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Abstract

Loft is an automated parametric mesh generation code that is designed
to model stiffened-panel aerospace vehicle structures. After more than 20
years of in-house use and development, the program was released to the
public in 2023. Since that release, significant additional features have
been added, including new object types, new airfoil shapes, program flow
control options, additional options for selecting parts of models, and sup-
port for creating boundary conditions, loads, and rigid element stitching
from within the code. These additions address previous limitations of the
code and significantly expand its application and usefulness.

This memorandum is presented in two parts. The first part contains a
technical paper with a brief overview of the code and its applications and
a more lengthy discussion of the program’s new features. Part two of the
memorandum is the updated program user manual. The manual includes
in-depth tutorials that use the new features and a complete command ref-
erence.

Introduction

Loft is a tool that enables rapid creation of finite element models of aerospace components and vehicles
suitable for conceptual and preliminary design studies. Its parametric modeling capabilities enable genera-
tion of many variations of a design for exploration of a design space and identification of regions of that
space that are worthy of more refined design effort. Over the past 25 years, Loft has been used to model parts
of a wide variety of aerospace systems, including the Next Generation Launch Technology (NGLT) wing,
the payload fairing for the Ares V and the Space Launch System (SLS), the Low Boom Flight Demonstrator
(LBFD/X-59), Human Landing System (HLS) reference landers, horizontal takeoff two-stage-to-orbit
(TSTO) systems, and planetary atmosphere entry backshells.

Loft’s manual was first published in 2011 [1]. The program itself was released for free public use via
software.nasa.gov in 2023. Simultaneously, a NASA Technical Memorandum was released [2] with an over-
view of the code capabilities and a complete updated users” manual. A conference paper and presentation
[3] were written to describe applications and scenarios where Loft would be useful. Two workshop presen-
tations [4,5] described the uses of the program and the incorporation of Loft into a high-fidelity, low-maturity,
design environment that is being created at NASA. This memorandum briefly summarizes the previous pub-
lications, describes the updated features of the program since its initial release, and includes an updated
users’ manual for the current features of the code.

The updated, version 4.0, Loft program is available for free via a request at software.nasa.gov. It comes
packaged with this manual and all of the example files and small utility programs discussed in this document.

Program Overview

Loft is a finite element model (FEM) creation tool that takes a descriptive text file as input and generates
a structural mesh in a wide variety of output formats, including NASTRAN, TecPlot, Virtual Reality Mod-
eling Language (VRML, now a subset of the X3D format), and Stereo Lithography (STL). Figure 1 illustrates
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an eleven-line input file and two views of the finite element mesh that is produced by Loft from that input
file.

object wing Main Wing
chord 30
span 60
taper 0.25
sweep 40

Colors indicate physical
property changes for
HyperSizer components

wingbox 6
nribs 4

nspars 3
mesh 0.5
naca 2412

write vrml mywing.wrl . i
Top skin removed to show ribs and spars

Figure 1. Example Loft input and output

Loft has a powerful variable and math capability that adds to the program’s inherent parametric nature.
Users can specify meaningful variable names with values. Math support includes addition, subtraction, mul-
tiplication, and division as well as trigonometric and hyperbolic functions, log, exponential, square and cube
roots, absolute value, and truncation. Figure 2 illustrates the use of variables and math to generate a spherical
tank model of a desired volume. Certainly, the calculation for the radius (or the value of pi) could be per-
formed outside of the input file and specified without the use of any variables. But, the variables add clarity
and readability to the input and allow the user to quickly generate a family of models with different volumes
by changing the value of the volume variable and the output filename.

# Example use of variables & math to create a
# FEA model of a sphere with a specified volume
define volume 10.0
define piover2 0.0 %acos
define pi $piover2 * 2.0
define radius S$volume * 3.0 / 4.0 / S$pi %cbrt
list variables
#
object dome sphere top
curvel cir
cl_xscale S$radius
cl_yscale S$radius
length -1.0 * $radius
nodes_axial 30
nodes_circ 150
object dome sphere bottom
length S$radius
nodes_axial 30
write vrml sphere.wrl

Figure 2. Variables and Math in Loft



This math example also demonstrates the inherent parametric nature of the code. Settings that affect the
cross-sectional (lateral) shape, dimensions, or mesh counts become the new defaults for later objects and
do not need to be specified unless they need to change. Thus, the bottom half of the tank automatically
used the shape, radius, and circumferential node counts from the top half. Only the axial values of the
length and axial node count needed to be specified. Additionally, the default position for new objects is
immediately behind the previous object so that sequentially specified objects are assembled into a stack.
The inheritance of lateral settings greatly simplifies the creation of models that are stacks of dome and
section objects. Aircraft fuselages and rocket bodies are common components that benefit from this ap-
proach. Figure 3 shows an expanded half-model of a TSTO orbiter. This parametric model is explored in
full detail in the included users’ manual.

Figure 3. Expanded TSTO orbiter model created in Loft

Loft Use Cases

Loft is a general-purpose mesh generation tool. It can be used to create an extremely wide variety of
models for multiple applications. But, there are three scenarios where it is a particularly well suited option
that should be considered.

The first use case is rapid modeling. A first cut model can be created in minutes with a very small number
of input lines. Loft’s meaningful default values and intelligent updating of dimensions can substantially re-
duce the effort needed to make a first cut design. For instance, the cartoon-model of a generic hypersonic
aircraft shown in Figure 4 was created with 89 lines of input, 26 of which were comments or variable defi-
nitions that made the file easier to read and update. Loft also created the STL format file that was used to 3-
D print the model.



