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Abstract 

Loft is an automated parametric mesh generation code that is designed 

to model stiffened-panel aerospace vehicle structures. After more than 20 

years of in-house use and development, the program was released to the 

public in 2023. Since that release, significant additional features have 

been added, including new object types, new airfoil shapes, program flow 

control options, additional options for selecting parts of models, and sup-

port for creating boundary conditions, loads, and rigid element stitching 

from within the code. These additions address previous limitations of the 

code and significantly expand its application and usefulness.  

This memorandum is presented in two parts. The first part contains a 

technical paper with a brief overview of the code and its applications and 

a more lengthy discussion of the program’s new features. Part two of the 

memorandum is the updated program user manual. The manual includes 

in-depth tutorials that use the new features and a complete command ref-

erence. 

Introduction 

Loft is a tool that enables rapid creation of finite element models of aerospace components and vehicles 

suitable for conceptual and preliminary design studies. Its parametric modeling capabilities enable genera-

tion of many variations of a design for exploration of a design space and identification of regions of that 

space that are worthy of more refined design effort. Over the past 25 years, Loft has been used to model parts 

of a wide variety of aerospace systems, including the Next Generation Launch Technology (NGLT) wing, 

the payload fairing for the Ares V and the Space Launch System (SLS), the Low Boom Flight Demonstrator 

(LBFD/X-59), Human Landing System (HLS) reference landers, horizontal takeoff two-stage-to-orbit 

(TSTO) systems, and planetary atmosphere entry backshells. 

 

Loft’s manual was first published in 2011 [1]. The program itself was released for free public use via 

software.nasa.gov in 2023. Simultaneously, a NASA Technical Memorandum was released [2] with an over-

view of the code capabilities and a complete updated users’ manual. A conference paper and presentation 

[3] were written to describe applications and scenarios where Loft would be useful. Two workshop presen-

tations [4,5] described the uses of the program and the incorporation of Loft into a high-fidelity, low-maturity, 

design environment that is being created at NASA. This memorandum briefly summarizes the previous pub-

lications, describes the updated features of the program since its initial release, and includes an updated 

users’ manual for the current features of the code.  

 

The updated, version 4.0, Loft program is available for free via a request at software.nasa.gov. It comes 

packaged with this manual and all of the example files and small utility programs discussed in this document. 

 

Program Overview 

Loft is a finite element model (FEM) creation tool that takes a descriptive text file as input and generates 

a structural mesh in a wide variety of output formats, including NASTRAN, TecPlot, Virtual Reality Mod-

eling Language (VRML, now a subset of the X3D format), and Stereo Lithography (STL). Figure 1 illustrates 



 

6 

 

an eleven-line input file and two views of the finite element mesh that is produced by Loft from that input 

file. 

 

Loft has a powerful variable and math capability that adds to the program’s inherent parametric nature. 

Users can specify meaningful variable names with values. Math support includes addition, subtraction, mul-

tiplication, and division as well as trigonometric and hyperbolic functions, log, exponential, square and cube 

roots, absolute value, and truncation. Figure 2 illustrates the use of variables and math to generate a spherical 

tank model of a desired volume. Certainly, the calculation for the radius (or the value of pi) could be per-

formed outside of the input file and specified without the use of any variables. But, the variables add clarity 

and readability to the input and allow the user to quickly generate a family of models with different volumes 

by changing the value of the volume variable and the output filename. 

Figure 2. Variables and Math in Loft 

Figure 1. Example Loft input and output 
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   This math example also demonstrates the inherent parametric nature of the code. Settings that affect the 

cross-sectional (lateral) shape, dimensions, or mesh counts become the new defaults for later objects and 

do not need to be specified unless they need to change. Thus, the bottom half of the tank automatically 

used the shape, radius, and circumferential node counts from the top half. Only the axial values of the 

length and axial node count needed to be specified. Additionally, the default position for new objects is 

immediately behind the previous object so that sequentially specified objects are assembled into a stack. 

The inheritance of lateral settings greatly simplifies the creation of models that are stacks of dome and 

section objects. Aircraft fuselages and rocket bodies are common components that benefit from this ap-

proach. Figure 3 shows an expanded half-model of a TSTO orbiter. This parametric model is explored in 

full detail in the included users’ manual. 

 

 

Loft Use Cases    

Loft is a general-purpose mesh generation tool. It can be used to create an extremely wide variety of 

models for multiple applications. But, there are three scenarios where it is a particularly well suited option 

that should be considered. 

 

The first use case is rapid modeling. A first cut model can be created in minutes with a very small number 

of input lines. Loft’s meaningful default values and intelligent updating of dimensions can substantially re-

duce the effort needed to make a first cut design. For instance, the cartoon-model of a generic hypersonic 

aircraft shown in Figure 4 was created with 89 lines of input, 26 of which were comments or variable defi-

nitions that made the file easier to read and update. Loft also created the STL format file that was used to 3-

D print the model. 

 

Figure 3. Expanded TSTO orbiter model created in Loft 
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   The second ideal use case for Loft is parametric design studies. The ease of changing dimensions or design 

variables and then writing variant model files enables studies of alternative designs and/or design-of-exper-

iments-style exploration of a design space. As illustrated in the discussion of Figure 2, a family of models 

can be generated extremely rapidly. 

 

   The NASA lunar lander reference vehicle shown in Figure 5 is a more detailed example of this capability. 

A 656-line input file (not included in this document) specified all of the dimensions of the lander in a few 

design variables. Loft’s math capabilites were then used to compute the location of each component, 

including the end points of dozens of support struts that are featured in Figure 5. When a global dimension 

was changed, a new, completely stitched, model could be created in moments. 

 

   The third ideal use case for Loft is as part of a multi-code batch analysis system. Its text input, command-

line operation, and text file outputs eliminate the need for an application programming interface (API) or 

graphical user interface (GUI.) 

 

Cerro et al. [6] describe the use of Loft as part of a complete conceptual vehicle sizing process. Eldred 

et al. [7] describe the incorporation of Loft into a multidisciplinary system driven by design-of-experiments 

to perform conceptual design of supersonic aircraft with complex wing and fuselage shapes as illustrated 

in Figure 6. The wings studied included a potentially large number of spanwise variations of chord lengths, 

airfoil shape, twist, and sweep angles. The fuselage configurations permitted arbitrary changes in vertical 

and horizontal diameters and vertical location along the length of the aircraft. These variations were 

Figure 4. A cartoon hypersonic aircraft FEA model and 3-D print 

Figure 5. Parametrically defined support struts on a NASA reference lunar lander 
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examined for level of induced sonic boom with the Loft generated structural models being used to predict 

vehicle weight for each configuration. Note that Loft generated these wing models as multiple trapezoidal 

planforms that automatically stitched together to form a single piecewise-trapezoidal model with arbitrary 

sweep, chord, span, twist, and airfoil shape for each section. 

 

 

A new low-maturity design capability using Loft is currently being built [5]. This system, the Structural 

Preliminary Analysis for aeRospaCe vehicles (SPARC), will use Loft to create conceptual-level finite ele-

ment analysis (FEA) models of components and vehicles, approximate loading from aerodynamics, ther-

mal, inertial, propulsion, control, and hydrostatic sources, and use the team’s existing high-fidelity FEA 

solution and sizing tools. Other team-developed pre-existing tools to parse NASTRAN input and output, 

balance loads, map values between dissimilar meshes, etc. will be incorporated to enable rapid conceptual 

design capturing fluid-thermal-structural-interaction (FTSI). 

 

Loft’s parametric modeling and mesh marking make it ideal for this application. Loft also features auto-

matic and manual grouping of nodes and elements to enable mapping of loads to only the appropriate por-

tions of the model and to enable other basic tasks such as boundary condition application. For instance, for 

the wing model illustrated in Figure 1, Loft created these 15 groups: 

 
Main Wing ROOT NODES         

Main Wing TIP NODES          

Main Wing ROOT SPAR NODES    

Main Wing ROOT RIB NODES     

Main Wing CARRYTHR NODES     

Main Wing SKIN UP ELEMS      

Main Wing SKIN LOW ELEMS     

Main Wing SPAR ELEMS         

Main Wing RIB ELEMS          

Main Wing QUARTER CHORD VECT 

Main Wing CT SKIN UP ELEMS   

Main Wing CT SKIN LOW ELEMS  

Main Wing CT SPAR ELEMS      

Main Wing ALL NODES          

Figure 6. Complex supersonic wing model. 
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Main Wing ALL PANELS 

 

Each group created by Loft has the user-specified component name (e.g., “Main Wing”) followed by 

descriptive text. Each group can be reported on by Loft on the output screen or to multiple differently 

formatted text output files. These files can be parsed and modified to create load and boundary condition 

instructions that are merged with the Loft mesh to create a full FEA model. Loft can also use these groups 

to modify or add to the model as shown in the following discussion. 

 

New Features 

The updated version 4.0 of Loft has many new features, including new and updated objects, input file 

flow control, and additional math and region operations. Support has been added for creation of NASTRAN 

boundary conditions, loads, and rigid elements, which improves Loft from a finite element mesh generator 

to a basic finite element analysis input file generator. The previous limitation of Loft that required manual 

stitching of wings, tails, and fins to the main body of the fuselage has been addressed with the ability to 

programmatically create rigid boundary elements (RBEs) that stitch corners of specified regions together. 

 

New and Updated Objects 

The simplest new object added to Loft is a node which is created from user specified coordinates. This 

capability enabled the new support for NASTRAN point masses and force distribution “spider” rigid bound-

ary element (RBE) creation. Figure 7 shows the TSTO orbiter fuselage with four user created nodes. Three 

are attached to point masses representing the oxidizer, fuel, and payload masses. These are connected by 

RBEs to the appropriate support bulkheads. The fourth user created node is at the rear of the vehicle repre-

senting the thrust of the engines. It is connected by RBE connections to the thrust ring where the engines 

would be mounted. The generation of these nodes and rigid elements is demonstrated in detail in the anno-

tated TSTO orbiter example included in the users’ manual. 

 

   The next class of objects are NASTRAN scalar or vector finite element analysis objects. These do not add 

to the structural mesh, per se, but do add mass, forces, pressures, temperatures, boundary conditions, or rigid 

boundary element connections to the model. Values can be discrete at a node or smeared across multiple 

nodes or elements. These objects are currently only written to NASTRAN format output files. However, 

RBEs are written as linear elements to VRML output files so that they can be visualized. This class of object 

is also demonstrated in the TSTO orbiter example and documented together in the “BC/RBE/ 

FORCE/MASS/PRESS/TEMP” object description in the manual. Figure 8 shows a Loft-generated constant 

pressure load in red applied to the upper skin of a wing. 

 

   A basic truss object was added that can represent a thrust structure or a variety of open interstages on 

launch vehicles. Figure 9 shows a truss object connecting a circular cross section to a square cross section. 

Figure 7. TSTO fuselage with 4 user-created nodes "spidered" to the mesh 
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   A simple trapezoidal block made of solid elements was added to Loft. Its primary application 

 is in thermal analyses. Figure 10 shows a block object.  

Figure 9. Loft Truss Object 

Figure 8. A pressure load applied to the upper wing skin of the TSTO orbiter 

Figure 10. A trapezoidal block made of solid elements 
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   A significant update was made to the wing object type. In addition to the previously supported 

4- and 5-digit NACA airfoil cross sections, biconvex and user-defined cross sections are now 

supported. Also, different airfoil shapes can be used on the top, bottom, root, and tip of a wing. 

The most common use of this feature is to specify different wing thicknesses at the root and tip 

of the wing. Figure 11 shows a biconvex airfoil. Figure 12 shows a user-defined diamond cross 

section with spars, and Figure 13 shows a wing with different upper and lower shapes. Caution 

should be exercised when combining cross sections with significantly different thicknesses as 

spars can become sloped when connecting matching percentages along the top and bottom 

curves. 
  

Figure 11. Wing with a biconvex cross section 

 

 

 

 

 

Figure 12. Wing with user-defined diamond cross section 
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Figure 14 shows a stiffened box made from a square “airfoil” with ribs and spars. 

 

 
Figure 14. A square "wing" with ribs and spars. 

 

 

Program Flow Control 

   Another significant addition to the new version of Loft is a variety of tools to control program 

flow. Three new commands (“linelabel,” “goto,” and “if”) allow loops and conditional execution 

of input file sections. These new commands are made possible by a change in Loft such that it no 

longer reads and immediately executes each line of the input file. Rather, it reads the entire input 

file into memory before execution starts. This approach also enables the new “include,” “mirror,” 

and “clone” commands. 

   The new “include” command enables the insertion of external input files into the project. These 

included files could contain common values that are used by multiple projects or could function 

as a subroutine where input parameters are changed before each call. Figure 15 illustrates a 

Figure 13. Wing with biconvex upper shape and NACA 2440 lower shape 
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simple spherical tank case where the same include file operates as a subroutine to generate two 

different tank models. 
 

 

   The new “mirror” and “clone” commands are implemented as macros. The “mirror” or “clone” com-

mand is removed from the Loft input line stream and replaced by several clipboard (store and recall) and 

rotation commands that perform the requested operation. The “list input” command can be included after 

the macro to display the modified input line stream if desired. Figure 16 shows a wing with two clones. 

 

 

Figure 15. Main input file and include file used as a subroutine 

Figure 16. A wing(red) and 2 clones(yellow) 
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Use of the program flow control commands to execute a loop is illustrated in Figure 17. When creating 

loops it is important to avoid creating infinite loops. To avoid this, initialize the counter outside of the 

loop and increment the counter within the loop.  

 

   The program control commands can also be used to generate variations of a model in a single input file. 

The TSTO orbiter input file has a variable “fullvehicle” defined near the top of the file. This is used as a 

flag to determine if a half or full vehicle is generated when Loft is run. In both cases, a half model of the 

entire vehicle is initially created. Then, if the value of “fullvehicle” is true (i.e., non-zero) that half model 

will be mirrored to create a full model. If the variable is false (zero) the mirroring operation is skipped 

and symmetric boundary conditions are created for the plane of symmetry (Figure 18). See the TSTO ex-

ample for more details. 

 

 
Figure 18. Loft-generated symmetric boundary condition (degrees-of-freedom 3, 4, and 5) on centerline of a half vehicle 

model with closeup detail 

 

Math Updates 

   Several items were added to the math functionality in Loft. Hyperbolic functions (sinh, cosh, tanh, 

asinh, acosh, and atanh) were added to Loft’s function list. Two standard mathematical constants, pi and e 

can be produced with “@pi” and “@e.” The system time and the cpu clock time can be produced with 

“@time” and “@clock.” These only have useful meaning as differences in time: 

 
define starttime @time 

Figure 17. Illustrating a loop in Loft 
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define startclock @clock 

<stuff happens> 

define endtime @time 

define endclock @clock 

define elapsedtime $endtime - $starttime 

define elapsedclock $endclock - $startclock 

list variables 

 

   The ability to compute the minimum and maximum values of coordinates in the current mesh was 

added. These are invoked as global variables. For instance, “@maxx” and “@minz” will return the maxi-

mum x value and the minimum z value, respectively. 

 

   Logical inequality operators were added. The operators “>,” “<,” “>=,” “<=,” “=,” and “!=”(not equal) 

will return a 0 if the comparison is false and 1 if the comparison is true. These are primarily targeted for 

use with the new “if” program flow control command but can be used in any math operation within Loft. 

 

Region Mode Updates 

   Regions are temporary subsets of the current model. Subsets can be specified by combinations of object 

name (“Main Wing”), property name (“Main Wing Upper Skin”), labels (“OML”) and/or by various geo-

metric location checks. Once created, a region can be written to output, modified, and/or marked to be 

used later. 

 

   The previous release of Loft allowed the geometric selection of nodes that fell inside a specified sphere, 

axially aligned cylinder, or box. The new release adds selection by coordinate comparison. Any of the 

three coordinates of a node can be compared to a specified value and added/removed if that coordinate is 

equal, greater than, greater than or equal, less than, or less than or equal to the value. A simplified ap-

proach is also available where nodes can be added if a coordinate is positive or negative. 

    

   These checks can be combined to bracket a desired portion of the model. For instance, one could create 

a region comprised of the nodes from the “Main Wing Spar” with X coordinates less than the fuselage 

width. 

 

   A pair of new region operations called “ikeep” and “ekeep” are the inverse of the older “irem” and 

“erem” operations. In this case, only nodes that meet the specified criteria are retained. Those that do not 

are removed from the region. The example input below adds all of the nodes on three tank-support bulk-

head frames and then keeps only the ones on the inner edge of the frame by using a model variable that 

contains the radius of the tank. It then removes beam alignment nodes from the region. Finally, the re-

maining nodes are marked or labeled as “fwd tank support nodes.” This label is used later in the model. 

 
region 

   mkadd fwd fwd ring frame ALL NODES 

   mkadd fwd mid ring frame ALL NODES 

   mkadd fwd aft ring frame ALL NODES 

   ikeep xcyl 0. 0. 0. $tankscale + 1.  

   irem xcyl 0. 0. 0. $tankscale / 2. # remove beam alignment nodes 

   mark node fwd tank support nodes 

 

   An optional variation of the “rwrite” region output command was added to the new release. The user 

can now specify the output format and filename as arguments to the “rwrite” command, making the 
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syntax the same as the non-region “write” command. If this new option is used, a new file is always cre-

ated, overwriting any old file of the same name. If appending to an existing file is desired, the new “rap-

pend” command can be used with the same syntax of format and filename as arguments. The previous 

“rwrite” syntax with no arguments and the format, filename, and overwrite/append choice specified with 

separate commands remains available. 

 

   The last addition to the region mode commands is the “corner” command. This operation identifies the 

centroid of the nodes in the region and then generates a list of the nodes that are the furthest away from 

that centroid in each of the eight coordinate quadrants. If no nodes fall in a quadrant, no node is saved. 

Thus, in most cases a planar region will generate four corners and a non-planar region will generate eight. 

Some rotation of the region could be required if the desired results are not produced automatically. The 

argument for the corner command is the name of a group that the nodes are to be added to. Below is an 

example region command that finds the corner nodes of a portion of a bulkhead below a specified y coor-

dinate and saves them in a group called “Front bulkhead corners.” 

 
region 

   ppadd payload bay fwd bulkhead 

   irem yge -80  

   corner Front bulkhead corners 

 

Automatic Stitching 

   One of the previous limitations of Loft was the requirement to manually stitch wings to a vehicle fuse-

lage. The combination of the new “rbe” object type, the region selection additions, and the region “cor-

ner” operation now enable automatic generation of stitching rigid elements. Consider the following exam-

ple code from the TSTO orbiter model. It uses vehicle parametric dimensions to identify the portions of 

the wing spar and the fuselage bulkhead that should be connected, uses the “corner” operation to identify 

the corner nodes on each mesh portion, and then generates rigid boundary elements to connect the two 

objects. Figure 19 illustrates the new RBEs. 

 
region 

   mkadd mainwing stiffeners CARRYTHR NODES 

   irem xgt $spar1pos + 5.  

   irem zlt $fusescale * -1. + 5. 

   irem zgt $fusescale - 5. 

   corner mainwing fwd corners 

region 

   ppadd payload bay fwd bulkhead 

   irem yge -80.0 

   corner Front bulkhead corners 

object rbe forward wing rbes 

   group1 mainwing fwd corners 

   group2 Front bulkhead corners 
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Other NASTRAN Updates 

   The new scalar/vector NASTRAN objects can be added to “rbe” type groups, which applies a mark or 

label to them. These labels can then be used in the region mode to write them out along with the portions 

of the nodes and elements that have been added to the region.  

 

   Four new parameters have been added to the NASTRAN settings in Loft. The new parameter “thick” 

can be used to change the default panel thickness that is written to PSHELL cards. The “sol” parameter 

can specify a solution type. The “spc” and “load” parameters allow the selection of “setid”s for the 

boundary conditions or loads. If either or both “spc” and “load” parameters are specified, then a simple 

case control block will be added to any NASTRAN bdf that is written. That file can then be directly ana-

lyzed in NASTRAN with no further editing required.  

 

   A very limited support for thermal analysis has also been added. The scalar/vector NASTRAN object 

can be used to generate nodal initial or boundary condition cards for specified nodes (TEMP or thermal 

SPC cards.) 

 

   Finally, the new “hmcom” and “nohmcom” parameters can be used to toggle on and off (off is the de-

fault) comments in the NASTRAN output files that mimic the comments created by HyperMesh. These 

comments aid in importing models into HyperX and automatically grouping the mesh by the object names 

specified in the Loft input file. The format of these comments has been reverse-engineered to successfully 

load into HyperX, but updates to HyperMesh and HyperX could break this functionality in the future. 

 

Conclusions 

   Loft is a powerful finite element mesh generator. Recent updates to the code have increased that power 

with additional object types and options. Some previous shortcomings, including manual stitching of 

wings to vehicle bodies, have been addressed with support for automated stitching.  Added support for 

generation of force, pressure, mass, temperatures, boundary conditions, rigid boundary elements, and case 

control block generation has added basic finite element analysis file creation to the tool. 

 

The updated, version 4.0, Loft program is available for free via a request at software.nasa.gov. It comes 

packaged with this manual and all of the example files and small utility programs discussed in this document. 

 

Figure 19. RBEs stitching spar to bulkhead 
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Chapter 1: Introduction 

Loft is an automated, parametric, mesh generation code designed for aerospace vehicle structures. Based 

on user input, it can generate meshes for wings, noses, tanks, fuselage sections, thrust structures, etc. As 

the mesh is generated, each element is assigned properties that mark what part of the vehicle it is associated 

with. This property assignment is an extremely powerful feature making possible detailed analysis tasks 

such as load application and sizing. 

Loft can save meshes in a wide variety of formats, including NASTRAN bulk data file (bdf), EDS’ I-

DEAS Universal File (unv), Abaqus input file (inp), TecPlot, Virtual Reality Modeling Language 2.0 

(VRML, now a subset of the X3D standard) and Stereo Lithography (stl) for 3-D printing. The property 

assignment scheme was designed to make sizing in Collier Research’s HyperSizer and HyperX easy. Sup-

port for other mesh storage formats can be added as needed.  

This Manual 

This manual consists of eight parts: 

• An introduction and overview of the program and how it works.  

• Practical tutorials on constructing a variety of vehicles and components and using many of Loft’s 

features.  

• Discussion of the powerful region concept in detail.  

• Tips and best practices for the use of Loft.  

• A technical/programmer’s reference describing how the code is written and how to add to it.  

• Various external utility programs that have been written for Loft.  

• A reference guide giving details on all commands and objects.  

• Annotated complete example input files.  
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This manual contains a digital table of contents to aid in navigation. It can be accessed from the 

Bookmarks option in Adobe Reader or the Navigation Pane in Microsoft Word. Open the table of contents 

and use it to jump around or search as needed to find the tutorial or command syntax needed for your current 

project. 

 

Manual Table of Contents in Microsoft Word and Adobe Reader 
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Mesh Construction 

Loft uses very basic finite elements: 4-node quadrilaterals, 3-node triangles, 2-node bars, 8-node solids, 

and 2-node beams. It uses these simple elements and user input dimensions to build complex full vehicle 

finite element meshes.  

A vehicle is described starting at one end, typically the nose in the case of a fuselage. The user specifies 

that first component’s shape, dimensions, mesh density, and position. The adjacent component is described 

next, and the process is repeated in axial sequence until the entire structure has been defined. Loft copies 

the dimensions and mesh density from object to object and automatically positions a new object directly 

behind the previous one, allowing easy construction of a sequential stack of objects. This minimizes user 

input, with only changes from the default values needing to be specified. In the exploded view above, the 

example booster object contains eighteen “objects” including ring frames and longerons.  Yet it can be built 

from a 100-line text input file. 

Node ordering is set so that element normal vectors point outward. In situations where this is not the 

desired behavior (such as a concave tank dome), most object types support a flip parameter that reverses 

element node ordering. 

Nomenclature 

A variety of fonts and styles are used in this manual for distinct purposes. Italics are used to introduce 

new terms and when the Loft program itself is named.  The courier font is used for input file examples, 

commands, parameters, and references. 

Terminology 

The lowest level geometric entity used by Loft is a curve. A curve is a two-dimensional object such as a 

circle, semi-circle, or box. Loft includes a library of basic curves and others may be added to the code as 

needed. Alternatively, Loft also features several ways for a user to specify a curve in the input file, including 

linearly interpolated curves and compound curves built up from any previously defined curves. Curves can 

be used to create fuselage cross sections as well as for defining wing airfoils beyond the built-in airfoil 

options. 



 

23 

 

An object is a three-dimensional meshed part made by either extruding one curve or linearly interpolat-

ing an extrusion between two curves. (Some objects, such as bulkheads or a ring frame, are actually two-

dimensional). Objects include parts such as nose cones, tank domes, tank barrels, bulkheads, etc. Each 

object is defined separately and has its own name and parameters. 

A stack is a collection of objects that may make up an entire vehicle. Each object is added to the current 

stack as it’s created, and the full stack is written by the write command. The new command can be used 

to start a new stack. The store command can be used to assign a name to the current stack, to save it in 

memory (to a temporary internal clipboard which is lost when the program exits), and to start a new stack. 

The recall command is used to copy a stored stack back into the current stack. Store and recall can 

be used to control the scope of object movement, sizing, and distortion commands, as well as to build differ-

ent configurations of a multi-part vehicle (e.g., Shuttle with external tank (ET) and solid rocket boosters 

(SRBs), Shuttle with just ET, Shuttle alone). 

Object Types 

There are a few basic types of objects. Meta-objects are simply macros that combine several of the basic 

types. Any number and combination of these object types can be created and merged into a single mesh. 

Domes are the class of extruded objects taking a single curve to a single nose point.  These objects can 

taper to the nose point in several ways, resulting in elliptical domes, conical domes, parabolic noses, ogive 

noses, power-law noses or flat bulkheads. Optionally, a droop can be added to a dome to produce simple 

aircraft nose objects. Domes are meshed with quadrilateral panel elements, except at the nose point where 

triangular elements are used. 

Sections are the class of objects that are extruded between two curves. This extrusion is linear and results 

in parts that can represent tank barrels, fuselage barrels, thrust structures, payload bays, etc. Sections are 

meshed with quadrilateral panel elements. A truss object similarly connects two curves. However, the two 

curves are meshed with beams or bars and are connected by diagonal struts made of beams or bars. 

Frames and Dframes are the classes of objects that distribute beam elements along a curve. These can 

use a single curve as their basis to align with a dome object or be positioned between two curves to align 

with a panel section. They can run circumferentially or longitudinally (ring frames or longerons). The frame 

object type is used to stiffen a section object and the dframe object type is used to stiffen a dome object. 

A wing is an extruded surface with internal stiffening (ribs and spars) and optional carry-through. Wings 

are meshed with quadrilateral panel elements except at the leading edge of each rib where triangular ele-

ments are used.  

A tank is an example of a meta-object macro that combines two dome objects and a section object in a 

consistent way. It allows for somewhat fewer options than building the tank up from lower-level objects. A 

Stifftank is a meta-object that produces a ring frame stiffened tank. 

A beam object will generate a beam or a bar element by specifying the location of its endpoints. They 

are frequently used to specify struts; dome, section, and wing stiffeners are more easily generated with the 

frame, dframe, and wing options.  
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A node object specifies a single point in space by supplying its coordinates. Nodes are used when the 

location of a point mass or force needs to be specified. 

A box object is a stiffened trapezoidal box created with panels and beams that could represent a mattress 

tank with flat sides. A block object is also trapezoidal but is meshed with solid elements. Blocks are often 

used for thermal analyses. 

A class of objects that specify scalar or vector data that are applied to an element mesh is designed for 

output to NASTRAN files. These objects can specify scalar values such a constrained degrees of freedom, 

pressure, and mass or vector values to specify a force’s components. See the tutorials on NASTRAN bonus 

features and automatic stitching as well as the command documentation for the BC/RBE/FORCE/ 

MASS/PRESS/TEMP object type. These objects do not create nodes or elements but can be la-

beled/grouped/marked and manipulated with the region mode operations.  

Property Marking 

One of the powerful features of Loft is the labeling of elements corresponding to their location on the 

model. This is accomplished by assigning dummy properties with descriptive names. (Actual property val-

ues are replaced in the analysis or sizing stage).  With an I-DEAS output file, each element has a physical 

and material property reference. Each type of property has a 40-character name available. For NASTRAN, 

property names are indicated as Patran-compatible comments on the element property and material cards. 

VRML output files are colored to indicate their property assignments. 

For simple domes and sections, the name of the object is placed in the physical property, referenced by 

all of its elements. The material property is used to indicate where on the object the elements are. The 

resolution of the material property name is controlled by the “components axial” and “components circum-

ferential” object parameters. A typical material property name could be “Axial 3 Circ 5.” Note that these 

are not element coordinates; there are generally more than one element per component in each direction 

(but there need not be). 

For wing objects and meta-objects like tanks, the physical property name will be more descriptive. It 

will start with the object name but then add details such as “RIB,” “SKIN UPPER,” or “DOME AFT.” For 

these kinds of objects, a short object name is recommended so that the full property name will fit in 40 

characters. An object name longer than 27 characters will be occasionally truncated. This truncation will 

be just enough to allow the full inclusion of the detail string. 

HyperSizer concatenates the physical and material property names to make component names. Thus, 

each group of elements with a unique combination of property names will be collected into a component. 

Typical component names will look like:  

“LOX TANK | AXIAL 5 CIRC 2” 

“CANARD SKIN LOWER | SB 2 CB 5” 

I-DEAS universal files that HyperSizer generates will contain property names that start with “(HSGEN)” 

and are followed by as much of the component name as will fit in 40 characters.  

Loft also generates a variety of groups (also called labels or marks) when running. These groups mark 

nodes that are on curve endpoints, lines of symmetry, wing attachment points, etc. These groups are named 
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based on their object name. Thus, for an object called “MyWing,” there will be groups called: “MyWing 

Root Nodes,” “MyWing Tip Nodes,” “MyWing All Nodes,” etc. 

The user can specify additional groups to which an object’s nodes or elements can be added, using the 

mark object parameter. Any number of marks can be specified per object and a particular group name can 

be used by any number of objects. For example, a small nose-cap object might belong to marked groups 

“Booster Nose Elements” and “Booster OML Elements.” 

The list command can be used to view the current property and group lists. Use “list mprops,” 

“list pprops,” or “list groups” to generate a list that is written to the screen.  

User Interface Introduction 

Loft is controlled by a text file input deck. The user specifies each object that is desired in the model. 

For each object, geometric data such as diameter, length, and position are supplied. Meshing variables such 

as the number of elements and the number of sizing components in each direction are also needed. Most 

input values are optional; default values will be used for any not supplied by the user. 

A Loft input deck is read line by line. Each line can be a comment, command, or a parameter for the 

most recent command. Any number of parameter lines can be given (including zero), with a new command 

line marking the end of the previous command and its parameters. All input is case-insensitive. 

Comment lines start with a pound sign, “#,” followed by any amount of text. Comments are ignored by 

the Loft code. Comments can also be placed on a line after a command or parameter by using the pound 

sign marker. 

Command lines cause objects to be created, output to be written, and variables to be set. There is a very 

short list of legal commands. 

Parameters are optional lines that specify details for commands. All parameters are optional and are 

used when the program default is not what is desired. Some defaults are fixed, but most defaults will change 

based on previous user input. For instance, the default position for a new object is immediately behind the 

previous object, and the default curve to extrude is the previous curve. Thus, the defaults will attempt to 

produce a stack of smoothly connected objects.  

To specify a parameter, add a line after the command with the parameter name followed by the new 

value. Parameter ordering does not matter for object parameters; an object is actually generated when 

the next command is encountered. Parameter ordering does matter for the move and region commands. 

Indenting of parameters is optional but can improve readability of the file. 

Input lines may contain basic mathematical operations, specified in infix notation with equal priority for 

all operations, e.g., multiplication and division are not given precedence over addition and subtraction. Cur-

rently supported operations include addition, subtraction, multiplication, and division along with logical 

operators greater than, less than, greater than or equal, less than or equal, equal, and not equal.  

Loft also supports user-defined variables using the define command. These variables may be com-

bined or modified using the basic math operations. 
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Here is a short example input file.  

Comments start with the # symbol, either alone on a line, or after some input. 

# This creates a circular to breadbox transition  

# for a half vehicle 

object section MyTransition 

   curve1 sc  # semi-circle 

   curve2 sbb # semi-breadbox 

   length 12 

# save 

write vrml MyTransition.wrl 

 

The three parameter lines for the section object are indented for clarity. This is not required by Loft.  

