (Sec. 2.2.6) addresses EUV nowcasting and forecasting to
support satellite operations and mission planning.

2 Methods

Our benchmark dataset includes a core imaging data collection, which is primarily designated as input, and six
application benchmark datasets, intended as labels, covering different solar physics and space weather applications. In
the following subsections, we describe the steps and procedures used to create and curate the data along with the details
for each of our application datasets.
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Table 1. Instrumental properties of SDO/AIA and SDO/HMI. Both instruments take 4096 <4096 images. AIA measures photometric
intensity in EUV for different wavebands. Its channels, denoted in A (e.g. 94A), indicate the wavelength of peak intensity for each
pass-band filter. HMI makes spectropolarimetric measurements around magnetically sensitive spectral emission lines. We use
inversions using these measurements that estimate the three components of the magnetic field (Byx, By, B;), line-of-sight (LOS)
magnetic field (B,y), and LOS velocity (V;,). Cadence refers to the time interval between two consecutive images. We make the
distinction between instrumental cadence (12s to 12m) and the dataset cadence (12m).

Inst. Resolution Cadence Cadence Dynamic Channels
(photospheric)  (instrument) (SuryaBench) range
AIA  1.2" (725km) 12s, 24s 12m 0to 16,383 94,131, 171, 193, 211
304, 335, 1600 (in A)
HMI  1.0" (870km) 45s, 12m 12m ~+4,500 for B B,, By, B;, B, (in G),
~=+10% for V Vios (in M/S)

2.1 Core SDO Dataset

SDO is a NASA Heliophysics flagship mission launched on February 11, 2010 in geosynchronous orbit. Its main
science objectives are to understand how solar magnetism is created, how solar magnetism shapes the extended solar
atmosphere that encompasses the entire solar system, and how solar activity affects Space Weather.

SDO has two imaging instruments: 1. The Atmospheric Imaging Assembly (AIA) [21], which measures photometric
intensity (per pixel) in the Extreme Ultraviolet (EUV) and UV spectrum. 2. The Helioseismic and Magnetic Imager
(HMI)[22], which makes spectropolarimetric measurements used to estimate the surface magnetic field (all three
components) and the line-of-sight velocity on the solar surface. Both imagers use 4096 x4096 charge-coupled devices
(CCDs) to image the solar surface and atmosphere. Table 1 contains details on both AIA and HMI instrumental and
data properties.

SDO data is publicly available through the Joint Science Operations Center (JSOC; http://Jjsoc.stanford.

edu) as time series of various numerical scalar and raster data products. The data series we have used to create our
core dataset are aia.levl _euv_12s for EUV channels, aia.levl_uv_24s fora UV channel, hmi.M_720s
for a line-of-sight (LOS) magnetogram, and hmi . B_720s for vector magnetograms.

2.1.1 AlA Data Acquisition and Processing

The aia.levl_euv_12s series provided by JSOC contains level-1 data. This means that the images still include
the roll angle of the satellite, i.e., the solar north-south axis is not aligned with the vertical y-axis, and each channel
may have a slightly different pixel scale. To enhance data accessibility, spatial homogenity, and interoperability, we
promoted the AIA data from level-1 to level-1.5 . The promotion to level-1.5 involves updating the pointing keywords,
removing the roll angle, scaling the image to a common pixel scale of 0.6 arcsec per pixel, and translating the image so
that the center of the Sun is located in the center of the image. Besides these steps, exposure time normalization is an
extra but necessary step during the promotion because AIA measurements have heterogeneous exposure times ranging
from 0.05 to 2.9 seconds. We present an example conversion of AIA data from level-1 to level-1.5 in the two top left
panels of Figure 1 using an AIA 171 image instance.

Since the database contains data throughout the SDO lifetime, CCD camera sensor degradation also needs to be
taken into account. The table of correction parameters calculated by the AIA science team is made publicly available
via JSOC. These parameters are a time series of scalars that can be multiplied by the full disk AIA data to rectify the
instrument degradation. However, this method may lead to issues when the corrected values in some of the pixels
exceed the instrument saturation value (16,383 for AIA). We post-process and clamp the degradation-corrected image
to make sure that none of the pixels reach a value greater than this limit. In Figure 2, we plot the mean pixel intensity
values of the full disk images for each of the seven EUV channels of AIA in level 1 (left panel) and level 1.5 with
degradation correction (right panel) data. The variation of mean values over the years also reflects the solar cycle, in
which the higher mean values indicate stronger solar activity. We notice that the degradation correction restores the
higher activity in solar cycle 25 compared with solar cycle 24.

One final step in making sure that the AIA data is ML-ready is to make the solar disk size the same in the whole
database for all wavelengths, correcting for the elliptical orbit of the spacecraft. This step makes the solar disk of fixed
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radius, 976 arcsecs, in all images. An example of this step is shown in the bottom-left panel of Figure 1.

2.1.2 HMI Data Acquisition and Processing

Though the observable HMI data provided from JSOC are level-1.5, they have a slightly higher resolution of 0.5
arcsec per pixel compared to AIA images. Therefore, the HMI data must be re-projected to be spatially aligned with the
level-1.5 AIA images, which have 0.6 arcsec per pixel resolution. This re-projection step involves bilinear interpolation
when rescaling the high-resolution images to lower-resolution images. Bilinear interpolation estimates the value of a
function f(x,y) at a point (x,y) that lies between four known grid points [23]. In the context of image data, these grid
points represent the centers of image pixels, and the function values f(x,y) correspond to pixel intensities. Let the four
surrounding grid points be the corners of a rectangle: the bottom-left (xg,yo), bottom-right (x1,yo), top-left (xo,y1),
and top-right (x1,y;), with corresponding function values f(xo,y0), f(x1,¥0), f(x0,¥1), and f(x1,y1), respectively. If
we consider a desired point (x,y) within this rectangle, such that xy < x < x; and yp <y < yj, the interpolated value is
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Figure 1. An example of the ML-ready data preparation steps for AIA 171 A and HMI LOS magnetogram on 2012-01-30 at 22:12
UT. Contours illustrate the image center, solar disk center, disk radius, and solar disk boundary. The top row shows the original AIA
Level 1 image, HMI Level 1.5 magnetogram downloaded from JSOC, and HMI overlaid on AIA. The disk centers are misaligned
with the image center (unregistered), and one dataset has a 180° roll, with noticeable plate scale differences. The middle row
displays the registered AIA Level 1.5 image, HMI aligned with AIA, and HMI overlaid on AIA, showing corrected disk centers and
plate scales. The bottom row presents the final ML-ready AIA and HMI images after exposure time normalization and orbital
corrections for AIA, with the overlaid image showing proper alignment and a fixed disk radius of 976 arcsecs.
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Figure 2. Mean pixel value of full-disk AIA images (extreme ultraviolet channels 94-335A, DN/sec) over time before (left panel)
and after (right panel) the degradation correction.