Figure 4. A cartoon hypersonic aircraft FEA model and 3-D print

The second ideal use case for Loft is parametric design studies. The ease of changing dimensions or design
variables and then writing variant model files enables studies of alternative designs and/or design-of-exper-
iments-style exploration of a design space. As illustrated in the discussion of Figure 2, a family of models
can be generated extremely rapidly.

The NASA lunar lander reference vehicle shown in Figure 5 is a more detailed example of this capability.
A 656-line input file (not included in this document) specified all of the dimensions of the lander in a few
design variables. Loft’s math capabilites were then used to compute the location of each component,
including the end points of dozens of support struts that are featured in Figure 5. When a global dimension
was changed, a new, completely stitched, model could be created in moments.

JIN
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Figure 5. Parametrically defined support struts on a NASA reference lunar lander

The third ideal use case for Loft is as part of a multi-code batch analysis system. Its text input, command-
line operation, and text file outputs eliminate the need for an application programming interface (API) or
graphical user interface (GUI.)

Cerro et al. [6] describe the use of Loft as part of a complete conceptual vehicle sizing process. Eldred
et al. [7] describe the incorporation of Loft into a multidisciplinary system driven by design-of-experiments
to perform conceptual design of supersonic aircraft with complex wing and fuselage shapes as illustrated
in Figure 6. The wings studied included a potentially large number of spanwise variations of chord lengths,
airfoil shape, twist, and sweep angles. The fuselage configurations permitted arbitrary changes in vertical
and horizontal diameters and vertical location along the length of the aircraft. These variations were
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examined for level of induced sonic boom with the Loft generated structural models being used to predict
vehicle weight for each configuration. Note that Loft generated these wing models as multiple trapezoidal
planforms that automatically stitched together to form a single piecewise-trapezoidal model with arbitrary
sweep, chord, span, twist, and airfoil shape for each section.

Figure 6. Complex supersonic wing model.

A new low-maturity design capability using Loft is currently being built [5]. This system, the Structural
Preliminary Analysis for aeRospaCe vehicles (SPARC), will use Loft to create conceptual-level finite ele-
ment analysis (FEA) models of components and vehicles, approximate loading from aerodynamics, ther-
mal, inertial, propulsion, control, and hydrostatic sources, and use the team’s existing high-fidelity FEA
solution and sizing tools. Other team-developed pre-existing tools to parse NASTRAN input and output,
balance loads, map values between dissimilar meshes, etc. will be incorporated to enable rapid conceptual
design capturing fluid-thermal-structural-interaction (FTSI).

Loft’s parametric modeling and mesh marking make it ideal for this application. Loft also features auto-
matic and manual grouping of nodes and elements to enable mapping of loads to only the appropriate por-
tions of the model and to enable other basic tasks such as boundary condition application. For instance, for
the wing model illustrated in Figure 1, Loft created these 15 groups:

Main Wing ROOT NODES

Main Wing TIP NODES

Main Wing ROOT SPAR NODES
Main Wing ROOT RIB NODES
Main Wing CARRYTHR NODES
Main Wing SKIN UP ELEMS
Main Wing SKIN LOW ELEMS
Main Wing SPAR ELEMS

Main Wing RIB ELEMS

Main Wing QUARTER CHORD VECT
Main Wing CT SKIN UP ELEMS
Main Wing CT SKIN LOW ELEMS
Main Wing CT SPAR ELEMS
Main Wing ALL NODES



Main Wing ALL PANELS

Each group created by Loft has the user-specified component name (e.g., “Main Wing”) followed by
descriptive text. Each group can be reported on by Loft on the output screen or to multiple differently
formatted text output files. These files can be parsed and modified to create load and boundary condition
instructions that are merged with the Loft mesh to create a full FEA model. Loft can also use these groups
to modify or add to the model as shown in the following discussion.

New Features

The updated version 4.0 of Loft has many new features, including new and updated objects, input file
flow control, and additional math and region operations. Support has been added for creation of NASTRAN
boundary conditions, loads, and rigid elements, which improves Loft from a finite element mesh generator
to a basic finite element analysis input file generator. The previous limitation of Loft that required manual
stitching of wings, tails, and fins to the main body of the fuselage has been addressed with the ability to
programmatically create rigid boundary elements (RBES) that stitch corners of specified regions together.

New and Updated Objects

The simplest new object added to Loft is a node which is created from user specified coordinates. This
capability enabled the new support for NASTRAN point masses and force distribution “spider” rigid bound-
ary element (RBE) creation. Figure 7 shows the TSTO orbiter fuselage with four user created nodes. Three
are attached to point masses representing the oxidizer, fuel, and payload masses. These are connected by
RBEs to the appropriate support bulkheads. The fourth user created node is at the rear of the vehicle repre-
senting the thrust of the engines. It is connected by RBE connections to the thrust ring where the engines
would be mounted. The generation of these nodes and rigid elements is demonstrated in detail in the anno-
tated TSTO orbiter example included in the users’ manual.