Loft is designed to be run from a command line. Windows users may call this a “DOS shell.” One way 

to open a command line interface in Windows is to select “Run…” from the Start Menu, then type “cmd” 

as the name of the program to be run. Then use the “cd” command to change directories to where the input 

file and Loft executable are located.  The input file name is given as an argument when Loft is run, such as: 

loft mytransition.txt 

 

On a Windows machine another option is to create a batch file to run Loft. Start with creating a text file 

with the desired command. It’s suggested to add a greater than symbol and then the name of a file to capture 

the output from Loft. Your new file text would end up something like:  

 

loft inputfile.txt >outputfile.txt 

 

Save that text file, then change the extension to “.bat.” Now you can double click on the file to execute 

the stored command or commands. A DOS window will open, show you the command running, and then 

close. The specified output file can be read to see the run-time output from Loft. Other operating systems 

have similar functionality (Linux/UNIX shell scripts, etc.) 

 

Special Characters in Loft 

Several symbols are used as flags for Loft’s input parsing routines. They indicate that the text following has 

a special meaning. See the “Variables and Math” tutorial (project 7 in chapter 2) for a more complete 

discussion of most of the symbols. Here is a current list: 

 

# - The number or pound symbol is used to start a comment. It can be used at any point on an input line. 

Everything after the pound symbol is ignored by Loft. 

$ - The dollar symbol is used to recall a user variable that has previously been set using the define com-

mand.  

@ - The at-sign symbol is used to recall a system variable. A list of system variables is provided in Chapter 

7’s “System Variable List” charts.  

% - The percent sign is used to call a math function such as sine or square root. See Chapter 7’s “Math 

Function List” chart. 

+, -, *, / - The plus, minus, star, and forward slash symbols are used for their corresponding math function: 

addition, subtraction, multiplication, and division.  
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>, <, =, >=, <=, != The less than, greater than, and equal symbols are used for their corresponding logical 

comparison operation. Less or greater than can be combined with an equal symbol and the exclamation 

mark can be used with an equal symbol to indicate “not equal.”  

 

Positioning in Loft 

Each object is automatically positioned by Loft in such a way as to produce a single, continuous vehicle. 

From time to time, this default positioning will need to be overridden. There are a wide variety of position-

ing, rotation, scaling and warping options available to the user. Most of these operations can be done at 

both the object and stack levels, with some significant ordering related differences between the two ap-

proaches. 

The default axes for a vehicle have X as the lateral direction, Y as the vertical direction, and Z as the 

vehicle axial direction. These axes are aligned in a right-hand rule configuration. Z increases as the stack is 

built. Another way to state this is that the 2-D curves are defined in the X-Y plane, with Z as the extrusion 

direction. If, as in the example vehicles included in this manual, the stack starts at the nose, then the positive 

z direction is aft on the vehicle. Use of the rotation commands prior to saving the mesh can align the mesh 

as the user prefers. NASA models will typically use X as the vehicle axial direction. Converting to this 

alignment requires two lines before saving the model: 

move 

roty 90 

 

   Each object has a local origin that is placed at the current default location. For wings, the local origin is 

the leading edge root node. For domes, sections, and frames, the local origin is the center point of curve 1.  

Most Loft vehicles start with an outward dome object (vehicle nose). Consequently, that nose will be 

specified with a negative length and will be created with most nodes residing on the negative Z-axis. The 

global origin will be at the rear of the nose (the center of curve 1). A translation must be specified if moving 

the global origin to the vehicle nose tip is desired. 

When a new section object is created, the default position for any subsequent objects is moved to the 

center point of curve 2 (to position it behind that section object). Other object types do not move the default 

creation point. However, any use of object level or stack level positioning commands (see the heading 

below) will change the default creation point of all following objects. Note that meta-objects, such as the 

tank type that contain sections, will also move the default creation point. 

The default positioning for a new object can be set back to the global origin with the reset command 

(which also resets all object dimension defaults to their initial values). A store command moves the 

current stack to an internal clipboard then resets the default position values as well. 

Object vs. Stack Level Positioning 

To use a positioning parameter at an object level, just add a line specifying the position parameter name 

(transx, relx, rotx, etc.) and value to the file section describing that object. The ordering of object 

level parameters does not matter. Once all parameters for the object have been read, the mesh is generated, 

and then the positioning is performed in the following order: warping, rotations, and then translations. 
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To position the entire current stack, the move command is used. Position parameters that are given, 

following a move command, are acted upon in the order in which they are read.  

Translations 

There are two types of translation setting options: absolute and relative. The absolute translation 

parameters transx, transy, and transy override the default position setting and assign an absolute 

position to the item. The relative translation parameters relx, rely, and relz can only be used at the 

object level. They add the user-specified value to the default value, rather than just replacing the default. In 

most cases, using the relative translation parameters is preferable, as a dimension change much earlier in a 

vehicle stack will not cause inaccurate positioning. 

Usage: <parameter> <value> 

Example: relx 2.0 

Rotations 

Similarly, there are absolute and relative rotation commands. They are rotx, roty, rotz, 

relrotx, relroty, and relrotz. As with the translation commands, the relative rotation commands 

can only be used at the object level. 

Usage: <parameter> <value> 

Example: relrotx 2.0 

Scaling 

The three scaling commands can only be used at the stack level. They are scalex, scaley, and 

scalez. (Use the curve xscale and yscale parameters at the object level to perform a similar func-

tion.) 

Usage: <parameter> <value> 

Example: scalex 2.0 

Warping 

Warping allows the distortion of part of a mesh. The warp commands use a coordinate axis as the divid-

ing line between parts of the mesh that are modified and parts that are not. The last two letters of the 

parameter specify the side of the axis (p for positive, n for negative) and the axis to use as the division. For 

instance, the warppx parameter will distort all nodes that start with positive x coordinates. 

There are two types of warping available: constant and gradient. Constant warps (warppx, warppy, 

warppz, warpnx, warpny, and warpnz) will scale all nodes in the specified zone by the given values. 

Gradient warps (gwarppx, gwarppy, gwarppz, gwarpnx, gwarpny, and gwarpnz) increase the 

distortion the further the node is from the given axis. The user-supplied value is the scaling applied for 

nodes that start one unit away from the axis. Nodes that start two units away from the axis are distorted 

twice as much, and so on. 
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Each of the warp parameters takes three arguments: the amounts to scale the x, y, and z coordinates of 

affected nodes. For example, the parameter “gwarpny 1.0 1.0 2.0” will scale the z coordinates of 

any node that starts with a y coordinate less than zero. A node that starts at y = –1 will have its z coordinate 

doubled, if it starts at y = –1.5 it will have its z coordinate tripled, etc. 

Only one warp operation can be specified at the object level per object (the last one read will be the one 

that is performed.) A warp operation combined with a scale operation can produce the effect of two warp 

operations. Any number of warp operations can be performed at the stack level. Interleaving warp param-

eters with translation parameters can give a very fine control over the nodes being distorted. 

These commands can significantly change element aspect ratios and lead to poorly formed elements. 

Use with care and verify that the desired effect is being obtained before proceeding. 

Usage: <parameter> <x scale> <y scale> <z scale> 

Example: warpnx 0.1 2.0 5.2 

 

Flipping 

By default, node ordering for elements is chosen such that element normals will point outward. The 

flip parameter can be used to reverse this ordering. It is valid for both objects and the full stack. Only 

panel node ordering is affected. A quad that started with nodes 1-2-3-4 will be flipped by reordering its 

nodes to 2-1-4-3. 

Usage: flip 

Turning 

This option is valid only at the stack level. A turn parameter reorders the nodes with the intention of 

changing the material orientation vector to be parallel to a different element axis. A quad that started with 

nodes 1-2-3-4 when turned will be connected 2-3-4-1. The actual interpretation of this operation will depend 

on the FEA package used. 

Usage: turn 

User Specified Curves  

Loft supports three ways of defining new curves in the input file. Once defined, a user-defined curve can 

be used in the same ways that a curve from the built-in curve library is used. As part of the definition 

process, the user specifies a mnemonic for the new curve. Whenever a curve mnemonic is encountered after 

that point, Loft will search the list of user-defined curves, then its internal curve mnemonics. This makes it 

possible to override the definition of a built-in curve. 

Interpolated curves are built from user-specified x, y coordinates pairs. Currently, only linear interpola-

tion between the user’s points is supported; options for curved interpolation may be added in the future.  

Compound curves are built by tracing the outside of sequentially listed curves until the next curve is 

encountered, then tracing its outside until it intersects with the next curve, etc. This curve option can be 

used to define the shape of multi-lobe tanks, etc.  
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Lofted curves are curves created by blending two parent curves. These curves are temporarily created in 

most mesh creation processes that Loft performs where the cross section of the object is changing along its 

length from the curve specified at one end to the curve specified at the other end. The user-defined lofted 

curves allow the user to store and use these blended shapes. One application of the lofted curve type is to 

create a bulkhead in the middle of a section. 

Curves are defined by using the curve command, followed by the type (interpolated, com-

pound, lofted, etc.) and a user supplied name. Parameter lists for the curve command are discussed in 

reference chapter 7, and tutorials on using all types of user-defined curves are in tutorials 3 and 4 in chapter 

2. 
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Chapter 2: Tutorials 

Introduction 

Loft is an easy-to-use program that takes very simple finite elements and builds detailed finite element 

meshes. A user controls Loft by creating a text input deck with their favorite editor such as notepad in 

Windows and vi or emacs in Unix/Linux.  

The input files developed in these tutorials are all available in their finished forms in the “tutorials” 

subdirectory. They are named “project1.txt,” etc. and will produce output files named “project1.wrl,” etc. 

List of Tutorials 

Project 1: A Simple Commuter Jet 

Project 2: Converting Project 1 Mesh to a full vehicle 

Project 3:  Creating and using User-defined Curves 

Part A: Interpolated Curves 

Part B: User-defined Compound Curves 

Part C: User-defined Lofted curves 

Project 4: A Tapered Four-Lobe Tank 

Project 5: Controlling Circumferential Node Distribution 

Project 6: Introduction to Regions 

Project 7: Variables and Math 

Project 8: Bodies of Revolution, Toroids, and Helixes 

Project 9: Program Flow Control 

Project 10: NASTRAN bonus features 

Project 11: Automatic Stitching 
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Project 1: A Simple Commuter Jet 

 

 

The examples in these tutorials will consist mostly of symmetric or half models, where only one side of 

the vehicle is generated. This is done so that internal details of the meshes can be viewed easily. Project 2 

will show how to modify the input file to produce a full vehicle model. 

A good practice is to start the file with a few comment lines describing the file. The tutorial projects will 

also use comments throughout the files being created for ease of reading and to explain what is going on. 

These are completely optional. So, the input file starts: 

# Loft Tutorials: Project 1 

# A Simple Airliner 

# Created 4/16/03 by N. Jineer 

 

Generally, a user will want to describe a vehicle starting at one end and moving sequentially from major 

component to major component. This example starts with the nose: 

# The nose 

object dome Nose 

 

Object is a Loft command. As might be inferred from its name, it creates a new object. That’s all that 

is needed, assuming the desired result is a spherical dome that is one unit in radius and one unit in length. 

But, let’s change from the default values. To do that, parameters are supplied for the object command. All 

parameters are optional. It’s only when the default values need to be overridden or when the user wants 

clarity that they are needed. For instance, the initial default value for the curve1 parameter (as found in 

the dome object documentation in Chapter 7) is sc, so the first new line below isn’t actually necessary at 

this stage. 

curve1 sc 
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length –15.0 

c1_xscale 10.0 

c1_yscale 10.0 

 

The curve library section of chapter 7 shows the various curve shapes that Loft currently supports and 

the mnemonics by which a user references them. The sc mnemonic produces a semi-circle. The length 

parameter controls how long the dome is. Since the positive axial direction for Loft is aft, and the nose 

should be generated in the other direction, a negative value is given. The next two lines change the radius 

of the circle in the horizontal (x) and vertical (y) directions. Here both scale factors, c1_xscale and 

c1_yscale, are set to be the same value of 10.0.  

Now, let’s see the result. To do that, an output command is added to the file: 

# Save and exit 

write vrml project1.wrl 

end 

 

The write command tells Loft to write the current mesh to a data file, in a variety of possible formats 

(see the command reference in chapter 7 for supported formats). The end command is optional; Loft will 

exit when it runs out of input. Save the file, then run Loft at a command line prompt (under Windows open 

a MS-DOS Shell window) 

 loft project1.txt 

 

Loft will produce a variety of text output describing what it is doing. If all went well, Loft created a new 

VRML 2.0 file called “project1.wrl.” Open this file in an appropriate viewer (one is not included with Loft) 

and rotate the model to see it from various perspectives: 

      
 

Obviously, the model could use some improvements. Open the input file in the editor again.  

More parameters will be added to the end of the nose object definition, so move the cursor above the “# 

Save and exit” line. From now on save, run Loft, and view the current object whenever desired to see 

how things are going. Note that write commands can be added wherever desired in the input file, so “write 

vrml project1-nose.wrl” could be added after all the nose object parameters and “write vrml 
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project1-nose-and-body.wrl” after the body is added, etc. Remember, however, that all parame-

ters for a command (such as the object command currently being edited) need to follow that command 

directly; once another command is encountered (i.e., a write command) the previous command is fin-

ished. 

The first thing to change is the curvature of the nose. Referring to the “taper library” section of chapter 

7, there are illustrations of differently shaped dome objects and the mnemonics necessary to use them. 

Change from the default spherical tapered dome to a parabolic tapered one. 

taper para  
 

 

 

Now, drop the nose tip down a little so the pilots can see out. 

zdroop 4.0 

 

 

And make the mesh a little denser. 

nodes_circ 21 

nodes_axial 15 
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Now, create a fuselage body. That requires a new section object. 

# Fuselage 

object section Fuselage 

length 50 

nodes_axial 60 

 

 

Notice that significantly fewer parameters are needed compared to the nose. Most of the nose shape 

parameters are now the default for the next object. Only those that change need to be specified.  

Next, add a flat bulkhead to show a little bit of internal detail. Note that a bulkhead is created by making 

a dome object and specifying another taper schedule. A parabolic taper was used for the nose; here a bulk-

head taper is used. 

# Bulkhead 

object dome Bulkhead 

taper bulk 

nodes_axial 10 
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Each new object is automatically positioned behind the previous object: the fuselage is behind the nose, 

and the bulkhead is behind the fuselage. This makes building sequential structures like this very simple. 

Manually positioning objects will be covered shortly. 

Next, add the rear part of the fuselage. In this case, it will look very much like the nose, but drooping in 

the opposite direction. 

# Rear Cap 

object dome Rear cap 

taper para 

length 15.0 

zdroop -4.5 

nodes_circ 21 

nodes_axial 15 

 

 
 

Next, move onto the wing.  

# Main Wing 

object wing Main Wing 

span 40 

chord 20 

taper 0.5 
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sweep 20 

mesh 1 

rootnaca 3412 

tipnaca 3410 

sparpos 10 

sparpos 25 

sparpos 75 

ribpos 33 

ribpos 66 

wingbox 5 

boxfront 2 

 

That’s a lot of parameters, but the meaning of most of them should be obvious (refer to wing object 

documentation in chapter 7 if needed).  Spars are positioned at 10, 25, and 75 percent of chord and ribs at 

33 and 66 percent of the span (ribs are automatically created at 0 and 100 percent). The last two lines ask 

for Loft to create a wingbox carry-through. The default behavior is to extrude the front most and rear most 

spars to make this box, but the boxfront parameter here says to use the second front-most spar instead 

(thus extruding from the 25 and 75 percent spars, not the 10 percent.) The resulting model looks like this: 

 
 

The wing shape is correct, but it’s in the wrong place. Why is that? First, dome objects’ lengths do not 

alter the default starting point of the next object. And the origin of a wing object is at its leading edge root. 

So, the leading edge root point of the wing is sitting at the rear center point of the fuselage section.  

There are a couple of ways to move the wing. It is possible to specify the exact position of the leading 

edge root point with the transx, transy, and transz parameters. There are cases when this is the way 

to go, but in most cases, the relative translation parameters relx, etc. are better. These values are transla-

tions relative to the default position. Doing things this way will result in the wing staying in the same spot 

at the rear of the fuselage even if the fuselage length is later changed. 

relx 5 

rely -9.5 

relz –25 

 

The x translation moves the carry-through to the centerline. The y translation moves the wing down to 

the bottom of the fuselage, and the z translation moves the wing forward. 
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Now, add a vertical tail to the top of the rear cap. 

# Vertical Tail 

object wing Vertical Tail 

span 18 

chord 15 

rootnaca 0412 

tipnaca 0410 

halfwing bottom 

wingbox 1 

rotz 90 

rely 19.5 

relz 25 

relx –5 

 

Here symmetric airfoil sections were chosen, and since the tail is on the line of symmetry, only half of 

it was generated by specifying the halfwing parameter. The default position for the tail object is at the 

leading edge root point of the main wing, so the x translation moves the origin (leading edge root) of the 

tail back to the centerline, the y translation moves it to the top of the fuselage, and the z translation moves 

it back to the end of the fuselage section object. The rotation command spins the tail to be vertical. With 

the halfwing option, it’s possible to see the internal spars and ribs on the tail, which are in the same 

position as on the main wing (since no change was specified). Finally, add a high horizontal tail to the top 

of the vertical tail: 
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# Horizontal Tail 

object wing Horizontal Tail 

chord 7.5 

span 11.0 

rely 18 

relz 6.551 

rotz 0 

 

The rotz parameter needs to be reset back to zero, from its new default of 90. Notice, however, that 

the halfwing parameter did not have to be turned off – as seen in the wing object definition in chapter 

7 it always defaults to off. The chord length and y and z translations are chosen to position the horizontal 

tail aligned with the top of the swept vertical tail.  

 

Note that the various wing objects are not actually connected (in a finite element sense) to the fuselage 

or each other at this stage. Before using this model to perform an analysis, some work should be done with 

the mesh density on the horizontal tail (to make it match that on the vertical tail), and some ring frames 

should probably be added where the wing and tail connect to the fuselage to provide stronger attachment 

points.  
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Project 2: Converting Project 1 Mesh to a Full Vehicle 

There are three different ways to accomplish this task. Each will be demonstrated in this tutorial. The 

choice as to which option is better depends on the situation. The first approach is to modify a few lines in 

the input deck to change the half pieces to full ones and to make portside wing surfaces. The second ap-

proach is to use Loft’s internal clipboard to clone and mirror the half vehicle. The third approach uses a 

single macro command to perform the mirroring operation. It produces the same mesh as the second ap-

proach. The first option is better if only a full model is desired. The second/third options are convenient if 

both models are needed for different reasons. 

Approach 1: Change from half objects to full 

Copy project1.txt file to project2a.txt. Open the new file in the editor and move down to the second non-

comment line: “curve1 sc.” Change the sc to cir. Running Loft on this modified file produces: 

 

 

 

 

 

 

 

The new full circle curve1 parameter becomes the default for the rest of the fuselage objects by only 

changing the one line at the beginning of the file. You may also want to double the circumferential node 

density so that the spacing is the same as before: “nodes_circ 41.” Now, fix the wings. 

After the Main Wing object (which could be renamed as Starboard Wing), add the following: 

object wing Port Wing 

wingside port 

wingbox 5 

relx -10  
 

This can be short because all of the Main Wing geometric parameters have become the default for any 

subsequent wing object. The wingbox parameter, however, always defaults to zero (see the wing object 

documentation in chapter 7) so it needs to be set again. And other than the two parameters specified in the 

new lines above, that’s exactly what is wanted. 
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Why has the vertical tail moved? This is one of the hazards 

of using relative position parameters: the vertical tail is now 

5 units to the port of the origin of the port wing (leading edge root), rather than the origin of the starboard 

wing. Instead of changing the tail’s “relx –5” parameter to “relx 5,” change it to: 

transx 0.0 

 

Also, delete the tail’s halfwing parameter. Finally, create a port horizontal tail object by adding these 

two lines after the starboard horizontal tail object: 

object wing P Horizontal Tail 

wingside port  
 

With all of the edits, the final input deck is: 

 

# Loft Tutorials: Project 2a 

# A Simple Airliner 

# Created 4/16/03 by N. Jineer 

# The nose 

object dome Nose 

curve1 cir 

length -15.0 

c1_xscale 10.0 

c1_yscale 10.0 

taper para  

zdroop 4.0 

nodes_circ 41 

nodes_axial 15 

# Fuselage 

object section Fuselage 

length 50 

nodes_axial 60 

# Bulkhead 

object dome Bulkhead 

taper bulk 

nodes_axial 10 

# Rear Cap 

object dome Rear cap 
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taper para 

length 15.0 

zdroop -4.5 

nodes_circ 21 

nodes_axial 15 

# Main Wing 

object wing Starboard Wing 

span 40 

chord 20 

taper 0.5 

sweep 20 

mesh 1 

rootnaca 3412 

tipnaca 3410 

sparpos 10 

sparpos 25 

sparpos 75 

ribpos 33 

ribpos 66 

wingbox 5 

boxfront 2 

relx 5 

rely -9.5 

relz -25 

object wing Port Wing 

wingside port 

wingbox 5 

relx -10 

# Vertical Tail 

object wing Vertical Tail 

span 18 

chord 15 

rootnaca 0412 

tipnaca 0410 

wingbox 1 

rotz 90 

rely 19.5 

relz 25 

transx 0.0 

# Horizontal Tail 

object wing SB Horizontal Tail 

chord 7.5 

span 11.0 

rely 18 

relz 6.551 
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rotz 0 

object wing P Horizontal Tail 

wingside port 

# Save and exit 

write vrml project2a.wrl 

end 

 

 

which produces the complete model shown below. As with the half model, stitching of the wing surfaces 

to each other and the fuselage would be necessary prior to any finite element analysis. 

 

 

 

 

 

 

 

 

Approach 2: Clone the half model into a full model 

This part of the tutorial will create a very similar mesh another way. Start by copying the original pro-

ject1.txt file to project2b.txt. Open the file and move the cursor down past all the object commands and 

parameters and before the “# Save and exit” line. Add the following lines: 

# Store the starboard half model 

store SB 

# Recall and mirror it 

recall SB 

move 

scalex -1.0 

flip 

 

These commands start by moving the half model to the internal clipboard and naming it “SB.” The 

store command clears and resets the active workspace. So, the next command recalls it back into 

active memory. The next three lines perform two stack level move operations. The “scalex –1.0” 

parameter changes the sign of all nodes’ x coordinates. This mirrors the mesh, but also has the undesired 

effect of causing all the element normal vectors to point inward rather than outward. The flip parameter 

reverses all the normal vectors. At this stage, the model looks exactly like before, but mirrored onto the port 

side: 
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Now, to get the original starboard mesh recalled and merged, just add: 

# Recall it again 

recall SB 

 

The merge part of the operation, which is performed automatically, can be a little slow, particularly 

when the same object is being combined. The final mesh looks like: 

 

 

 

 

 

 

 

The meshes produced by these two approaches are in many ways identical. The nodes and the elements 

are in the same places (the cloned approach may have extra nodes and elements in the vertical tail due to 

being created as two half wings). The real differences are subtle. If FEA mesh files were created, the dif-

ferences could be located. In the first case, the two wing and the two horizontal tail meshes each have dif-

ferently named properties and groups associated with them. With the second approach, the two wings share 

properties and groups, and the two horizontal tails do as well.  

Approach 3: Clone the half model into a full model using a macro command 

Adding the single line below to the initial project instead of the 9 lines in the previous example will 

accomplish the steps in approach 2 with the same resulting mesh. 

mirror x 
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Project 3:  Creating and Using User-defined Curves 

Part A: Interpolated Curves 

 

Loft’s curve library covers the basic shapes used for many aerospace vehicle components. But, the li-

brary can’t contain everything. This project explains how to use the interpolated curve definition capability 

to create user-defined shapes. 

Defining an interpolated curve is easy. Just provide a sequential list of nodes that define the corners of 

the shape. Start at the top of the curve (12 o’clock) and define nodes in a clockwise fashion.  

In general, try to define your curve with a nominal radius of 1.0. The user then defines an object’s size 

with the xscale and yscale parameters. Alternatively, give full-scale coordinates for the curve’s defi-

nition points and keep the object scale parameters close to 1.0. 

The figure above is generated using the built-in semi-circle shape on the right end and two user-defined 

interpolated curves at the center and left end. The center shape is a half diamond. The cross section looks 

like: 
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To define this shape to fit in a unit circle, start at the top. The coordinates are x=0, y=1. The midpoint 

of the shape is at x=1, y=0, and the bottom point is at x=0, y=-1. The command and parameters to specify 

these coordinates as a Loft interpolated curve named “sd” are: 

# half diamond shape 

curve interpolated sd 

  start 0.0 1.0 

  line 1.0 0.0 

  line 0.0 -1.0 

 

Once defined, the “sd” mnemonic can be used in any subsequent objects as if it were a curve in the 

library.  

The user should keep in mind that due to the sampling scheme used by Loft to distribute nodes, the points 

given when defining the shape may or may not appear exactly in the final meshed objects that use the curve. 

When the user has finished defining a curve, Loft will compute the lengths of each segment and the total 

length of the curve. Then, when the curve is used it will evenly distribute the meshed points along the total 

length of the curve. 

For example, if the user specifies the above “sd” curve and has a nodes_circ parameter of three, Loft 

will generate nodes at 0, 50, and 100 percent along the curve, and by coincidence, create the exact inputted 

shape: 

 

But, if the user instead had a nodes_circ parameter of four, Loft would generate nodes at 0, 33, 66, 

and 100 percent along the curve, giving a cross sectional shape that looks like: 
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By the way, Loft will show this same corner-rounding behavior when using library curves and the other 

types of user-defined curves. The user may need to experiment with the number of nodes specified if hitting 

the corners exactly is important. See project 5 for some additional ways to address this issue. 

To finish this project, define a second interpolated curve (the M-shaped left side of the original figure) 

and then use both curves: 

curve interpolated toothout 

  start 0.0 1.0 

  line 1.0 1.0 

  line 0.25 0.0 

  line 1.0 -1.0 

  line 0.0 -1.0 

object section Barrel 

  curve1 sc 

  curve2 sd 

  c1_xscale 15.589 

  c1_yscale 15.589 

  c2_xscale 15.589 

  c2_yscale 15.589 

  nodes_circ 21 

  length 50 

  nodes_axial 30 

  components_axial 6 

object section Barrel2 

  curve2 toothout 

  length 40 

  nodes_axial 25 

object frame Ring Frames 

# save 

write vrml project3a.wrl 

end 

 

The complete file specifies two user-defined curves and then builds two sections. The first section blends 

a semi-circle to the user’s semi-diamond shape. The second section blends the semi-diamond to the letter 

“M” shaped “toothout” curve. Note that in the finished mesh the corner of the “sd” curve is sampled exactly, 

as is the middle corner of the “toothout,” but the two intermediate corners are slightly rounded. Finally, a 

frame object is added to the second section. The white lines in the figure show the circumferential beam 

elements that make up the frame. They align precisely with the section mesh at each station. 
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Part B: User-defined Compound Curves 

 

A more powerful option for user-defined curves is the compound curve. As the name implies, compound 

curves are combinations of previously defined curves. In fact, any previously defined curve can be used as 

a child curve to build up a more complex parent compound curve. Any library curve, as well as any 

previously defined interpolated, compound, or lofted (see project 3C below) curve, can be used. 

Loft is currently unable to compute the intersections of two arbitrary curves, so the user must tell the 

code where to stop using one child curve and where to start using the next. Loft can locate the intersection 

points of circles and semi-circles with other circles or semi-circles. However, any other curve combination 

will need user intervention to specify intersection locations. 

The Compound Curve Concept 
 

To picture the basic idea of a compound curve, imagine a sheet of rolled dough and a handful of inter-

estingly shaped cookie cutters. Imagine selecting a cutter and making an impression in the dough with it 

but not removing the cookie. Then, select another (or perhaps the same) cutter and make another impression 

that intersects the first. Continue this process as long as desired. Now imagine using a finger to re-blend all 

of the internal lines leaving only the outer-most indention. This could produce a very strange shape. That’s 

basically what the compound curve type allows one to do. 

The “s” Parameter 
 

Internally, Loft’s curves are generated based on fractional location along their perimeter. This perimeter 

coordinate is called “s” and varies between zero and one. If the user generates a barrel object with three 

nodes in the circumferential direction, Loft will generate nodes at s = 0.0, s = 0.5, and s = 1.0 on each curve 

and linearly connect them.  

The library curve subroutines’ only function is to accept an “s” value as input and to return the two-

dimensional coordinates of the point at that fraction along the curve. All library curves are defined with s 

= 0 at the 12 o’clock position, and s increasing as one moves clockwise around the curve to s = 1 at its end.  

This is the semi-circle subroutine: 

angle = (90.0 - 180.0 * s) * pi / 180.0; 

x = cos(angle); 



 

50 

 

y = sin(angle); 

 

The full circle routine uses instead: 

angle = (90.0 - 360.0 * s) * pi / 180.0; 

 

Looking at these two code snippets confirms that s = 0 generates the (x, y) coordinates of a node on the 

curve at 12 o’clock and a nominal radius of 1.0. Any other value for s generates the coordinates for that 

fractional location along the curve. 

Of Parents, Children, and Arcs 
 

Return to the dough and cookie cutter metaphor above. Each time a cookie cutter was used a child 

curve was created. Now picture the outer-most “parent” boundary line. Each portion of that curve contrib-

uted by a new child is called an “arc.” 

The task when defining a compound curve is to sequentially specify the child curves necessary to 

generate each arc of the final curve. In many cases, a particular child will be specified more than once since 

it may contribute to more than one section of the parent curve.  

For each child curve, specify the mnemonic for the child curve, its center coordinates, and its radius. 

The next step is to specify what portion of the child will contribute to the parent curve. This is done with 

the sstart and sstop parameters. These are the “s” coordinates of the child curve that mark the 

endpoints of the arc being specified. Optionally, Loft can automatically compute these parameters when 

two circle or semi-circle children intersect. 

For proper extruding and connection of panels, the final compound curve should start on the horizontal 

centerline at the 12 o’clock position and trace clockwise around to the end of the curve. Typically, the end 

will be either at 6 o’clock or back at 12 o’clock. Put some planning into the radius values used for the 

child curves. Ideally, the resulting parent curve should have a nominal unit radius. This will make later 

use of the compound curve and selection of x and y scale values consistent with the scale values used with 

the library curves. Alternatively, the compound curve can be specified with actual dimensions. In such a 

case, the x and y scale values for objects using those curves will be near unity. Just keep in mind that the 

radii and center points specified when defining the curves will be scaled later by the meshing routines. 

How Loft Uses a Compound Curve 
 

Once a compound curve has been defined, Loft calculates the circumference of each arc (by a piecewise-

linear approximation for non-circular arcs) and sums them to compute the total circumference for the com-

pound curve. Each child’s contribution to the total circumference is used to determine what range of the 

parent’s “s” coordinate for which it is responsible. When the compound curve code is asked for an (x,y) 

coordinate based on a particular “s,” Loft will figure out which child is responsible for that location and 

where on that child’s arc the point is. This information is used to compute a “local s” parameter for the 

child curve. The coordinates returned by the child are scaled and translated to generate the coordinate of 

that spot on the parent curve. 

A Compound Curve Example 
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The first example project is a half-model of a three-lobe tank cross section. Looking at the picture above 

imagine making the shape by combining a semi-circle on the left with a full circle on the right.  

Start with the user specified curve command, specify compound as the type of user curve, and supply 

a curve name: 

curve compound half3lobe 

 

From the picture above, there are three “arcs” that make up the full compound curve. So, three child 

blocks must be specified to define the curve. In this case the first and the last arc are made from the same 

child, but this is not necessarily always the case. For this first project the semi-circle and circle library 

curves are used. Since they are circular shapes, Loft can compute the intersection points rather than requir-

ing the user to specify the endpoints of each arc with the sstop and sstart parameters. 