given by:
fle,y) = (1—=1)(1—u) f(x0,y0) +1(1 —u) f(x1,y0) + (1 —t)u f(x0,y1) +tu f (x1,y1)-
where

X —X0 y—Yo
t= , U=
X1 — X0 y1—Yo

represent the normalized distances of the point (x,y) along the x- and y-axes, respectively. The reproject_to function
available in SunPy [24] was used for this step. An example of the re-projection is shown in the top two panels in the
middle column of Figure 1. Finally, similarly to AIA images, the HMI images also needed to be corrected for elliptical
orbit variation and fixed to a solar disk size of 976 arcsecs throughout the database. This step is shown with an example
in the bottom panel in the middle column of Figure 1. The panels in the right column of this image show that after our
processing, the solar disk in the AIA and HMI images are well aligned.

2.1.3 Temporal Alignment of HMl and AIA Data

In our database, we have decided to keep the temporal resolution of the time series at 12 minutes. This is because
the low-noise LOS and vector magnetograms are available with this cadence from HMI. For each of the timestamps in
hmi.M_720s series, we find the corresponding AIA data at that time and add it to our database. If the quality of the
AIA data for any of the eight wavelengths is not good at an exact timestamp of HMI, we search for a time within two
minutes of the timestamp that contains good quality AIA data in all eight EUV channels and include that data in our
database. If we are unable to find good-quality AIA data within the two-minute range, we do not include the data in
our database. We consider the quality of the AIA data to be good if the QUALITY flag in the file header is equal to
zero. Non-zero values for the QUALITY flag indicate different operational items (e.g., off-pointing or defocusing of the
satellite) lowering the quality or significant missing data. In Figure 5 (see the Supplementary Information), we give
examples of when the AIA data was found to be of bad quality.

2.2 Application Benchmark Datasets

In this section, we will describe our application benchmark datasets in detail. As shown in Table 2, multiple space
weather and heliophysics applications are broadly oriented towards understanding the deposition of energy in the solar
surface and atmosphere (DS1 & DS2; Sec. 2.2.1 & 2.2.2), how solar magnetism structures the solar atmosphere (DS3;
Sec. 2.2.3), how energy is released in the form of space weather (DS4; Sec. 2.2.4), and how space weather affects the
solar magnetosphere (DS5; Sec. 2.2.5) and ionosphere (DS6; Sec. 2.2.6). We note that we created baseline models and
evaluated them. Our model architectures, formulated problems, evaluation measures, and results can be found in the
Supplementary Information document.

2.2.1 Active region segmentation
Active regions (ARs) are often identified using intensity thresholding on magnetograms, white-light or EUV images
[25, 26, 27]. In this work, ARs containing polarity inversion lines (PILs) are identified using full-disk line-of-sight (LoS)

5/25



Timestamp: 2011.01.01 00:00:00

4000

3000

2000

Tracked Area
{
Aysuaju] wnnuyuo) Xsia |IN4

T R
o i 2 A ) 1000

0

,,,,,,,,,,,

G s ~1000
*Q‘ % ; ~2000

~3000

| 23mHz
Dol samhe
Lo asmHz

| s6mHz

L Flux

Magnetic Field Strength [G]

Continuum Intensity 1 Continuum Intensity

—— Detected ARs ~4000

Mean Acoustic Power t€ [ty + 12 hours 1 ¢ € [ty,t, +12] hoy
s and Magnetic Flux P e
t € [t, - 110,¢,] hours | i—l
Semmmssssssssssssmnmenl Backpropagation H

Figure 3. Left: Example of an AR mask for segmentation. The magnetic field strength from the line-of-sight magnetogram on
2011-01-01 00:00:00 is shown using a blue-to-red color scale. Detected active regions, which have magnetic flux greater than 50
Gauss or less than —50 Gauss and contain polarity inversion lines, are highlighted with purple contours. Middle: Example of AR
intensity time-series for emergence forecast. Tracked regions are split into smaller tiles, and the timeline datasets were created by
averaging the values of each tile. The timelines are used as inputs during the training and validation/testing. Right: Example coronal
magnetic field extrapolated from measurements using WSA. The yellow magnetic field lines indicate closed field lines that loop back
to the surface of the sun, which the red/blue lines are positive/negative polarity open field lines which extend past the source surface
into interplanetary space.

magnetograms from the Solar Dynamics Observatory (SDO). Our previous PIL detection method by [12, 28] relies on
AR patches. Extending this, our approach uses full-disk LoS magnetogram rasters with a resolution of 4096x4096. We
first generate two binary maps, corresponding to the positive and negative polarity regions, by applying a magnetic
field strength threshold of +50 and —50 Gauss, respectively. To remove small, noisy patches in positive and negative
polarity region maps, we apply a size filter that excludes regions smaller than 100 pixels (approximately 13.3 Mm? of
photospheric area). Next, we dilate the binary images using a rectangular filter of size 10 pixels. Finally, we identify the
intersection of the dilated positive and negative polarity regions, which corresponds to areas containing PILs. Only
ARs that include PILs are reported as regions of interest. The eventual AR masks are 2D bitmaps (containing zeros
and ones), representing the locations of active regions with PILs, and have a size of 4096x4096. In other words, ARs
without the presence of a strong PILs will be omitted from the full-disk mask. In Figure 3-left, the binary mask is
overlaid on the original line-of-sight magnetogram from 2011-01-01 00:00:00. The regions outlined in purple indicate
the detected active regions.

The ARPIL dataset covers between January 2011 to December 2024. The detection method is applied to each valid
LoS magnetogram hourly. In total, we have 119,454 full-disk AR binary masks covering 14 years, each of them with a
size of 4096 x4096.

2.2.2 Active region emergence forecast

We select 50 ARs that appear on the solar surface within 30 degrees longitude from the central meridian between
March 1st, 2010 and June 1st, 2023, persisted for more than 4 days, and reached a total area of 200 millionths of the
solar hemisphere. For each one of these 50 ARs, the same five-step pipeline is followed: (1) tracking areas of 512 by
512 pixels of the SDO/HMI magnetic flux, Doppler velocity, and continuum intensity, (2) creating acoustic power maps
from the Doppler velocity, (3) downsampling the data to timelines by splitting the tracked region in a 9 by 9 grid, (4)
removing the solar sphere geometric effects, and lastly (5) calculating the time evolution of continuum intensity.