Figure 7. TSTO fuselage with 4 user-created nodes *'spidered™ to the mesh

The next class of objects are NASTRAN scalar or vector finite element analysis objects. These do not add
to the structural mesh, per se, but do add mass, forces, pressures, temperatures, boundary conditions, or rigid
boundary element connections to the model. Values can be discrete at a node or smeared across multiple
nodes or elements. These objects are currently only written to NASTRAN format output files. However,
RBEs are written as linear elements to VRML output files so that they can be visualized. This class of object
is also demonstrated in the TSTO orbiter example and documented together in the “BC/RBE/
FORCE/MASS/PRESS/TEMP” object description in the manual. Figure 8 shows a Loft-generated constant
pressure load in red applied to the upper skin of a wing.

A basic truss object was added that can represent a thrust structure or a variety of open interstages on
launch vehicles. Figure 9 shows a truss object connecting a circular cross section to a square cross section.

10



Figure 8. A pressure load applied to the upper wing skin of the TSTO orbiter

A simple trapezoidal block made of solid elements was added to Loft. Its primary application
is in thermal analyses. Figure 10 shows a block object.

Figure 9. Loft Truss Object

Figure 10. A trapezoidal block made of solid elements
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A significant update was made to the wing object type. In addition to the previously supported
4- and 5-digit NACA airfoil cross sections, biconvex and user-defined cross sections are now
supported. Also, different airfoil shapes can be used on the top, bottom, root, and tip of a wing.
The most common use of this feature is to specify different wing thicknesses at the root and tip
of the wing. Figure 11 shows a biconvex airfoil. Figure 12 shows a user-defined diamond cross
section with spars, and Figure 13 shows a wing with different upper and lower shapes. Caution
should be exercised when combining cross sections with significantly different thicknesses as
spars can become sloped when connecting matching percentages along the top and bottom
curves.

Figure 12. Wing with user-defined diamond cross section
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Figure 13. Wing with biconvex upper shape and NACA 2440 lower shape

Figure 14 shows a stiffened box made from a square “airfoil” with ribs and spars.
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Figure 14. A square "wing" with ribs and spars.

Program Flow Control

Another significant addition to the new version of Loft is a variety of tools to control program
flow. Three new commands (“linelabel,” “goto,” and “if””) allow loops and conditional execution
of input file sections. These new commands are made possible by a change in Loft such that it no
longer reads and immediately executes each line of the input file. Rather, it reads the entire input
file into memory before execution starts. This approach also enables the new “include,” *
and “clone” commands.

The new “include” command enables the insertion of external input files into the project. These
included files could contain common values that are used by multiple projects or could function
as a subroutine where input parameters are changed before each call. Figure 15 illustrates a

mirror,”
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simple spherical tank case where the same include file operates as a subroutine to generate two
different tank models.

# main program # generate tank.txt file
define radius 10 object dome tanktop
include generate tank.txt c¢l zscale Sradius

write vrml rlOtank.wrl cl yscale Sradius

new length Sradius * -1.0
define radius 20 object dome tankbot
include generate tank.txt length Sradius

write vrml rZ0tank.wrl

Figure 15. Main input file and include file used as a subroutine

The new “mirror” and “clone” commands are implemented as macros. The “mirror” or “clone” com-
mand is removed from the Loft input line stream and replaced by several clipboard (store and recall) and
rotation commands that perform the requested operation. The “list input” command can be included after
the macro to display the modified input line stream if desired. Figure 16 shows a wing with two clones.

Figure 16. A wing(red) and 2 clones(yellow)
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Use of the program flow control commands to execute a loop is illustrated in Figure 17. When creating
loops it is important to avoid creating infinite loops. To avoid this, initialize the counter outside of the
loop and increment the counter within the loop.

define 1 0 initialize counter
linelabel 10

<do something we want to repeat>

define i $i + 1 increment counter
if $1 < 5
goto 10

<rest of input file>

Figure 17. lllustrating a loop in Loft

The program control commands can also be used to generate variations of a model in a single input file.
The TSTO orbiter input file has a variable “fullvehicle” defined near the top of the file. This is used as a
flag to determine if a half or full vehicle is generated when Loft is run. In both cases, a half model of the
entire vehicle is initially created. Then, if the value of “fullvehicle” is true (i.€., non-zero) that half model
will be mirrored to create a full model. If the variable is false (zero) the mirroring operation is skipped
and symmetric boundary conditions are created for the plane of symmetry (Figure 18). See the TSTO ex-
ample for more details.

Figure 18. Loft-generated symmetric boundary condition (degrees-of-freedom 3, 4, and 5) on centerline of a half vehicle
model with closeup detail

Math Updates

Several items were added to the math functionality in Loft. Hyperbolic functions (sinh, cosh, tanh,
asinh, acosh, and atanh) were added to Loft’s function list. Two standard mathematical constants, pi and e
can be produced with “@pi” and “@e.” The system time and the cpu clock time can be produced with
“@time” and “@clock.” These only have useful meaning as differences in time:

define starttime Q@time
15



define startclock @clock

<stuff happens>

define endtime @time

define endclock @clock

define elapsedtime S$endtime - Sstarttime
define elapsedclock S$endclock - S$Sstartclock
list variables

The ability to compute the minimum and maximum values of coordinates in the current mesh was
added. These are invoked as global variables. For instance, “@maxx” and “@minz” will return the maxi-
mum X value and the minimum z value, respectively.

Logical inequality operators were added. The operators “>,” “<,” “>=" “<=" “="" and “!="(not equal)
will return a O if the comparison is false and 1 if the comparison is true. These are primarily targeted for
use with the new “if” program flow control command but can be used in any math operation within Loft.