So, the first child is a semi-circle centered at (0,0) with a radius of 5: 

child sc 

x 0.0 

y 0.0 

radius 5.0 

 

Then, the next arc uses the full circle library curve: 

child cir 

x 3.5 

y 0.0 

radius 4.0 

 

The last arc is part of the first curve, so that block is copied here: 

child sc 

x 0.0 

y 0.0 

radius 5.0 
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Finally, to generate the picture above, create a very short section object using the new compound curve 

object section Barrel 

  curve1 half3lobe 

  curve2 half3lobe 

  length 1 

  nodes_circ 51 

  nodes_axial 2 

# save 

write vrml project3b1.wrl 

end 

 

 

The next step is to generate a different compound curve. This time, using a half square and a circle to 

generate a shape like this: 

 

First, start a new compound curve: 

curve compound roundbox 

 

The mnemonic for a half (or semi) square is ss. The compound curve parameter radius can be used 

for any child curve to scale it up from the default nominal unit radius. The two corners of the square occur 
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at 25 and 75 percent along the curve. For the first arc only the top edge of the curve is needed, so the arc 

goes from s = 0.0 to s = 0.25. Since sstart = 0.0 is the default, it does not have to be specified. 

child ss 

x 0.0 

y 0.0 

radius 3.0 

sstop 0.25 

 

Next, a full circle is specified with the same radius and an sstop parameter of 0.5: 

child cir 

x 3.0 

y 0.0 

radius 3.0 

sstop 0.5 

 

(Yes, a semi-circle could have been used here with no sstop parameter necessary.) Finally, to specify the 

bottom flat arc, return to the semi-square and specify portion between s = 0.75 and 1.0. 

child ss 

x 0.0 

y 0.0 

radius 3.0 

sstart 0.75 

 

To generate a sample representation of the new compound curve just add: 

object section Barrel 

curve1 roundbox 

curve2 roundbox 

length 1 

nodes_circ 51 

nodes_axial 2 

object frame Ring Frames 

# save 

write vrml project3b2.wrl 

end 
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Finally, create the picture at the top of this tutorial by combining the two compound curves in a file that 

contains the two curve specifications. The ring frame object is optional but demonstrates that beams can be 

created that will follow the interpolated shape between the two user-defined compound curves (they are the 

white lines at either end and the center in the figure). 

object section Barrel2 

curve1 roundbox 

curve2 half3lobe 

c2_xscale 1.0 

c2_yscale 1.0 

length 20 

nodes_axial 21 

nodes_circ 31 

components_axial 3 

object frame Ring Frames 

# save 

write vrml project3b3.wrl 
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end 

 

Part C: User-defined Lofted curves 

The third type of user-defined curve is the “lofted” curve. Loft generates, but does not save, curves 

automatically when building a section object. At each station along the section object the program computes 

the intermediate cross section as it transitions from the curve1 end to the curve2 end. The lofted curve 

type allows the user to do the same thing, with or without actually creating a corresponding section object. 

Another way to look at these curves is that they create a cross-sectional slice shape from a (possibly virtual) 

section. 

To create a lofted curve, the user specifies the curves at that are to be blended to form the new cross 

section. As with the compound curve, any type of curve including user-defined curves can be used as the 

end shapes. The user then specifies the fractional position along the transition from curve1 to curve2 

with the station parameter. A station value of 0.0 would result in a curve exactly matching curve1. 

A value of 1.0 would match curve2. The example below uses 0.5, which is 50% along the transition from 

1 to 2 and results in the cross section shown. 

curve lofted lcurve1 

curve1 sc 

curve2 ss 

station 0.5 

object section test-section 

curve1 lcurve1 

curve2 lcurve1 

length 0.1 

nodes_axial 3 

nodes_circ 30 

write vrml project3c1.wrl 

end  
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One use of this curve type is to generate mid-section bulkheads: 

# test of mid-section bulkheads 

curve lofted lcurve1 

curve1 sc 

curve2 ss 

station 0.5 

object section test-section 

curve1 sc 

curve2 ss 

length 4. 

nodes_axial 11 

nodes_circ 29 

object dome bulkhead 

taper bulk 

curve1 lcurve1 

relz -2 

write vrml project3c2.wrl 

end  

 

Care should be taken if node-stitching is desired to make sure that the bulkhead is positioned at a spot 

on the section object with nodes. In the above example, an odd number of nodes was used axially to ensure 

that a node line existed at the 50% axial station on the section. The lofted curve was defined as a 50% blend 

of the two end curves. And the created bulkhead, which by default would have been positioned at the rear 

(square end) of the section, had a relz of –2 applied to position it at the midpoint of a 4 unit long section. 

If the desired position of the bulkhead is not at an easy-to-align position (e.g., 46.4543% of the section 

length), then the best approach will be to create the lofted curve and use it to create a forward section 

(curve1 to the bulkhead), the bulkhead, and the aft section (bulkhead to curve2) as three objects rather 

than two. This approach allows for easy and exact positioning and node-stitching at completely arbitrary 

axial stations. The following input file generates the same result as before, but creates three objects: 

curve lofted lcurve1 

curve1 sc 

curve2 ss 

station 0.5 

object section forward 

curve1 sc 

curve2 lcurve1 

length 2. 

nodes_axial 6 

nodes_circ 29 

object dome bulkhead 

taper bulk 

object section aft 
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curve2 ss 

length 2. 

nodes_axial 6 

write vrml project3c3.wrl 

end 

 

A very similar approach can be used to create a bulkhead that supports an internal structure such as a 

tank. The bulkhead would be constructed using a zero-length section object with one end curve defined as 

a lofted curve extracted from the desired position along the fuselage section and the other end as a lofted 

curve extracted from the tank object. See the annotated TSTO orbiter example at the end of this manual for 

a demonstration of this process. 
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Project 4: A Tapered Four-Lobe Tank 

 

 

 

 

 

 

 

 

This project represents a tank that might be used in a vehicle nose cone if very tight packaging were 

necessary. 

The first step to building this tank is to define our compound four-lobe curve. 

 

 

 

 

 

 

 

Remember, our task is to define this curve in a clockwise fashion starting at 12 o’clock. Thus, we start 

with the upper-right circle: 

curve compound 4lobe 

child cir 

x 1.0 

y 1.0 

radius 2.0 

 

The default for any child curve is to start at s = 0. This is not what we need here. Some trigonometry 

will show that the 12 o’clock point is at (0.0, 1.732). This corresponds to 30 counter-clockwise from ver-

tical, or 330 clockwise. Using the full circle formula from project 4, we get: 

sstart 0.916666667 
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We don’t need to specify sstop since Loft can automatically calculate it for the intersection of two 

circles. So, we can just specify our remaining three lobes: 

child cir 

x 1.0 

y -1.0 

radius 2.0 

child cir 

x -1.0 

y -1.0 

radius 2.0 

child cir 

x -1.0 

y 1.0 

radius 2.0 

 

Since we’re not specifying any further child curves, we again need to do some math to find that the point 

(0, 1.732) is 30 clockwise from curve four’s start, resulting in: 

sstop 0.083333333 

 

To generate the rest of the pictured tank you can add: 

object dome front 

curve1 cir 

c1_xscale 1.5 

c1_yscale 1.5 

nodes_circ 37 

length -1 

nodes_axial 5 

object section Barrel 

curve2 4lobe 

c2_xscale 1.0 

c2_yscale 1.0 

length 5 

nodes_axial 21 

components_axial 3 

object frame Ring Frames 

object dome back 

length 3 

nodes_axial 13 

# save 

write vrml project4.wrl 

end 
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Project 5: Controlling Circumferential Node Distribution 

By default, Loft distributes nodes spaced evenly along a curve’s circumference (with a couple of minor 

exceptions – see the breadbox and filleted square curves descriptions in the chapter 7). This is the best 

general approach for producing a smooth finite element mesh, but it may fail to capture details in some 

cases. This “sampling error” was discussed briefly in tutorial project 3 on creating interpolated curves. 

This project discusses several advanced approaches to addressing problems with the circumferential 

node distribution. Some are rather involved. 

Approach 1: Change the Node Count 

By far the easiest technique to address a sampling problem is to change the value of the nodes_circ 

parameter. Generally, increasing this value will do a better job of accurately capturing any particular curve’s 

shape.  

But, if you have insight into where a particular feature occurs along a curve, choosing a value of this 

parameter that places a node that percentage along the shape can also improve the modeling of that feature. 

This may mean decreasing the nodes_circ value. The interpolated curve tutorial showed an example 

where a value of 3 did a better job of catching a sharp point than a value of 4. 

The annotated TSTO orbiter example demonstrates a case in which ensuring a node is placed at 40% of 

the circumference of a curve is necessary for successful node merging. This leads to a requirement to use a 

multiple of five plus one as the circumferential node count. A count of 6 will generate nodes at 0, 20, 40, 

60, 80, and 100%. A count of 11 will generate nodes at 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100%, etc. 

The “plus one” part of this formula is necessary because of the node at 0%.  

Approach 2: Local s-distribution 

A relatively easy way to address sampling problems with user-defined curves is to switch to local rather 

than global s-distribution. Each child-arc of a user-defined curve contributes some fraction of the total 

circumference of the parent curve. That fraction of the total nodes in the circumferential direction will be 

used to sample that curve. In the default global s-distribution approach, the nodes are spaced evenly along 

the parent curve.  

The local s-distribution option moves the nodes that model each child-arc to be evenly spaced along the 

child-arc. This has the effect of forcing a node to be generated at most junctions between child-arcs. If a 

child-arc is too short to qualify for a node in the global approach, it won’t get one in the local approach 

either. If the detail from that short child-arc is important, the user will need to resort to one of the other 

approaches in this section to capture that detail. 

The s-distribution approach is controlled by the parameters c1_s and c2_s. Thus, you can use different 

approaches for each end of a section object. Valid values for the parameter are global (the default), 

local, and copy. 

The copy option indicates that the curve is to use the same s-distribution as used for the other end of 

the section. This can produce less twisted elements if the local distribution on the other end of the section 
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has significantly moved nodes. The use of the copy option only has practical effect if the other end is set to 

local. (If both ends are set to copy, the global approach will be used on both ends). 

Like all circumferential parameters, the settings of these two parameters are used to change the defaults 

for all subsequent objects. Be sure to reset their values when they are no longer needed. Be careful using 

these parameters when adjacent objects are expected to stitch together. Nodes that have different spacing 

are unlikely to be merged accurately. The copy option is particularly likely to create these kinds of prob-

lems, as it may copy its s-distribution from a completely different curve than the adjacent object. 

Approach 3: Sub-Curves 

A rather involved approach that gives much more control is to create a user-defined curve, then use 

Loft’s debug output to break the curve back into “sub-curves” that are used to generate partial objects. This 

is a lot more work but allows the user to specify exactly how many nodes are to be used to represent each 

child-arc of the original parent. 

If you look at the program debug output that is generated when using the “roundbox” compound curve 

created in the previous tutorial, you’ll see this summary of the calculations that Loft made to use the curve. 

For each child-arc, the output lists its circumference, the local “s” start and end points of the arc, and the 

global “s” start and stop points: 

finish_ccurve: Summary of Compound Curve roundbox 

    child   circ   local_sstart local_sstop   global_sstart global_sstop 

       0 1.000000    0.000000     0.250000      0.000000      0.194305 

       1 3.141560    0.000000     0.500000      0.194305      0.804724 

       2 1.005000    0.750000     1.000000      0.804724      1.000000 

    End of Summary for Compound curve roundbox 

 

The global “s” start and stop points indicate what portions of the parent curve are contributed by each 

child. We can use those values to extract just those contributions into new compound curves: 

curve compound rb-arc1 

child roundbox 

sstart 0.0 

sstop 0.194305 

curve compound rb-arc2 

child roundbox 

sstart 0.194305 

sstop 0.804724 

curve compound rb-arc3 

child roundbox 

sstart 0.804724 

sstop 1.0 

 

(Remember that the “roundbox” curve definition needs to be copied into this new input file – user-

defined curves are not added to Loft’s internal library permanently.) 
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Now, each of these new sub-curves can be used to create partial objects with much more control over 

node density on each arc. Here’s an example creating an extruded “roundbox” object with varying mesh 

densities. 

object section arc1 

curve1 rb-arc1 

curve2 rb-arc1 

length 5 

nodes_circ 11 

nodes_axial 5 

object section arc2 

curve1 rb-arc2 

curve2 rb-arc2 

nodes_circ 31 

object section arc3 

curve1 rb-arc3 

curve2 rb-arc3 

nodes_circ 21 

 

 

 

 

 

 

 

 

 

 

This figure shows the three new curves separately. The bottom section does have twice the mesh density 

of the other two sections, and nodes are created exactly at the junction points of the arcs. But, the automatic 

positioning in Loft is putting each new section object immediately behind the previous one. To fix that, add 

a “relz –5” parameter to both “arc2” and “arc3.” Notice that no positioning is needed in the x or y 

directions, since the new curves are already positioned correctly in x and y. Once that is done, the result is: 

 

 

 



 

63 

 

 

 

 

 

 

 

 

 

 

 

 

This sub-curve technique gives the user a lot of additional control on mesh density and locating im-

portant nodes, but it is a lot more effort than the other approaches. The main drawback in this approach is 

the difficulty in obtaining compatibility with meshes generated without sub-curves. Generally, objects gen-

erated from sub-curves can only be effectively attached to other sub-curve-based objects without a lot of 

additional work. 

Finally, note that if the goal of this sub-curve project was only to double the mesh-density on the bottom 

plate of the curve, the same result could have been accomplished with just two sub-curves. The first would 

be the top plate and round section (from s = 0.0 to 0.804724) and the second would be the bottom plate. 

The sub-curve approach can be used to grab any portion of another curve. 
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Project 6: Introduction to Regions 

The Loft command region contains a powerful set of tools to allow the user to query, modify, and/or 

mark portions of the current stack. This tutorial illustrates a small portion of these capabilities. Chapter 3 

of this manual documents the full set of region definition and operation parameters. 

Start with an ogive-shaped nose cone with a short barrel. The colors on the picture indicate the two 

property sets used in the model. Also note the beams running the length of the model that represent the 

separation joint for the shroud. 

 
 

object dome Nose 

curve1 cir 

c1_xscale 1.0 

c1_yscale 1.0 

length -550.000 

nodes_circ 41 

nodes_axial 35 

components_circ 1 

components_axial 1 

taper ogive 

param1 55. 

param2 983.230 

param3 198.0 

zdist 0.73 

transz 618.0 

object dframe Sep Joints 

count 3 

align axial 

# 

object section Barrel 

length 200.0 

c1_xscale 198.0 

c1_yscale 198.0 

c2_xscale 196.0 
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c2_yscale 198.0 

nodes_axial 12 

components_axial 1 

object frame Bottom Ring 

count 1 

position 1.0 

object frame Top Ring 

count 1 

position 0.0 

object frame Sep Joints 

count 3 

align axial 

# rotate so that x is aft 

move 

roty 90 

 

Next, use the region mode to specify a volume and change the element property settings within that 

volume. Here, the goal is to make the elements on the very tip of the nose into a different component for 

later sizing purposes: 

# Nose Cap 

region 

iadd xcyl 0.0 0.0 0.0 30. 

pprem Nose Sep 

setpp Nose Cap 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are two parts of defining this region. The inclusive add parameter iadd adds all elements that 

have any nodes within the specified cylindrical area. In this case, the beam elements that represent the 

separation joint should not be updated. So, the remove by physical property name parameter pprem is used 

to delete those elements from the region specification (but not from the stack!). Finally, the remaining 

elements are changed to a new physical property name using the setpp parameter. 

The first two parameters are “passive” parameters. They have not changed the stored stack data in any 

way. The last parameter, setpp, changed the stored stack data. This is an example of an “active” region 
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parameter. Any number of passive parameters may be performed to set up and query a region. But for the 

sake of clarity, only one active parameter is allowed per region definition. 

The next step is to stencil out a door on one side of the barrel. This is very similar to the previous 

example. However, we’ll go one step further and specify a doorframe of panel elements around the door 

itself. This requires two region parameters to perform the two active operations. 

# Cut out a door with frame border 

region 

iadd box 732. 0. 198. 85. 72. 120 

setpp Large Door Frame 

region 

eadd box 732. 0. 198. 85. 72. 120 

setpp Large Door 

 

Note that the two add parameters use exactly the same coordinates and dimensions. The difference is 

that the second operation uses the exclusive add parameter eadd rather than the inclusive add parameter 

iadd.  The eadd parameter requires that all nodes for an element fall in the specified volume while the 

iadd parameter requires only one node to be in the volume. This difference makes building these border 

frames easy. Note that it is possible for the volume to exactly intersect a line of nodes and produce identical 

results along an edge for the two parameters. 

 

 

 

 

 

 

 

The region command can also be used to produce partial models. The following code creates an output 

file that does not contain the door or door frame: 

# 

region 

ppadd Large Door Frame 

ppadd Large Door 

inverse 

rwrite vrml project6a.wrl 
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The additional input lines add the door and frame to the region, then invert the region membership. 

Finally, an output file containing just the elements in the region is written. These elements will have the 

same indices and properties as they do in the full model. Thus, this approach can be used to generate models 

for tasks such as mapping aerodynamic loads to the exterior elements of a model. The resulting load data 

can then be applied to the full model (with interior elements) with no element renumbering required. 

For a more complex model with many more objects, the object level mark command can be used to 

arbitrarily apply labels to each component such as “OML” or “LH2.” Objects can have any number of 

marks. Then the region-mode parameterss mkadd and mkrem can be used to add/remove groups of com-

ponents by these labels. 
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Project 7: Variables and Math 

   Loft supports two types of variables: “user-defined” and “system.” This capability greatly expands the 

parametric power of the program by allowing critical dimensions or values to be set once and then used 

repeatedly. If a requirement changes, only that single value must be updated. The basic math support in the 

Loft input file reader adds even more flexibility. Named variables can also significantly improve input file 

clarity and reduce the chance of errors. 

Input Line Math 

   Loft supports simple math operations on an input line. These operations are addition, subtraction, multi-

plication, and division. The corresponding operation symbols are the normal “+,” “-,” “*,” and “/.” A space 

must be used on either side of the operation symbol.  Any number of operations can be performed on a line. 

All math calculations are performed left to right, with no preference given to multiplication or division. 

Parentheses are not supported. Multiple variables defined on multiple lines can be used to perform separate 

parts of a complex computation where order must be controlled. 

   Since computation of math operations is performed left to right, the expression “50 + 10 * 3” evaluates 

sequentially as: 

50 + 10 * 3 = 60 * 3 = 180 

User-defined variables 

   A variable can be defined in a Loft input file by using the define command. Any desired name (with 

no spaces) can be used for the variable name. To reference a user variable, the dollar symbol, “$,” is placed 

before the variable name. These variables can be used in any Loft input command or parameter as needed. 

Here are some examples: 

define var1 50.0 

define var2 10.0 

define var3 $var1 + $var2 * 3.0 

define var1 40.0 

 

   The user variable var3 is computed using the previously defined var1 and var2 variables. It has the 

value of 180.0 (see discussion of input line math above). The last example redefines var1. Any later ref-

erences to that variable will use the new value. 

System Variables 

   System variables are the collection of Loft’s current default values for object parameters. These values 

are continuously updated as the user specifies parameters. Thus, there is no define command, per se, to 

set these values. Rather, they are set through the normal use of Loft. 

   System variables are referred to by a specific name (see a chart of all available variables chapter 7 of this 

manual). To reference a system variable an “at” symbol, “@,” is placed before the variable name. 
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Examples: 

 

object wing demo 

span 10.0 

chord @wing.span / 2.0 

 

Math Functions 

Loft supports some standard math functions including trigonometry, roots, etc. See the math function 

chart later in chapter 7 of this manual for a full list of supported functions. Math functions are called by using 

the percent symbol and the function mnemonic. They must be placed at the end of a line after any variable 

or arithmetic. Multiple functions can be used on a single line. Each function will be applied to the preceding 

number in the order read. Note that the @pi system variable could also have been used rather than being 

defined as a user variable. 

 

Examples: 

 

define pi 3.14159265359 

define four 4. 

define two $four %sqrt 

define zero $pi %sin 

define negone $pi %cos 

define zeroagain $pi * $pi %sqrt %sin 

 

Logical Operations 

Loft supports six logical operations “>,” “>=,” “<,” “<=,” “=,” and “!=” (greater than, greater than or 

equal, less than, less than or equal, equal, and not equal). When they are encountered, the values will be 

compared and a 1.0 will be returned if the equality/inequality is true and a 0.0 will be returned if it is false. 

Remember the left to right sequential operation of the math preprocessor. If complex comparisons are de-

sired, use multiple lines and variables to construct the desired result. These operations are most commonly 

used with the if flow control command. 

 

Example: A Compound Wing 

   Loft supports only trapezoidal wing planforms. More complex shapes can be built up from multiple trap-

ezoids and the math and variables capability of Loft can be used to make this assembly easier. For this 

example, we’ll construct a swept wing with a large root strake. 
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   Math is used first to calculate the strake’s taper ratio directly from the root and tip chords rather than 

requiring the file creator to do the calculation. Then, the chordwise mesh density of the outboard section is 

computed using the system variables that contain the outboard section’s root chord and the strake’s taper 

ratio.  

object wing strake 

  chord 900. 

  span 80. 

# Use math to calculate tip/root = 0.48 

  taper 432. / 900. 

  sweep 80.0 

  rootnaca 2212 

  tipnaca 2208 

  sparpos reset 

  sparpos 10. 

  sparpos 36. 

  sparpos 80. 

  ribpos reset 

  ribpos 33.  

  ribpos 66. 

  notip 1 

  meshchord 0.02 

  meshspan 0.06 

  meshthick 0.02 

# 

object wing mainwing 

  chord 432. 

  span 251.   

# to match strake, divide its mesh value by its taper ratio = 0.0416 

  meshchord @wing.mesh_chord / @wing.taper 
  taper 0.37037 

  sweep 45.0 

  naca 2208 
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  relx 80. 

  relz 453.70255 

 

An Important Caveat 

The math and variable support described in this project is implemented as a preprocessor that immediately 

replaces all the variables with their corresponding values and performs all the requested calculations before 

handing the now conventional input line to the main Loft user interface. Objects are only actually created 

when a new command is read and Loft determines that the user is therefore done with specifying parameters 

for that object. Finally, the positioning system variables (@transx, etc.) are only updated after an object 

has been created and merged into the current stack. 

 

The combination of these three factors can lead to some confusion. Consider the following code example, 

which will result in different values assigned to the two user variables var1 and var2. 

 

object section fuselage 

   length 10 

define var1 @transz 

define var2 @transz 

 

Loft will read these lines in order. It will start a new section object and define its length to be 10. Then it 

will read the first define command and the preprocessor will replace the @transz system variable with 

the value of 0. Then, the main Loft code will determine that a new command has been specified and thus the 

user is done with the previous object. The section object will be created and the @transz system variable 

will be assigned a new value of 10. Next, Loft will actually create the var1 variable and assign it the value 

of 0 that the preprocessor had already placed on the input line. Finally, the last define command will be 

read. The preprocessor will replace the variable @transz with the value 10 and then the main code will 

assign that value to var2. Thus, for very subtle reasons, the values of var1 and var2 will be different. 

 

A work around for this issue is to put another command between the last object parameter and the first 

define command. That command will trigger the generation of the object and the updating of the 

@transz system variable before the definition command is read and handed to the preprocessor. For in-

stance, just adding the command null before the var1 definition would result in both variables have the 

same, expected, value of 10.  
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Project 8: Bodies of Revolution, Toroids, and Helixes 

 

   Any curve type can be used to create a body of revolution in Loft. Five parameters in the section object 

type can be used to create bodies of revolution, toroids, and helixes. These parameters are radius, c1_ro-
tation, c2_rotation, c1_yoffset, and c2_yoffset.  

 

   Some caveats for these objects: These meshes will not stack well in a sequential object generation (like the 

full examples at the end of this manual). Currently frames won’t generate on the rotated object except at the 

initial curve1 position. Finally, the model will not be aligned with the center of rotation at zero; it will need 

to be moved if that is desired (use transx -1 * <radius>). 

 

   The parameter radius is used to specify the desired distance from the y-axis aligned rotation axis to the 

x=0 point on the curve being extruded. On half curves in the built-in library, x=0 on the line of symmetry of 

the curve (where the missing mirror half would start). For full curves, x=0 on the centerline of the curve.  

 

   The simplest body of rotation using a half curve is illustrated below where a semi-breadbox (“sbb”) library 

curve (square bottom half, circular top half) is rotated 360 degrees. The Loft input file to generate this mesh 

is: 

 

# Body of revolution 

object section bor 

   curve1 sbb 

   curve2 sbb 

   nodes_axial 36 

   nodes_circ 21 

   length 0 

   radius 0 

   c1_rotation 0 
   c2_rotation 360 
# save 

write vrml bor.wrl 

  end 

 

   The two rotation parameters are used to specify the arc in degrees that the corresponding end is rotated. 

Using 0 and 360 will produce a full body of revolution. 
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   By using a much higher value for the rotation, such as 3600 

degrees (10 revolutions), and a yoffset at one end, a helix can 

be produced. 

 

# Helix 

object section Spring 

   curve1 cir 

   curve2 cir 

   nodes_axial 360 

   nodes_circ 10 

   length 0 

   radius 2 

   c1_rotation 0 
   c2_rotation 3600 
   c2_yoffset 30 
move 

   transx -2 

# save 

write vrml spring.wrl 

  end 

 

   Any Loft curve type can be used including user-defined curves. Curve1 and curve2 can even be differ-

ent, which will work fine for a helix or partial body of revolution but will not stitch well in a full 360 body. 

The examples below used a variety of cross section curves (cir, fillet, and squ), 360-degree rotation, 

a radius value higher than one, and zero yoffset. Note the move command that aligns the x=0 axis 

with the center of the finished object. Only one input file is shown. 

 

# Simple Toroid 

define myrad 3.0 

object section tank1 

   curve1 cir 

   curve2 cir 

   c1_yscale 1.5 
   c2_yscale 1.5 
   nodes_axial 36 

   nodes_circ 20 

   length 0 

   radius $myrad 

   c1_rotation 0 
   c2_rotation 360 
move 

   transx -1 * $myrad 

# save 

write vrml toroid.wrl 

  end 
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Project 9: Program Flow Control 

   Program flow control is the ability of the user to direct Loft to read/operate on its input in a way other 

than sequential. This can be a jump to a different section of the input file, a loop that repeats a block of 

input, a conditional execution of some input, or a subroutine that can be called with a different input. 

These capabilities are implemented with a very minimal but functional set of commands. 

 

   Flow control requires the use of Loft’s variable and math functionality (see previous tutorial). The logi-

cal operators (>,<,>=,<=,=,!=) are particularly useful. The logical operators return 1.0 when the 

comparison is true and 0.0 when it is false. 

 

   The linelabel command is the base for most of the program flow control capabilities. It does not 

perform any action other than marking a location in the input file with an identification line number. The 

argument for the command is a unique value. If duplicate line numbers are assigned, Loft will use the ear-

liest position in the input where that number is encountered and ignore later occurrences. Variables can be 

used to specify line numbers but exercise care with changing those values.  

 

   The goto command is the next program flow control command. Its argument is a line number. When 

read, Loft’s execution will jump to the specified linelabel line. This can be before or after the current 

execution location. Line numbers can be used in external input files that are inserted with the include 

command, but Loft will not be able to jump forward into an external file that has not yet been read; it can 

only jump backwards into a previously included file. 

 

   If is the conditional program flow command. Its argument is most commonly a logical comparison 

(e.g., “if $i > 5”) but can be anything that produces a value. If the argument value is non-zero, the 

result is treated as true and the next input line is read and executed. If the value is near zero (defined as 

between +/- 1.0E-4 to allow for round off errors), the result is treated as false and the next input line is 

skipped. 

 

   These three commands enable powerful control of the flow of Loft’s execution. They can be combined 

to create loops, branching execution, functionality like the switch/case logic in the C programming lan-

guage or the “on/goto” logic in the BASIC programming language, etc. 

 

   The if command can be used to support multiple configurations of a model in a single input file. The 

TSTO orbiter example included at the end of this manual defines a variable called fullvehicle near 

the top of the file. If the value is set to zero (false), then a half vehicle is generated. If the value is set to 

one (true), a full vehicle is generated. See the annotated example for more details. 

 

   To create a loop, start by initializing a counter variable. Then, add a line number that is the beginning of 

the loop. Now, write the input that you want to repeat several times. At the end of that input, increment 

the counter variable. Now, do a comparison to see if the counter is more than the desired number of loop 

executions and either loop back to the top or exit the loop and continue with the rest of the file. Here is an 

example of doing that: 

 
define i 0 

linelabel 10 

   <do something we want to repeat> 

   define i $i + 1 

if $i <= 5 
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goto 10 

<rest of input file> 

 

   Care should be taken to avoid infinite loops. Ensure that the counter initialization is outside the loop and 

that the counter incrementing is inside the loop. This example will perform the commands within the loop 

five times. One application of loops could be to make an array of identical tanks. The user would need to 

make sure that each new tank was rotated or translated to a different location inside the loop to avoid du-

plicates being automatically merged. 

 

   To have Loft select between multiple potential blocks of code, create a destination line number variable 

and math calculations to set that variable to one of several possible values.  

 
define destination $length * 10. 

goto $destination 

 

   This approach can produce program logic that is similar to “switch/case” in the C programming lan-

guage or “on/goto” in the BASIC language. Just ensure that line numbers are set up for all possible values 

of the destination variable. 

 

   The include command is used to insert lines from an external file into Loft’s input stream. It can be 

used for many reasons, including file readability, defining a set of variables that is used by multiple pro-

jects and needs to be consistent, or as a subroutine. A simple example of this subroutine approach is 

shown below: 

 
# main program 

define radius 10 

include generate_tank.txt 

write vrml r10tank.wrl 

new 

define radius 20 

include generate_tank.txt 

write vrml r20tank.wrl 

 

   And the generate_tank.txt file that is being included: 

 
# generate_tank.txt file 

object dome tanktop 

   c1_xscale $radius 

   c1_yscale $radius 

   length $radius * -1.0 

object dome tankbot 

   length $radius 

 

   Here the included file enables the creation of two spherical tanks with different radii without having to 

create duplicate code. Note that the output files have different names and the write command is not in 

the subroutine.  
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Project 10: NASTRAN bonus features 

   A collection of Loft features was designed to add analysis capabilities beyond mesh generation. These 

features are currently only fully applicable to NASTRAN output files. A few features are written to 

VRML files. Output support for other formats may be added in the future. 

 

   These features make use of Loft’s region mode capabilities that can mark nodes and elements based on 

their object names (e.g., “main wing”), portion of an object (e.g., “upper skin”), or geometric location. 

Combinations of these factors can be used to focus in on only a few nodes and/or elements for which ap-

plying analysis entities is desired.  

 

   These analysis entities include forces, pressures, temperatures, boundary conditions, rigid boundary ele-

ments (RBEs), and point masses. A single NASTRAN case control block that references the loads and 

boundary conditions can also be generated and written. 

 

   The annotated TSTO orbiter example included at the end of the manual makes extensive use of each of 

these capabilities. This tutorial shows the use of a few representative features necessary to generate a 

wing model, apply a uniform pressure to the upper skin, constrain the model at the root-spar nodes, and 

write a ready-to-run NASTRAN deck for the loaded model. 

 

   First, define the wing. Since we’ll be constraining the nodes on the spar root, we need to request that 

spars be generated. This example uses a biconvex airfoil with the default 10% thickness to chord ratio. 

 

 
 

object wing demo wing 

   span 30 

   chord 20 

   taper 0.5 

   sweep 20 

   nspars 2 

   nribs 3 

   naca bicon 
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   meshchord 0.5 

   meshspan 0.5 

   meshthick 0.5 

 

   Next, let’s list some of the groups and properties that were automatically created by Loft to go with this 

wing. 

 
list groups 

list pprops 

 

   These commands are optional. They produce output to the screen (shown in text box below) that will be 

helpful in creating the load and boundary condition sets that we’ll do next. 

 

   Now, we can use this information to create a pressure load set and a root-spar-node boundary condition 

set. For the pressure, we specify the upper skin element group, a value of 1.0 for a unit load up, and a 

NASTRAN setid of 100. 

 
object press upper skin lift 

   group1 demo wing skin up elems 

   value 1.0 

   setid 100 

 

   For the root boundary conditions we specify that they are to be applied to the root spar nodes and are to 

constrain the translation in all three directions (degrees of freedom 1, 2, and 3) and use a setid of 200. 

 
object bc root bc 

   group1 demo wing root spar nodes 

   doflist 123 

   setid 200 

Read line: list groups 

 

 Group list for mesh demo wing: 

 

        0: demo wing ROOT NODES                     members      4, type nodes, id 0 

        1: demo wing TIP NODES                      members      4, type nodes, id 1 

        2: demo wing ROOT SPAR NODES                members      6, type nodes, id 2 

        3: demo wing ROOT RIB NODES                 members     25, type nodes, id 3 

        4: demo wing CARRYTHR NODES                 members      0, type nodes, id 4 

        5: demo wing SKIN UP ELEMS                  members     84, type elems, id 5 

        6: demo wing SKIN LOW ELEMS                 members     84, type elems, id 6 

        7: demo wing SPAR ELEMS                     members     56, type elems, id 7 

        8: demo wing RIB ELEMS                      members     36, type elems, id 8 

        9: demo wing QUARTER CHORD VECT             members      0, type nodes, id 9 

       10: demo wing ALL NODES                      members    219, type nodes, id 10 

       11: demo wing ALL PANELS                     members    260, type elems, id 11 

 

Read line: list pprops 

 

  List of physical properties:  

 0    demo wing RIB 

 1    demo wing SPAR 

 2    demo wing SKIN UPPER 

 3    demo wing SKIN LOWER 

 

  End of physical property list. 