Before we create the acoustic maps, we use the dopplergrams series, representing the frames throughout the life of
the AR on the solar disk, and create a difference series by subtracting consecutive frames. By working with dopplergram
differences, we remove the background solar rotational signal:

AVopli,x,y] = Vaopli + 1,x,y] = Vaop[i, x,y], fori=1,...,639, (x,y)€ [1,512]2. (D

Each element of AVy,, represents the difference between consecutive dopplergrams at each pixel location (x,y).

Subsequently, for each pixel, we calculate the Fourier power spectrum of the time-series data in AVyepl:,x,y]. Let

dt = 45 sec (the sampling interval), T = 28800 sec (each .fits file is tracks the active region for 8 hours), and .% denote
the real-valued one-sided Fourier transform (np.fft.rfft in Python):

2
V(E)I;T[k,x,y]:(d;) yy{AVdop[:,x,y]}[k]z, fork=1,...,320, (x,y)€[1,512]% )
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We calculate the Fourier power spectrum of the time series data. For every timeframe, we calculate the integral
along the frequency axis to construct a power map that represents the spectral power in the chosen frequency range at
each spatial location on the solar disk. Given a power map series, which represents the temporal evolution of the spatial
power distribution for a particular frequency range (e.g., 2 — 3mHz) over the solar disk, we divide the solar disk into a
grid of smaller, equally-sized tiles. For each of these tiles, we extract the corresponding pixels from all frames of the
power map series.

Subsequently, we calculate the mean power within each tile for each frame. The temporal mean power within a
tile is calculated by taking the average power over all pixels within the tile for each frame. This procedure results in
a one-dimensional time series per pixel, representing the temporal evolution of power within each segment on the
solar disk. In parallel, we calculate the total continuum intensity, as well as total magnetic flux for each tile to produce
labeled acoustic power time series and magnetic and continuum intensities. The combination of the acoustic power
timeseries and continuum intensity time series (as shown in Fig. 3-middle) form the core of this dataset.

Threfore, this dataset includes timeseries for 50 emerging ARs. Each has 6 channels (4 acoustic power channels,
magnetic flux, and continuum intensity). Each time series has 240 timestamps. The dynamic range goes between
—7.5 % 107 and 5.8 x 107 for the acoustic power channels, —1.4 x 10% to 5.3 x 10? for magnetic flux, and —1.7 x 10*
and 4.0 x 10® for continuum intensity. More information about the AR emergence dataset can be found in [29].

2.2.3 Coronal field extrapolation

To model the 3D structure of the coronal magnetic field, it is necessary to first estimate a full coverage (180° latitude,
360° longitude), and subsequently model the transformation of a solar surface boundary condition into a magnetic field
that extends into the atmosphere. To do this, we use a coupled simulation known as ADAPT-WSA.

For the first task, we use the Air Force Data Assimilative Photospheric Flux Transport (ADAPT; [30, 31, 32];
[33]), which is a data assimilation model that uses near-side photospheric magnetic field measurements from such
instruments as HMI and globally solves a system of magnetic flux transport equations [34]. These equations describe
the time-dependent evolution of the photospheric magnetic field, including such effects as differential rotation, and
meridional and supergranular flows. ADAPT is an ensemble model which generates 12 realizations (variations) per
timestep. Each realization represents processing using different values of unobservable subsurface physics in the
ADAPT simulation, which is itself an ensemble Kalman filter.

For the second task, we use the Wang—Sheeley—Arge (WSA; [35, 36, 37]) model, which makes it possible to
calculate the global coronal field using a coupled Potential Field Source Surface and Potential Field Current Sheet
(PFCS) approaches [38, 39]. In practice, the WSA model solves the equations V x B =0 and V- B = 0, where B is the
coronal magnetic field, up to a spherical boundary known as "the source surface" and where the field becomes radial,
set here at 2.51 R, (solar radii). The coronal field extrapolations are themselves encoded using the spherical harmonics.

This dataset includes an 11-year (full solar cycle) span of ADAPT-WSA runs powered by the HMI magnetogram
data at daily cadence. Daily cadence is chosen to provide a sufficient diversity of magnetic topologies in the training
dataset and avoid nearly identical training samples. The ADAPT-WSA runs are split into an ensemble composed of
12 realizations per the ADAPT ensemble. The potential field solution at each timestep is encoded in signed spherical
harmonic coefficients, normalized using the Schmidt formulation and truncated after the 90th order. An example
magnetic field solution is displayed in Fig. 3-right, where the plotted field lines were traced using the spherical
harmonics to evaluate B at each position.

This dataset includes 51,156 sets of harmonic coefficients, each has 2 channels (G and H coefficients), and contains
4,186 harmonic coefficients. The dynamic range goes between —4.3x103 to 4.3x10°.

2.2.4 Flare forecasting

Although the volume of observational data has significantly increased, accurate operational prediction solar flares
remains a challenging task. Solar flares are monitored by the Geostationary Operational Environmental Satellites
(GOES), measuring the X-ray intensity emitted by the Sun. The National Oceanic and Atmospheric Administration
(NOAA) classifies solar flares logarithmically into five major classes —A, B, C, M, and X, based on their peak X-ray
intensity in the 1-8A wavelength range [40]. The strength of a flare within a class is indicated by a numerical suffix
ranging from 1.0 to 9.9, which represents the factor by which the event is stronger than the base intensity in that class
(e.g., M5.2 is 5.2 times as strong as M1.0). Flares above C-class, particularly M- and X-class flares, are of primary
interest due to their significant terrestrial impact, yet the scarcity of stronger events pose a substantial class imbalance
challenge.

In this dataset, the input instance at time #; is associated with a prediction window spanning from ¢; to ¢; + 24h. Each
window may contain zero or more solar flares. Note that we use the start time of the flares to determine if they are within
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a prediction window. Only flares greater than C-class are considered in this application due to the under-reporting of
lower intensity flares. Each input, sampled at an hourly cadence, is labeled in two ways: (1) by the maximum flare
intensity, as defined in Eq. 2, and (2) by the cumulative flare intensity, as defined in Eq. 3. Maximum flare intensity is
the label corresponding to the flare with the highest intensity occurring within the prediction window.