Region Mode Updates

Regions are temporary subsets of the current model. Subsets can be specified by combinations of object
name (“Main Wing”), property name (“Main Wing Upper Skin”), labels (“OML”) and/or by various geo-
metric location checks. Once created, a region can be written to output, modified, and/or marked to be
used later.

The previous release of Loft allowed the geometric selection of nodes that fell inside a specified sphere,
axially aligned cylinder, or box. The new release adds selection by coordinate comparison. Any of the
three coordinates of a node can be compared to a specified value and added/removed if that coordinate is
equal, greater than, greater than or equal, less than, or less than or equal to the value. A simplified ap-
proach is also available where nodes can be added if a coordinate is positive or negative.

These checks can be combined to bracket a desired portion of the model. For instance, one could create
a region comprised of the nodes from the “Main Wing Spar” with X coordinates less than the fuselage
width.

A pair of new region operations called “ikeep” and “ekeep” are the inverse of the older “irem” and
“erem” operations. In this case, only nodes that meet the specified criteria are retained. Those that do not
are removed from the region. The example input below adds all of the nodes on three tank-support bulk-
head frames and then keeps only the ones on the inner edge of the frame by using a model variable that
contains the radius of the tank. It then removes beam alignment nodes from the region. Finally, the re-
maining nodes are marked or labeled as “fwd tank support nodes.” This label is used later in the model.

region
mkadd fwd fwd ring frame ALL NODES
mkadd fwd mid ring frame ALL NODES
mkadd fwd aft ring frame ALL NODES
ikeep xcyl 0. 0. 0. S$tankscale + 1.
irem xcyl 0. 0. 0. Stankscale / 2. # remove beam alignment nodes
mark node fwd tank support nodes

An optional variation of the “rwrite” region output command was added to the new release. The user
can now specify the output format and filename as arguments to the “rwrite” command, making the
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syntax the same as the non-region “write” command. If this new option is used, a new file is always cre-
ated, overwriting any old file of the same name. If appending to an existing file is desired, the new “rap-
pend” command can be used with the same syntax of format and filename as arguments. The previous
“rwrite” syntax with no arguments and the format, filename, and overwrite/append choice specified with
separate commands remains available.

The last addition to the region mode commands is the “corner” command. This operation identifies the
centroid of the nodes in the region and then generates a list of the nodes that are the furthest away from
that centroid in each of the eight coordinate quadrants. If no nodes fall in a quadrant, no node is saved.
Thus, in most cases a planar region will generate four corners and a non-planar region will generate eight.
Some rotation of the region could be required if the desired results are not produced automatically. The
argument for the corner command is the name of a group that the nodes are to be added to. Below is an
example region command that finds the corner nodes of a portion of a bulkhead below a specified y coor-
dinate and saves them in a group called “Front bulkhead corners.”

region
ppadd payload bay fwd bulkhead
irem yge -80
corner Front bulkhead corners

Automatic Stitching

One of the previous limitations of Loft was the requirement to manually stitch wings to a vehicle fuse-
lage. The combination of the new “rbe” object type, the region selection additions, and the region “cor-
ner” operation now enable automatic generation of stitching rigid elements. Consider the following exam-
ple code from the TSTO orbiter model. It uses vehicle parametric dimensions to identify the portions of
the wing spar and the fuselage bulkhead that should be connected, uses the “corner” operation to identify
the corner nodes on each mesh portion, and then generates rigid boundary elements to connect the two
objects. Figure 19 illustrates the new RBEs.

region
mkadd mainwing stiffeners CARRYTHR NODES
irem xgt S$sparlpos + 5.
irem zlt S$fusescale * -1. + 5.

irem zgt $fusescale - 5.
corner mainwing fwd corners
region

ppadd payload bay fwd bulkhead

irem yge -80.0

corner Front bulkhead corners
object rbe forward wing rbes

groupl mainwing fwd corners

group2 Front bulkhead corners
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Bulkhead Fuselage side

Wing Spar
carry through

Fuselage bottom

Figure 19. RBEs stitching spar to bulkhead

—————eee g — —

Other NASTRAN Updates

The new scalar/vector NASTRAN objects can be added to “rbe” type groups, which applies a mark or
label to them. These labels can then be used in the region mode to write them out along with the portions
of the nodes and elements that have been added to the region.

Four new parameters have been added to the NASTRAN settings in Loft. The new parameter “thick”
can be used to change the default panel thickness that is written to PSHELL cards. The “sol” parameter
can specify a solution type. The “spc” and “load” parameters allow the selection of “setid”’s for the
boundary conditions or loads. If either or both “spc” and “load” parameters are specified, then a simple
case control block will be added to any NASTRAN bdf that is written. That file can then be directly ana-
lyzed in NASTRAN with no further editing required.

A very limited support for thermal analysis has also been added. The scalar/vector NASTRAN object
can be used to generate nodal initial or boundary condition cards for specified nodes (TEMP or thermal
SPC cards.)

Finally, the new “hmcom” and “nohmcom” parameters can be used to toggle on and off (off is the de-
fault) comments in the NASTRAN output files that mimic the comments created by HyperMesh. These
comments aid in importing models into HyperX and automatically grouping the mesh by the object names
specified in the Loft input file. The format of these comments has been reverse-engineered to successfully
load into HyperX, but updates to HyperMesh and HyperX could break this functionality in the future.