 

79 

 

 

   Then, we set our NASTRAN parameters to refer to the two previous setids and to use NASTRAN solu-

tion 101: 

 
nastran sol 101 

nastran loadset 100 

nastran spc 200 

 

   And finally, we write out the generated file in two formats: 
 

write vrml project10.wrl 

write nastran project10.bdf 

 

   After Loft is run using this input file, the resulting bdf file can be imported into Patran to inspect the 

load and boundary conditions and run in NASTRAN to produce stress and deflection results. 

 

   Read through the annotated TSTO orbiter example at the end of this manual for more detailed and com-

plex generation of NASTRAN analysis entities including forces, point masses, and rigid boundary ele-

ments (RBEs). 

 

Upward unit pressure load created by Loft 

Root spar translation boundary conditions 
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Project 11: Automatic Stitching 

   Loft will automatically merge nodes and elements that are coincident. Stacks of objects that form a fuse-

lage will generally align and automatically merge as long as node count and distribution are the same. 

 

   The meshes on wing roots and fuselage sidewalls are inherently different; there are not coincident nodes 

to automatically merge. Aerodynamically, a fairing is often used to blend the wing to the fuselage. But, 

the structural loads are generally designed to be carried by wing spars connected to fuselage bulkheads 

and/or ring frames. Since Loft is a structurally focused program, the second approach is the recommended 

technique and the one that will be demonstrated in this project. 

 

    The annotated TSTO orbiter model in the examples at the end of this manual uses the techniques that 

this project will demonstrate to attach both its wing and its vertical tail. It does this parametrically so that 

if vehicle dimensions change or the user switches between half and full models, the stitching still works. 

This example demonstrates the approach with a much simpler configuration. 

 

   The steps necessary for this approach are: 

1. When building the model consider the structural load paths between the wing and vehicle 

body. Position bulkheads and/or ring frames near the wing spars. 

2. Isolate and mark the portions of the spars and bulkheads that are going to be connected and 

use the region “corner” operation to identify the corners of the marked areas. 

3. Create rigid boundary elements (RBEs) that connect the identified corners. 

 

   For this simplified case, we’re going to model a wing and only the section of the fuselage that is beside 

the wing. Two spars and two bulkheads will be positioned at one-third and two-thirds of the chord. These 

will then be marked and connected to each other. For visualization purposes, an axial offset will be applied 

to the bulkheads so that they do not perfectly align with the spars. This will allow us to better see the 

generated RBE elements. This offset can be modified to zero if desired. 

 
define chord 20 

define offset 3  

define meshdens 1.0 

# derived dimensions 

define fuserad $chord / 2. 

define length1 33.3333 - $offset * $chord / 100. 

define length2 66.6666 + $offset * $chord / 100. - $length1 

define length3 $chord - $length1 - $length2 

list variables 

# make fuselage in 3 sections with a bulkhead between each 

object section fuse1 

   length $length1 

   c1_xscale $fuserad 

   c1_yscale $fuserad 

   c2_xscale $fuserad 

   c2_yscale $fuserad 

   nodes_axial $length1 * $meshdens 

   nodes_circ 20 * $meshdens 

object dome bulkhead1 

   taper bulk 

   nodes_axial 10 * $meshdens 
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object dframe ring1 

object section fuse2 

   length $length2 

   nodes_axial $length2 * $meshdens 

object dome bulkhead2 

   taper bulk 

   nodes_axial 10 * $meshdens 

object dframe ring2 

object section fuse3 

   length $length3 

   nodes_axial $length3 * $meshdens  

# make wing 

object wing mywing 

   span $chord * 1.5 

   chord $chord 

   taper 0.5 

   sweep 20 

   nspars 2 

   nribs 3 

   wingbox $fuserad 

   meshchord 0.5 * $meshdens 

   meshspan 0.5 * $meshdens 

   meshthick 0.5 * $meshdens 

   transz 0.0 

   transx $fuserad 

 

 

 

The wingbox and bulkheads that we want to stitch together: 
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   Now that the model is built with the spars and bulkheads positioned close to each other (step 1 in our 

process) we can prepare to perform step 2 which is identifying the nodes that we want to connect. To help 

with marking the desired stitching areas, a list of automatically generated groups is requested: 

 
list groups 

 

   The output from this command is written to the screen or piped to a file using the windows “>” pipe 

command (e.g., loft project11.txt > project11.out). It lists several groups for each of the 

objects in the model. We are particularly interested in the nodes on both bulkheads and on the carry-through 

spars. Looking at the group list, we can see the groups we want: 

 
8:  bulkhead1 ALL NODES              members     91, type nodes, id 8 

17: bulkhead2 ALL NODES              members     91, type nodes, id 17 

34: mywing CT SPAR ELEMS             members     16, type elems, id 34 

 

   Another option is to use the carry-through nodes.   

 
26: mywing CARRYTHR NODES            members     99, type nodes, id 26  

 

It would be a little more work to isolate the desired spar nodes from the carry-through nodes group. Your 

groups could have different id numbers, but the names are what we need for the next step and they should 

not change. This listing of the groups is not required for the stitching operation but is included as part of 

this tutorial project to clarify where the names used in the next step were obtained. 

 

   The next set of lines performs step 2 for the forward bulkhead. All of the nodes on the bulkhead are 

added to a region, then only the nodes that are vertically within 1/5 of the radius from the center are re-

tained using two ikeep operations. The division by 5 in this step could be changed to another value if a 

broader or tighter area were desired. The bulkhead mesh density will also have an impact on this choice 

because at very low mesh densities nodes may or may not exist in the specified region if it is very narrow. 

A broader area (dividing by 3 or 4 instead of 5) would be more robust but perhaps less realistic. 

 
region 



 

83 

 

   mkadd bulkhead1 ALL NODES 

   ikeep yle $fuserad / 5. 

   ikeep yge -1.0 * $fuserad / 5. 

   corner bulk1attach 

 

   The corner operation identifies the four nodes that are still in the region and that are the most distant 

from the centroid of the region in each coordinate quadrant. The nodes are added to a group named 

“bulk1attach” and will be used as connection points. The carry-through spar nodes are marked in a 

similar process. Here the ikeep operation keeps the spar nodes that are in the front half of the model. 

 
region 

   mkadd mywing CT SPAR ELEMS  

   ikeep zlt $chord / 2. 

   corner wing1attach 

 

   The connections for the rear spar/bulkhead pair are marked similarly using the second bulkhead and a 

“zgt” inequality rather than “zlt” to select the rear half of the model. 

 
region 

   mkadd bulkhead2 ALL NODES 

   ikeep yle $fuserad / 5. 

   ikeep yge -1.0 * $fuserad / 5. 

   corner bulk2attach 

region 

   mkadd mywing CT SPAR ELEMS  

   ikeep zgt $chord / 2. 

   corner wing2attach 

 

   We have completed step 2 of our stitching process. Step 3 is performed easily by referencing the four 

groups of corner nodes that we have created: 

 
object rbe forward attach 

   group1 bulk1attach 

   group2 wing1attach 

object rbe aft attach 

   group1 bulk2attach 

   group2 wing2attach 

 

   The very last step of the project is to save the model. The new RBEs will be visible on the VRML 

model as lines. The spar nodes at the wing root are just outside the fuselage, so the outboard RBEs are 

only partially visible from the inside. Resetting the offset variable to zero to make the spars and bulk-

heads coplanar would make the RBEs very short and difficult to see but is what would probably work 

best for analysis. 

 
write vrml project11.wrl 

write nastran project11.bdf 
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Diagonal green lines are the new RBEs connecting the wing to the bulkheads 
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Chapter 3: Regions 

 
The region tool set is a feature of Loft that allows the user to query or modify a section of the current 

stack. Regions are inherently temporary constructs, but their effects may include permanent changes to the 

mesh by deleting parts, changing property assignments, etc. Regions can also be used to query statistics on 

the mesh and produce reports. 

There are two parts of the region process. The first is to specify what nodes and elements make up the 

region. The second is to perform the desired task(s) on those nodes and elements. 

Defining a Region 

There are multiple ways to identify nodes and elements to add to a region. A control volume such as a 

box or sphere can be specified. A coordinate inequality can be used to keep or remove everything on one 

side of a cutting plane. A material property, physical property, or automatically generated group can be 

used. A name previously used in a Loft mark command can be accessed to add those elements to a region. 

Multiple combinations of these options can be strung together. 

For instance, one could define a region as all elements marked as “OML” that do not have “main wing” 

as their physical property. While exact syntax will be discussed later in this chapter, the logic of this oper-

ation would be “add all elements marked oml” followed by “remove elements with physical property main 

wing.”   

Acting on a Region 

There are two classes of actions that can be performed on a region. Passive actions are actions such as 

queries that do not change the mesh data. Active actions modify the mesh data in the region by changing 

properties, deleting nodes or elements, etc. Only one active action can be performed in any particular 

use of the region command, as the node and element lists that Loft uses to define that region will become 

stale. A new region command can be started to perform additional active operations. 

Like the stack-level move command operations, the region parameters are acted upon sequentially. 

Thus, one could add some elements, do a (passive) query, add some more elements, do another query, 

remove some elements, query, and then perform an (active) cut action to complete the current region com-

mand. 

Region Commands 

Region mode is entered by issuing the Loft command region. Any number of region-mode operations 

can be specified in sequence until another Loft command is encountered. After the first active operation, 

any further operations will be ignored and a warning to that effect issued. A new region command must 

be started for each additional active operation that the user wishes to perform.  All region commands 

reset the initial list of selected nodes and elements in the region to be empty. 

Mesh Selection Parameters 

These parameters add or remove elements and nodes from the current selection list. They are all passive.  
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The volumetric selection parameters identify nodes that fall in the specified volume. Loft then adds all 

elements that use those nodes to its selection list as well. This element addition can be “inclusive,” resulting 

in the addition of any element that has at least one of its nodes in the specified volume, or it can be “exclu-

sive,” where all element nodes must be in the volume for that element to get added to the selection list. 

The property selection parameters identify elements that have the specified material property, physical 

property, or Loft mark.  In turn each node that those elements use is also added to the selection list. 

Volumetric Selection Parameters 
 

iadd – Inclusive node addition. Adds all nodes that fall within a specified volume of space. Any ele-

ments that use any of these nodes will be added as well. Volumes are specified by use of simple three-

dimensional shapes including spheres, cylinders, and boxes. Cylinders are aligned with an axis and are 

infinite in length. Warning: Any beams whose alignment nodes fall in the specified volume, even if the 

beam end points themselves do not, will also be added. The type “all” will add all nodes (and thus all 

elements) in the current stack. No dimensions are required for the “all” type. 

For the coordinate comparisons (xeq, xgt, xge, xlt, xge, etc.) a single value is specified and the node is 

added if its coordinate meets the criteria. The planar division options (px, nx, etc.) represent positive or 

negative coordinates and do not require a value. They are just a shortcut; “px” is treated as “xgt 0.” 

Usage: iadd <volume type> <center of volume> <dimensions of volume> 

      Or: iadd <coordinate comparison type> <value> 

      Or: iadd <planar division comparison type> 

Examples: iadd sphere 10. 20. 25. 5. 

       iadd yge -4.3 

       iadd nx 

Volume Type = “all,” “sphere,” “xcyl,” “ycyl,” “zcyl,” “box”  

Coordinate comparison type = “xeq,” “yeq,” “zeq,” “xgt,” “ygt,” “zgt,” “zge,” “yge,” “zge,” “xlt,” “ylt,” 

“zlt,” “xle,” “yle,” “zle” 

Planar Division comparison type = “px,” “py,” “pz,” “nx,” “ny,” “nz” 

Center = x, y, z coordinate of center of volume 

Dimensions = radius for sphere and cylinders, 

 = xlength, ylength, zlength for box. 

Value = coordinate to be compared to 

 

irem – Inclusive node removal. Removes from the selection list all nodes that fall within a specified 

volume of space. Any elements that use any of these nodes will be removed as well.  This operation does 

not delete anything from the mesh, it just removes the specified items from the region selection list. 

Warning: Any beams whose alignment nodes fall in the specified volume, even if the beam end points 

themselves do not, will also be removed. The type “all” will remove all nodes (and thus all elements) in the 

current stack. Arguments and usage are the same as the iadd parameter . 

eadd – Exclusive node addition. Adds all nodes that fall within a specified volume of space. Any ele-

ments with all of their nodes in the selection list will be added as well. Arguments and usage are the same 

as the iadd parameter . 
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erem – Exclusive node removal. Removes from the selection list all nodes that fall within a specified 

volume of space. Any elements with all of their nodes in the volume will be removed as well.  Arguments 

and usage are the same as the iadd parameter . 

ikeep/ekeep – Inclusive/exclusive node removals that are the inverse of the irem/erem commands. 

In other words, nodes/elements that fall within the specified volume are retained and those that do not are 

removed. Thus, “ikeep all” has no effect. Arguments and usage are the same as the iadd parameter . 

 

Property Selection Parameters 
 

mpadd – Add elements to the selected list based on their material property name. The material property 

name is used to indicate where on the component the elements reside and vary based on the compo-

nents_axial and components_circ object variables. All nodes used by the elements are also added 

to the selected list. Use the “list mprops” command to see current project material properties. 

Usage: mpadd <material property name> 

Example: mpadd SB 0 CB 0 

 

mprem – Remove elements from the selected list based on their material property name. The material 

property name is used to indicate where on the component the elements reside and vary based on the com-

ponents_axial and components_circ object variables. All nodes used by the elements are also 

removed from the selected list. If some of those nodes are used by other elements that are still selected, an 

update operation may be desired. 

Usage: mprem <material property name> 

Example: mprem SB 0 CB 0 

 

ppadd – Add elements to the selected list based on their physical property name. The physical property 

name is in most cases the object name given by the user. All nodes used by the elements are also added to 

the selected list. Use the “list pprops” command to see current project physical properties. 

Usage: ppadd <physical property name> 

Example: ppadd lox tank 

 

pprem – Remove elements from the selected list based on their physical property name. The physical 

property name is in most cases the object name given by the user. All nodes used by the elements are also 

removed from the selected list. If some of those nodes are used by other elements that are still selected, an 

update operation may be desired. 

Usage: pprem <physical property name> 

Example: pprem lox tank 

 

mkadd – Add elements to the selected list based on their marks. Marks are set using the mark parameter 

during object creation. An object can have any number of marks. By default, it will have one that contains 

its object name. In preparation for the use of this command the user can assign marks such as “OML,” 

“fuselage,” “tankage,” “bulkheads,” “wings,” etc. and then add and remove multiple objects based on the 

chosen marks. All nodes used by the elements are also added to the selected list. Use the “list groups” 

command to see current project marks/groups/labels. 
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Usage: mkadd <mark name> 

Example: mkadd OML 

 

mkrem – Remove elements from the selected list based on their marks. Marks are set using the mark 

parameter during object creation. An object can have any number of marks. By default, it will have none. 

In preparation for the use of this command, the user can assign marks such as “OML,” “fuselage,” “tank-

age,” “bulkheads,” “wings,” etc. and then add and remove multiple objects based on the chosen marks. All 

nodes used by the elements are also removed from the selected list. If some of those nodes are used by other 

elements that are still selected, an update operation may be desired. 

Usage: mkrem <mark name> 

Example: mkrem OML 

 

Passive Operation Parameters 

Passive operations can be used to change membership of a region or list information about the current 

nodes or elements that are in the selected list. By default, the output is printed to the screen and the user has 

the option of piping the output to a file using the command line. Alternatively, the user can specify an 

output filename for the query results to be sent to. The user can also specify that the data is to be formatted 

as FEA file data lines (e.g., the node list could be in NASTRAN GRID cards) or (by default) in a more 

human readable format. Some query results will not have an appropriate FEA format to be printed in and 

will only be reported in the Loft native style. 

inverse/invert – Change all items in the selection list to not-selected and all not-selected items to 

selected. Both spellings have the same effect. 

Usage: Inverse 

Example: inverse 

 

update – Re-add all nodes used by elements in the selection list to the node selection list. Depending 

on the order of addition and removal operations and the choice of exclusive or inclusive, the two lists may 

not be completely synced. If syncing is desired, this will force an update. 

Usage: update 

Example: update 

 

fileout/fileappend – Specify an output file to send query and rwrite outputs to. By default, 

this output is printed to the screen. All output is appended to the end of a (possibly) pre-existing file. Either 

command name may be used. 

Usage: fileout <filename> 

Example: fileout region1.wrl 

 

filenew/filewrite – Specify an output file to send query and rwrite outputs to. By default, 

this output is printed to the screen. This variant creates a new file (overwriting any existing file of the same 

name) rather than appending to a possibly pre-existing file as fileout does. 

Usage: filenew <filename> 
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Example: filenew region1.wrl 

 

format – Specify the format for the query outputs. The Loft default is a human readable chart format. 

Other options are “nastran,” “abaqus,” “stl,” and “vrml.” Some queries may produce output not suitable for 

the requested format in which case that output will be presented in the Loft format. This value will be reset 

to the default when a new region is created. 

Usage: format <filetype> 

Filetype = “loft,” “nastran,” “abaqus,” “stl,” “vrml.” (loft is the default) 

Example: format vrml 

 

query – Request various reports on the items in the selected list. Specifying “nodes” will list the se-

lected node numbers and each node’s coordinates. “Elements” will list the element numbers, their nodes, 

their properties, and (as supported by the chosen format) any marks on the elements. “rbes” will list all of 

the rbe/bc/force/mass/press objects in NASTRAN format. “Matprop” will list the material properties used 

and “physprop” will list the physical properties used. “Properties” will list both the material and the physical 

properties used by the selected elements. 

Usage: query <type> 

Type = “nodes,” “elements,” ”properties,” ”matprop,” ”physprop” 

Example: query elements 

 

 mark – Add a label to all of the nodes or elements in the region. Items can have as many different 

labels as desired. Marks have limited uses. They can use used to sort elements in the region command and 

will be output as groups when an I-DEAS output file is created. Support for NASTRAN SET grouping can 

be enabled by removing a comment in “nastran.c.”  The mark parameter takes two arguments: the group 

type (node, element, or rbe) and the group name. A marked group can contain either nodes or elements, but 

not both. If the type parameter is not present, the “element” type is used. 

  

Usage: mark <type> <name> 

Example: mark element OML 

 

comment – Write a commented line of text to current output in the current format. 

Usage: comment <text of comment> 

Example: comment These elements are all marked OML 

 

rappend – Write the selected items as if they were a complete mesh. The output is appended to, rather 

than overwriting, the specified file This command ignores the fileout, filenew, and format settings, 

rather matching the syntax of the non-region write command and the alternative form of the rwrite 

command, requiring the format and filename be supplied with the command.  

 

     Usage: rappend <format> <filename> 

     Alternate example: rappend nastran region.bdf 

 

rwrite – Write the selected items as if they were a complete mesh. Uses the values set by the format 

and fileout or filenew commands. There is an alternate form of rwrite where the format and file-

name are specified along with the command (as is the case with the non-region write command) and the 
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format, fileout, and filenew commands are ignored. In the alternate form, a new file is always 

created. If appending to an existing file is desired either use the rappend command or the non-alternate 

form of the rwrite command with a previous fileout specification. 

Usage: rwrite 

Example: rwrite 

     Alternate usage: rwrite <format> <filename> 

     Alternate example: rwrite nastran region.bdf 

 

corner – Identifies up to 8 nodes that are most distant from the centroid of the region’s nodes, one in 

each of 8 coordinate quadrants relative to the centroid. These nodes are added to the named group for later 

use. If the object is not aligned with the coordinate axes, some rotation to align may be desired to correctly 

identify the corners. 

 

Usage: corner <name> 

Example: corner Main Wing spar corners 

 

Active Operation Parameters 

Active operations attempt to change the selected region’s mesh in some way. This can be a property 

change, deletion, rotation, flipping of elements, etc. Again, once one active operation has been performed 

on the specified region, the selection list is marked as being “stale” (since nodes and elements it points to 

may no longer exist or may no longer meet the region selection criteria) and no further operations are 

permitted on the region.  

cut – Remove selected elements and nodes.  This operation has two modes. The “element” mode will 

remove only the elements in the current region. No nodes will be deleted. The “node” mode will remove 

both the marked elements and the marked nodes. Additionally, non-selected elements may be deleted de-

pending on the number of their nodes that remain after node deletion. Panels that end up with three nodes 

are converted to triangles. Panels with two or fewer nodes are deleted. Bars or beams that lose any nodes 

(including their alignment node) will also be deleted. The node version of this operation is similar, but not 

identical, to the (non-region) subtract command. 

Usage: cut <type> 

Type = “element,” “node” 

Example: cut element 

 

setmp – Change elements to use the specified material property. If the property name does not exist, it 

will be created. 

Usage: setmp <name> 

Example: setmp door cutout 

 

setpp – Change elements to use the specified physical property. If the property name does not exist it 

will be created. 

Usage: setpp <name> 

Example: setpp nose cap 
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flip – Reorder element nodes to reverse normal vector direction. 

Usage: flip 

Example: flip 

 

rotate – Reorder element nodes to rotate element orientation. The original node 2 becomes node 1, 

the original node 3 is now node 2, etc., and the original node 1 becomes node N. 

Usage: rotate 

Example: rotate 

 

beamalign – Re-align orientation of any beams to use a new alignment node. Coordinates of the node 

can be specified or the first node in a specified group of nodes will be used. This operation does not modify 

bars (that start with no alignment node since they have only an axial degree of freedom.) 

 

Usage: beamalign <x> <y> <z> or beamalign <node group name> 

Examples: beamalign 0.1 0.2 0.3  

                  beamalign a group with nodes 

 

baralign – Convert bars to beams, adding an alignment node. The alignment of any existing beams 

will not be changed, use beamalign for that operation. 

 

Usage: baralign <x> <y> <z> or baralign <node group name> 

Examples: baralign 0.1 0.2 0.3  

                  baralign a group with nodes 

 

beam2bar – Convert beams to bars, removing the alignment node. 

 

Usage: beam2bar  

Examples: beam2bar  
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Chapter 4: Tips and Best Practices 

Names 

   Loft automatically creates a lot of names. It creates lots of groups and enables easy manual creation of 

even more. It is important to choose good names so that Loft and any external analysis packages that use 

the names (e.g., HyperX) can be used effectively. 

 

   For instance, an object named “bulkhead” is fine if it is the only one. If there are several in the model, 

then “bulkhead 1,” “bulkhead 2,” etc. will work. But, “fwd lox support bulkhead” is even clearer. It not 

only provides better understanding, it also permits adding more bulkheads as your design matures so that 

you don’t end up with “bulkhead 1.5.” Be clear with your naming logic so that you don’t confuse “fwd tank 

aft bulkhead” with “aft tank fwd bulkhead.” 

 

   Similarly, have a clear plan for your other named items like variables and labels to improve readability 

and reduce the chance of using the wrong item. 

 

Comments 

   As with any other type of coding, make substantial use of comments. The pound symbol, “#,” is used to 

indicate the start of a comment. A comment can either be on a line by itself or placed at the end of a line 

after a command or parameter.  

 

   It is good practice to start an input file with several lines of comments that give information about the file 

itself, including what is being modeled, who created the file, what date it was created and/or last modified, 

what units the dimensions are in, etc. 

 

Variables 

   An excellent modeling approach is to have a section at the beginning of your input file with your main 

driving dimensions defined using good variable names. This makes the input file easier to read, reduces 

chances of typos, makes it easier to update the model, and makes it easier to validate that your model is 

correct. See the annotated TSTO orbiter example model. It has a very long section defining nearly every 

dimension on the vehicle. It is easy to understand and to change as the design evolves. 

 

   Even if this level of parameterizing is not needed, using variables when a value needs to be referenced 

multiple times reduces errors. And using meaningful names for your variables can make it possible for 

someone else to understand your model (perhaps that someone else will be you a few years later.) 

 

   One very common and recommended variable is a global mesh density variable. This can be included in 

every object definition with an appropriate multiplier to produce a clean mesh. Adjust the multipliers as 

you develop the model so that you have a consistent, low aspect ratio, mesh size throughout the model. A 

low value of the mesh density variable can be used for very rapid model generation while the model is 

being created and debugged. Once the layout is correct, increasing the mesh density variable at the begin-

ning of the file will generate a denser mesh suitable for analysis. 

  

   Use the list variables command to list all of the user defined variables and their values. Check 

carefully for any variables with unexpected zero values. That generally indicates that there was a spelling 
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error in defining the name of that particular value variable. Loft will return a value of zero for any undefined 

variable that is used and generate a warning that an undefined variable was referenced. 

 

Piping output 

   Loft is very verbose with its output. If everything runs correctly, you probably won’t need to read any of 

it. But, while you are creating the model and things are not working as desired, the screen output can be 

very useful. The amount of output can make it frustrating to scroll back through to find the problem. 

 

   An approach to address this is to pipe the output to a text file that you can then open in an editor to more 

easily scroll and search through all of the text. In Windows, the greater than sign, “>,” instructs the system 

to write the program output to a file. Two greater than signs, “>>,” will append the output to an existing 

file if you want to check the output from multiple models. This approach is used when a validation run of 

a new version of Loft is performed on all of the tutorial and example files in this manual. 

 
loft inputfile.txt > outputfile.txt 

 

   In Linux or UNIX the pipe symbol is the vertical bar “|”: 

 
loft inputfile.txt | outputfile.txt 

 

   Open the output file in notepad, vi, emacs, or other favorite text editor. You can then scroll through the 

file to find the section of the output that you are currently working on by searching for the text of an input 

line since they are echoed to the screen as they are executed. Or you could search the file for the words 

“warning” or “error” to see if Loft identified a problem. 

 

Debugging with the list command 

   Loft’s list command is a powerful validation tool to make sure that you are creating what you intend. 

Make heavy use of it and pipe the program output to a text file (see previous tip) so that the listed data can 

be examined more easily. 

 

   The list command has a large number of parameters to select which data is listed: 

 

• ccurves, icurves, lcurves – user defined curves (compound, interpolated, lofted) 

• stacks – models saved with the store command 

• variables - names and values 

• groups,marks – synonyms for labeled node/element lists 

• mprops, pprops – property lists 

• ribs, spars – wing rib/spar locations 

• mesh - gives various data counts 

• rbes – NASTRAN bonus data: forces, pressures, sbcs, rbes 

• input – the current Loft input stream as modified by program flow control operations 

• all – stand back, that’s a lot of information (but not actually all of the above)! 
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A Quality Bonus Tip 

   Another tip is to suggest the use of the quality command. This will do a number of basic checks on 

the quality of the mesh, including looking for high aspect ratios, degenerate objects (where a node is used 

more than once), non-planar panels, etc. Addressing identified issues may be as simple as adjusting your 

object mesh densities or merge tolerance or may take some redesign of your modeling approach. 
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Chapter 5: Programmer’s Guide and Reference 

Introduction 

This portion of the Loft user’s manual can be used to gain a deeper insight into how Loft functions. But 

it is really intended for someone who wants to add new object types or functions to the program. The chapter 

starts with a conceptual description of how the program works, followed by an overview of the code struc-

ture. Finally, there are sections that describe how to add objects, commands, new output types, and new 

curve types to the program.  

As program operations are described, the C file and/or subroutine that performs the function will be 

listed in the form “subroutine.c/function-name.” 

Geometries and Meshes 

A Loft input file contains a user’s definition of a vehicle’s geometry. The user’s specified object types, 

dimensions, and meshing parameters are called the “abstract geometry.” Loft’s main function is to read this 

abstract geometry and turn it into a concrete mesh made of nodes, elements, and a wide collection of ele-

mental properties. 

Loft does not internally store the abstract geometry of a vehicle. It has a “master” abstract geometry that 

consists of one object of each supported type. This master geometry is populated at program start with the 

default values described in the object descriptions in chapter 7.  (interface.c/initial_de-

faults). As the program reads the user’s geometry parameters, this master geometry is updated with the 

user’s specified values (interface.c/generate_object). When an object definition is completed, 

a mesh is generated for the object and the master geometry is updated by copying appropriate changes to 

the other object types and by resetting other parameters to their initial values. 

Loft works with two mesh data structures at a time. Both start with no data. The “stack” is a mesh 

containing all the previously generated objects’ nodes, elements, and elemental properties. The “mesh” is 

the structure containing the current object. Both data structures are stored in the exact same way. An object 

generation subroutine is passed an empty mesh for which it allocates memory, populates with nodes and 

elements, and returns. When the mesh is completed, it is immediately merged with the stack and then erased 

by freeing its allocated memory. (The store command works very much like the “cut” command on a 

word processor. A pointer to the current stack is stored, and then a new empty working stack is created. 

Similarly, a recall command is like a “paste” command. The same routine that combines the main stack 

and a new mesh (util.c/merge_sections) combines the current working stack with the specified 

stored stack. In this case, the stored stack is not erased.) 

Code Overview 

Data structure/Constant definitions 

 loft.h 

 loft-const.h 

Mesh storage and manipulation 

 util.c 

 modify.c 
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Mesh generation 

 loft.c 

 wing.c 

Curve definitions 

 curves.c 

Region operations 

 region.c 

Output routines 

 abaqus.c  

 ideas.c 

 nastran.c 

 vrml.c  

stl-ascii.c  

tecplot.c 

 custom.c 

User input/Program control 

 interface.c 

 variables.c 

 

Adding a New Object Type to Loft 

The first step in adding a new object type to Loft is design. Determine the parameters that the user must 

set to define the abstract geometry of the new object and select default values for those parameters. Then, 

work out the logic of using those parameters to generate nodes, elements, and properties. 

Now that there is a plan, it’s time to start coding. In broad terms, there are two parts to writing the code: 

writing the meshing routine itself and adding support for the new object to the user interface. Both are 

somewhat involved. 

Both parts of the coding will rely heavily on the object definition in “loft.h.” Edit this file and move 

down to the abstract geometry object definitions section. Add a new structure here that defines the abstract 

geometry’s parameters for your new object.  Be sure to include structure members to define the object 

name, position, alignment, and a marklist. Finally, add your geometry structure to the “master_geom” struc-

ture near the end of the file. 

The New Meshing Routine 

You can add your meshing routine to “loft.c” or start a new source file. Your choice should be made 

based on the length and complexity of the meshing code. For instance, the various wing related meshing 

routines were created in a separate “wing.c” file. If you create a new file, remember to update the makefile 

so that it will be compiled and linked. Take a look at the various existing meshing routines for a feel of how 

they are written. The basic outline of each of these codes is as follows: 

1. Based on geometry input parameters, make a conservative estimate of the number of nodes, 

elements, material properties, and physical properties needed by the new mesh. It is okay to 

allocate a little more space than is actually used if an exact calculation is difficult. 

2. Call malloc_mesh to allocate memory for that data. 
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3. Create appropriate loops to generate the mesh data. As it is generated, store each piece of data by 

using the data storage routines from “util.c,” e.g., storenode, storequad, 

storetri, storegroup, addgroupmember, createproperty, etc. 

4. Update the mesh node (mesh-> nnodes)  and panel (mesh->npanels) counts with the actual 

numbers of objects created. 

5. Warp, rotate, and move the mesh. 

6. Call group_all_nodes and group_all_elem. 

 

If you look at the wing generation code, you’ll note that it intentionally creates many duplicate nodes. It 

is okay to do this as long as space is allocated for them in the call to malloc_mesh. Just add a call to 

merge_points to the end of your routine to consolidate these duplicates. 

Integrating Your New Object into the User Interface 

The first step is to edit “loft-const.h” and create a new constant for your object type in the section 

that starts with “#define OBJ_NONE 0.” Use the next available integer after the ones that are currently 

in use. For illustration purposes, let’s say the new routine is used to create a wheel object and that the last 

object type used was number 12. Add “#define OBJ_WHEEL 13” at the end of the block. 

Next, there is a lot of work to be done in “interface.c.” Here we’re going to create a new routine 

to parse the parameters for your new object, and then add support for the new object to the “parse_input,” 

“parse_new_object,” “generate_object,” and “initial_defaults,” routines.  

The parameter parsing routine created should be similar to “interface.c/ parse_sec-

tion_param.” This routine will receive each line of text that is a parameter for the object. It should parse 

the parameter name and values from that line and assign them to appropriate data blocks in the abstract 

geometry structure. Finally, it should issue a warning if it was unable to do anything with the parameter it 

was given. 

Remember to add a prototype for the new parsing routine to the top of the interface file. 