Linax(t;) = class( max pr(fj)) 3
fieret

, Where class(-) returns the GOES class corresponding to the peak X-ray flux for the maximum intensity flare. In Figure
4-top, we demonstrate an example prediction window covering four flares shown. This instance is labeled as ‘M3.5’,
which is the flare with the maximum intensity.

Cumulative flare intensity considers the cumulative effect of all the >C-class flares in the prediction window. As
mentioned earlier, flare sub-classes (e.g., C5.2, M1.0) are indicated by a numerical suffix ranging between 1.0 and 9.9.
To create the the cumulative intensity label, we get the weighted sum of these numerical suffixes/subclass values, as
described in Egs. 3 and 4.

0 ifpxf(f;) <107°
)1 1078 < pxf(f;) <1073
S(fi) = 10 if 1070 <pxf(f;) <107* @)
100 if pxf(f;) > 10~*

where S(f j) returns the weight for the flare event f;. In other words, to differentiate the contribution of C-, M-, and
X-class flares, weights of 1, 10, and 100 are applied to their respective subclass values. The weighted sum Ly, (¢) is
then calculated as:

Len(t) =Y. S(fj)- Q)

zCt
fieF;

where v(f) denotes the subclass value for f;. For example, in Figure 4, four subclass values from four flares within
the prediction window (with blue background) are considered. The cumulative flare intensity is 50.2, calculated as
22 (C2.2)4+10x 3.5 (M3.5)+7.7 (C7.7)+5.3 (C5.3).

For creating labels for binary classification, we use two thresholds for L,,,, and L, corresponding to the equivalent
strength of an M1.0-class flare. In other words, we create two binary labels checking (1) L;;q > M1.0 and L, > 10.
The flare forecasting labels span from May 2010 to December 2024. There are total 128,352 labels in the dataset.

2.2.5 Solar wind forecasting

The solar wind is a stream of charged particles that emanates from the Sun. The interaction of solar wind with
Earth’s magnetic field results in the formation of near-Earth space weather. Solar wind interactions are known to
drive geomagnetic storms, wherein the Earth’s magnetic field is perturbed, inducing electrical currents that affect
satellites, power grids, oil pipelines, etc., and potentially resulting in economic and livelihood impacts [1, 16]. The solar
wind is known to have origins from expansive regions very low in the solar atmosphere, undergoing acceleration as it
propagates outwards through the chromosphere, transition region, and corona [15], and then becoming free streaming
in the interplanetary medium. In a more global sense, the solar wind shows statistical associations with morphological
structures in the solar atmosphere.

For this application benchmark dataset, we use space-based particle data, measured by the Advanced Composition
Explorer (ACE; [41]), which are made available through the NASA OMNIWEB database '. The OMNI data consist of
solar wind speed measurements at the L1 point of the Sun-Earth system in space, and are time-shifted to be at the nose
of the Earth’s bow shock. Hence, we essentially have a scalar measurement across all time, resulting in a vector of
measurements. These data spans 14 years from 2010 to 2023, at a time cadence of 1 hour. The time series of the full
dataset is shown in Fig. 4-bottom-left. The solar wind speed, as seen in Figure 4-bottom-right, shows a form of long
tailed distribution, with a peak at =~ 400 km/s. This dataset includes 120,748 measurements of the solar wind speed.
The dynamic range goes between 2.4 x 107 to 8.8 x 10% km/s.

https://omniweb.gsfc.nasa.gov/
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Figure 4. Top: Labeling inputs with the flare index. The 24-hour prediction window may include multiple flares. Two types of flare
indices are defined: the maximum flare intensity and the cumulative flare intensity. Inputs are sampled at an hourly cadence, and the
prediction window shifts accordingly based on the input time. Botfom-Left: The solar wind speed measurements at L1 as a time
series. Bottom-Right: Distribution of solar wind speed measurements.

2.2.6 Solar EUV spectra modeling

The Extreme Ultraviolet Variability Experiment (EVE; [42]) aboard NASA’s Solar Dynamics Observatory (SDO)
was developed to provide high-resolution, high-cadence measurements of full-disk solar EUV irradiance. In this
dataset, we focus on the high energy part of the EUV, captured by a submodule of EVE called MEGS-A, which has
a 10-second cadence [43]. We apply metadata-based screening using the quality flags provided in the EVE Level 2
data products [43]. The SC_FLAGS byte identifies potential obstructions or pointing issues during observation. Only
spectra flagged as O (clear, unobstructed) are retained. We compute 1-minute averaged EVE spectra to reduce noise
and facilitate temporal alignment with AIA image data. We then match the 12 minute cadence of the SDO/AIA image
cubes. Timestamps in which AIA frames affected by saturation (common during large flares), diffraction patterns,
and instrument exposure anomalies are flagged and excluded. The resulting dataset contains hundreds of thousands
of temporally aligned AIA image cubes and EUV spectra, covering Solar Cycle 24 and parts of Solar Cycle 25, and
includes both quiet-Sun and active-region conditions. All irradiance values are first corrected to 1 astronomical unit
(AU) to remove the influence of Earth—Sun distance variations.

Event selection and temporal stratification were performed to construct a balanced and representative training set
spanning a wide range of solar conditions. For active periods, we rely on the GOES X-ray Sensor (XRS; [44]) flare
catalog to identify flaring events. These events are binned according to the integrated soft X-ray flux and stratified
into percentiles, rather than raw flare class labels, to ensure a more uniform representation of flare energetics and
avoid over-representation of weaker, more frequent flares. For quiet Sun conditions, where changes in irradiance are
dominated by solar rotation and large-scale structural evolution, data are sampled at regular 1-day intervals to capture
the modulations introduced by active region transit across the solar disk. This dual strategy ensures adequate exposure
to both high-energy transient events and slowly varying background structures.

This dataset includes 189,397 EVE spectra, each with 1343 spectral channels. The dynamic range goes between
1.0x 1077 t0 1.1 x 1072,

2.3 Summary
SuryaBench captures diverse solar phenomena across a full solar cycle, with high-resolution multi-instrument
observations and rigorous standardization. By integrating data from AIA and HMI with consistent preprocessing into
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Table 2. Statistic summary of auxiliary datasets. The shape of all datasets has been cast with the following dimensions: N —
Number of datapoints, C — Number of channels, T — Number of timestamps, H — height, and W — width.