Conclusions

Loft is a powerful finite element mesh generator. Recent updates to the code have increased that power
with additional object types and options. Some previous shortcomings, including manual stitching of
wings to vehicle bodies, have been addressed with support for automated stitching. Added support for
generation of force, pressure, mass, temperatures, boundary conditions, rigid boundary elements, and case
control block generation has added basic finite element analysis file creation to the tool.

The updated, version 4.0, Loft program is available for free via a request at software.nasa.gov. It comes
packaged with this manual and all of the example files and small utility programs discussed in this document.
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Loft
An Automated Mesh Generator
For Stiffened-Shell Aerospace Vehicles

Program Manual

Chapter 1: Introduction

Loft is an automated, parametric, mesh generation code designed for aerospace vehicle structures. Based
on user input, it can generate meshes for wings, noses, tanks, fuselage sections, thrust structures, etc. As
the mesh is generated, each element is assigned properties that mark what part of the vehicle it is associated
with. This property assignment is an extremely powerful feature making possible detailed analysis tasks
such as load application and sizing.

Loft can save meshes in a wide variety of formats, including NASTRAN bulk data file (bdf), EDS’ I-
DEAS Universal File (unv), Abaqus input file (inp), TecPlot, Virtual Reality Modeling Language 2.0
(VRML, now a subset of the X3D standard) and Stereo Lithography (stl) for 3-D printing. The property
assignment scheme was designed to make sizing in Collier Research’s HyperSizer and HyperX easy. Sup-
port for other mesh storage formats can be added as needed.

This Manual

This manual consists of eight parts:
An introduction and overview of the program and how it works.

e Practical tutorials on constructing a variety of vehicles and components and using many of Loft’s
features.
Discussion of the powerful region concept in detail.
Tips and best practices for the use of Loft.
A technical/programmer’s reference describing how the code is written and how to add to it.
Various external utility programs that have been written for Loft.
A reference guide giving details on all commands and objects.
Annotated complete example input files.
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This manual contains a digital table of contents to aid in navigation. It can be accessed from the
Bookmarks option in Adobe Reader or the Navigation Pane in Microsoft Word. Open the table of contents
and use it to jJump around or search as needed to find the tutorial or command syntax needed for your current
project.
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Mesh Construction

Loft uses very basic finite elements: 4-node quadrilaterals, 3-node triangles, 2-node bars, 8-node solids,
and 2-node beams. It uses these simple elements and user input dimensions to build complex full vehicle
finite element meshes.

A vehicle is described starting at one end, typically the nose in the case of a fuselage. The user specifies
that first component’s shape, dimensions, mesh density, and position. The adjacent component is described
next, and the process is repeated in axial sequence until the entire structure has been defined. Loft copies
the dimensions and mesh density from object to object and automatically positions a new object directly
behind the previous one, allowing easy construction of a sequential stack of objects. This minimizes user
input, with only changes from the default values needing to be specified. In the exploded view above, the
example booster object contains eighteen “objects” including ring frames and longerons. Yet it can be built
from a 100-line text input file.

Node ordering is set so that element normal vectors point outward. In situations where this is not the
desired behavior (such as a concave tank dome), most object types support a £11ip parameter that reverses
element node ordering.

Nomenclature

A variety of fonts and styles are used in this manual for distinct purposes. Italics are used to introduce
new terms and when the Loft program itself isnamed. The courier font isused for input file examples,
commands, parameters, and references.

Terminology

The lowest level geometric entity used by Loft is a curve. A curve is a two-dimensional object such as a
circle, semi-circle, or box. Loft includes a library of basic curves and others may be added to the code as
needed. Alternatively, Loft also features several ways for a user to specify a curve in the input file, including
linearly interpolated curves and compound curves built up from any previously defined curves. Curves can
be used to create fuselage cross sections as well as for defining wing airfoils beyond the built-in airfoil
options.
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An object is a three-dimensional meshed part made by either extruding one curve or linearly interpolat-
ing an extrusion between two curves. (Some objects, such as bulkheads or a ring frame, are actually two-
dimensional). Objects include parts such as nose cones, tank domes, tank barrels, bulkheads, etc. Each
object is defined separately and has its own name and parameters.

A stack is a collection of objects that may make up an entire vehicle. Each object is added to the current
stack as it’s created, and the full stack is written by the write command. The new command can be used
to start a new stack. The store command can be used to assign a name to the current stack, to save it in
memory (to a temporary internal clipboard which is lost when the program exits), and to start a new stack.
The recall command is used to copy a stored stack back into the current stack. Store and recall can
be used to control the scope of object movement, sizing, and distortion commands, as well as to build differ-
ent configurations of a multi-part vehicle (e.g., Shuttle with external tank (ET) and solid rocket boosters
(SRBs), Shuttle with just ET, Shuttle alone).

Object Types

There are a few basic types of objects. Meta-objects are simply macros that combine several of the basic
types. Any number and combination of these object types can be created and merged into a single mesh.

Domes are the class of extruded objects taking a single curve to a single nose point. These objects can
taper to the nose point in several ways, resulting in elliptical domes, conical domes, parabolic noses, ogive
noses, power-law noses or flat bulkheads. Optionally, a droop can be added to a dome to produce simple
aircraft nose objects. Domes are meshed with quadrilateral panel elements, except at the nose point where
triangular elements are used.

Sections are the class of objects that are extruded between two curves. This extrusion is linear and results
in parts that can represent tank barrels, fuselage barrels, thrust structures, payload bays, etc. Sections are
meshed with quadrilateral panel elements. A truss object similarly connects two curves. However, the two
curves are meshed with beams or bars and are connected by diagonal struts made of beams or bars.