The next step is to add the object to the “parse_input” routine. There are only two parts to this. First, 

add a malloc call at the top of the routine to make space to store your abstract geometry data. Be sure to 

add your new structure to the section that checks that the malloc succeeded. Then, scroll down to the line 

“case CMD_NONE” and add a line to the end of the parsing routines. It should be something like: 

if(current_object == OBJ_WHEEL)    

 parse_wheel_param(line,master.wheel); 

 

Now, move down to the “generate_object” routine. Add a pointer variable for the abstract geom-

etry and extract that pointer from the master geometry. Then, add a block that calls the new meshing routine 

if the object is of your new type, i.e., 

if(type == OBJ_WHEEL){ 

 printf(“  Calling make_wheel\n”); 

 make_wheel(*wheel_geom,mesh); 

} 
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After the new mesh is generated, we need to update the defaults of any abstract geometry types that need 

it. In most cases, you’ll want to leave the current object’s parameters as the defaults for the next object of 

the same type, but in some cases, you’ll want to set them back to the defined default every time. You can 

update the defaults for any other geometry types as well. Add lines to your version of the block above in 

“generate_object” to update the desired defaults. 

Scroll down to the “initial_defaults” routine. As with the previous routine, the first step is to 

add and extract a pointer variable for your abstract geometry. The other task here is to add a block that 

populates every data item in your geometry structure with its default value. Your defaults should be chosen 

such that if the user specifies no parameters, the meshing code will still generate a valid mesh. 

Finally, scroll down to the “parse_new_object” routine. Again, add and extract a pointer variable 

to your abstract geometry. Next, add a block that tests for an object type name of your new type, sets the 

object name, and sets the current_object variable to your new type if it’s found. For example: 

if(strncmp(type,"wheel",5)==0){ 

     sprintf(wheel_geom->name,"%s",objectname); 

     *current_object=OBJ_WHEEL; 

     return; 

   } 

Now, compile, test, and debug your new object. 

Adding a New Command to Loft 

Adding a new command is a very similar process to adding a new object. As before, there are two steps: 

creating the routine to perform the new operation and integrating the command into the interface. It’s dif-

ficult to be more specific since new commands could do anything and be logically integrated in many 

different places. You will probably want to add a new command number to “loft-const.h” and a 

“case” statement to the main loop in “interface.c/parse_input.” 

Adding a New Output Type 

Loft currently supports six types of mesh outputs.  With accurate documentation of the new desired 

output format, it should be straightforward to use one of the existing output types as a basis for the new 

type and then edit the “interface.c/output_stack” routine to add a new block for your output 

routine. 

A special case is the “custom” output type. This was created to make it easier for the user to modify the 

output to be exactly as they desire. No editing of the interface code is required; modify “custom.c” to pro-

duce the desired output and recompile. Typically, this approach has been used to make a short-term modi-

fication to one of the existing output types. For example, one could copy the NASTRAN output routines 

into custom.c, rename the functions, and then make small changes that might a) specify a non-structural 

mass for some elements, b) change the order that elements are written, or c) reduce the number of properties 

that the elements use. By making these types of changes to the custom output type, no hard to remove 

changes are made to the core output routines. 
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Adding a New Curve Type 

The curve primitive routines are all located in the “curves.c” file. Scroll down to look at the semi-

circle routine. The variable “s” is an input variable that ranges between 0.0 and 1.0. It represents the frac-

tional position along the curve from its start (0.0) to end (1.0) for which coordinates are desired. The vari-

ables “x” and “y” are output values used to return the coordinates. If you’re creating a curve family like the 

filleted curve, then “x” is also used as an input variable giving the family shape parameter. 

The first step is to write a generation routine for your new curve type similar to the others in the file. 

Remember when modifying the variables “x” and “y” that their pointers are being passed rather than the 

variables themselves. Thus, your routine needs to set “*x” to the computed x coordinate. 

Next, to add the new curve to the interface, return to the top of the “curves.c” file. Add a prototype 

for your generation routine. Now, scroll down a little and add a block for your new curve type and genera-

tion routine to the “curves.c/curvefunctionptr” routine. Note that there are different sections for 

non-family curves, family curves, and user-defined curves.  

Be careful when selecting your curve’s mnemonic to avoid collisions with other curves. For instance, if 

you want to use the mnemonic “ssquiggle,” you need to add your check to curvefunctionptr 

before the check for the semi-square curve, since that check compares the first two characters of the curve 

name to “ss.” It might be clearer if you chose “semisq” for your mnemonic instead. (You can see in the 

current routine that the check for the semi-circle “sc” mnemonic occurs after the check for the semi-cosine-

wiggle “sccw.”) 

Now, save, compile, and test your curve. It should be usable from any object that uses curve primitives. 

There is no need to modify any of the meshing routines or user interface routines.  
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Chapter 6: External Utility Programs 

 

   In order to integrate Loft into a variety of multidisciplinary analysis systems, several utility programs 

have been written. These were created with general utility in mind and are therefore included in the Loft 

distribution and documentation. These programs can be used in a batch mode or can be used to speed up a 

manual model generation. They create normal Loft input files that can be modified as desired. 

 

WingCoords2Loft  

 

 

 

 

 

 

   WingCoords2Loft is a utility that reads a 

file containing wing cross section data at 

various stations along the span of the wing 

and generates a Loft input file to create 

that wing. The resultant model can be 

viewed as piecewise trapezoidal. 

 

   WingCoords2Loft reads two input files. “hrm2wingcoords.out” contains the wing cross section data. 

“wingcoords2loft.in” is an optional input file that specifies structural details such as rib and spar locations 

and mesh density.  

 

   It creates multiple output files. “wingcoords2loft.out” contains a Loft input file for the wing. 

“wingcoords2loft.spars” contains the x (axial) coordinate of the spar roots in feet.  

 

   When that input file is run, Loft creates NASTRAN, VRML, and Tecplot versions of the FEA model. Loft’s 

region mode is used to create additional files that are used to automate analysis of the model. “upper-

skinelems.txt” contains a list of elements on the wing upper skin. It also contains the total wing planform 

area. If the weight parameter is used in wingcoords2loft.in, then a smeared pressure value is printed that 

will produce 25% of that weight as lift when applied to the listed skin elements. “lowerskinelems.txt” is a 

similar file containing the lower skin elements. “rootnodes.txt” contains a list of nodes at the centerline. It is 

intended to be used to automate boundary condition application. “rootprops.txt” contains a list of the 

NASTRAN physical and material properties used on the root spars.  

 

hrm2wingcoords.out 

   This file contains the wing cross section data. Note that for the purposes of this program, the normal NASA 

coordinate system is used: x is axial (chordwise), y is lateral (spanwise), and z is vertical. This is different 

than the base coordinates used for Loft. Also, the interleaving text lines shown in the example file are required 

to be present although they are not required to contain anything specific. Input units are feet. The models 

created by Loft are scaled to be in inches. 
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double x0,y0,z0 = coordinates of wing reference location (leading edge root). Will be added to sec-

tion x,y,z values below to produce true positions of wing nodes. Should be 0,0,0 if section x,y,z's are ab-

solute positions.  Units are feet. 
 

double Wfuse = half of average or maximum (selection based on AVG|MAX flag in input) width of 

vehicle fuselage along wing. This value is used to create non-skinned carry-through. 
 

integer N = supplied number of wing sections. This could be slightly different than the N requested in 

the input due to curvature awareness, but the relationship between Ninput and Noutput should be mono-

tonic; a lower value of Ninput should produce a lower value of Noutput. 

 

N lines of double Xle,Yle,Zle,Xte,Yte,Zte,Tmax where 

Xle = x location (axial) of section leading edge 

Xte = x location of section trailing edge 

Yle,Ytz = y location (span) of leading/trailing edge section nodes 

Zle,Zte = Z locations (height) of leading/trailing edge nodes. This will affect Loft positioning 

and wing twist 

Tmax = Maximum thickness of wing section in inches. WingCoords2Loft will convert this to per-

cent thickness to generate an approximate NACA airfoil section. 

 

Example hrm2wingcoords.out file 
Wing Reference Coordinates 

50.0 0.0 3.0 

Maximum Fuselage Half Width        

0.75 

Number of Sections 

4 

Section Details (X,Y,Z)le,(X,Y,Z)te, Tmax 

0.0 0.75 0.0 5.0 0.75 0.0 0.2 

3.0 15.0 0.0 8.0 15.0 0.0 0.4 

6.0 25.0 0.0 12.0 25.0 0.0 0.2 

10.0 40.0 0.0 15.0 40.0 0.0 0.2 

 

wingcoords2loft.in 

   This file contains the information on desired structural details for the model. It is optional. If it is not 

present, default values are used. As with Loft itself, all parameters in this file are also optional. Again, default 

values will be used for any non-specified parameters. 

 

   As with Loft, the user can either specify a rib/spar count or give exact positions but not both. Giving a 

rib/spar count will result in that many evenly distributed ribs or spars. (e.g., an input of "nspars 2" will 

give the exact same result as "sparpos 0.3333" and "sparpos 0.66666.") Rib and spar posi-

tions are specified in percentages of span and chord. The two styles of rib/spar specification should not be 

mixed. Using both won't break things for either code but may result in unexpected outcomes. In both 

codes only the last style of specification will be used by the code. Earlier parameters will have no effect. 

Unlike the default behavior of Loft, ribs are not automatically created at 0 and 100% span; they will need 

to be specified in this file (using an nribs value of 2 will create just the 0 and 100% ribs.). 

 

Parameter List (can be specified in any order): 

Nribs (default 2): number of evenly spaced ribs to create 
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Nspars (default 0): number of evenly spaced spars to create 

ribpos (no default): percent span (0-100) location to create a rib 

sparpos (no default): percent chord (0-100) location to create a spar 

mesh : Finite element mesh density per unit length (higher values produce a denser mesh) for all three 

mesh directions.  When used, the three specific parameters meshthick, meshspan, and meshchord 

are reset to this value. 

meshchord (default 3.0): Finite element mesh density per unit length in the chordwise direction (higher 

values produce a denser mesh). Note that tapering of chord length and thickness across the span of the 

wing will not cause a change in mesh counts; there will be the same number of nodes along the tip rib as 

on the root rib. Example: a setting of 5 on a wing with a 5 unit long chord setting will result in approxi-

mately 25 nodes in the chordwise direction on both the top and bottom skin (the exact node count will de-

pend on spar positions and integer math truncations). This is a real number not an integer and can be less 

than one if desired. This parameter changes the chordwise mesh distribution for the skins and ribs. 

meshspan (default 3.0): Finite element mesh density per unit length in the spanwise direction. (See dis-

cussion above.) This parameter changes the spanwise mesh distribution on the skins and spars. 

meshthick (default 3.0): Finite element mesh density per unit length in the thickness direction. (See 

discussion above.) This parameter changes the vertical mesh density of the ribs and spars. It has no effect 

on the wing skins.  

rotx (default 0.0): specifies a desired rotation about the x (axial) axis (dihedral) of completed wing 

roty (default 0.0): specifies a desired rotation about the y (spanwise) axis (angle of attack) of completed 

wing. 

rotz (default 0.0): specifies a desired rotation about the z (vertical) axis of the completed wing. 

weight (default 0.0): specifies vehicle weight. Used to compute pressure required on wing to support 

this weight. A line of text specifying that pressure is added to the upper and lower skin element output 

files. This pressure is sufficient to support one quarter of the specified weight on each of the upper and 

lower wing surfaces.  

mergetol (default 0.02) specifies tolerance for Loft’s node equivalence operation. Any nodes that are at 

the specified value or closer will be merged together. 

minthick (default 1) integer value specifying minimum percent thickness for wing sections. 

naca (default “00XX”): specifies the NACA 4 or 5 digit airfoil series to use for the wing. The last two 

digits represent the wing thicknesses and are replaced at each section by the value derived from the geom-

etry information. 

halfwing(default: off): Flag to turn on generation of just the top or bottom half of the wing. Used 

primarily for vertical tails on the symmetry lines of a half vehicle. Values are “off,” “on,” “bottom,” and 

“top.” (“top” and “on” are the same). 

wingside (default: starboard) Flag to control which side of the vehicle to build the wing for. Values are 

“starboard,” “port,” “right,” and “left” (starboard = right, port = left).  

 

Example wingcoords2loft.in file: 

sparpos 25. 

sparpos 45. 

sparpos 65. 

ribpos 0. 

ribpos 30. 

ribpos 60. 

ribpos 100. 

mesh 0.8 

naca 00XX 
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  weight 25000. 

 

 

 

wingcoords2loft.out 

   Running WingCoords2Loft will produce this output file. This file is a Loft input file for the specified wing. 

Running it with Loft will produce FEA models of the wing. 

 

upperskinelems.txt 

   This file contains a list of elements on the wing upper skin. It also contains the total wing planform area. 

If the weight parameter is used in wingcoords2loft.in, then a smeared pressure value is printed that will 

produce 25% of that weight as lift when applied to the listed skin elements.  

 

Example partial upperskinelems.txt file: 

These are upper skin elements. 

 

Planform area is 36666.497808 square inches. 

 

Constant pressure for 5250.000000 of lift is -0.143182 psi. 

Region Element Listing 

   i   node1 node2 node3 node4 matprop physprop 

    13     2     9     8     1        1        3 

    14     4    11     9     2        1        3 

    15     6    13    11     4        1        3 

    16    15    21    13     6        2        3 

lowerskinelems.txt  

   This file contains a list of elements on the wing lower skin. It also contains the total wing planform area. 

If the weight parameter is used in wingcoords2loft.in, then a smeared pressure value is printed that will 

produce 25% of that weight as lift when applied to the listed skin elements.  

 

rootnodes.txt  

   This file contains a list of nodes at the centerline. It is intended to be used to automate boundary condition 

application.  

 

Example rootnodes.txt file: 

$ These are the wing centerline nodes to have BC applied. 

GRID          49        6.3728E2-9.6E-134.0013E1 

GRID          50        6.3725E2-9.4E-135.2924E1 

GRID          51        8.0024E2-1.2E-124.1210E1 

GRID          52        8.0024E2-1.2E-125.2714E1 

GRID          53        9.6320E2-1.5E-124.1476E1 

  GRID          54        9.6324E2-1.5E-124.8343E1 

 

wingcoords2loft.spars 

   This file contains the x (axial) coordinate of the spar roots in inches.  

 

rootprops.txt 

   This file contains a listing of the properties used in the spar root. 
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FuseCoords2Loft  

 

 

 

 

 

 

 

   FuseCoords2Loft is a similar utility program that generates a Loft input file for a vehicle fuselage. The 

input files describe the cross-sectional dimensions of the fuselage at various stations and optionally the lo-

cation of desired bulkheads. 

 

   FuseCoords2Loft reads two input files. “hrm2fusecoords.out” contains the cross-sectional dimensions at 

various stations. “fusecoords2loft.in” is an optional file that contains structural model details such as bulk-

head locations and mesh density.  

 

   The program writes a Loft input file to “fusecoords2loft.out.”  

 

   When the Loft input file is run, Loft creates NASTRAN, VRML, and Tecplot versions of the FEA model. 

Region mode commands are included that create a list of the requested bulkheads and their NASTRAN 

property IDs in “bulkprops.txt.” This information is used to tell NASTRAN how to “glue” the wing spars to 

the appropriately positioned bulkheads. 

 

hrm2fusecoords.out 

   This file contains the fuselage cross section data. Note that for the purposes of this program, the normal 

NASA coordinate system is used: x is axial (chordwise), y is lateral (spanwise), and z is vertical. This is 

different than the base coordinates used for Loft. Also, the interleaving text lines shown in the example file 

are required to be present although they are not required to contain anything specific. Input units are feet. 

The models created by Loft are scaled to be in inches. 

 

double x0,y0,z0 = coordinates of fuselage reference location (nose).  
 

integer N = supplied number of fuselage sections. This could be slightly different than the N re-

quested in the input due to curvature awareness, but the relationship between Ninput and Noutput should 

be monotonic; a lower value of Ninput should produce a lower value of Noutput. 

 

N lines of double x,z,Rhorz,Rvert, where 

x = axial station of section 

z = vertical station of the section center 

Rhorz = horizontal radius of fuselage at that station 

Rvert = vertical radius 

 

Example hrm2fusecoords.out file: 
Fuselage Reference Coordinates 

50.0 0.0 3.0 

Number of Sections 

6 
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Section Details x,z,rhorz,rvert 

0.0 0.1 0.0 0.0 

0.5 0.0 .08 .08 

2.0 0.1 .1 .12 

4.0 -0.1 .1 .1 

5.5 -0.01 .08 .08 

6.0 0.1 0.0 0.0 

 

fusecoords2loft.in 

   This file contains the information on desired structural details for the model. It is optional. If it is not 

present, default values are used. As with Loft itself, all parameters in this file are also optional. Again, default 

values will be used for any non-specified parameters. 

 

Parameter List (can be specified in any order): 

Mesh : Finite element mesh density per unit length (higher values produce a denser mesh) for both mesh 

directions.  When used, the two specific parameters meshcirc and meshaxial are reset to this value. 

MeshAxial (default 3.0): Finite element mesh density per unit length (higher values produce a denser 

mesh) in the axial direction. 

MeshCirc (default 3.0): Finite element mesh density per unit length (higher values produce a denser 

mesh) in the circumferential direction. 

bulkhead (default none): Specifies the name and absolute axial position of a requested bulkhead. A 

corresponding entry listing its assigned property id will be written to bulkheadlist.txt. Bulkheads can be 

specified in any order. FuseCoords2Loft will sort them and create them. 

Example: bulkhead mainwing 28.75 

rotx (default 0.0): specifies a desired rotation about the x (axial) axis of completed fuselage. (roll) 

roty (default 0.0): specifies a desired rotation about the y (spanwise) axis of completed fuselage. (pitch) 

rotz (default 0.0): specifies a desired rotation about the z (vertical) axis of completed fuselage. (yaw) 

curve (default sc): specifies a Loft curve name to be used for the fuselage. 

 

Example fusecoords2loft.in file: 

meshaxial .1 

meshcirc  1.  

bulkhead glue1 51.588333 

bulkhead glue2 62.863333 

  bulkhead glue3 74.138333 

 

fusecoords2loft.out 

Running FuseCoords2Loft will produce this output file. This is a Loft input file that generates the specified 

fuselage. Running it with Loft will produce the FEA models. 

 

bulkprops.txt 

This output file contains the NASTRAN property IDs for the requested bulkheads. 

 

Example bulkprops.txt file: 

$ These are the fuselage bulkheads and their propeties. 

$ Loft physical property 100006 is mapped to the following Nastran p- cards 

$ Pset: "glue1" will be imported as: "pshell.170000" 

PSHELL    170000  100000  1.0000  100000          100000 
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$ Loft physical property 100008 is mapped to the following Nastran p- cards 

$ Pset: "glue2" will be imported as: "pshell.190000" 

PSHELL    190000  100000  1.0000  100000          100000 

$ Loft physical property 100010 is mapped to the following Nastran p- cards 

$ Pset: "glue3" will be imported as: "pshell.210000" 

PSHELL    210000  100000  1.0000  100000          100000 
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Chapter 7: Command & Object Reference 

Alphabetical Command List 

Clone – Create one or more duplicates of the current stack. These are positioned evenly rotated around the 

specified axis. For example, “clone x 1” will produce one duplicate rotated 180 degrees around the x 

axis from the original. See similar mirror command for a slightly different result. Note: this operation 

creates stored stacks called clonetempN as part of its functionality, which could overwrite a user stored 

stack if the same name were used. 

 

     usage: clone <axis> <number> 

     defaults: <axis>=x, <number>=1 

     example: clone y 2 

 

Curve – Define a user curve  

 

usage: curve <type> <mnemonic> 

type = “interpolated,” “compound,” “lofted” 

mnemonic = name for the curve 

example: curve compound 3lt 

 

Define – Define a variable 

 

This command allows the user to define a named variable to be used later in the input deck.  The dollar 

symbol, “$,” is used to invoke a variable and tell Loft to replace the text with the previously specified value.  

  

usage: define <name> <value> 

variable usage example: length $mydimension 

example: define mydimension 5.6 

 

End – End current Loft run (optional). Note that if used in an include file, the program will still stop and 

not return to reading the previous input file. 

 

usage: End 

 

GoTo – Move input file reading to another point in the file. Argument is a unique integer that matches the 

number used in a LineLabel line. This labeled line can either be anywhere in the main input file or in a 

current or previously read include file. A line in an include file that is referenced after the goto 

command cannot be located. If a text label is desired, use a previously defined variable with a descriptive 

text name. Note that if variables/math are used for any labels that are later in the file, those math calculations 

will be performed using the present values of the variables. Therefore, define these variables before use as 

a label or in a goto and generally avoid the use of any variable that changes (e.g., system variables like 

@transz.) 

 

usage: GoTo <unique integer> 

examples: goto 100 

                  goto $tank_generation_section 
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Ideas – Indicate I-Deas version for output 

 

This command only affects which datasets are used in any I-DEAS universal files that are written after 

the command is used. It does not affect Loft’s internal data. Thus, it is possible to write different output 

files with different I-DEAS versions for the same data. 

usage: Ideas <version> 

version = 8 or 9 

default: 9 

example: ideas 8 

 

If – Conditional program control command. If the argument is zero or approximately zero (absolute value 

< 0.0001), the test is false and the next input line is skipped. If the argument is non-zero, the test is true and 

the next input line will be executed. The logical operators “<,” ”>,” “=,” “>=,” “<=,” and “!=” may be used, 

or any other combination of Loft variables and math that will produce a true or false result (non-zero or zero). 

When used in combination with the goto command and a counter variable, a loop functionality can be 

created. 

 

     usage: If <test> 

     example: if $i > 5 

 

Include – Read input from another file and then return to the previous file once the second file is 

completed. Note that since this is a command, any object that is in the process of being defined will be 

generated before the new file is read. Multiple levels of include are allowed. Loft will stop execution if the 

specified file is not found. 

 

usage: Include <filename> 

example: include moreloftstuff.txt 

 

LineLabel – Assign a label to a location in the input file that Loft can seek to using the goto command. 

The command’s argument is a unique integer that is not required to be sequential with other line labels. If a 

text label is desired, a previously defined variable with a descriptive name can be used. Note that if varia-

bles/math are used for any labels that are later in the file, those math calculations will be performed using 

the present values of the variables. Therefore, define these variables before use as a label or in a goto and 

generally avoid the use of any variable that changes (e.g., system variables like @transz.)  

 

     usage: LineLabel <unique integer>  

     examples: linelabel 100 

                       linelabel $tank_generation_section 

 

List – Output various lists to the screen. This command is intended for model debugging purposes. The 

options “groups” and “marks” are synonymous. The “input” option will output the current Loft input lines 

as modified by any include commands already read and any commands that act as macros like mirror 

and clone. The “input” option does not get included when “all” is chosen. 

 

usage: List <type> 
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     type = “ccurves,” “icurves,” “lcurves,” “stacks,” “variables,” “groups,” “input,” “marks,” “mprops” 

(material properties), “pprops” (physical properties), “ribs,” “spars,” “mesh” (gives various data counts), 

“rbes” (lists RBE, BC, MASS, TEMP, FORCE, and PRESS objects) or “all” 

default: (none) 

example: list stacks 

 

MergeTol –  Distance for considering nodes to be identical. These nodes are merged by removing higher 

numbered duplicates and replacing references to them with references to the lower numbered, remaining, 

node. This merging is done at various points in wing generation as well as when adding new objects to the 

current stack. 

 

usage: MergeTol <distance> 

default: 0.001 

example: mergetol 0.01 

 

Mirror – Create a duplicate, but reversed, object on the other side of a specified axis. See similar clone 

command for a slightly different result. The mirror command can be used to convert from a half-vehicle 

model to a full vehicle. Note: this operation creates a stored stack called “mirrortemp” as part of its function-

ality, which could overwrite a user stored stack if the same name were used. 

 

     usage: mirror <axis> 

     default: x 

     example: mirror x 

      

Move – Rotate, translate, scale, warp, split and/or flip the full stack 

Note that, unlike the rotation and translation parameters for an individual object, results of this command 

do depend on the order of the parameters – each operation is executed following each parameter. 

 

Rotation and translation values are set with the rotx, roty, rotz, transx, transy, and 

transz parameters just like those allowed for single objects. (Note that these are absolute translations and 

rotations, not relative to any previous settings.) In addition, the scalex, scaley, and scalez param-

eters can be used to adjust the size of the current stack.  

There are also six “warp” parameters that distort part of the stack. The six parameters are warppx, 

warpnx, warppy, warpny, warppz, and warpnz. The two letters after the “warp” prefix indicate 

the region of action of the warping. Thus, warppx will scale the parts of the stack that are in the positive 

x region and leave the nodes where x<=0 alone. These six parameters all take three values that are the 

amount to scale that region in the x, y, and z directions. So, a move parameter that said “warpnz 1.0 

2.0 1.0” would double the y coordinates of all nodes that started with z less than 0. Use of the rotation 

and translation parameters before and after a warp operation allows fine-tuning of the area to be affected. 

The warp options are intended to be used to make shapes such as the fuselage for a lifting body. Care 

should be taken with the scale factors and the object mesh options to keep element aspect ratios reasonable. 

Gradient warps are also possible with the six gwarp parameters. These are gwarppx, gwarpnx, 

gwarppy, gwarpny, gwarppz, and gwarpnz. They work identically to the constant warp parame-

ters above, but the distortion increases linearly from zero distortion at the axis to the specified values at a 

unit distance from the axis and higher further away from the axis. So, a parameter like “gwarppy 2.0 
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1.0 1.0” would double the x coordinates of any node at y equals 1 and quadruple the x coordinate of any 

node at y equals 2. 

The flip parameter reverses the node ordering for panel elements, thus changing the direction of their 

normal vectors. It takes no arguments. 

The split parameter breaks each quadrilateral element into two triangular elements with node ordering 

going from 1-2-3-4 to 1-2-4 and 3-4-2. 

usage: Move 

example: Move 

 Scalex 0.5 

 Scaley 0.2 

 Transx 30.5 

 Roty 33.3 

 Warpnz 1.0 2.0 1.0 

 Gwarppy 2.0 1.0 1.0 

 Flip 

 Split 

 

Nastran – Controls NASTRAN format output options. A minimal case control block is written to every 

full NASTRAN format file. If either or both “spc” or “load” setids are given, then a simple subcase is added 

to the control block using those ids. 

 

usage: Nastran <parameter> <value> 

examples: nastran grid 8, nastran cylx, nastran spc 1000 

 

List of Nastran command parameters: 

Grid = number of columns used in grid cards. Values are 8 or 16. Default is 8. 

Cylx, cyly, cylz = flag to turn on cylindrical coordinate output. Last letter indicates the non-transformed 

axis (axial direction). Coordinates are converted on the fly as the NASTRAN file is written; the internal Loft 

coordinates are not transformed.  

Cart = flag to restore Cartesian coordinate output, which is the default setting. 

hmcom/nohmcom = flags to turn on/off (off by default) a limited set of HyperMesh style comments to 

allow model importation into HyperX 

spc = setid for boundary condition cards in a simple case control subcase 

load = setid for load cards in a simple case control subcase 

sol = solution number for the NASTRAN run (default = 101) 

subcase = subcase number for NASTRAN run (default = 1) 

thick = dummy panel thickness written to PSHELL cards (default = 0.1) 

 

New – Deletes current stack from memory 

 

By default each new object’s mesh is added to the previous meshes - creating a stack. This command 

starts a new stack (presumably after issuing a store or write command to save the previous one.)  All 

defaults are reset to their initial values. 

usage: New 
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Null – No effect command. The main use of this command is to force the completion of the current object 

and update all of the system variables to reflect its creation. 

 

usage: Null 

 

Object – Create a meshed object 

 

usage: Object <type> <name> 

type = type of object to create, e.g., dome, section, wing, tank, etc. 

name = descriptive name of the object, 40 characters or less, used to mark elements 

example: object dome LOX Tank Aft Dome 

 

Offset – Define index offset for written meshes. This value can be set by output file type or globally. If 

no type is specified, all the offset for all types are set. Note that the offset value is not used for VRML or 

Tecplot output as nodes receive their index implicitly by their order in the output file. 

 

     usage: Offset <type> <value> or Offset <value> 

     type = output file type effected. Valid types are “nastran,” “ideas,” “abaqus,” and “region.” The “region” 

type affects the output of the query parameter in region mode. 

     value = amount to offset the indices. Loft internal indices start from 0. NASTRAN, for instance, does not 

support an element or node numbered as 0, so a value greater than zero should be specified. Default for ideas 

and abaqus is 1. Default for nastran and region is 100000. 

     examples: offset nastran 100000 

                       offset 50 

 

Quality – Performs mesh quality checks on the current stack and prints a report.  

 

     usage: Quality 

 

Read – Reads a supported format mesh into Loft as a new object 

 

This command allows the import of a variety of externally generated meshes into Loft. This is an ex-

tremely simplified process focusing on capturing nodes and connectivity. All property information is lost. 

All elements are converted to simple 4-node rectangles, 3-node triangles, or 2-node bars. Unusual element 

types are very likely to fail. 

usage: Read <file type> <file name> 

file type = type of file to read: vrml, abaqus, or nastran   

file name = Name of file to be read 

example: read nastran myinput.bdf 

 

Recall – Copies a clipboard stack into the active stack 

  

 This command copies a previously stored stack (see store command) from the temporary stack 

clipboard back into active memory. The copy on the clipboard is not deleted and can be recalled any number 

of times. Multiple recalls of the same complex object can take some time to accomplish, as the various 

merging operations for items with the same name can be slow. A recall operation does not change any 

default geometric values. 
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usage: Recall <name> 

example: recall External Tank 

 

Region – Enter region mode. 

  

The region tool set is a powerful feature of Loft that allows the user to query or modify a section of the 

current stack. Regions are inherently temporary constructs, but their effects may include permanent changes 

to the mesh by deleting parts, changing property assignments, etc. Regions can also be used to query statistics 

on the mesh and produce reports. The region mode has a long list of parameters that are described in 

chapter 3 of this manual. These abilities partially overlap the list and subtract commands. 

usage: Region 

 

Reset – Reset defaults to initial values, without deleting the current stack.  

 

usage: Reset 

 

Store – Move the current stack to a temporary clipboard and start over, reset-ing all default values. 

 

The current stack is assigned the supplied name and stored in memory. The active stack that commands 

operate on is cleared and values are set back to the initial defaults. Any number of stacks can be simultane-

ously copied to the clipboard. 

usage: Store <name> 

example: store External Tank 

 

Subtract – Delete all nodes that fall within a specified volume of space. Any elements that use these 

nodes will be deleted as well. Quads (4-node elements) that lose one node will be converted to triangles. 

Volumes are specified by use of simple three dimensional shapes including spheres, cylinders, and boxes. 

Cylinders are aligned with an axis and are infinite in length. Warning: Any beams whose alignment nodes 

fall in the specified volume, even if the beam end points themselves do not, will also be deleted. A similar, 

but not identical, effect can be produced by the region mode “cut” operation. 

 

usage: Subtract <type> <center of volume> <dimensions of volume> 

type = “sphere,” “xcyl,” “ycyl,” “zcyl,” “box” 

center = x, y, z coordinate of center of volume 

dimensions = radius for sphere and cylinders, 

 = xlength, ylength, zlength for box. 

example: subtract sphere 10. 20. 25. 5. 

 

Units – Specify unit set. (default = inch) 

 

Loft is unit-less. For NASTRAN output this command affects the magnitude of the values used on prop-

erty or material cards. For I-DEAS universal file output, this command just changes which units are indicated 

for any files written after the command. 

usage: Units <length unit> 
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length unit = “foot,” “feet,” “inch,” “cm,” “meter” 

example: units meter 

 

Vrml – Control vrml color output  

 

Selects if the vrml output mesh contains color information and if so, which color pallet to use. Options 

listed below in parenthesis are synonyms of each other. The forward option produces a more red/blue picture. 

The backward option produces more yellow/pink.  

usage: Vrml <option> 

option = (“off,” “no”), (“forward,” “on”), (“reverse,” “backward”), “rainbow,” “primary” 

default: primary 

example: vrml reverse  

 

Write – Write current mesh to an output file.  

 

usage: Write <file type> <file name> 

file type = type of file to save: “custom,” “vrml,” “unv,” “abaqus,” “tecplot,” “stl,” or “nastran”  

file name = Name of output file  

example: write vrml rocket.wrl 

 

   VRML and Tecplot files containing small portions of a large model will still be large files. This is due to 

the way nodes are implicitly indexed in the files based on their definition order rather than an explicit index 

number. This means that every node needs to be included in the file even if there are only a small number 

of panels in the partial model. 