Application Broader Topic N C T H W | Dynamic Range
pst | AR Magnetic encrgy 109175 1 | 1 |4.096 4,096 0,1
segmentation in solar atmosphere
: _ 4
DS2 AR eme.rgence Magnetlc energy 50 6 1240 | | 1.7x 10 .
forecasting in solar atmosphere to 4.0 x 10°
_ 3
DS3 Coronal ﬁ.eld Coronal st.ructure 51,156 ) 1| 4.186 1 4.3 %10 .
extrapolation & magnetism to 4.3 x 10
DS4 Flare ' Space w'eather 128352 | | | | 0.1
forecasting forecasting
. . 2
DS5 Solar w1.nd Solar forcing 120,748 | | | | 2.4 x 10 ,
forecasting of magnetosphere to 8.8 x 10
- -9
DS6 EUV ' So?arforcmg 189397 | 1.343 | 1 | | 1.0x 10 ,
forecasting of ionosphere to1.1x 10

a unified ML-ready format, the dataset provides a high-fidelity view of solar activity. This uniformity enhances data
quality and reproducibility, enabling cross-comparison of events (flares, active region evolution, coronal dynamics) and
cultivating deeper insight into the dynamics of solar activity and space weather. We believe that the inclusion of curated
benchmarks and baseline model results for tasks such as solar flare prediction, coronal field extrapolation, and active
region segmentation underscores SuryaBench’s value to the machine learning community, and we envision that these
application benchmarks will establish clear performance baselines and spurring the development of advanced models.
The dataset breadth and ML-focused design bridge the heliophysics and Al, accelerating progress in space weather
predictive modeling.

3 Data Records

The SuryaBench datasets contain ML-ready heliophysics data captured from May 13, 2010, to December 31, 2024,
with a 12-minute cadence. The datasets (both core and application benchmark datasets) are publicly available on
Huggingface as a data collection Suryabench. During this collection interval, there are about 6% data is missing due to
either unavailability or poor quality. The processed level-1.5 ATA and HMI data are stored in hourly netCDF files in
float32 format, with data shape of [13, 4096, 4096]. Each netCDF file is about 600 MB, and the total size of the
data for training is approximately 360 TB. We have divided the data into training (2010-2018), validation (2019), and
test (2020) sets, which include 379,920, 43,680, and 43,800 files, respectively.

4 Technical Validation

We used the SuryaBench datasets to validate against state-of-the-art models commonly used by the machine learning
and heliophysics communities. All experiments were performed on 4 Nvidia A100 GPUs with 80 GB of memory.
This evaluation helps establish reference points for future research by comparing performance across widely adopted
architectures. To create the baseline on the SDO dataset, we framed it as a forecasting problem. Given two input tasks
we predicted the next time step. By training on 4 years’ worth of data, the modified long-short Spectral Transformer [4]
model demonstrated strong performance after training for just 20 epochs on four years of data. For the AIA bands, the
model achieved high structural similarity index (SSIM) scores of 0.83 for band 171A, 0.90 for band 1931&, and 0.86 for
band 211A, while the remaining bands showed SSIM values ranging from 0.4 to 0.65. The corresponding root mean
squared error (RMSE) values were 0.11 for band 171A, 0.095 for band 193A, and 0.10 for band 211A. When applied to
the HMI channel, the model achieved an SSIM of 0.73 and an RMSE of 0.65. These results indicate the model’s ability
to accurately reproduce both large-scale and fine-scale solar features, including active regions with higher magnetic
field strengths.

The tables below summarize baseline results for two core tasks: solar wind forecasting and binary solar flare
prediction. Solar wind forecasting performance is reported using RMSE, MAE, and validation loss for ResNet
and U-Net based encoder-decoder models. For flare prediction (classification task), we evaluate models, including
AlexNet [45], MobileNet [46], and ResNet [47] variants, using popular forecast skill scores True Skill Statistic (TSS),
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Heidke Skill Score (HSS), Composite Skill Score (CSS), and F1-macro, similar to [48]. These baselines provide a
standardized performance floor for advancing heliophysics Al.

Table 3. Baseline performance for (a) solar wind prediction and (b) solar flare classification using common deep learning models on
test data

Model RMSE MAE Val Loss Model TSS HSS CSS F1

UNet 0.1499 0.1116  0.0225 AlexNet 0.359 0.354 0356 0.679

AttentionUNet 0.1449 0.1157  0.0225 MobileNet 0.326 0.312 0.319 0.662

ResNet18 0.2108 0.2388 0.0233 ResNet18 0.320 0.317 0.318 0.660

ResNet34 0.1462 0.1149 0.0226 ResNet34 0.290 0.289 0.289 0.645

ResNet50 0.1445 0.1145  0.0221 ResNet50  0.261 0.281 0.271 0.627
(a) Solar Wind Forecasting (b) Solar Flare Prediction

Table 4. Baseline performance for (a) EVE Prediction and (b) AR Emergence Forecasting on test data

Model RMSE MAE Val Loss

UNet 0.0754 0.0558  0.00569 Model MSE  RMSE

AttentionUNet  0.0754 0.0558 0.00569 ST Attention 0.1538 0.3921

ResNet18 0.2108 0.2388 0.02330 ST ResNet 0.1527 0.3908

ResNet34 0.1462 0.1149 0.02255 (LSTM) 0.0140 0.1180

ResNet50 0.1445 0.1145  0.02208 (b) AR Emergence Forecasting (ST: Spatiotemporal)
(a) EVE Prediction

5 Limitations

Solar data have a few important features that must be taken into consideration:

* Solar rotation: The Sun takes ~ 27 days to complete rotation, also referred to as a Carrington rotation. This results
in a repeat of magnetic structures every = 27 days [49]. It is preferable to separate the training and testing sets by at
least 1/2 Carrington rotation to avoid observing the repeating spatial patterns. The standard practice in heliophysics is
to use temporally non-overlapping training-validation-testing splits [50] (e.g., first 5 years for training, next 3 years
for validation, and remaining years for testing, or the first § months of each year for training (Jan-Aug), the next two
months (Sep-Oct) for validation, and the last two (Nov-Dec) for testing.)

* Solar Cycle: Solar activity undergoes an ~ 11 year maximum and minimum. This results in a subtle, 11-year
variation in the solar activity [51]. Hence, it is ideal to perform data splitting by sampling activity across the whole
solar cycle. The standard practice in heliophysics is to maximize dataset coverage to contain at least a full solar
cycle (e.g., 2010-2022). This in combination with the split mentioned above, ensures the creation of representative
training-validation-test splits.