Frames and Dframes are the classes of objects that distribute beam elements along a curve. These can
use a single curve as their basis to align with a dome object or be positioned between two curves to align
with a panel section. They can run circumferentially or longitudinally (ring frames or longerons). The frame
object type is used to stiffen a section object and the dframe object type is used to stiffen a dome object.

A wing is an extruded surface with internal stiffening (ribs and spars) and optional carry-through. Wings
are meshed with quadrilateral panel elements except at the leading edge of each rib where triangular ele-
ments are used.

A tank is an example of a meta-object macro that combines two dome objects and a section object in a
consistent way. It allows for somewhat fewer options than building the tank up from lower-level objects. A
Stifftank is a meta-object that produces a ring frame stiffened tank.

A beam object will generate a beam or a bar element by specifying the location of its endpoints. They

are frequently used to specify struts; dome, section, and wing stiffeners are more easily generated with the
frame, dframe, and wing options.
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A node object specifies a single point in space by supplying its coordinates. Nodes are used when the
location of a point mass or force needs to be specified.

A box object is a stiffened trapezoidal box created with panels and beams that could represent a mattress
tank with flat sides. A block object is also trapezoidal but is meshed with solid elements. Blocks are often
used for thermal analyses.

A class of objects that specify scalar or vector data that are applied to an element mesh is designed for
output to NASTRAN files. These objects can specify scalar values such a constrained degrees of freedom,
pressure, and mass or vector values to specify a force’s components. See the tutorials on NASTRAN bonus
features and automatic stitching as well as the command documentation for the BC/RBE/FORCE/
MASS/PRESS/TEMP object type. These objects do not create nodes or elements but can be la-
beled/grouped/marked and manipulated with the region mode operations.

Property Marking

One of the powerful features of Loft is the labeling of elements corresponding to their location on the
model. This is accomplished by assigning dummy properties with descriptive names. (Actual property val-
ues are replaced in the analysis or sizing stage). With an I-DEAS output file, each element has a physical
and material property reference. Each type of property has a 40-character name available. For NASTRAN,
property names are indicated as Patran-compatible comments on the element property and material cards.
VRML output files are colored to indicate their property assignments.

For simple domes and sections, the name of the object is placed in the physical property, referenced by
all of its elements. The material property is used to indicate where on the object the elements are. The
resolution of the material property name is controlled by the “components axial” and “components circum-
ferential” object parameters. A typical material property name could be “Axial 3 Circ 5.” Note that these
are not element coordinates; there are generally more than one element per component in each direction
(but there need not be).

For wing objects and meta-objects like tanks, the physical property name will be more descriptive. It
will start with the object name but then add details such as “RIB,” “SKIN UPPER,” or “DOME AFT.” For
these kinds of objects, a short object name is recommended so that the full property name will fit in 40
characters. An object name longer than 27 characters will be occasionally truncated. This truncation will
be just enough to allow the full inclusion of the detail string.

HyperSizer concatenates the physical and material property names to make component names. Thus,
each group of elements with a unique combination of property names will be collected into a component.
Typical component names will look like:

“LOX TANK | AXIAL 5 CIRC 2”
“CANARD SKIN LOWER | SB2 CB 5~

I-DEAS universal files that HyperSizer generates will contain property names that start with “(HSGEN)”
and are followed by as much of the component name as will fit in 40 characters.

Loft also generates a variety of groups (also called labels or marks) when running. These groups mark
nodes that are on curve endpoints, lines of symmetry, wing attachment points, etc. These groups are named
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based on their object name. Thus, for an object called “MyWing,” there will be groups called: “MyWing
Root Nodes,” “MyWing Tip Nodes,” “MyWing All Nodes,” etc.

The user can specify additional groups to which an object’s nodes or elements can be added, using the
mark object parameter. Any number of marks can be specified per object and a particular group name can
be used by any number of objects. For example, a small nose-cap object might belong to marked groups
“Booster Nose Elements” and “Booster OML Elements.”

The 1ist command can be used to view the current property and group lists. Use “1ist mprops,”
“list pprops,”’or“list groups” to generate a list that is written to the screen.

User Interface Introduction

Loft is controlled by a text file input deck. The user specifies each object that is desired in the model.
For each object, geometric data such as diameter, length, and position are supplied. Meshing variables such
as the number of elements and the number of sizing components in each direction are also needed. Most
input values are optional; default values will be used for any not supplied by the user.

A Loft input deck is read line by line. Each line can be a comment, command, or a parameter for the
most recent command. Any number of parameter lines can be given (including zero), with a new command
line marking the end of the previous command and its parameters. All input is case-insensitive.

Comment lines start with a pound sign, “#,” followed by any amount of text. Comments are ignored by
the Loft code. Comments can also be placed on a line after a command or parameter by using the pound
sign marker.

Command lines cause objects to be created, output to be written, and variables to be set. There is a very
short list of legal commands.

Parameters are optional lines that specify details for commands. All parameters are optional and are
used when the program default is not what is desired. Some defaults are fixed, but most defaults will change
based on previous user input. For instance, the default position for a new object is immediately behind the
previous object, and the default curve to extrude is the previous curve. Thus, the defaults will attempt to
produce a stack of smoothly connected objects.

To specify a parameter, add a line after the command with the parameter name followed by the new
value. Parameter ordering does not matter for object parameters; an object is actually generated when
the next command is encountered. Parameter ordering does matter for the move and region commands.
Indenting of parameters is optional but can improve readability of the file.