   STL (STereo Lithography) is a 3D printing file format.  Loft will output a readable mesh for all triangles 

and quads in the model, but that model will not necessarily be manifold/watertight (in fact none of the 

models in this manual are). Some additional effort with adding endcaps or suppressing internal detail can 

produce a printable model. Alternatively, some third-party tools (for example, Microsoft’s 3D-Builder) may 

be able to make the model watertight and printable. 
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Object Types and Parameters 

Common Parameters 

All object types except the individual beam and rbe objects use these parameters. They control position-

ing, rotation, distortion, alignment, and group marking. 

rotx – angle to rotate object about its origin’s x axis in degrees (absolute) 

 default = 0, or last value specified 

 

roty – angle to rotate object about its origin’s y axis in degrees (absolute) 

 default = 0, or last value specified 

 

rotz – angle to rotate object about its origin’s z axis in degrees (absolute) 

 default = 0, or last value specified 

 

transx – distance to translate object’s origin from the global origin in the x direction  

 default = 0, or endpoint of previous section (domes do not update this default) 

 

transy– distance to translate object’s origin from the global origin in the y direction 

 default = 0, or endpoint of previous section (domes do not update this default) 

 

transz– distance to translate object’s origin from the global origin in the z direction 

 default = 0, or endpoint of previous section (domes do not update this default) 

 

relrotx – angle to rotate object from its default position about the x axis in degrees. 

  default = 0 

 

relroty – angle to rotate object from its default position about the y axis in degrees. 

 default = 0 

 

relrotz – angle to rotate object from its default position about the z axis in degrees. 

 default = 0 

 

relx – distance to translate object’s origin from its default position in the x direction. 

 default = 0 

 

rely – distance to translate object’s origin from its default position in the y direction. 

 default = 0 

 

relz – distance to translate object’s origin from its default position in the z direction. 

 default = 0 

 

flip – change the element normal direction to point inward rather than outward. This parameter takes no 

argument. It must be specified for each object where flipping is desired (it does not change the default 

orientation). This parameter is not available for the block object type. 
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warppx, warppy, warppz, warpnx, warpny, warpnz – distort the part of the object in the region 

specified by the last two letters (p means positive, n means negative, and x, y, and z, are the coordinate 

axes) by the specified three values. Only one warp or gwarp parameter may be specified per object. 

 default: (no warp) 

 

gwarppx, gwarppy, gwarppz, gwarpnx, gwarpny, gwarpnz - distort the part of the object in 

the region specified by the last two letters (p means positive, n means negative, and x, y and z, are the 

coordinate axes) by the specified three values. Scaling of the original coordinates varies linearly with the 

node’s original distance from the specified axis. Only one warp or gwarp parameter may be specified per 

object. 

 default: (no warp) 

 

mark – add a label to a group of nodes or elements. Items can have as many different labels as desired. 

Marks have limited uses. They can be used to sort elements in the region command and will be output as 

groups when an I-DEAS output file is created. Support for NASTRAN SET grouping can be enabled by 

removing a comment in “nastran.c.”  The Mark parameter takes two arguments: the group type (node, 

element or rbe) and the group name. A marked group can contain either nodes, elements, or rbe class 

objects. 

 Example: mark element OML 

 default: none 
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Section/Truss 

 
 

A section is a 3-D object made by interpolating between two 2-D curves. Curved transitions may be 

generated using the taper parameter. The origin of the object is the center point of curve 1 (which for semi-

curves is on the axis of symmetry).  

A truss is a standalone object made of bars or beams that generates ring frames at the 0 and 100 percent 

ends of the object and diagonal cross supports between them. The number of truss nodes used is set with 

the tnodes parameter. Strut endpoints are evenly distributed but attached to the closest existing node on 

the 0/100 end rings. Thus, a higher value or very careful selection of nodes_circ may produce a cleaner 

truss. Also, a value of 2 for nodes_axial is recommended, but not required. A value higher than 2 may 

produce unsupported degrees of freedom as well as potentially curved struts due to the interpolation be-

tween the two end shapes.  

 

Parameter List 

Note that most axial direction defaults do not change to match earlier inputted values (the transx 

parameter is an exception). 

curve1 – mnemonic for first curve (see curve library)  

 default = sc, or last curve used 

 

curve2 – mnemonic for second curve (see curve library)  

 default = sc, or last curve used 

 

c1_xscale – factor to scale x dimensions of curve 1 by 

 default = 1, or last x scale 

 

c1_yscale – factor to scale y dimensions of curve 1 by 

 default = 1 or last y scale 

 

c2_xscale – factor to scale x dimensions of curve 2 by 
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 default = 1, or last x scale 

 

c2_yscale – factor to scale y dimensions of curve 2 by 

 default = 1, or last y scale 

 

c1_xoffset – distance to horizontally translate curve 1 

 default = 0, or last x offset 

 

c1_yoffset – distance to vertically translate curve 1 

 default = 0, or last y offset 

 

c2_xoffset – distance to horizontally translate curve 2 

 default = 0, or last x offset 

 

c2_yoffset – distance to vertically translate curve 2 

 default = 0, or last y offset 

 

c1_rotation – angle in degrees to rotate end 1 about 

the y axis. This parameter is intended to make toroidal or 

helixical shapes. For instance, setting one end to zero, the 

other to 3600 (ten 360 rotatations) and the yoffset on an 

end to something greater than 10 times the yscale will 

produce a 10 revolution spring. 

default = 0, or last rotation 

c2_rotation – angle in degrees to rotate end 2 about 

the y axis. This parameter is intended to make toroidal or 

helixical shapes. 

default = 0, or last rotation 

 

c1_s – scheme to use to distribute nodes circumferentially along curve1. Values may be “global,” 

“local,” or “copy.” A “global” distribution spaces nodes evenly along the circumference of the un-scaled 

curve. A “local” distribution spaces nodes evenly along each arc of a user-defined piecewise curve 

(interpolated or compound). This has the effect of positioning nodes at each joint between child arcs. A 

“copy” distribution uses the node spacing of the other end of the section in order to produce less twisted 

elements. If both ends of the section are set to “copy,” a “global” distribution will be used. 

 default = “global,” or previous c2_s 

 

c2_s – scheme to use to distribute nodes circumferentially along curve 2. See discussion of c1_s above. 

 default = “global,” or previous c2_s 

 

length – length of section 

 default = 1 

 

radius – rotation radius used when c1_rotation or c2_rotation are non zero. 

default = 1, or last radius 
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nodes_circ – number of finite element nodes to use in the circumferential direction 

 default = 10, or last value specified 

 

nodes_axial – number of finite element nodes to use in the axial direction 

 default = 10 

 

components_circ – number of different material props to use in circumferential direction. Use of this 

parameter overrides the circ_cpos list of component edge positions and creates evenly distributed 

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of circumference) 

 default = 1, or last value specified 

 

components_axial – number of different material properties to use in axial direction. Use of this 

parameter overrides the axial_cpos list of component edge positions and creates evenly distributed 

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of length) 

 default = 1 

 

axial_cpos – position of one axial component edge in percent. Values can be the word “reset” to remove 

the current list of positions, or between 0 and 100 to set the percentage where elements created after that 

location will be in a new component. Multiple positions can be set. Use of this parameter overrides the 

components_axial setting and vice versa. 

 

circ_cpos – position of one circumferential component edge in percent. Values can be the word “reset” 

to remove the current list of positions, or between 0 and 100 to set the percentage where elements created 

after that location will be in a new component. Multiple positions can be set. Use of this parameter overrides 

the components_circ setting and vice versa. 

 

taper – This setting controls how quickly curve1 transitions to curve2. This taper option will have signif-

icant effect only if the scales and/or offsets of the two end curves are significantly different. Pictures of these 

taper types are shown in the library section at the end of the chapter 7. Those pictures show a section that 

transitions between two semi-circles of different size and offset. 

For the linear option, value has no effect. For the cosine option, value is the number of half waves. 

For the power option, value is the exponent of the interpolation curve (1.0 gives linear).   

 Usage: taper <type> <value> 

 Type = “linear,” “power,” “cosine” 

 Defaults: type = linear 

                           value = 1.0 

  

tnodes – number of truss endpoints to use 

 

type – kind of 1-D object to generate for a truss object. Should 

be beam, rod, or bar (rod and bar are the same). 

 Default: beam 
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TSection 

 
 

A TSection is an under-development variation on the Section object type. This object allows the user to 

specify a different value of nodes_circ at each end of the section. This results in a number of triangular 

elements being created to gradually change from one node count to the other. 

No TFrame object has been created to allow ring frames and longerons to attach to a TSection. A con-

ventional Frame object may be used. It should stitch well along edges of the section but will generally not 

attach properly across the middle of a TSection. If such a mid-frame is desired use multiple base objects to 

force straight element edges at the desired location. 

The TSection object uses the same parameters as the Section object with one addition: 

Additional Parameter List 

nodes_circ2 – number of finite element nodes to use in the circumferential direction at the second end 

of the section. 

 default = 10, or last value specified 
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Dome  

 
 

A Dome is a 3-D object made by extruding a single 2-D curve to a single nose point. The origin of the 

object is the center point of curve 1 (which for semi-curves is on the axis of symmetry). Adding a dome 

object does not change the default position of the next object (unless a translation/rotation parameter is 

specified). 

Parameter List 

curve1 – mnemonic for first curve (see curve library)  

 default = sc, or last curve used 

 

c1_xscale – factor to scale x dimensions of curve 1 by 

 default = 1, or last x scale 

 

c1_yscale - factor to scale y dimensions of curve 1 by 

 default = 1 or last y scale 

 

c1_xoffset – distance to horizontally translate curve 1 

 default = 0, or last x offset 

 

c1_yoffset – distance to vertically translate curve 1 

 default = 0, or last y offset 

 

c1_s – scheme to use to distribute nodes circumferentially along curve 1. Values may be “global,” “local,” 

or “copy.” A “global” distribution spaces nodes evenly along the circumference of the un-scaled curve. A 

“local” distribution spaces nodes evenly along each arc of a user-defined piecewise curve (interpolated or 

compound). This has the effect of positioning nodes at each joint between child arcs. A “copy” distribution 

uses the node spacing of the other end of the section in order to produce less twisted elements. If both ends 

of the section are set to “copy,” a “global” distribution will be used. 

 default = “global,” or previous scheme 
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length – length of section 

 default = 1 

 

nodes_circ – number of finite element nodes to use in the circumferential direction 

 default = 10, or last value specified 

 

nodes_axial – number of finite element nodes to use in the axial direction 

 default = 10 

 

components_circ – number of different material props to use in circumferential direction. Use of this 

parameter overrides the circ_cpos list of component edge positions and creates evenly distributed 

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of circumference) 

 default = 1, or last value specified 

 

components_axial - number of different material properties to use in axial direction. Use of this 

parameter overrides the axial_cpos list of component edge positions and creates evenly distributed 

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of length) 

 default = 1 

 

axial_cpos – position of one axial component edge in percent. Values can be the word “reset” to remove 

the current list of positions, or between 0 and 100 to set the percentage where elements created after that 

location will be in a new component. Multiple positions can be set. Use of this parameter overrides the 

components_axial setting and vise-versa. 

 

circ_cpos – position of one circumferential component edge in percent. Values can be the word “reset” 

to remove the current list of positions, or between 0 and 100 to set the percentage where elements created 

after that location will be in a new component. Multiple positions can be set. Use of this parameter overrides 

the components_circ setting and vise-versa. 

 

taper – mnemonic for taper schedule (see taper library) 

 default = elli 

 

droop – mnemonic for droop schedule (see droop library) 

 default = line 

 

zdist – controls distribution of nodes axially. The value must be greater than zero and less than or equal 

to one. The lower the value specified the more the nodes are biased toward the dome nose. A value of one 

(the default) results in nodes being distributed linearly in the z direction. A value of 0.5 results in nodes 

spaced in such a way as to produce equal radial spacing when viewed from nose on.  

The actual equation used is: zi= length * (i/nodes_axial)zdist 

 default = 1.0 

 

zdroop – distance to droop nose point from centerline 

 default = 0 

 

param1, param2, param3 – additional parameters whose meanings vary depending on the value of 

the taper option chosen. Since the meaning may change from an exponent expected to be between zero 

and one to a radius that may be hundreds of inches, exercise care in the use of these values. These values 
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are reset to -1.0 after use. This indicates to Loft that the default value should be used. Thus, any desired 

parameters need to be set for each dome created. (see taper library at end of chapter 7). 
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TDome 

 
 

A TDome is an under-development variation on the Dome object type. This object allows the user to 

specify a different value of nodes_circ at each end of the section. This results in a number of triangular 

elements being created to gradually change from one node count to the other. 

No TDframe object has been created to allow ring frames and longerons to attach to a TDome. A con-

ventional DFrame object may be used. It should stitch well along edges of the section but will generally not 

attach properly across the middle of a TDome. If such a mid-frame is desired use multiple base objects to 

force straight element edges at the desired location. 

The TDome object uses the same parameters as the Dome object with one addition: 

Additional Parameter List 

nodes_circ2 – number of finite element nodes to use in the circumferential direction at the nose end of 

the dome (the tip is a single node, and this value is the count of nodes in the row just before the nose). 

 default = 10, or last value specified 
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Wing  

 
 

A Wing object is a 3-D object composed of panels that represent a lifting surface’s skin, ribs, and spars. 

This object creates one trapezoidal planform lifting surface (a right wing, a tail, a winglet) per call. It allows 

the user to specify spar and rib positions and which spars to extrude to form the wingbox carry-through. 

Other optional settings allow wing twist, different airfoil shapes at the root, tip, top, or bottom and beam/bar 

stiffening of the ribs and spars. Partial generation of the wing in the chordwise direction (to support things 

like control surfaces) is also supported. 

Beam stiffening is only partially implemented at this time. The beams are connected properly, but their 

alignment is not properly set. (They are all aligned with node 1.) 

The object local origin is the leading edge root node. 

The wing object supports two types of parameters: specific and generic. Generic parameters change one 

or more specific parameters. For instance, the generic naca parameter will change the values of the specific 

parameters rootnaca, tipnaca, nacatop, and nacabot. The main parameter list contains just the 

specific parameters. A separate list of generic parameters is given at the end of this object section. The 

effect of the two parameter types is read-order specific. Specifying “naca 2015” followed by “root-

naca 2212” will result in the root using a 2212 airfoil and the tip using a 2015. If the rootnaca 

parameter was specified before the naca parameter then both the root and tip would use a 2015 airfoil. If 

the user desires to be more specific, the top and bottom shapes can be specified separately using the root-

nacatop, rootnacabot, tipnacatop, and tipnacabot parameters. Also, in addition to specifying a 4- or 5-digit 

NACA airfoil shape, the user may also specify a biconvex airfoil with a desired thickness to chord ratio or 

any defined Loft curve (built-in, interpolated, or compound). 

   Historic note: Loft has had a large collection of different wing object types. To reduce confusion these 

have all been collected into one wing type using the same parameters and generation code. For the short 

term, the additional wing object types are still available to be used but are not documented and will 

eventually be eliminated. This has the advantage of only having to maintain one wing generation routine. 

(Most of the generic parameters are from the older, less powerful, wing object types.) 
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Parameter List (Specific and more specific) 

chord – root chord length 

 default: 1  

 

span – single wing span 

 default: 1  

 

taper – ratio of tip chord length to root chord length 

 default: 1  

 

sweep – leading edge sweep angle in degrees 

 default: 0  

 

rootnaca, tipnaca – specific airfoil NACA designation (contains camber and thickness data) for 

wing root/tip. May be a NACA 4- or 5-digit airfoil specification, a biconvex airfoil with a desired thickness 

to chord ratio (default 0.1), or the name of any valid Loft curve (built-in, interpolated, or compound). For 

Loft curve use, since the normal definition of curves starts at (0,1), the x and y values of the curve will be 

swapped so that the curve is horizonal rather than vertical. The specified thickness to chord will be used to 

scale the now vertical x values of the Loft curve. Both the top and bottom surface of the root or tip are set 

by these parameters. 

 defaults: 2410 

              thickness to chord 0.1 

Examples: rootnaca 2030 

       rootnaca biconvex 0.20 

       rootnaca sc 0.10 

 

nacatop, nacabot – specific airfoil designation for the top/bottom of the wing. Each sets both the root 

and tip of either the top or bottom to that specification. 

rootnacatop, rootnacabot, tipnacatop, tipnacabot – more specific airfoil designation 

parameters for the wing end surfaces separately. 

 

rootaoa – root twist angle in degrees. Wing half-chord is the rotation axis, positive twist produces a 

higher section angle of attack (root up). 

 default: 0 

tipaoa – tip twist angle in degrees. Wing half-chord is the rotation axis, positive twist produces a higher 

section angle of attack (tip up). 

 default: 0 

twist – synonym for tipaoa parameter. 

 

rootvert – vertical offset of wing root. Positive is up. 

 default: 0 

tipvert – vertical offset of wing tip. Positive is up. Can be used to produce wing dihedral. 

 default: 0 
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wingbox – carry-through length. May be zero. At least 2 spars must be specified if a carry-through is 

desired. This value is always reset to zero after object generation, so any desired non-zero values must be 

set for each new object. 

 default: 0 

 

sparpos – percentage of chord to place a spar. These can be specified in any order; the program 

automatically sorts them as they are read. If either of the words “reset” or “clear” is specified rather than a 

percentage, the current list of spars is deleted and the boxfront and boxrear parameters are reset to 

their default values. This reset option is needed because the lists of spars and ribs are kept as the default 

from one wing to the next. 

 

ribpos – percentage of span to place a rib. Automatic ribs are created at 0 and 100 percent span and do 

not need to be specified by the user. These can be specified in any order; the program automatically sorts 

them as they are read. If either of the words “reset” or “clear” is specified rather than a percentage, the 

current list of ribs is deleted (with the 0 and 100 percent automatic ribs being immediately re-added). See 

the notip parameter if suppression of the tip rib is desired. 

 

boxfront – spar number to extrude to make wingbox carry-through front (used only if the wingbox 

parameter is > 0). Numbering is based on proximity to the wing leading edge, not on the order that the 

sparpos parameters occur. This value is reset to the default if the list of spar positions is cleared. 

 default: 1 

 

boxrear – spar number to extrude to make wingbox carry-through back (used only if wingbox parameter 

is > 0). Numbering is based on proximity to the wing leading edge, not on the order that the sparpos 

parameters occur. This value is reset to the default if the list of spar positions is cleared. 

 default: (last spar) 

 

meshchord – finite element mesh density per unit length in the chordwise direction (higher values 

produce a denser mesh). Note that tapering of chord length and thickness across the span of the wing will 

not cause a change in mesh counts; there will be the same number of nodes along the tip rib as on the root 

rib. Example: a setting of 5 on a wing with a 5 unit long chord setting will result in approximately 25 

nodes in the chordwise direction on both the top and bottom skin (the exact node count will depend on spar 

positions and integer math truncations). This is a real number, not an integer, and can be less than one if 

desired. This parameter changes the chordwise mesh distribution for the skins and ribs. 

 default: 3.0 

 

meshspan – finite element mesh density per unit length in the spanwise direction. (See discussion above.) 

This parameter changes the spanwise mesh distribution on the skins and spars. 

 default: 3.0 

 

meshthick – finite element mesh density per unit length in the thickness direction. (See discussion 

above.) This parameter changes the vertical mesh density of the ribs and spars. It has no effect on the wing 

skins.  

 default: 3.0 

 

sparstiff – flag to turn on generation of stiffening bars/rods or beams at the top and bottom of the spars. 

Values are “off,” “on,” “beam,” “bar,” and “rod.” (“on,” “bar,” and “rod” are all equivalent). 

 default: off 
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ribstiff – flag to turn on generation of stiffening bars/rods or beams at the top and bottom of the ribs. 

Values are “off,” “on,” “beam,” “bar,” and “rod.” (“on,” “bar,” and “rod” are all equivalent). 

 default: off 

 

halfwing – flag to turn on generation of just the top or bottom half of the wing. Used primarily for 

vertical tails on the symmetry lines of a half vehicle. Values are “off,” “on,” “bottom,” and “top.” (“top” 

and “on” are the same). 

 default: off 

 

wingside – flag to control which side of the vehicle to build the wing for. Values are “starboard,” “port,” 

“right,” and “left.” (starboard = right, port = left).  

 default: starboard 

 

notip – flag to control generation of outboard (100% span) rib. This is useful when you are building up a 

compound wing of multiple trapezoidal sections and do not want a double rib at the junction. Values of 

“1,” “on,” or “true” will disable the wingtip rib generation. Values of “0,” “off,” or “false” will re-enable 

it. This flag is always reset to off after each wing generation. 

 default: off (wingtip rib is generated) 

 

nowbrib – flag to control generation of the rib at the end of the wingbox carry-through. Generally this rib 

would fall on the centerline of the vehicle. Values of “1,” “on,” or “true” will disable the wingbox rib 

generation. Values of “0,” “off,” or “false” will re-enable it. This flag is always reset to off after each wing 

generation. 

 default: off (wingbox rib is generated) 

 

start – percentage of chord length to start generating the object. Any spars that are specified at lower 

positions than this value are ignored. The start and stop parameters are used to generate partial wing objects 

(e.g., control surfaces). 

 default: 0 

 

stop – percentage of chord length to stop generating the object. Any spars that are specified at higher 

positions than this value are ignored. The start and stop parameters are used to generate partial wing objects 

(e.g., control surfaces). 

 default: 100 

 

gen_up_skin – flag to control the creation of the wing upper skin. Values are “on” and “off.” This flag 

is always reset to “on” after an object has been created. 

 default: on 

 

gen_low_skin – flag to control the creation of the wing lower skin. Values are “on” and “off.” This flag 

is always reset to “on” after an object has been created. 

 default: on 

 

gen_spars – flag to control the creation of the wing spars. Values are “on” and “off.” Even when off, the 

other wing elements will be positioned to align with the spars that are specified in the object geometry. 

Thus, each part of the wing could be generated separately and merged to create the same mesh as if they 

were created together. This flag is always reset to “on” after an object has been created. 
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 default: on 

 

gen_ribs – flag to control the creation of the wing ribs. Values are “on” and “off.” Even when off, the 

other wing elements will be positioned to align with the ribs that are specified in the object geometry. Thus, 

each part of the wing could be generated separately and merged to create the same mesh as if they were 

created together. This flag is always reset to “on” after an object has been created. 

 default: on 

 

 

Expanded view of Wing parts created by sequential use of each of the gen_XXX flags 

Parameter list (Generic) 

mesh – finite element mesh density per unit length (higher values produce a denser mesh). This is a global 

setting for the entire object. When used, the three specific parameters meshthick, meshspan, and 

meshchord are reset to this value. 

 

naca – airfoil NACA designation (contains camber and thickness data). When used, the more specific 

rootnacatop, rootnacabot, tipnacatop, and tipnacabot are reset to this value. 

 

nribs – number of wing ribs, including root and tip. Must be greater than or equal to 2. When used, the 

current ribpos parameter settings are erased and the specified number of new evenly spaced ribs are 

placed in the ribpos list.  

 

nspars – number of wing spars. When used, the current sparpos parameter settings are erased and the 

specified number of new evenly spaced spars are placed in the sparpos list. 

 

nodeschordwise – approximate number of finite element nodes to use along each chord line (the top 

surface and the bottom surface will each have this many nodes.) This will reset the meshchord value to 

(specified value)/(current chord). The actual number of nodes may vary due to integer math and positioning 

of nodes exactly at spar positions. 

 

elemperspanbay – approximate number of finite elements to use between each rib. This parameter will 

reset the meshspan parameter to (specified value) * (current number of ribs) / (current span). 
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Frame/DFrame 

 

 

 

 

 

 

 

 

 

 

 

 

A Frame is an object made of beam elements distributed between two curves. Frame objects are based 

on the last Section object – taking their shape and dimensions from that section.  

 

A DFrame is also a frame type object but is based on/attached to the previous Dome object. It has the 

same parameters as the frame object.  

 

For both object types, the align parameter can be used to select axial or circumferential alignment. If 

a single line of beams is desired, the count variable can be set to one, and the position parameter can 

be used to specify the position along the curve. A frame object does not change the default position of the 

next object. All beams are by default aligned with a node set at x = 0, y = 0, z = <beam start point z>. This 

may not be what is desired in all cases, so the x3, y3, and z3 parameters can be used to override this 

setting. The bright lines in the figure above are thrust structure stiffening beams created using both frames 

and dframes. Loft will detect and remove duplicate beam/bar elements created at the junction points of two 

adjacent sections. 

 

Parameter List 

align – direction of beam elements: “axial” or “circ” 

 default: circ 

 

count – number of frames to make (integer) 

 default: components setting of parent section/dome +1 in direction specified. The frames will be 

positioned at the same component edge locations that are used in the parent object, whether set by count 

(components_axial) or by explicit location (axial_cpos). Overriding the count will lose this 

location paring and result in even spacing of the specified number of frames. 

 

position – location of a single frame, in fraction of the direction specified, must be between zero and 

one. Ignored if count does not equal 1. 

 default: 0 

 

type – kind of 1-D object to generate. Should be “beam,” “rod,” or “bar” (rod and bar are the same). 

 default: beam 

 

x3,y3,z3 – location of beam alignment node 

 default: x3 = 0, y3 = 0, z3 = beam start coordinate  
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Beam 

A Beam is a one-dimensional object where the user specifies the absolute position of the end points. 

This object type can generate either a beam (has axial and bending stiffness) or a rod/bar (has only axial 

stiffness). The parameters specified for this object do not change the defaults for the other object types (but 

are remembered for other beam objects). None of the general object parameters (move, rotate, scale, 

warp, flip) are supported at the object level. 

Parameter List 

type – kind of 1-D object to generate. Should be “beam,” “rod,” or “bar” (rod and bar are the same). 

 default: beam 

 

x1,y1,z1 – end point coordinates 

 default: 0,0,0, or previous settings 

 

x2,y2,z2 – end point coordinates 

 default: 1,1,1, or previous settings 

 

x3,y3,z3 – beam alignment node coordinates 

 default: 0,1,0 or previous settings 
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Tank 

 

A Tank is a meta-object composed of three objects: an elliptical dome of negative length, a tank barrel 

section, and an elliptical dome with positive length (the same as the negative length). The three objects will 

be named based on the supplied name for the tank meta-object but will have “ FD,” “ B,” or “ AD” (for 

“forward dome,” “barrel,” and “aft dome”) added. The tank object shares the section object parameters and 

defaults, with one additional parameter: dome length.  

The tank local origin point is the center point of curve 1 (the center of the front of the barrel section). 

Use of a tank object does update the global default creation point to the center of curve 2. 

Additional Parameter List 

 See Section object type above for a base list of parameters. 

 

domelength – length of the elliptical domes 

 default: 0.707 * Average of corresponding section end’s scale_x,scale_y 
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StiffTank  

A StiffTank is a ring frame stiffened tank meta-object. It is constructed the same as the tank meta-object 

with the addition of circumferential ring frames being added along the edge of each barrel component (as 

controlled by the components_axial parameter). The string “ R” is added to the object name for the 

frame object. See the tank and section objects for its parameters. No stiffening is added to the domes. 
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Box 

 

   A Box is a trapezoidal flat faced object with the front and back surfaces parallel. Stiffeners may optionally 

be placed along face component edges and/or through the volume of the box using the stiff_skin_X and 

stiff_vol_X parameters detailed below. There are no parameters to specify cross sectional shape—a 

square is always used. Note that like the wing object this object will not generally automatically stitch 

properly to an adjacent section or dome object as the node distribution will be different. 

 

Parameter List 

c1_xscale – factor to scale horizonal dimension of front end by 

 default = 1 
 

c1_yscale – factor to scale vertical dimension of front end by 

 default = 1 
 

c1_xoffset – horizontal distance to move front end 

 default = 0 
 

c1_yoffset – vertical distance to move front end 

 default = 0 
 

c2_xscale – factor to scale horizonal dimension of aft end by 

 default = 1 
 

c2_yscale – factor to scale vertical dimension of aft end by 

 default = 1 
 

c2_xoffset – horizontal distance to move aft end 

 default = 0 
 

c2_yoffset – vertical distance to move aft end 

 default = 0 
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length – axial length of box 

 default = 1 
 

nodes_vert – number of nodes in the vertical direction 

 default = 10 
 

nodes_horz – number of nodes in the horizontal direction 

 default = 10 
 

nodes_axial – number of nodes in the axial direction 

 default = 10 
 

components_vert – number of components in the vertical direction 

 default = 3 
 

components_horz – number of components in the horizontal direction 

 default = 3 
 

components_axial – number of components in the axial direction 

 default = 3 
 

stiff_skin_vert – controls the creation of stiffeners in the vertical direction on the front, back, left, 

and right skin panels. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or 

“false” will disable them. 

 default = off 
 

stiff_skin_horz – controls the creation of stiffeners in the horizontal direction on the front, back, top, 

and bottom skin panels. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or 

“false” will disable them. 

 default = off 
 

stiff_skin_axial – controls the creation of stiffeners in the axial direction on the top, bottom, left 

and right skin panels. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or 

“false” will disable them. 

 default = off 
 

stiff_skin_all – toggles all three stiff_skin_X settings to the specified value. Values of “1,” 

“on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable them. 

 default = off 
 

stiff_vol_vert – controls the creation of stiffeners in the vertical direction in the box internal volume. 

Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable them. 

 default = off 
 

stiff_vol_horz – controls the creation of stiffeners in the horizontal direction in the box internal vol-

ume. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable 

them. 

 default = off 
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stiff_vol_axial – controls the creation of stiffeners in the axial direction in the box internal volume. 

Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable them. 

 default = off 
 

stiff_vol_all – toggles all three stiff_vol_X settings to the specified value. Values of “1,” “on,” 

or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable them. 

 default = off 
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Block 

 

 
 

The Block object creates a three-dimensional, solid-element-based trapezoidal prism object. It has two 

rectangular ends with variable scales, horizonal offsets, and vertical offsets supported at each end. Output 

in NASTRAN will produce 8-node CHEXA elements, and in VRML each element face will be written as 

a flat panel. Other output formats are not currently supported for this object. All of the rotation, transla-

tion, and warping parameters (in the common parameters list) are supported except for the flip parame-

ter. 

 

Parameter List 

c1_xscale – factor to scale horizonal dimension of front end by 

 default = 1 
 

c1_yscale – factor to scale vertical dimension of front end by 

 default = 1 
 

c1_xoffset – horizontal distance to move front end 

 default = 0 
 

c1_yoffset – vertical distance to move front end 

 default = 0 
 

c2_xscale – factor to scale horizonal dimension of aft end by 

 default = 1 
 

c2_yscale – factor to scale vertical dimension of aft end by 

 default = 1 
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c2_xoffset – horizontal distance to move aft end 

 default = 0 
 

c2_yoffset – vertical distance to move aft end 

 default = 0 
 

length – axial length of block 

 default = 1 
 

nodes_vert – number of nodes in the vertical direction 

 default = 10 
 

nodes_horz – number of nodes in the horizontal direction 

 default = 10 
 

nodes_axial – number of nodes in the axial direction 

 default = 10 
 

components_vert – number of components in the vertical direction 

 default = 3 
 

components_horz – number of components in the horizontal direction 

 default = 3 
 

components_axial – number of components in the axial direction 

 default = 3 
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BC/RBE/FORCE/MASS/PRESS/TEMP 

 

 
   The BC/RBE/FORCE/MASS/PRESS/TEMP object types map user supplied values to the project mesh. 

Currently, they will be reflected only in NASTRAN format output files. An exception is that an RBE ele-

ment will be depicted in VRML as a 1-D line. 

 

   The BC object creates boundary conditions (NASTRAN SPC cards) with the user specified degrees of 

freedom (dof) constrained. The RBE object creates rigid body elements that connect degrees of freedom 

for two or more nodes. The FORCE object type applies a specified force vector (NASTRAN FORCE card) 

to a group of nodes. The MASS object type applies a concentrated mass (NASTRAN CONM2 card) to a 

group of nodes. Both FORCE and MASS values can be given as a value to be applied to every specified 

node or as a value to be smeared across the nodes producing the value as a total. The PRESS object type 

applies a specified pressure (NASTRAN PLOAD2 card) to a group of elements. The TEMP object applies 

a specified initial or boundary condition temperature (TEMP or SPC card) to a group of nodes. 

 

   For RBE objects, if the node1 and node2 parameters are used then those nodes are connected and the 

approach parameter is ignored. If node1 and group2 parameters are used and approach is given as 

spider, then node1 is connected to every node in group2. Otherwise group1 is connected to group2 

using the specified approach.  

 

   For non-RBE object types, node1, group1, and group2 can all be used to specify nodes (or elements 

in the PRESS case) that are to have the specified values mapped to them. Node2 is a synonym for setid 

for these cases. 