 Ecliptic angle: The plane of the Earth’s orbit is inclined with respect to the equator. Because of this, as the year
progresses, the Earth goes slightly above (below) the north (south) pole. While our data is fixed so that the solar
north is always pointing upwards, the solar disk center is almost never on the equator. Any application aiming to use
heliographic coordiantes (i.e. latitude and longitude on the solar surface), must account for this perspective effect of
the Earth’s orbit.

* Lack of farside observations: While SDO provides one of the most comprehensive datasets, the observations are
limited to the visible (Earth) side of the Sun. Many of the applications using this dataset can be directly impacted by
events occurring on the farside of the Sun.
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6 Code Availability

The SuryaBench datasets are publicly available on Huggingface: https://huggingface.co/collections/

nasa-impact/suryabench-68265ce306£fc2470cl21laf7b. Our code for dataset preparation and creation,
and baseline model training is publicly available at https://github.com/NASA-IMPACT/SuryaBench.
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Supplementary Information
Low Quality AIA Data and QUALITY Keyword

AIA image headers and data may be affected by operational events such as off-pointing, defocusing, or missing data
during eclipse seasons. These issues are flagged by a non-zero QUALITY keyword in the image header. It is important
to check the QUALITY before detailed analysis of AIA data. Note that the QUALITY keyword is a 32-bit integer with
bitwise flags. We present a set of examples in Figure 5.

Figure 5. Bad AIA measurements due to a variety of reasons.
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Overview of Baseline Learning Models for Application Benchmark Datasets
This supplementary material provides a detailed examination of the tasks from a machine learning perspective,
including task-specific objectives, model architectures, and relevant implementation details.

Active region emergence forecast

We address the task of predicting continuum intensity over a spatially-distributed grid of solar active regions, using
historical measurements of solar magnetic flux and acoustic power. This task encapsulates a complex spatiotemporal
forecasting problem grounded in heliophysics, where both temporal dependencies and spatial interactions are crucial
for accurate modeling. Understanding and forecasting continuum intensity has strong implications for solar physics and
space weather prediction. High-intensity regions on the solar surface are often precursors to flare activity and magnetic
storms.
Problem Formulation: Given a tracked solar active region observed over a sequence of 7 = 120 time steps (i.e., 1 day
in our dataset), our objective is to predict the continuum intensity at a subsequent time point for each spatial grid cell.
Formally, let:

+ X € RT*C*S denote the input tensor for a region, where:
— T =120 is the number of time steps (~24 hours, sampled at 12-minute cadence),

— C =5 is the number of physical quantities per cell,

— 8§ =63 is the number of spatial cells in the tracked region.
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Figure 6. Results for AR emergence forecasting using the HelioFM when validating on AR11698 (left) and AR11726 (right).
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* y € RS denote the target continuum intensity per cell.

The model is trained to approximate a function fy : R7*¢*S — RS that maps the temporal and spatial patterns of
input features to the scalar output intensities.
The five input channels correspond to two types of physical measurements:

* Mean Unsigned Magnetic Flux (1 channel): captures the net strength of local magnetic fields in the region.

* Doppler Velocity Acoustic Power (4 channels): measured across four distinct frequency bands: 2-3, 3-4, 4-5,
and 5-6 mHz, these capture multi-scale oscillatory dynamics linked to wave propagation and subsurface flows.

Spatially, each active region is tracked and cropped into a 9x9 grid of tiles. However, we discard the top and bottom
rows for normalization reasons (e.g., to suppress edge artifacts), resulting in a 7x9 = 63 spatial cells. For each time step,
the full tensor X; € RE*S captures these 5-channel inputs over the grid.

Dataset and Temporal Context: The dataset comprises 3,479 unique regions, indexed and temporally aligned. For
each region:

¢ Input timestamps span a window of 120 steps (~24 hours),

* QOutput timestamp is a single future point for which continuum intensity is predicted.

Evaluated Model Architectures

We explore two complementary spatiotemporal modeling paradigms: SpatioTemporal Transformer and SpatioTem-
poral ResNet. The SpatioTemporal Transformer model is a two-stage Transformer that sequentially models temporal
and spatial dynamics. Its structure reflects a deliberate architectural bias aligned with the problem’s domain priors:

1. Temporal Attention (per cell): For each of the 63 spatial grid cells, we treat the 120-step sequence of 5-channel
inputs as a time series. These are projected to a d = 64-dimensional embedding and passed through a Transformer
encoder with positional encodings, allowing the model to learn temporal dependencies in each spatial location
independently.

2. Spatial Attention (per timestep): At each of the 120 timesteps, the spatial pattern of cell embeddings is modeled
as a sequence of 63 tokens. A second Transformer block captures interactions and correlations between different
locations on the solar disk.

3. Output Head: After pooling over time, the spatial embeddings are passed through a linear regressor to predict a
scalar continuum intensity for each cell.

This modular design allows the model to explicitly factorize temporal and spatial reasoning, which is beneficial for
interpretability and transfer across regions with similar temporal but different spatial dynamics.

As a second baseline, we also implement a 3D convolutional model based on the ResNet-18 video backbone
(r3d_18),i.e., SpatioTemporal ResNet. Here, the input tensor is reshaped to match the expected input for Conv3D
networks:

o X — REXCXTXHXW with H=1,W =63, and C = 5.

This network is initialized with pretrained weights (optional), and the first convolutional layer is modified to accept
5 input channels instead of 3 (RGB). The final fully connected layer is replaced to regress 63 outputs. This model
captures hierarchical spatiotemporal correlations through convolutional filters, offering a computationally efficient and
generalizable baseline.
Results and Observations: Models are evaluated using mean squared error (MSE) and mean absolute error (MAE) over
all 63 spatial grid cells, averaged across held-out validation regions. Since outputs are per-cell continuous intensities,
these metrics offer a direct measure of spatial forecasting accuracy.
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Solar Flare Forecasting

Solar flare forecasting is framed as a binary classification task where the goal is to predict whether a strong solar
flare (i.e., M- or X-class) will occur within a 24-hour window following a given observation time ¢. The prediction
window spans the interval [t,7 + 24) hours. Within this window, multiple solar flare events may occur. To assign a label
to the input at time ¢, two labeling strategies are used:

¢ Maximum Flare Intensity: We select the flare with the highest intensity in the 24-hour prediction window. If
this maximum intensity exceeds a threshold of 10~ W/m?, the input is labeled as positive (flare will occur);
otherwise, it is labeled negative.