Input lines may contain basic mathematical operations, specified in infix notation with equal priority for
all operations, e.g., multiplication and division are not given precedence over addition and subtraction. Cur-
rently supported operations include addition, subtraction, multiplication, and division along with logical
operators greater than, less than, greater than or equal, less than or equal, equal, and not equal.

Loft also supports user-defined variables using the define command. These variables may be com-
bined or modified using the basic math operations.
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Here is a short example input file.

Comments start with the # symbol, either alone on a line, or after some input.
# This creates a circular to breadbox transition
# for a half vehicle
object section MyTransition
curvel sc # semi-circle
curve? sbb # semi-breadbox
length 12
# save
write vrml MyTransition.wrl

The three parameter lines for the section object are indented for clarity. This is not required by Loft.

Loft is designed to be run from a command line. Windows users may call this a “DOS shell.” One way
to open a command line interface in Windows is to select “Run...” from the Start Menu, then type “cmd”
as the name of the program to be run. Then use the “cd” command to change directories to where the input
file and Loft executable are located. The input file name is given as an argument when Loft is run, such as:

loft mytransition.txt

On a Windows machine another option is to create a batch file to run Loft. Start with creating a text file
with the desired command. It’s suggested to add a greater than symbol and then the name of a file to capture
the output from Loft. Your new file text would end up something like:

loft inputfile.txt >outputfile.txt

Save that text file, then change the extension to “.bat.” Now you can double click on the file to execute
the stored command or commands. A DOS window will open, show you the command running, and then
close. The specified output file can be read to see the run-time output from Loft. Other operating systems
have similar functionality (Linux/UNIX shell scripts, etc.)

Special Characters in Loft

Several symbols are used as flags for Loft’s input parsing routines. They indicate that the text following has
a special meaning. See the “Variables and Math” tutorial (project 7 in chapter 2) for a more complete
discussion of most of the symbols. Here is a current list:

# - The number or pound symbol is used to start a comment. It can be used at any point on an input line.
Everything after the pound symbol is ignored by Loft.

$ - The dollar symbol is used to recall a user variable that has previously been set using the define com-
mand.

@ - The at-sign symbol is used to recall a system variable. A list of system variables is provided in Chapter
7’s “System Variable List” charts.

% - The percent sign is used to call a math function such as sine or square root. See Chapter 7’s “Math
Function List” chart.

+, -, *, /- The plus, minus, star, and forward slash symbols are used for their corresponding math function:
addition, subtraction, multiplication, and division.
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>, <, =, >=, <=, I= The less than, greater than, and equal symbols are used for their corresponding logical
comparison operation. Less or greater than can be combined with an equal symbol and the exclamation
mark can be used with an equal symbol to indicate “not equal.”

Positioning in Loft

Each object is automatically positioned by Loft in such a way as to produce a single, continuous vehicle.
From time to time, this default positioning will need to be overridden. There are a wide variety of position-
ing, rotation, scaling and warping options available to the user. Most of these operations can be done at
both the object and stack levels, with some significant ordering related differences between the two ap-
proaches.

The default axes for a vehicle have X as the lateral direction, Y as the vertical direction, and Z as the
vehicle axial direction. These axes are aligned in a right-hand rule configuration. Z increases as the stack is
built. Another way to state this is that the 2-D curves are defined in the X-Y plane, with Z as the extrusion
direction. If, as in the example vehicles included in this manual, the stack starts at the nose, then the positive
z direction is aft on the vehicle. Use of the rotation commands prior to saving the mesh can align the mesh
as the user prefers. NASA models will typically use X as the vehicle axial direction. Converting to this
alignment requires two lines before saving the model:

move
roty 90

Each object has a local origin that is placed at the current default location. For wings, the local origin is
the leading edge root node. For domes, sections, and frames, the local origin is the center point of curve 1.

Most Loft vehicles start with an outward dome object (vehicle nose). Consequently, that nose will be
specified with a negative length and will be created with most nodes residing on the negative Z-axis. The
global origin will be at the rear of the nose (the center of curve 1). A translation must be specified if moving
the global origin to the vehicle nose tip is desired.

When a new section object is created, the default position for any subsequent objects is moved to the
center point of curve 2 (to position it behind that section object). Other object types do not move the default
creation point. However, any use of object level or stack level positioning commands (see the heading
below) will change the default creation point of all following objects. Note that meta-objects, such as the
tank type that contain sections, will also move the default creation point.

The default positioning for a new object can be set back to the global origin with the reset command
(which also resets all object dimension defaults to their initial values). A store command moves the
current stack to an internal clipboard then resets the default position values as well.

Object vs. Stack Level Positioning
To use a positioning parameter at an object level, just add a line specifying the position parameter name
(transx, relx, rotx, etc.) and value to the file section describing that object. The ordering of object

level parameters does not matter. Once all parameters for the object have been read, the mesh is generated,
and then the positioning is performed in the following order: warping, rotations, and then translations.
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To position the entire current stack, the move command is used. Position parameters that are given,
following a move command, are acted upon in the order in which they are read.

Translations

There are two types of translation setting options: absolute and relative. The absolute translation
parameters transx, transy, and transy override the default position setting and assign an absolute
position to the item. The relative translation parameters relx, rely, and relz can only be used at the
object level. They add the user-specified value to the default value, rather than just replacing the default. In
most cases, using the relative translation parameters is preferable, as a dimension change much earlier in a
vehicle stack will not cause inaccurate positioning.