 

   The group membership used for these objects is frequently created using the corner parameter in the 

region command mode. Please refer to that section of the manual for additional insight. 

 

Parameter List 

node1 – index of first node to use 

 default = -1 
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node2 – index of second node use. (Note that this shares storage with the setid parameter, so each will 

overwrite the other.) 

 default = -1 

 

group1 – name of first group of nodes (or elements for a PRESS type) 

 default = null 

 

group2 – name of second group of nodes (or elements for a PRESS type). Group2 is optional for BC, 

FORCE, MASS, and PRESS objects but if used will produce the same type of cards for the second group 

of nodes/elements. For RBE objects it is used as a list of nodes to connect to the nodes in group1 using 

the specified approach. 

 default = null 

 

doflist – list of degree of freedom numbers to use for a boundary condition or an RBE object. This 

value is ignored for FORCE, MASS, and PRESS objects. These are given in a NASTRAN style adjacent 

list containing the digits 1,2,3,4,5, and/or 6. 

 default = 123456 

 

type – choice between “rbe2” or “rbe3,” “bc,” “force,” “mass,” or “press.” A rbe can be specified as either 

a four character string or a single digit (“rbe2” or ”2”) or (“rbe3” or ”3”). This type parameter is automat-

ically set when using the corresponding name to create the object. In other words, if an object is created 

using “object force thrust” then the type is set to force. 

 default = rbe2 for RBE object, object type for other objects. 

 

approach – method used, in RBE object, to connect multiple nodes, or in MASS or FORCE object to 

compute the applied value to each node. Only the first three letters of the chosen approach need to be given.  

 “sequential” – the first node of group1 will be connected to the first node of group2, second 

node to second, etc. until one group runs out of nodes. Remaining nodes are not connected. 

 “reverse” – the first node of group1 will be connected to the last node (N) of group2, the second 

node to the last but one, etc. until one group runs out of nodes. Remaining nodes are not connected. 

 “closest” – each node in group1 is connected to the closest node in group2. This is not neces-

sarily a unique pairing. 

 “shortest” – (not currently implemented) the shortest total length of unique connections between 

group1 and group2 are created, nodes are not reused so uneven groups will result in unused nodes 

 “spider” – node specified in node1 parameter or the first node in group1 is connected to every 

node in group2. 

 “smeared” – if specified for a mass or force object, the specified values (value1-3) will be di-

vided by the number of nodes that have the value applied so that the total value applied is the specified 

amount. If “smeared” is not specified, then every node will have the unscaled value applied. 

 “tbc” – “thermal boundary condition,” if specified for a thermal object, the specified value will be 

applied as a boundary condition and generate a thermal SPC card. (thermal default) 

 “tic” – “thermal initial condition,” if specified for a thermal object, the specified value will be 

treated as an initial temperature and generate a TEMP card. 

 default = sequential 

 

mark – add new elements to specified group 
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setid – index for boundary condition, force, or pressure card numbers. (Note that this shares storage with 

the node2 parameter, so each will overwrite the other.) This index then needs to be referenced in the case 

control section of a NASTRAN analysis file in order to be used. 

 

value/value1 – floating point value used for PRESS object pressure, MASS object mass, or the x 

component of the applied force on a FORCE object. “value” with no number after it will also be inter-

preted as “value1.” 

 

value2 – floating point value used for the y component on a FORCE object 

 

value3 – floating point value used for the z component on a FORCE object 

 

Example object commands and parameters: 

 
object rbe forward wing rbes 

   group1 mainwing fwd corners 

   group2 Front bulkhead corners 

object bc symmetry bc 

   group1 centerline 

   setid 999 

   dof 345 

object force thrust  

   group1 engine ring 

   setid 1000 

   value1 -100.0 

   value2 0.0 

   value3 0.0 

object press lift 

   group1 mainwing skin SKIN UP ELEMS 

   setid 1001 

   value1 -1.0 

object mass ballast 

   group1 nosecap ALL NODES 

   value 1000 

   approach smeared 

object temp root temp 

   group1 wing root nodes 

   value 100.0 

   approach tbc 

   setid 100 
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Node 

 

A Node object is used to create a single node in the mesh. One application is to use variables to parametri-

cally position a node that will be used as the hub of a rigid body element (RBE) spider. This spider can be 

used to distribute a load over a collection of connected nodes. 

 

Parameter List 

x, y, z – specify the x, y, or z coordinate of the node  

 default = -1.0 

 

mark – label to apply to the node. Note that a group called “<object name> ALL NODES” is automatically 

created. Any group can then be used, for instance, in a RBE object creation process. Creating a group of 

elements is not supported in the node creation object. 

 default: none 

 example: mark node My node group  

 



 

142 

 

User Curve Types and Parameters 
 

The internal library curves are all defined such that they have a nominal radius of one. For instance, a 

square is two units long on an edge. This allows the use of object level curve scaling parameters to reflect 

the actual dimensions desired for the mesh. This approach is recommended, but not required, for user-

defined curves. For proper alignment of normal vectors, curves should be defined sequentially in a clock-

wise fashion. 

Mnemonics for user-defined curves can be chosen such that they override internally defined curves (i.e., 

a user-defined “sc” curve would replace the internal one). Defining a second user-defined curve with the 

same name generally will not override the previous shape. When data from a curve is needed, Loft scans 

through the curve libraries in the following order and stops when it gets a match: 1) Interpolated curves, in 

the order they were defined, 2) Compound curves, in the order they were defined, 3) Lofted curves, in the 

order they were defined, and 4) Internal curves. If no match is found, Loft will use a semi-circle. 

Interpolated Curves 

Interpolated curves are defined by specifying x and y coordinates of points along the curve. Point order 

is important. Various interpolation options may be available in the future, but currently only linear interpo-

lation is supported. “y” is the vertical coordinate and “x” is the horizontal. 

Parameter List 
start – initial point coordinates 

 Example: start 0.0 1.0 

 

line – coordinates of new point to be connected to the previous point by a line. 

 Example: line 1.0 1.0 

 

Compound Curves 

Compound curves are curves built up by combining previously defined curves. Any curve type (built-

in, interpolated, lofted or previous compound) can be used. Only circles and semi-circles have modules that 

will automatically compute their intersection points with each other. If an intersection is not between two 

circle or semi-cirle child curves, then the user will need to specify the portions of each curve that is to be 

used. See the project 3 tutorial in chapter 2 of the manual for a more complete explanation of this process. 

Parameter List 
child – name of child curve. This starts a new child curve definition. All parameters that follow will refer 

to this child until a new child starts or the entire compound curve definition is finished by another command.  

 

x – x coordinate to use for center of child curve  

   default 0.0 

 

y – y coordinate to use for center of  child curve  

   default 0.0 

 

radius – scale factor for curves  

   default 1.0 
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sstart, sstop – fraction along a curve’s circumference to start/stop (defaults 0.0, 1.0). For circle/sc 

curves these values are overwritten when the curve intersection code is called: e.g., curve 3’s sstop value 

is reset when curve 4 is specified. Thus, sstart will have an effect only on the first specified circle/sc 

curve and sstop will have an effect only on the last circle/sc specified curve. For curve types where 

intersection calculation code has not been written (i.e., anything other than circle or semi-circle), these 

values will not be overwritten and in fact are the only way to use these types of curves in a compound curve. 

 

Lofted Curves 

   Loft inherently creates a “lofted” curve whenever it creates a dome or a section and is creating nodes at a 

station between the two ends of the object. The “lofted” user-defined curve type allows the user to extract 

one of these intermediate shapes for later use. Applications include creation of mid-section bulkheads. Any 

curve types can be used as the end curves.  

 

Parameter List 
curve1 – name of first source curve.  

   default = sc 

 

curve2 – name of second source curve.  

   default = sc 

 

station – fractional position between the two curves used to create the new user curve.  

0.0 = curve1, 1.0 = curve2 

default = 0.5 

 

Example: 

curve lofted midbarrel 

  curve1 sc 

  curve2 ss 

  station 0.3 
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Libraries 

 

Curve Library 

This is a list of the currently coded curves and their mnemonics. All curves have a nominal radius of 

one. 

Curve families allow the user to tack a single parameter onto the name of the curve to affect the final 

shape generated. No space is left between the mnemonic and the parameter, e.g., fillet0.44 or 

sccw3.2. The parameter is optional. 

Most curves are available in both a full, 360-degree version and a semi, 180-degree version. When using 

a full curve, Loft will use the nodes_circ parameter to generate the curve, but the first and last nodes (at 

0 and 360 degrees) will be merged and the mesh will have one fewer node in that direction than was spec-

ified by the user. Keep this in mind and increase the value of the parameter if necessary. 

Simple Curves 
Circle – “cir” – unit radius full circle. 

 

Semicircle – “sc” – unit radius half circle. 

 

Square – “squ” – full square of width and height 2. 

 

Semi-square – “ss” – half square of dimension 2 (encloses radius 1 circle exactly) 

 

Breadbox – “bb” – circular on top, square on the bottom. (Note: for compatibility with the other library 

curves, the breadbox curve has s=0.25 and 0.75 at the junctions of the circle and the square. These are not 

25% and 75% along its circumference.) 

 

Semi-breadbox – “sbb” – half section with top half circular and bottom half square. (Note: for compatibility 

with the other library curves, the semi-breadbox curve has s = 0.50 at the junction of the circle and the 

square. This is not 50% along its circumference.) 

 

Line – “line” – vertical line from +1 to –1, for webs and longitudinal bulkheads 

 

Horizontal line – “hline” – horizontal line from +1 to –1 

 

Curve Families 
Semi-circle-cosine-wiggle – “sccw” – cosine wiggle shape 

 parameter meaning – number of full cosine waves to generate 

 default=2.5 

 

Filleted box – “fillet” – square with rounded corners (Note: the distribution of s along the filleted box is 

not exactly by circumference.) 

 parameter meaning – radius of fillet, between 0 and 1 

 default=0.25 
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Semi-Filleted box – “sfillet” – half section square with rounded corners. (Note: the distribution of s along 

the semi-filleted box is not uniform in circumferential distance.) 

 parameter meaning – radius of fillet, between 0 and 1 

 default=0.25 
Library Curves illustrated with Dome Objects 

 

 
Circle   Semi-Circle 

 

 
Square Semi-Square 

 

 
Breadbox                                Semi-breadbox 
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Fillet                         Semi-Fillet 

 

 
Cosine Wiggle  Line or HLine 

 

Dome Taper Library 

This is a list of the currently coded dome taper schedules and the meaning of the paramN options. 

Bulkhead – “bulk” – planar (zero length) bulkhead 

 

Linear – “line” – linear taper (cone shaped)  

 

Parabolic – “para” – power law nose shape 

 param1 = exponent of taper schedule.  

     default = 0.5 = true parabola 

 

Elliptical – “elli” – elliptical taper for tank domes 

 

Ogive – “ogive” – tangent ogive nose with spherical nose cap 

 param1 = nose cap radius. default = 1.0 

 param2 = radius of main section curve. default = 0.0 

 param3 = radius of nose base. default = 1.0 

 

Haack – “haack” – LD-Haack nose shape with optional spherical blunt cap 

 param1 = length of nose without blunt cap. default = dome length 

 param2 = nose cap radius. default = 1.0 

 param3 = nose cap length. default = 0.0 

 

Dome Taper Library Examples 

 

 
Elliptical                                                 Linear                                                Parabolic 
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Bulkhead                                             Ogive                              Blunt LD-Haack 

 

 

Section Taper Library 

This is a list of the currently coded section taper schedules and the meaning of the value options. The 

pictures show a section object that interpolates between one semi-circle and a larger, offset semi-circle. 

Circumferential and axial frames are added. 

 

Linear – “line” - linear taper 

 

Power – “power” – power curve taper 

value = exponent of taper schedule.  

default =  1.0 = linear 

 

Cosine – “cosine” – cosine schedule, offers tangency possibilities 

value = number of cosine half waves.  

default =  1.0 

 

Section Taper Library Examples 

 
Linear                                 Cosine 1.0                           Cosine 0.5 

 
Power 0.5                             Power 1.5 
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Droop Library 

This is a list of the currently coded dome droop schedules. 

Linear – “line” –  nose centerline descends linearly 

 

Parabolic – “para” – nose centerline descent smoothly increases 

 

Droop Library Examples 

 

 
Linear                                Parabolic 
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System Variable List 

This is a list of the system variables available for use in a Loft input file. They correspond to the object 

parameters set by the user in the input file and will return the current values of those variable. 

 

Global Variables 

Variable Invoked by 

transx – x coordinate for next object @transx 

transy – y coordinate for next object @transy 

transz – z coordinate for next object @transz 

rotx –  x rotation for next object @rotx 

roty –  y rotation for next object @roty 

rotz –  z rotation for next object @rotz 

components_circ – components in circumfer-

ential direction 

@components_circ 

nodes_circ – nodes in circumferential direction @nodes_circ 

maxM, minM – highest or lowest value of co-

ordinate M in current stack 

@maxx, @maxy, @maxz, @minx, @miny, 

@minz 

time – system time in seconds @time 

clock – CPU time in seconds @clock 

pi – ratio of a circle’s circumference to its di-

ameter. ~3.14152965 

@pi 

e – Euler’s constant, base of natural log and ex-

ponential function. ~2.71828 

@e 
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Section Variables 

Variable Invoked by 

length – length of section object @section.length 

taper – taper value of section object @section.taper 

components_axial – components in axial di-

rection 

@section.components_axial 

nodes_axial – nodes in axial direction @section.nodes_axial 

 

Dome Variables 

Variable Invoked by 

length – length of dome object @dome.length 

zdist – axial node distribution @dome.zdist 

droop – droop value of dome object @dome.droop 

param1 – parameter 1 @dome.param1 

param2 – parameter 2 @dome.param2 

param3 – parameter 3 @dome.param3 

components_axial – components in axial di-

rection 

@dome.components_axial 

nodes_axial – nodes in axial direction @dome.nodes_axial 
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Wing Variables 

Variable Invoked by 

chord @wing.chord 

span @wing.span 

taper @wing.taper 

sweep @wing.sweep 

twist @wing.twist 

wingbox – wingbox length @wing.wingbox 

mesh_chord @wing.mesh_chord 

mesh_span @wing.mesh.span 

mesh_thick @wing.mesh_thick 

wing transx – x position of next wing (wing 

objects do not update the global transx/y/z var-

iables. Instead, the default position of a new 

wing object is the same as the previous wing 

object.) 

@wing.transx 

wing transy – y position of next wing @wing.transy 

wing transz – z position of next wing @wing.transz 

 

  



 

152 

 

 

Math Function List 

 

Function Invoked by 

Sine  %sin 

Cosine %cos 

Tangent %tan 

Arcsine %asin 

Arccosine %acos 

Arctangent %atan 

Hyperbolic Sine  %sinh 

Hyperbolic Cosine %cosh 

Hyperbolic Tangent %tanh 

Hyperbolic Arcsine %asinh 

Hyperbolic Arccosine %acosh 

Hyperbolic Arctangent %atanh 

Exp %exp 

Log %log 

Square root %sqrt 

Cube root %cbrt 

Absolute value %abs 

Integer or truncation %int 

 

For these functions, all angles are in radians. 
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Chapter 8: Example Input Files 

Loft Example Input File #1 

 
 

The first full example Loft input file builds a simple conceptual level finite element model of a Two Stage 

To Orbit (TSTO) booster vehicle. A lot of the design details of the vehicle, such as stiffeners, are very 

notional and the wing carry-through passes through the aft tank. It contains approximately 100 lines of 

basic Loft commands and parameters. It does not make use of math, variables, user-defined curves, the 

region mode, or perform any store/recall operations. 

 

# Testing full vehicle based vaguely on 

# ISAT Reference vehicle Mach 3.4 TSTO Vehicle 

# Booster 

# Our nose 

object dome BST Nose 

curve1 sc 

c1_xscale 15.589 

c1_yscale 15.589 

length -36 

taper para 

nodes_circ 21 
nodes_axial 20 
droop line 

zdroop 8 

components_axial 2 
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# Short fuselage extension to get nose 

# not to impinge on forward tank 

object section BST Nose Barrel 

length 3.885 

nodes_axial 3 
components_axial 1 

 

# Forward LOX Tank 

object dome BST LOX FW Dome 

length -11.02 

taper elli 

nodes_axial 8 
components_axial 1 
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object section BST LOX Barrel 

length 23.205 

nodes_axial 12 
components_axial 1 

 

object frame BST LOX Frame 

align axial 

object dome BST LOX AFT Dome 

length 11.02 

taper elli 

nodes_axial 6 
components_axial 1 
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# Intertank adaptor 

object section BST ITA 

length 26.04 

nodes_axial 12 
components_axial 1 

# LH2 Tank 

object dome BST FW Dome 

length -11.02 

taper elli 

nodes_axial 12 
components_axial 1 

object section BST LH2 Barrel 

length 87.35 

nodes_axial 44 
components_axial 3 
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object frame BST LH2 frame 

object dome BST LH2 AFT Dome 

length 11.02 

taper elli 

nodes_axial 6 
components_axial 1 

# Tank shroud 

object section BST Tank Shroud 

length 11.02 

nodes_axial 6 
components_axial 1 
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# Wing 

object wing Main Wing 

chord 80 

span 60 

taper 0.25 

sweep 40 

wingbox 6 

transx 6 

relz -70 

rely -12 

nribs 4 

nspars 3 

meshchord .4 

meshspan .4 

meshthick .4 

naca 2412 

# Tip fin 

object wing Winglet 

chord 20 

span 20 

wingbox 0 

transx 66 

relz 50.35 

rotz 50 
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meshchord 1.6 

meshspan 1.6 

meshthick 1.6 

# Thrust structure shroud 

object section BST TS Shroud 

length 16.5 

nodes_axial 6 
components_axial 1 

# Put a chopped off cone inside the shroud 

# to represent the thrust structure 

# note the relz parameter's use 

object section BST Thrust Structure 

length 3 

c2_xscale 12 

c2_yscale 12 

relz -10.5 

nodes_axial 4 
components_axial 1 
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# Vertical tail on line of symmetry 

object wing Tail 

naca 0612 

nribs 3 

nspars 2 

halfwing bottom 

chord 30 

span 30 

transy 15.589 

rotz 90 

relz -20 

mesh .4 

# bulkhead to close off thrust structure 

object dome BST Thrust Bulkhead 

taper bulk 

components_axial 1 
# save 

write vrml full-color.wrl 

end 
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   Obvious issues with this model include the wing carry-through passing through the aft tank and the various 

wing surfaces needing to be stitched together. But this model is sufficient for some early configuration stud-

ies and to produce images for presentation and discussion. The next example produces a much more realistic 

model of a very similar vehicle. 
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Loft Example Input File #2 

 
 

   The second full example Loft input file builds a significantly more complex finite element model of a 

similar Two Stage To Orbit (TSTO) orbiter vehicle suitable for advanced conceptual analysis. Most of the 

neglected design details in the first example have been addressed in this model with carefully positioned 

stiffeners and wings. This input file uses approximately 1100 lines of Loft commands and parameters.  

 

   This example has been significantly updated from the version included in earlier editions of this manual. 

It is now completely parametric; all dimensions are specified as variables and positions are computed from 

those dimensions. The wing and tail are automatically stitched to the fuselage bulkheads using rigid bound-

ary elements (rbes). Many other recently updated program features are also used, such as the mirror com-

mand, include file capability, generation of point masses and spider rbe connections for force and mass 

distribution, and program flow control with logical operators, if statements, and gotos. 

 

   Significant use is made of user-defined curves to define the fuselage shape at various stations. The region 

mode is used to change the property assignments needed to create the payload bay door and to create partial 

models for loads mapping. The store/recall capability is used extensively to position major components and 

to create presentation figures that focus on particular components. Substantial use is also made of user 

variables and command line math. 

 

   The input file starts with some comments describing the model: 

 

# Loft input deck to generate 

# LaRC TSTO-2009-2A Orbiter 

# Revised model with RBE stitching 

#   

# Units are in inches 

# 

 

The first command is a variable used to specify if the user desires a full model or a half model. The model 

is created as a half vehicle. A later if command will check this variable and either execute or skip over a 
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mirror operation. Also, symmetric boundary conditions will be applied to the centerline nodes if a half 

model is desired but will not be created for a full model. 

 
# select which version of model to create  

# if fullvehicle = 0, a half model  

#                = 1, a full model 

define fullvehicle 0 

 

   The next block of commands defines the mesh density and derives number of nodes used circumferen-

tially on the fuselage. It is necessary to use a variable to store this value because the use of the store 

command resets all default values including the nodes_circ setting. Variables are not reset by the 

store command. The $meshdensft variable is only used once (on the next line) so could be removed 

and the value could be directly set on the $meshdens variable. 

 
# Global mesh controls 

# Orbiter is 138' long from nose tip to tip of vertical tail 

# meshdensft is approximately nodes/foot but will get  

# modified by integer math on each section 

# 0.5 is probably a good initial analysis density.  

# 0.25 or 0.125 can be used for faster runtimes while  

# testing the model 

define meshdensft 0.125 

define meshdens $meshdensft / 2. 

# for proper payload bulkhead stitching circnodes needs to be a 

multiple of 5 plus 1 

define circnodes 55 * $meshdens %int 

define circnodes $circnodes * 5 + 1 

 

   Note the need for the $circnodes variable to be a multiple of 5 in order for the payload bay bulkheads 

to align and stitch. We’ll see the reason for that when we define the curves to build those bulkheads. The 

plus one requirement is because there is a first and last node as well as all the nodes between them. 

 

   As a demonstration of Loft’s math functionality, pi is computed next using 2*cos-1(0). It could also have 

been just defined as a value or by using the @pi system variable. 

 
# pi 

define piover2 0.0 %acos 

define pi $piover2 * 2. 

 

   The next long section defines dimensions for all of the vehicle components. Any of these values can be 

changed by the user and the vehicle model should adjust and be generated successfully. Variable names are 

chosen to make their use clear, but some additional comments are added before or inline with a few of them 

for clarity. 

 

# Vehicle dimensions & stations 

# nominal cross section radius of main fuselage 

define fusescale 102.  

# Nose 

define noselength 450.54 
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define noseoffset -42.0 

define capradius 18. 

define caplength -1. * $capradius / 2. 

define bulletbulk 100. # distance forward of const fuselage to 

place bulkhead (fwd LH2 support) 

define bulkhead1 $noselength - $bulletbulk / 4. 

define bulkhead2 $noselength - $bulletbulk / 2. 

define bulkhead3 $noselength - $bulletbulk 

# Tanks 

define fwd_tank 325. 

define aft_tank 43. 

define aft_dome 96 

define tankscale 96. 

define aft_support $aft_dome / 3. 

# Skirts over domes 

define fwd_tank_skirt 62  # used only at aft of front tank 

define aft_tank_skirt 76  # used front and aft of aft tank 

define aft_skirt 103. 

# Fuselage 

define fuselength 1013. 

define longeron_pos 0.18 

define fuse_center_bay $fuselength - $fwd_tank - $aft_tank - 

$aft_skirt - $fwd_tank_skirt - $aft_tank_skirt 

define half_lh2_nose 200. / 2. 

define mid_bulk $fwd_tank + $half_lh2_nose / 2 

# Payload bay 

define plb_start $fwd_tank + $fwd_tank_skirt 

define plb_length $fuse_center_bay 

define plb_half $plb_length / 2 

define plb_third $plb_length / 3 

define plb_scale 72. 

# Wing  

define strakechord 498.196 

define strakespan 31. 

define straketipchord 377.777 

define straketaper $straketipchord / $strakechord 

define strakesweep 75.179 

define straketangent $strakesweep * $pi / 180. %tan  

define mainchord $straketipchord 

define mainspan 233. 

define maintipchord 113.235 

define maintaper $maintipchord / $mainchord 

define mainsweep 45.854 

define spar1 10. 

define spar2 36. 
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define spar3 72. 

# Tail 

define tailchord 260.337 

define tailspan 281.5 

define tailtipchord 77.955 

define tailsweep 47. 

# Thrust Cone 

define thrustconelength 80 

define thrustconelength $aft_skirt + 10. 

 

   The next command references a second input file that contains commands that define all of the user-

defined curves needed to construct the vehicle. Use of an include file is not required. In this case, it is done 

as a demonstration and to make the parent input file easier to read and edit. 

 
# User defined curves 

include tsto-curves.txt 

 

   The first user-defined curve is the half-slice-of-bread cross sectional shape of the fuselage. The final shape 

is made of two circular portions: one at the top and one at the bottom outside corner, and two linear portions: 

the flat bottom and a five degree sloped sidewall. The internal circle shapes can be used for the circular 

portions, but the linear portions must be defined as interpolated curves. Then a compound curve named 

“body” is defined that combines the four children into one curve. 

 

 
 

   The next 88 lines of input are from “tsto-curves.txt.” 

 

# Define child curves of unit half cross section 

# (cross sectional shape fits in -1 to 1 square space) 

# point definition: 

#     A = top (centerline) of curve 

#     B = intersection of circ top & 5deg side 

#     C = intersection of 5deg side and 1/17 fillet 

#     D = intersection of 1/17 fillet and flat bottom 

#     E = bottom (centerline) of curve 

# line B-C 

curve interpolated mylineBC 
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  start 0.996195  0.0871557 

  line  0.999776 -0.9360497 

# line D-E 

curve interpolated mylineDE 

  start 0.9411765 -1.0 

  line 0.0 -1.0 

# combine into full cross section 

curve compound body 

  child sc 

  sstop 0.47222222222 

  child mylineBC 

  child sc 

  sstart 0.47222222222 

  sstop 1.0 

  radius 0.0588235 

  x 0.941176 

  y -0.94117647 

  child mylineDE 

 

   The next user-defined curves to create are those that define the mid-payload-bay support bulkheads. These 

have circular cross sections at the top/inboard and match the just-defined fuselage cross section at the bot-

tom/outboard. The values of the sstart parameters were arrived at through trial and error. Note that the 

actual bulkhead is not created here, just the curves that are used later when the payload bay is created. Also 

note that variables defined in the parent input file are used here; Loft treats the include file input lines as if 

they were inserted into the parent. 

 

 
# Payload Bay Support bulkhead curves 

# plb1 = semi-circle bay shape 

# plb2 = sidewall & floor shape 

curve compound plb1 

  child sc 

  sstart 0.54 

  radius $plb_scale / $fusescale 

  x 0.0 

  y 24.0 / 102. 
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curve compound plb2 

  child body 

  sstart 0.400 

 

   The fuselage side of the bulkhead curve definition specifies “child body” and “sstart 0.400.” 

This copies the fuselage curve shape starting at 40% along its circumference. Recall that near the start of 

the project we had a requirement that the $circnodes variable be a multiple of 5 plus 1. That requirement 

is to ensure that a fuselage node is always located at that 40% location for the bulkhead to connect to. 

 

   If the “plus 1” requirement is unclear, recall the “sd” semi-diamond shape in the user defined curve tuto-

rial (Chapter 3, Project 3A). To accurately sample the curve we needed a node at the 50% point. Having a 

count of 3 placed nodes at 0, 50, and 100%. Having a count of 4 placed nodes at 0, 33, 66, and 100%. 

Having 5 would place nodes at 0, 25, 50, 75, and 100%. Any even count would miss placing a node at 50% 

and any odd count would hit 50%. Another way to state this is: to ensure a node occurs at 50% our node 

count needs to be a multiple of 2 plus 1. For this payload bay example, we want to ensure a node at 40%, 

which can also be written as two fifths. So, any multiple of 5 plus 1 will have nodes at zero, one, two, three, 

four and five fifths of the circumference. 

 

   The orbiter nose starts with a small circular cap that transitions to the body cross section defined earlier. 

The forward tank has a bullet shaped dome that projects a significant distance into the nose, making a 

support bulkhead necessary in this region. Two curves are defined to support the tank dome at 50 percent 

of its length: “forebullet” is the outer curve of the bulkhead which captures the fuselage nose shape at the 

desired position, and “dome50” is the tank dome shape at the same station. Two additional lofted curves 

are defined to allow the construction of full bulkheads in the nose designed to bracket the forward landing 

gear location: “fore25,” and “fore50.” 

 

 
 

# Pieces of forebody bulkhead 

define nl2 $noselength - $bulletbulk 

curve lofted forebullet 

  curve1 sc 

  curve2 body 

  c1_xscale $capradius 

  c1_yscale $capradius 

  c1_yoffset $noseoffset 

  c2_xscale $fusescale 

  c2_yscale $fusescale 



 

168 

 

  c2_yoffset 0.0 

  station $nl2 / $nl2 

curve lofted forebulk1 

  curve1 sc 

  curve2 forebullet 

  c1_xscale $capradius 

  c1_yscale $capradius 

  c1_yoffset $noseoffset 

  c2_xscale 1 

  c2_yscale 1 

  c2_yoffset 0.0 

  station $bulkhead1 / $nl2 

curve lofted forebulk2 

  curve1 sc 

  curve2 forebullet 

  c1_xscale $capradius 

  c1_yscale $capradius 

  c1_yoffset $noseoffset 

  c2_xscale 1 

  c2_yscale 1 

  c2_yoffset 0.0 

  station $bulkhead2 / $nl2 

curve lofted dome50 

  curve1 sc 

  c1_xscale $tankscale 

  c1_yscale $tankscale 

  taper elli 

  station 0.50 

curve lofted aftdome 

  curve1 sc 

  station 1 / 3 

  taper elli 

  c1_xscale $tankscale 

  c1_yscale $tankscale 

list ccurves 

list lcurves 

 

   Following the completion of the curve definition section, the list debugging command is used to con-

firm the creation of all of the desired curves. This step is optional. In the text output from Loft, these com-

mands produce:  
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Having finished reading the curve-defining include file, Loft 

returns to reading the main input file at the previous location. The input then starts defining the vehicle, 

starting at the nose. Note the use of the previously defined $circnodes variable. Also notice that all 

external components are given the “OML” mark and that both the external skin and the structural bulkheads 

are given the “fuselage” mark. 

 

# 

# Build vehicle 

# 

# =================== Nose ==========================  

object dome nosecap 

  curve1 sc 

  c1_xscale $capradius 

  c1_yscale $capradius 

  c1_yoffset $noseoffset 

  length $caplength 

  nodes_circ $circnodes 

  nodes_axial $caplength * $meshdens * -1. * 2. 

  taper para 

  components_axial 1 

  components_circ 1 

  mark element OML 

  mark element fuselage 

  transz $caplength 
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   The forebody section is created in multiple segments to force edges at 25 and 50% of its length. The nose-

gear bulkheads will be placed at these positions and will stitch to the fuselage correctly. 

 

object section forebody1 

  curve2 forebulk1 

  c2_xscale 1.0 

  c2_yscale 1.0 

  c2_yoffset 0.0 

  length $bulkhead1 

  nodes_axial $bulkhead1 * $meshdens 

  components_axial 1 

  mark element OML 

  mark element fuselage 

object section forebody2 

  curve2 forebulk2 

  c2_xscale 1.0 

  c2_yscale 1.0 

  c2_yoffset 0.0 

  length $bulkhead2 - $bulkhead1 

  nodes_axial $bulkhead2 - $bulkhead1 * $meshdens 

  components_axial 1 

  mark element OML 

  mark element fuselage 

object section forebody3 

  curve2 forebullet 

  c2_xscale 1.0 

  c2_yscale 1.0 

  c2_yoffset 0.0 

  length $bulkhead3 - $bulkhead2 

  nodes_axial $bulkhead3 - $bulkhead2 * $meshdens 

  components_axial 1 

  mark element OML 
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  mark element fuselage 

 

object section forebody4 

  curve2 body 

  c2_xscale $fusescale 

  c2_yscale $fusescale 

  c2_yoffset 0.0 

  length $bulletbulk 

  nodes_axial $bulletbulk * $meshdens 

  components_axial 1 

  mark element OML 

  mark element fuselage 

 

 

   The null command below does not actually do anything. But, it does force Loft to generate the “fore-

body4” object and update the @transz system variable to reflect the new object. The $noseend variable 

is used later when the full vehicle is assembled from major components. Beams are also created along the 

bulkhead/nose intersection. The zdroop parameters on the two bulkheads are used to move the center 

node of the bulkhead down from the vehicle centerline to the object center. 

 

null 

define noseend @transz 

# create 2 bulkheads using lofted curves 



 

172 

 

object dome Nose Front Bulk 

  curve1 forebulk1 

  c1_xscale 1.0 

  c1_yscale 1.0 

  zdroop $noseoffset * -0.71 

  length -0.0001 

  transz $bulkhead1 + $caplength 

  nodes_axial 100 * $meshdens 

  zdist 0.6 

  components_axial 1 

  mark element fuselage 

object dframe nose fwd ring frame 

  count 1 

  mark element fuselage 

object dome Nose Mid Bulkhead 

  curve1 forebulk2 

  zdroop $noseoffset * -0.48 

  transz $bulkhead2 + $caplength 

  length -0.0001 

  nodes_axial 100 * $meshdens 

  zdist 0.7 

  components_axial 1 

  mark element fuselage 

object dframe nose mid ring frame 

  count 1 

  mark element fuselage 

 

   Finally, the completed nose is moved to the Loft internal clipboard with the store command. Remember 

that the store command resets all object defaults and starts a new stack with no nodes or elements. 