* Cumulative Flare Intensity: We sum the intensities of all flares that occur in the prediction window. If the
cumulative intensity exceeds a threshold of 10, the input is labeled positive; otherwise, negative.

Problem Formulation: Given solar observation data at time ¢, the goal is to predict whether a significant solar flare
will occur within the subsequent 24-hour window, i.e., in the interval [¢,7 +24). This is framed as a binary classification
task:

f(x) = {0,1}

where x, € ROH*W (or potentially R” **#*W for temporal stacks) represents the multi-channel input image (or
sequence) at time ¢, and the output is a binary label:

1, if aflare is expected in [¢,7 4 24)
Ve = .
0, otherwise

To determine y;, two flare labeling strategies are considered:

¢ Maximum Flare Intensity: The label is set to 1 if the maximum flare intensity in [¢,7 4+ 24) exceeds a fixed
threshold O = 10~ W/m?2.

o Cumulative Flare Intensity: The label is set to 1 if the sum of all flare intensities in [r,7 + 24) exceeds a
threshold Og,,, = 10.

Evaluated Model Architectures: We evaluate the performance of several standard convolutional neural network
(CNN) architectures adapted for binary classification. Each model takes in spatial or spatiotemporal representations
of solar magnetic field or other physical parameters (details omitted here) and outputs a binary prediction. Evaluated
architectures include the following:

* AlexNet: A lightweight CNN with five convolutional layers followed by three fully connected layers. Its shallow
depth makes it faster to train and less prone to overfitting in small datasets.

¢ MobileNet: A mobile-optimized architecture using depthwise separable convolutions to reduce computational
cost. Useful for efficient forecasting on edge devices.

* ResNet18 / ResNet34 / ResNet50: Residual Networks with varying depths (18, 34, and 50 layers respectively),
incorporating skip connections to enable better gradient flow and deeper representations.

All models are modified with a final fully connected layer followed by a sigmoid activation to output a probability
score for binary classification.
Results and Obsersations: Table 5 shows the evaluation metrics we used for solar flare forecasting:

* TSS (True Skill Statistic): Measures the model’s ability to distinguish between flare and non-flare events.
¢ HSS (Heidke Skill Score): Accounts for both hits and false alarms.
* CSS (Composite Skill Score): Provides a balanced measure as the geometric mean of TSS and HSS.

* F1 Score: Harmonic mean of precision and recall.
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Model TSS HSS CSS F1

AlexNet 0.359 0354 0.356 0.679
MobileNet 0.326 0.312 0.319 0.662
ResNetl8  0.320 0.317 0.318 0.660
ResNet34  0.290 0.289 0.289 0.645
ResNet50  0.261 0.281 0.271 0.627

Table 5. Solar Flare Forecasting Performance

¢ TSS (True Skill Statistic):

TP FP
" TP+FN FP+TN

TSS
Measures the ability to distinguish between flare and non-flare events. Ranges from -1 (inverse prediction) to +1
(perfect prediction), with 0 indicating no skill.

* HSS (Heidke SKill Score):

2(TP-TN—FP-FN)

HSS =
(TP+FN)(FN+TN)+ (TP+FP)(FP+TN)

Evaluates performance relative to random chance, considering both hits and false alarms. Ranges from —co to 1.

¢ CSS (Composite Skill Score):

VTSS x HSS, otherwise

It measures the geometric mean of TSS and HSS when they are positive.

if T RH
CSS:{O, if TSS < 0 OR HSS < 0

¢ F1 Score:

Fl — 2 - Precision - Recall _ 2TP
" Precision+Recall =~ 2TP+FP+FN

Harmonic mean of precision and recall, balancing both false positives and false negatives.

The results indicate that AlexNet performs best among the evaluated architectures across all metrics, potentially due
to its shallower structure and better generalization on limited data. Deeper architectures such as ResNet50 may suffer
from overfitting or excessive capacity relative to the dataset size.

Solar Wind Forecasting

Solar wind forecasting is a critical regression task aimed at predicting the solar wind speed at a given spatial
point, specifically within a prediction window of 4 days following an observation time ¢. Precise forecasting of solar
wind speeds is fundamental for mitigating the adverse effects of space weather on satellite communication systems,
navigation systems, and electrical grids on Earth.

This dataset comprises scalar measurements of solar wind speeds, recorded hourly from 2010-01-01 through
2023-12-31, resulting in a temporally rich dataset with substantial coverage of solar cycles. The solar wind speed values
exhibit significant variability, ranging from 2.4 x 10? km/s to 8.8 x 10 km/s.

Problem Formulation

Formally, given solar observation data (such as AIA and HMI multi-channel solar imaging data) represented by x;

at observation time ¢, the task is to predict the scalar solar wind speed at time ¢ + A¢, where Ar = 4 days:

Yerar = f(X),

where x; € ROH*W represents the multi-channel, high-resolution input imagery data at time ¢, and y, 5, € R
represents the predicted scalar solar wind speed.
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Evaluated Model Architectures:Figure 9 illustrates the architectures utilized for the solar wind forecasting task,
emphasizing the distinction between attention-driven and baseline UNet approaches.
We explored and benchmarked several state-of-the-art deep learning architectures detailed below:

* Attention UNet: The Attention UNet architecture enhances the traditional UNet through the integration of
attention gates, facilitating dynamic suppression of irrelevant spatial features and emphasizing salient regions
pertinent to predicting solar wind characteristics. Attention gates, introduced within skip connections between
encoder and decoder paths, adaptively weigh encoder outputs based on decoder contexts, significantly improving
the discriminative capability of the model. Given the large resolution (4096 x 4096 pixels) of solar imagery
data, adaptive average pooling followed by convolutional layers was strategically employed to condense feature
representations, subsequently enabling precise regression to the scalar solar wind speed.

« Standard UNet: A standard UNet architecture served as a robust baseline, providing a fundamental encoder-
decoder structure with straightforward skip connections. Its primary role was to gauge the incremental benefit
derived from attention mechanisms explicitly integrated into the Attention UNet model.

* ResNet-based Convolutional Models: As an additional comparative baseline, we employed ResNet architectures
(ResNet-18, ResNet-34, and ResNet-50) to leverage deep residual learning’s inherent capabilities in capturing
complex hierarchical features. These models were initially pre-trained (optional) and specifically adapted for
solar data by modifying the first convolutional layer to accept 13 input data representative of solar observational
channels (instead of the standard RGB inputs). The final layer of the network was adapted to produce a single
scalar output directly.

Notably, we achieved optimal performance metrics and lowest validation loss with the ResNet-50 architecture, likely

attributed to its deeper structure and larger parameter count (33 million parameters), facilitating richer representation of
complex spatiotemporal solar dynamics.
Results and Observations: Our experiments indicate that incorporating attention mechanisms (Attention UNet)
improves the predictive performance over standard UNet, highlighting the importance of adaptive feature weighting
in solar wind forecasting. Additionally, deeper architectures such as ResNet-50 outperform shallower networks,
emphasizing the complexity and depth required to model solar physics phenomena effectively. These observations
underscore a fundamental insight: architectural complexity and context-aware feature selection are critical components
in accurately predicting space weather events. Training losses for this task can be found in Figure 8.

Solar EUV spectra prediction

Predicting solar Extreme Ultraviolet (EUV) irradiance accurately is crucial for understanding and forecasting
space weather, which directly impacts satellite operations, communication systems, and navigation. This task involves
forecasting irradiance across a spectrum of 1343 spectral channels, reflecting complex spatial and temporal patterns
captured by solar imagery.

Formally, we frame this as a regression problem: Given multi-channel solar imaging data x, €
the goal is to predict a continuous vector of EUV irradiance values y; € R1343:

REHXW 4t time ¢,

Yt = f(Xz)

Evaluated Model Architectures: To establish baselines for this task, we evaluated several deep learning architectures
commonly used in computer vision and scientific regression tasks. Table 4(a) for main paper presents the perfor-
mance of these baseline models, comparing both convolutional networks (ResNet variants) and segmentation-inspired
architectures (U-Net and Attention U-Net).
Results and Observations: The performance metrics employed include Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and validation loss. These metrics provide complementary views of predictive accuracy and
model robustness. U-Net and Attention U-Net significantly outperform traditional convolutional networks, underscoring
the efficacy of architectures that inherently model spatial correlations and multi-scale features in predicting complex,
high-dimensional irradiance spectra.

This predictive modeling task not only benchmarks model capabilities in handling high-dimensional regression but
also advances the applicability of deep learning methods to critical solar physics-driven applications.

21/25



-' (8,120, 5, 63)
view | input: | (8,120, 5,63)
depth:1 | oueput: | (8, 120, 5, 1, 63)

(4, 63,120, 5)
(4, 63,120, 5)

Y

permute (8,120,5, 1, 63)

contiguous

G (.5,120,1, 63)

contiguous | InPut: | (8 5,120, 1, 63)

depth:1

output: | (8, 5, 120, 1, 63)

Conv3d | InPut:
depth:3

output:

BatchNorm3d
depth:3

oderLa e,] input: ](252, 120, 64) |

depth:2 I output: I (252, 120, 64) |

@ | (8, 64,120, 1, 32)
(8, 64,120, 1, 32)

depth:2

ayer | input: [ (252,120, 64) |
qutput: 1(252, 120, 64) |

input: | (8, 64, 120, 1, 32)

view (252,120, 64)
depthil [ ouput: | (@, 63, 120, 64)

BasicBlock
depth:3 [yt | (8, 64, 120, 1, 32)

L

BasicBlock | input: | (8, 64,120, 1, 32)

depth:3

output: | (8, 64, 120, 1, 32)

BasicBlock | InPut: | (8, 64,120,1, 32)
depth:3 [ ueput: | (8, 128, 60, 1, 16)

L

contiguous | iNPUt: | (4,120, 63, 64)

depth:1

output: | (4, 120, 63, 64)

BasicBlock | inPut: | (8,128, 60, 1, 16)

depth3 [ output: | (8, 128, 60, 1, 16)

(4, 120, 63, 64)
(480, 63, 64)

BasicBlock | input: | (8,128, 60, 1, 16)

depthi3 [ output: | (8, 256, 30, 1, 8)

TramstormerEcode] ' Bascalock
. : depth:3
1 [ TransformerEncodertayer | inPut: | (480, 63, 64) ! frgigaggiguging nfgagagniagaguiy
! pth:2 output: | (480, 63, 64) | | | Sequential !
1 I 1
| ! 1 | Basicaiock ‘
[ 8 [
| , 1| depth:3 |
| | TransformerEncodertayer | PUt: | (480. 63.64) |, ! !
\ i output: | (480, 63, 64) | | | |
g g g | [
| | BasicBlock ,
depth:3
view [ imout [ 40,63.60 | 1 1
" Adapti !
, daptiveAvgPool3d : \
1 1 !
! | adaptive_avg_pooi3d e [zl el |
' cen output: | (8,512,1,1,1) | |1
| I
!
!
I
!
I
!
I
1
!
I
!
I
!
I
1
!
I
!
I
!
(a) SpatioTemporal Attention (b) SpatioTemporal ResNet

Figure 7. Comparison between the proposed SpatioTemporalAttention model and a baseline SpatioTemporal ResNet. The
SpatioTemporal Attention model explicitly decomposes the modeling task into two sequential Transformer stages: temporal attention 29/95
applied independently to each spatial grid cell, followed by spatial attention across all cells at each timestep. In contrast, the
SpatioTemporal ResNet baseline uses a 3D convolutional backbone adapted from r3d_18 to learn spatiotemporal features jointly

through hierarchical convolutional filters.



train_loss

— solar wind resnet152 solar wind t101 = solarwind resnet50 — solar wind resnet34
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Figure 8. Training loss curves for various deep learning architectures on the solar wind forecasting task. The comparison includes
ResNet variants (18, 34, 50, 101, 152), U-Net, and Attention U-Net. Models with deeper architectures (e.g., ResNet152) and
attention mechanisms (e.g., Attention U-Net) tend to converge faster and reach lower final training losses, indicating their superior
capacity to model the input-output mapping for this regression task. Log-scale on the x-axis highlights early training dynamics.
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Figure 9. Detailed architectural diagrams of (a) the UNet model and (b) the Attention UNet model used for predicting solar EUV

irradiance and solar wind. The Attention UNet enhances the standard UNet architecture by incorporating attention gates, allowing
the network to selectively emphasize relevant spatial features and improve predictive performance in complex regression tasks such
as high-dimensional spectral prediction.
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train_loss
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Figure 10. Training loss curves comparing various baseline models (ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, UNet,
and Attention UNet) for the Solar EUV irradiance prediction task. UNet and Attention UNet show slower initial convergence
compared to ResNet variants but achieve significantly lower final loss values, highlighting their effectiveness in modeling complex
spatial patterns inherent to solar EUV spectra.
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