 

store nose 

 

   The constant cross-section portion of the fuselage is defined in several sections. These cuts were made to 

force the creation of nodes at axial stations that will later have bulkheads. Each fuselage portion also has a 

longeron created at 18 percent around the curve. The longeron runs the length of the rest of the vehicle, 

including along the edge of the payload bay door and onto the thrust structure. 

 
# ===================== Fuselage ========================== 

# Along fwd tank barrel 

object section fuselage1 

  curve1 body 

  curve2 body 

  c1_xscale $fusescale 

  c1_yscale $fusescale 

  c2_xscale $fusescale 

  c2_yscale $fusescale 

  length $mid_bulk - $half_lh2_nose 

  nodes_axial $mid_bulk - $half_lh2_nose * $meshdens 

  nodes_circ $circnodes 
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  components_axial 1 

  components_circ 1 

  mark element OML 

  mark element fuselage 

object frame longeron1 

  count 1 

  align axial 

  position $longeron_pos 

       mark element fuselage 

object section fuselage1.5 

  curve1 body 

  curve2 body 

  c1_xscale $fusescale 

  c1_yscale $fusescale 

  c2_xscale $fusescale 

  c2_yscale $fusescale 

  length $mid_bulk 

  nodes_axial $mid_bulk * $meshdens 

  nodes_circ $circnodes 

  components_axial 1 

  components_circ 1 

  mark element OML 

  mark element fuselage 

object frame longeron1 

  count 1 

  align axial 

  position $longeron_pos 

  mark element fuselage 

# Along fwd tank aft dome 

object section fuselage2 

  length $fwd_tank_skirt 

  nodes_axial $fwd_tank_skirt * $meshdens 
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  nodes_circ $circnodes 

  components_axial 1 

  mark element OML 

  mark element fuselage 

object frame longeron2 

  count 1 

  align axial 

  position $longeron_pos 

  mark element fuselage 

null 

define plb_start @transz 

define plb_center $plb_start + $plb_half 

 

   In this case, the null command is not strictly necessary to force @transz to have the desired value; the 

longeron object definition caused the generation of the “fuselage2” object and the updating of the @transz 

system variable.  

 

# Payload Bay fuselage split into thirds for supports at 1/3 and 

2/3 

object section fuselage_center_bay 

  length $fuse_center_bay / 3. 

  nodes_axial $fuse_center_bay / 3. * $meshdens  

  nodes_circ $circnodes 

  components_axial 1 

  mark element OML 

  mark element fuselage 

object frame longeron3 

  count 1 

  align axial 

  position $longeron_pos 

  mark element fuselage 

object frame forward pl ring 

  count 1 

  align circ 

  position 0.0 

  mark element fuselage 

object section fuselage_center_bay 

  length $fuse_center_bay / 3. 

  nodes_axial $fuse_center_bay / 3. * $meshdens  

  nodes_circ $circnodes 

  components_axial 1 

  mark element OML 

  mark element fuselage 

object frame longeron3 

  count 1 
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  align axial 

  position $longeron_pos 

  mark element fuselage 

object section fuselage_center_bay 

  length $fuse_center_bay / 3. 

  nodes_axial $fuse_center_bay / 3. * $meshdens  

  nodes_circ $circnodes 

  components_axial 1 

  mark element OML 

  mark element fuselage 

object frame longeron3 

  count 1 

  align axial 

  position $longeron_pos 

  mark element fuselage 

object frame aft pl ring 

  count 1 

  align circ 

  position 1.0 

  mark element fuselage  

 

# Fuselage along Aft tank fwd skirt 

object section fuselage4 

  length $aft_tank_skirt 

  nodes_axial $aft_tank_skirt * $meshdens 

  nodes_circ $circnodes 

  components_axial 1 

  mark element OML 

  mark element fuselage 

object frame longeron4 

  count 1 

  align axial 

  position $longeron_pos 



 

176 

 

  mark element fuselage 

# Fuselage along Aft tank barrel 

object section fuselage5 

  length $aft_tank + 64 

  nodes_axial $aft_tank + 64 * $meshdens 

  nodes_circ $circnodes 

  components_axial 1 

  mark element OML 

  mark element fuselage 

object frame longeron5 

  count 1 

  align axial 

  position $longeron_pos 

  mark element fuselage 

 

# Fuselage along Aft tank aft skirt 

object section fuselage6 

  length $aft_skirt 

  nodes_axial $aft_skirt * $meshdens 

  nodes_circ $circnodes 

  components_axial 1 

  mark element OML 

  mark element fuselage 
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object frame longeron6 

  count 1 

  align axial 

  position $longeron_pos 

  mark element fuselage 

define fuseend @transz + $noseend 

 

 

   The next step is to add some detail to the payload bay. The region command is used to modify the physical 

property assignment of elements along the upper section of fuselage object “fuselage3.” These updated ele-

ments represent the payload bay doors. 

 

# =================== Payload bay ======================= 

region  

  iadd box 0. 102. $plb_center 130. 130. $plb_length 

  pprem fuselage2 

  pprem fuselage4 

  setpp payload doors 

 

   Then full bulkheads are added at the front and rear of the payload bay and partial, support, bulkheads are 

added at the 1/3 and 2/3 positions in the bay. 

 

object dome payload bay fwd bulkhead 
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  curve1 body 

  c1_xscale $fusescale 

  c1_yscale $fusescale 

  taper bulk 

  transz $plb_start 

  transy 0.0 

  transx 0.0 

  nodes_circ $circnodes 

  components_axial 1 

  mark element fuselage 

object dome payload bay aft bulkhead 

  curve1 body 

  taper bulk 

  relz $plb_length 

  transy 0.0 

  transx 0.0 

  components_axial 1 

  mark element fuselage  

 

object section payload bay fwd support 

  curve1 plb1 

  curve2 plb2 

  length 0.0 

  transz $fwd_tank + $fwd_tank_skirt + $plb_third 

  components_axial 1 

  components_circ 1 

  nodes_axial 100 * $meshdens 

  nodes_circ $circnodes * 0.6 + 1 

  mark element fuselage 

object frame fwd plb support frame 

  count 1 

  align axial 

  position 0.0 

  mark element fuselage 
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object frame fwd plb support frame 

  count 2 

  align circ 

  mark element fuselage 

object section payload bay aft support 

  curve1 plb1 

  curve2 plb2 

  length 0.0 

  relz $plb_third 

  components_axial 1 

  components_circ 1 

  nodes_axial 100 * $meshdens 

  nodes_circ $circnodes * 0.6 + 1 

  mark element fuselage 

object frame aft plb support frame 

  count 1 

  align axial 

  position 0.0 

  mark element fuselage 

object frame aft plb support frame 

  count 2 

  align circ 

  mark element fuselage 

 

   Finally, the completed fuselage component is moved so that it is immediately aft of the nose using the 

previously created $noseend variable. Then, the new end location is stored. Finally, the full stack is moved 

onto Loft’s internal clipboard and a new stack is started. 

 

move 

  transz $noseend 

define plb_end @transz 

store fuselage 

 

   The next major component created in the input deck is the wing. The wing has two trapezoidal sections: a 

narrow, inboard, strake and a wider outboard main section. The strake has one spar, positioned at the 10 
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percent chord location. The strake is generated first. When the strake skin is created, it is created as if there 

were additional spars at the 36 and 82 percent chord locations. This forces a line of nodes to be created along 

the phantom spars and allows correct stitching with the main wing which does have spars at all three posi-

tions. Note the extensive use of the gen_XXX flags and the use of the mark command to mark only the 

wing skin as “OML.” 

# ======================== Wing ========================== 

define wingoffset $noseend + $plb_start - 115.87  

object wing strake spar 

  chord $strakechord      

  span $strakespan 

  taper $straketaper        

  sweep $strakesweep  

  rootnaca 2407     

  tipnaca 2408      

  sparpos $spar1             

  ribpos reset      

  notip 1           

  meshchord $strakechord * $meshdens / 700. 

  meshspan $strakespan * $meshdens / 20.    

  meshthick $meshdens / 2. 

  transz $wingoffset    

  relx $fusescale          

  rely $fusescale * -.9314          

  gen_up_skin off   

  gen_low_skin off 

  gen_ribs off 

  mark element wing 

#  

# Generate the rest of the strake 

# Position spars so that the skin aligns with the main wing 

#   but do not actually generate the spar elements 

object wing strake 

  sparpos reset 

  sparpos $spar1 

  sparpos $spar2 
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  sparpos $spar3 

  notip 1 

  gen_spars off 

  mark element OML 

  mark element wing 

 

The main wing is also specified as two objects. The reason for this is to apply the “OML” mark to only the 

wing skin.  

 

object wing mainwing stiffeners 

  chord $mainchord 

  span $mainspan 

  meshchord @wing.mesh_chord / @wing.taper 

  taper $maintaper 

  sweep $mainsweep 

  rootnaca 2408 

  tipnaca 2313 

  ribpos reset 

  ribpos 20.  

  ribpos 40. 

  ribpos 60. 

  ribpos 80. 

  relx $strakespan 

  relz $mainoffset 

  wingbox $fusescale + $strakespan 

  gen_up_skin off 

  gen_low_skin off 

  nowbrib 1 

  mark element wing 
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   A careful examination of the crank area between the strake and the main wing will show that the strake is 

properly stitched to the main wing along the rib at the crank location. The strake skin is also attached to its 

leading edge (10 percent) spar but is not attached to any of the carry-through spars. Depending on element 

flexibility, some manual stitching could be required to connect the strake root rib to the carry-through spars. 

 

object wing mainwing skin 

  wingbox 0.0 

  notip 1 

  gen_ribs off     

  gen_spars off  

  mark element OML 

  mark element wing 

   Depending on your use of the OML group it may or may not matter that we’ve added the skin but 

missed adding the tip rib to the OML group. So, to fix that issue we use the group with the ribs and retain 

only the outermost one. Then we write out the model. 

 

   # Add tip rib to OML 

   region 

      mkadd mainwing stiffeners RIB ELEMS 

      ikeep xgt $fusescale + $strakespan + $mainspan - 1.0 

      mark element OML 

write vrml orb-wing.wrl 

store mainwing 

list stacks 
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   The list stacks debug command is optional and lists the stacks that have been stored on the internal 

clipboard.  

 

   The next section generates an alternate “surrogate” version of the wing that has the same number of nodes 

and elements but is scaled to a square shape with coordinates ranging from zero to one. The coordinates 

represent the percent chord and percent span of the original wing. It does this by eliminating sweep and taper 

for the wing and then scaling the final model by the total span or root chord dimensions. This alternate model 

is used by an external code to generate pressure loads that are functions of wing position. This block can be 

deleted if it is unneeded. 

 

# ===== Surrogate model of wing: [0,1] square with same nodes 

define totalspan $strakespan + $mainspan 

object wing surrogatewing 

  chord $strakechord    

  span $strakespan  

  taper 1.0        

  sweep 0.0 

  naca 2407         

  sparpos $spar1             

  ribpos reset      

  notip 1           

  meshchord $strakechord * $meshdens / 700. 

  meshspan $strakespan * $meshdens / 20.    

  meshthick $meshdens / 2. 

  transx 0.0  

  transy 0.0  

  transz 0.0            

  mark element surrogatewing 

  object wing surrogatewing 

chord $strakechord 

span $mainspan 

taper 1.0 

sweep 0.0 

ribpos reset 

ribpos 20.  

ribpos 40. 

ribpos 60. 

ribpos 80. 

relx $strakespan 

mark element surrogatewing 

    move 

scalex 1. / $totalspan 

scaley 1. / $totalspan 

scalez 1. / $strakechord 

list variables 

write vrml orb-surwing.wrl 

  store surrogatewing 
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   Next, the tail will be created as a new stack. As with the main wing components, it is created as two 

objects so that the skin can be marked as “OML.” 

 

# ===================== Tail ======================== 

object wing tail stiffeners 

  chord $tailchord 

  span $tailspan 

  taper $tailtipchord / $tailchord 

  sweep $tailsweep 

  rootnaca 0613 

  tipnaca 0618 

  sparpos reset 

  sparpos 19 

  sparpos 60 

  halfwing bottom 

  ribpos reset 

  ribpos 50 

  wingbox 0. 

  meshchord $tailchord * $meshdens / 300. 

  meshspan $tailspan * $meshdens / 450. 

  meshthick 0.02 

  transz $fuseend - $tailchord 

  rely $fusescale  

  transx 0 

  rotz 90 

  gen_up_skin off  

  gen_low_skin off 

  mark element tail 

 

object wing tail skin  

  halfwing bottom 

  gen_ribs off     

  gen_spars off 

  gen_up_skin on  
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  gen_low_skin on  

  mark element OML 

  mark element tail 

write vrml orb-tail.wrl 

store tail 

 

   Then, the input deck specifies the forward tank. Two of the user-defined lofted curves created at the be-

ginning of the file are used here to create the support bulkhead on the bullet shaped nose of the tank. Support 

bulkheads are given the “fuselage” mark and tank walls are all given the mark “LH2.” These marks will be 

used later to extract just these elements from the full model. 

 

# ======================== Fwd Tank ====================== 

define fwd_tank_start $noseend - $bulletbulk 

object dome fwd tank fwd dome 

  curve1 dome50 

  c1_xscale 1. 

  c1_yscale 1. 

  length -1 * $half_lh2_nose 

  transx 0.0 

  transy 0.0 

  zdist 0.7 

  transz $fwd_tank_start 

  nodes_axial $half_lh2_nose * $meshdens 

  nodes_circ $circnodes 

  components_axial 1 

  components_circ 1 

  taper para 
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  mark element LH2 

object section fwd tank fwd bulk 

  curve2 forebullet 

  length 0.0 

  components_axial 1 

  nodes_axial 100 * $meshdens 

  mark element bulk 

  mark element fuselage 

object frame fwd fwd ring frame 

  count 2  

  mark element fuselage 

object section fwd tank dome2 

  curve1 dome50 

  curve2 sc 

  length $half_lh2_nose 

  c1_xscale 1. 

  c1_yscale 1. 

  c2_xscale $tankscale 

  c2_yscale $tankscale 

  nodes_axial $half_lh2_nose * $meshdens 

  components_axial 1 

  taper cosine 0.5 

  mark element LH2   
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object section fwd tank barrel pt 1 

  length $mid_bulk - $half_lh2_nose 

  nodes_axial $mid_bulk - $half_lh2_nose * $meshdens 

  components_axial 1 

  mark element LH2 

object section fwd tank mid bulk 

  curve1 body 

  curve2 sc 

  c1_xscale $fusescale 

  c1_yscale $fusescale 

  length 0.0 

  components_axial 1 

  nodes_axial 100 * $meshdens 

  mark element bulk 

  mark element fuselage 

object frame fwd mid ring frame 

  count 2  

  mark element fuselage 

object section fwd tank barrel pt 2 

  length $mid_bulk 

  nodes_axial $mid_bulk * $meshdens 

  components_axial 1 

  mark element LH2 

object section fwd tank aft bulk 
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  curve1 body 

  curve2 sc 

  c1_xscale $fusescale 

  c1_yscale $fusescale 

  length 0.0 

  components_axial 1 

  nodes_axial 100 * $meshdens 

  mark element bulk 

  mark element fuselage 

object frame fwd aft ring frame 

  count 2  

  mark element fuselage 

object dome fwd tank aft dome 

  length 50 

  nodes_axial 50 * $meshdens 

  components_axial 1 

  mark element LH2 

write vrml orb-lh2.wrl 

store fwd_tank 

 

   The aft tank is built in a similar process to the forward tank. It is shorter but still has mid-dome bulkheads 

like on the front of the forward tank.  

 

# ====================== Aft Tank ========================= 

object dome aft tank fwd dome 

  curve1 aftdome 

  length $aft_support - $aft_dome 

  c1_xscale 1. 

  c1_yscale 1. 

  nodes_axial $aft_support - $aft_dome * $meshdens * -1. 

  nodes_circ $circnodes 

  components_axial 1 

  components_circ 1 

  taper para 
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  mark element LOX 

object section aft tank fwd bulk 

  curve1 body 

  curve2 aftdome 

  c1_xscale $fusescale 

  c1_yscale $fusescale 

  c2_xscale 1. 

  c2_yscale 1. 

  length 0.0 

  components_axial 1 

  nodes_axial 50 * $meshdens 

  mark element bulk  

  mark element fuselage 

null 

define aftfwdbulk @transz 

object frame aft fwd ring frame 

  count 2 

  mark element fuselage 

object section aft tank fwd curve 

  curve2 sc 

  c2_xscale $tankscale 

  c2_yscale $tankscale 

  length $aft_support 

  taper cosine 0.5 

  mark element LOX  

  components_axial 1 
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  nodes_axial $aft_support * $meshdens 

object section aft tank barrel 

  curve1 sc 

  length $aft_tank 

  nodes_axial $aft_tank * $meshdens 

  components_axial 1 

  mark element LOX 

object section aft tank aft curve 

  curve2 aftdome 

  c2_xscale 1. 

  c2_yscale 1. 

  length $aft_support 

  taper power 1.0 

  mark element LOX  

  components_axial 1 

  nodes_axial $aft_support * $meshdens 

object section aft tank aft bulk 

  curve1 body 

  curve2 aftdome 

  c1_xscale $fusescale 

  c1_yscale $fusescale 

  c2_xscale 1. 

  c2_yscale 1. 

  length 0.0 

  components_axial 1 

  nodes_axial 50 * $meshdens 

  mark element bulk 

  mark element fuselage 

null 

define aftaftbulk @transz 

object frame aft aft ring frame 

  count 2 
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  mark element fuselage 

object dome aft tank aft dome 

  curve1 aftdome 

  length $aft_dome - $aft_support 

  c1_xscale 1. 

  c1_yscale 1. 

  nodes_axial $aft_dome - $aft_support * 

$meshdens 

  components_axial 1 

  taper para 

  mark element LOX 

 

   The position of the aft tank is computed from five previously saved lengths. The definition should all be 

on one line in the actual input file, not wrapped as it is in this manual. 

 

define aft_tank_start $noseend + $fwd_tank + $fwd_tank_skirt + 

$fuse_center_bay + $aft_tank_skirt 

move 

  transz $aft_tank_start 

define aft_tank_end $aft_tank_start + @transz 

write vrml orb-lox.wrl 

store aft_tank 

 

   The next object created is a notional thrust structure. It makes extensive use of stiffeners created with 

frame and dframe objects. The first piece created accomplishes the transition from the half-loaf-of-bread 

“body” user-defined curve to a semi-circle. 

 

# ================= Thrust structure ===================== 

object section thrust cone 

  curve1 body 

  curve2 sc 

  c1_xscale $fusescale 

  c1_yscale $fusescale 

  c2_xscale $thrustconescale 

  c2_yscale $thrustconescale 
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  length $thrustconelength 

  components_axial 1 

  components_circ 1 

  nodes_circ $circnodes 

  nodes_axial $aft_skirt + 10. * $meshdens 

  mark element fuselage 

 

Five axial stiffeners are created. The first three (at 0, 50, and 100 percent of the circumference) are created 

as one object. Then, two individual axial stiffeners are added, one at the $longeron_pos position (18 

percent) and one at 75 percent. 

 

object frame thrust stiffeners 

  count 3 

  align axial  

  mark element fuselage 

 

 

 

object frame thrust stiffeners 

  count 1 

  position $longeron_pos 

  align axial 
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  mark element fuselage 

object frame thrust stiffeners 

  count 1 

  position 0.75 

  align axial 

  mark element fuselage 

 

   Five circumferential stiffeners are added: 

 

object frame thrust cone rings 

  count 5 

  align circ 

  mark element fuselage  

 

 

   A circular flat plate is added with similar stiffeners: 

 

object dome thrust plane 

  taper bulk 

  length 0.0 

  components_axial 1 

  nodes_axial $meshdens * 80. 

  mark element fuselage 

object dframe thrust rings 
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  align circ 

  count 1 

  position 0.2 

  mark nodes engine ring 

  mark element fuselage 

object dframe engine rings 

  align circ 

  count 1 

  position 0.7 

  mark element fuselage 

object dframe thrust diags 

  align axial 

  count 3 

  mark element fuselage 

object dframe thrust diags 

  align axial 

  position $longeron_pos 

  count 1 

  mark element fuselage 

object dframe thrust diags 

  align axial 

  position 0.75 

  count 1 

  mark element fuselage 

 

move 

  transz $aft_tank_end 

define thrust_end $aft_tank_end + $aft_skirt + 10. 

write vrml orb-thrust.wrl 

store thrust 

 

   After positioning the thrust structure at the calculated location, it is saved to the clipboard.  

 

   All of the components of the vehicle have been created and stored. Next, they can be recalled in various 

combinations for use. The first combination is the full vehicle with all the components in the correct position. 
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Each recall command performs a node equivalence operation that stitches the model together where nodes 

are coincident. This equivalence operation tends to be slow. Once they are recalled, the whole vehicle is 

rotated such that the x coordinate direction becomes the axial axis. Then, VRML and NASTRAN files of the 

full model are written. 

 

   Note that prior to actual analysis with the model, the wing and tail need to be stitched to the fuselage. This 

operation will be accomplished later in the input file. 

 

# ===================== Assembly ======================= 

recall nose 

recall fuselage 

recall mainwing 

recall tail 

recall fwd_tank 

recall aft_tank 

recall thrust 

# rotate so that x is aft 

move 

 roty 90 

store vehicle 

recall vehicle 

# =================== Write models ==================== 

vrml rainbow 

write vrml tsto2025half.wrl 

write nastran tsto2025half.bdf 
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   Now, the first variable defined in the file, $fullvehicle is checked. If it is true, a mirrored model is 

created and written out to a VRML file; if it is false, the mirror and VRML writing are skipped. Then, the 

final model (full or half) is stored as “stitchme.” 

 

 

 

 

# =============== Mirrored model ========================= 

if $fullvehicle = 0 

goto 100 

mirror z 

write vrml tsto2025mirrored.wrl 

# 

linelabel 100 

store stitchme 

recall stitchme 

 

   Next, the region mode is used to write out various partial versions of the model. These partial models retain 

the node, element, and property numbering of the full model. They are used for mapping of external aerody-

namic loads (to the “OML” sub-model) and internal tank loads (to the “LH2” and “LOX” sub-models). Note 

the selection of elements based on the labels assigned with the “mark” command during model creation. 

 

# ============ Models for mapping & analysis ============= 

region 

  mkadd OML 

  rwrite vrml tsto2025OML.wrl 
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  rwrite nastran tsto2025OML.bdf 

 

region 

  mkadd LH2 

  rwrite vrml tsto2025LH2.wrl 

  rwrite nastran tsto2025LH2.bdf  

region 

  mkadd LOX 

  rwrite vrml tsto2025LOX.wrl 

  rwrite nastran tsto2025LOX.bdf  
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region 

  mkadd wing 

  rwrite vrml tsto2025wing.wrl 

  rwrite nastran tsto2025wing.bdf    

region 

  mkadd tail 

  rwrite vrml tsto2025tail.wrl 

  rwrite nastran tsto2025tail.bdf   

 

   Next, an expanded version of the model is created for use in slides and presentations.  

 

# ============== Expanded model for figures =============== 

new 

recall nose 

move 

  transz -100 

recall fuselage 

move 

  transz 0 

  transx -200 

recall mainwing 

move 

  transx 200 

  transy -100 
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recall tail 

move 

  transy 100 

  transx 200 

recall fwd_tank 

recall aft_tank 

move 

  transx -200 

  transz -200 

recall thrust 

move 

roty 90 

write vrml tsto2025-exp.wrl 

 

 

   As previously discussed, one step that is required prior to using the model in a finite element analysis is to 

stitch the wing and the tail to the fuselage. The next section of Loft input accomplishes this stitching. It does 

this by using region mode to locate the corners of the wing and tail spars and the corners of the bulkheads 

near those spars. Then, RBE objects are created to connect the appropriate corners.  Note that it first recalls 

either the half or full model that was saved as “stitchme” following the possible mirroring operation. 

 

# =============== RBE connections for wing/tail ====================  

linelabel 1000 

new 

recall stitchme 

define spar1pos $spar1 * $mainchord / 100. + $wingoffset + $mainoffset 

define spar2pos $spar2 * $mainchord / 100. + $wingoffset + $mainoffset 

define spar3pos $spar3 * $mainchord / 100. + $wingoffset + $mainoffset 

list mesh 

# find corner nodes within fuselage for all 3 spars 

region 

   mkadd mainwing ribs spars CARRYTHR NODES 

   irem xgt $spar1pos + 5.  

   irem zlt $fusescale * -1. + 5. 

   irem zgt $fusescale - 5. 

   corner mainwing fwd corners 
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region 

   mkadd mainwing ribs spars CARRYTHR NODES 

   irem xlt $spar2pos - 5. 

   irem xgt $spar2pos + 5.  

   irem zlt $fusescale * -1. + 5. 

   irem zgt $fusescale - 5. 

   corner mainwing mid corners 

region 

   mkadd mainwing ribs spars CARRYTHR NODES 

   irem xlt $spar3pos - 5.  

   irem zlt $fusescale * -1. + 5. 

   irem zgt $fusescale - 5. 

   corner mainwing aft corners 

null 

# find corner nodes near spars on fuselage bulkheads 

region 

   ppadd payload bay fwd bulkhead 

   irem yge -80.0 

   corner Front bulkhead corners 

region 

   ppadd payload bay fwd support 

   irem yge -80.0  

   corner Mid bulkhead corners 

region 

   ppadd payload bay aft support 

   irem yge -80.0  

     corner Aft bulkhead corners 

# connect spars to bulkheads with rbes 

object rbe forward wing rbes 

   group1 mainwing fwd corners 

   group2 Front bulkhead corners 

object rbe mid wing rbes 

   group1 mainwing mid corners 

   group2 Mid bulkhead corners 

object rbe aft wing rbes 

   group1 mainwing aft corners 

   group2 Aft bulkhead corners 
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# tail attachment RBEs 

# 

# find nodes to connect 

region 

   mkadd aft tank fwd bulk ALL NODES  

   irem yle $fusescale - 2. 

   irem ygt $fusescale 

   corner tank fwd bulkhead corners 

region 

   mkadd aft tank aft bulk ALL NODES  

   irem yle $fusescale - 2. 

   irem ygt $fusescale 

   corner tank aft bulkhead corners 

region 

   mkadd tail stiffeners ROOT SPAR NODES  

   irem xle $aftfwdbulk + $aftaftbulk / 2. 

   corner tail aft spar nodes 

region 

   mkadd tail stiffeners ROOT SPAR NODES  

   irem xge $aftfwdbulk + $aftaftbulk / 2. 

     corner tail fwd spar nodes 

object rbe forward tail rbes 

   group2 tank fwd bulkhead corners 

   group1 tail fwd spar nodes 

object rbe aft tail rbes 

   group2 tank aft bulkhead corners 

   group1 tail aft spar nodes 

  list mesh 

RBEs shown in purple 
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   Next, if we are building a half model, create symmetry boundary conditions along the center plane. If we 

are building a full model, skip this step. 

 

define bcset 0 

if $fullvehicle = 1 

goto 200 

# centerline symmetry BCs - created for half model 

define bcset 999 

region 

   iadd zge -0.01 

   irem zge 0.01 

   mark nodes centerline 

object bc symmetry bc 

   group1 centerline 

   setid $bcset 

   dof 345 

  linelabel 200 
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   A RBE spider is then created with a 1000 pound thrust load applied to the thrust structure. 

 

# force on engine thrust structure spider version 

define loadset 1000 

region 

   ppadd thrust rings 

   irem sphere $thrust_end 0. 0. 2. # del center alignment node 

   mark nodes thrust ring 

object node thrust spider 

   x $thrust_end + 20. 

   y 0.0 

   z 0.0 

   mark node fuselagenode 

object rbe thrust 

   group1 thrust spider ALL NODES  

   group2 thrust ring 

   approach spider 

   dof 1 

   mark rbe fuselagerbe 

object force total thrust 

   group1 thrust spider ALL NODES 

   value1 -1000.0 

   setid $loadset 

     mark rbe fuselagerbe 
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  Next, the fully stitched models are written out. 

 

# write final stitched models 

nastran sol 101 

nastran subcase 500 

nastran thick 1.0 

nastran spc $bcset 

nastran load $loadset 

list mesh 

write vrml tsto2025stitched.wrl                        

  write nastran tsto2025stitched.bdf 

 

   The final section of the input file creates a surrogate model of just the fuselage including all of the bulk-

heads and the thrust structure. The tanks are removed and replaced with point masses that are connected to 

their support bulkheads with RBE spider connections, and a point mass representing the payload is con-

nected to the payload bay support bulkheads. The process is similar to the wing stitching process used 

earlier. Here, the innermost nodes on each bulkhead are grouped for the forward tank, payload, and aft tank. 

Then new nodes are created at the center point of the three zones, a point mass is attached to each node, 

and RBEs are created to connect each point mass to its supports. 

 

# Group all of the tank and payload bulkhead edge support nodes 

linelabel 300 

null 

region 

   mkadd fwd fwd ring frame ALL NODES 

   mkadd fwd mid ring frame ALL NODES 

   mkadd fwd aft ring frame ALL NODES 

# remove the nodes on the fuselage side of the bulkhead 

   ikeep xcyl 0. 0. 0. $tankscale + 1.  

# remove beam alignment nodes 

   irem xcyl 0. 0. 0. $tankscale / 2.  

   mark node fwd tank support nodes 

region 

   mkadd aft fwd ring frame ALL NODES 

   mkadd aft aft ring frame ALL NODES 

   ikeep xcyl 0. 0. 0. $tankscale + 1. 

   irem xcyl 0. 0. 0. $tankscale / 2.  

   mark node aft tank support nodes 

region 

   mkadd fwd plb support frame ALL NODES 

   mkadd aft plb support frame ALL NODES 

   ikeep xcyl 0. 0. 0. $plb_scale + 1. 

   irem xcyl 0. 0. 0. $plb_scale / 2.  

   mark node plb support nodes 

# create point masses at centers of each tank and payload bay  
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# and spider them to the corresponding support nodes 

define fwdtankmass 1.0 

define afttankmass 1.0 

define payloadmass 1.0 

object node fwd_fuel 

   x $fwd_tank / 2. + $fwd_tank_start 

   y 0.0 

   z 0.0 

   mark node fuselagemass 

object node aft_fuel 

   x $aft_tank / 2.  + $aft_tank_start 

   y 0.0 

   z 0.0 

   mark node fuselagemass 

object node payload 

   x $plb_half + $plb_start + $noseend 

   y 0.0 

   z 0.0 

   mark node fuselagemass 

object mass fwd_fuel_mass 

   value $fwdtankmass 

   group1 fwd_fuel all nodes 

   mark rbe fuselagerbe 

object mass aft_fuel_mass 

   value $afttankmass 

   group1 aft_fuel all nodes 

   mark rbe fuselagerbe 

object mass payload_mass 

   value $payloadmass 

   group1 payload all nodes 

   mark rbe fuselagerbe 

object rbe fwd_fuel_rbes 

   group1 fwd_fuel all nodes 

   group2 fwd tank support nodes 

   approach spider 

   mark rbe fuselagerbe 

object rbe aft_fuel_rbes 

   group1 aft_fuel all nodes 

   group2 aft tank support nodes 

   approach spider 

   mark rbe fuselagerbe 

object rbe payload_rbes 

   group1 payload all nodes 

   group2 plb support nodes 

   approach spider 
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   mark rbe fuselagerbe 

null 

list mesh 

list groups 

list rbe 

 

   The region operation makes use of the labeling that was applied for the various fuselage components as 

well as for the new nodes, point masses, and thrust force. 

 

region 

   mkadd fuselage 

   mkadd fuselagenode 

   mkadd fuselagerbe 

   mkadd fuselagemass 

   rwrite vrml tsto2025-fuselage.wrl 

   rwrite nastran tsto2025-fuselage.bdf 

end 

 

 

 

   Now that the main, partial, and surrogate models have all been generated and saved to various output 

files, spend a little time looking at some of those output models in a VRML viewer or in a NASTRAN pre-

processor. You can also experiment with changing some of the vehicle dimensions or model settings (such 

as the $fullvehicle or $meshdens variables) and looking at the changes in the output models. 
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