Usage: <parameter> <value>
Example: relx 2.0

Rotations

Similarly, there are absolute and relative rotation commands. They are rotx, roty, rotz,
relrotx, relroty, and relrotz. As with the translation commands, the relative rotation commands
can only be used at the object level.

Usage: <parameter> <value>
Example: relrotx 2.0

Scaling

The three scaling commands can only be used at the stack level. They are scalex, scaley, and
scalez. (Use the curve xscale and yscale parameters at the object level to perform a similar func-
tion.)

Usage: <parameter> <value>
Example: scalex 2.0

Warping

Warping allows the distortion of part of a mesh. The warp commands use a coordinate axis as the divid-
ing line between parts of the mesh that are modified and parts that are not. The last two letters of the
parameter specify the side of the axis (p for positive, n for negative) and the axis to use as the division. For
instance, the warppx parameter will distort all nodes that start with positive x coordinates.

There are two types of warping available: constant and gradient. Constant warps (warppx, warppy,
warppz, warpnx, warpny, and warpnz) will scale all nodes in the specified zone by the given values.
Gradient warps (gwarppx, gwarppy, gwarppz, gwarpnx, gwarpny, and gwarpnz) increase the
distortion the further the node is from the given axis. The user-supplied value is the scaling applied for
nodes that start one unit away from the axis. Nodes that start two units away from the axis are distorted
twice as much, and so on.
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Each of the warp parameters takes three arguments: the amounts to scale the X, y, and z coordinates of
affected nodes. For example, the parameter “gwarpny 1.0 1.0 2.0” will scale the z coordinates of
any node that starts with a y coordinate less than zero. A node that starts at y = —1 will have its z coordinate
doubled, if it starts at y =—1.5 it will have its z coordinate tripled, etc.

Only one warp operation can be specified at the object level per object (the last one read will be the one
that is performed.) A warp operation combined with a scale operation can produce the effect of two warp
operations. Any number of warp operations can be performed at the stack level. Interleaving warp param-
eters with translation parameters can give a very fine control over the nodes being distorted.

These commands can significantly change element aspect ratios and lead to poorly formed elements.
Use with care and verify that the desired effect is being obtained before proceeding.

Usage: <parameter> <x scale> <y scale> <z scale>
Example: warpnx 0.1 2.0 5.2

Flipping

By default, node ordering for elements is chosen such that element normals will point outward. The
f£1ip parameter can be used to reverse this ordering. It is valid for both objects and the full stack. Only
panel node ordering is affected. A quad that started with nodes 1-2-3-4 will be flipped by reordering its
nodes to 2-1-4-3.

Usage: flip
Turning

This option is valid only at the stack level. A turn parameter reorders the nodes with the intention of
changing the material orientation vector to be parallel to a different element axis. A quad that started with
nodes 1-2-3-4 when turned will be connected 2-3-4-1. The actual interpretation of this operation will depend
on the FEA package used.

Usage: turn
User Specified Curves

Loft supports three ways of defining new curves in the input file. Once defined, a user-defined curve can
be used in the same ways that a curve from the built-in curve library is used. As part of the definition
process, the user specifies a mnemonic for the new curve. Whenever a curve mnemonic is encountered after
that point, Loft will search the list of user-defined curves, then its internal curve mnemonics. This makes it
possible to override the definition of a built-in curve.

Interpolated curves are built from user-specified X, y coordinates pairs. Currently, only linear interpola-
tion between the user’s points is supported; options for curved interpolation may be added in the future.

Compound curves are built by tracing the outside of sequentially listed curves until the next curve is
encountered, then tracing its outside until it intersects with the next curve, etc. This curve option can be
used to define the shape of multi-lobe tanks, etc.
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Lofted curves are curves created by blending two parent curves. These curves are temporarily created in
most mesh creation processes that Loft performs where the cross section of the object is changing along its
length from the curve specified at one end to the curve specified at the other end. The user-defined lofted
curves allow the user to store and use these blended shapes. One application of the lofted curve type is to
create a bulkhead in the middle of a section.

Curves are defined by using the curve command, followed by the type (interpolated, com-
pound, lofted, etc.) and a user supplied name. Parameter lists for the curve command are discussed in
reference chapter 7, and tutorials on using all types of user-defined curves are in tutorials 3 and 4 in chapter
2.
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Chapter 2: Tutorials

Introduction

Loft is an easy-to-use program that takes very simple finite elements and builds detailed finite element
meshes. A user controls Loft by creating a text input deck with their favorite editor such as notepad in
Windows and vi or emacs in Unix/Linux.

The input files developed in these tutorials are all available in their finished forms in the “tutorials”
subdirectory. They are named “project].txt,” etc. and will produce output files named “projectl.wrl,” etc.

List of Tutorials

Project 1: A Simple Commuter Jet
Project 2: Converting Project 1 Mesh to a full vehicle
Project 3: Creating and using User-defined Curves
Part A: Interpolated Curves
Part B: User-defined Compound Curves
Part C: User-defined Lofted curves
Project 4: A Tapered Four-Lobe Tank
Project 5: Controlling Circumferential Node Distribution
Project 6: Introduction to Regions
Project 7: Variables and Math
Project 8: Bodies of Revolution, Toroids, and Helixes
Project 9: Program Flow Control
Project 10: NASTRAN bonus features
Project 11: Automatic Stitching
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Project 1: A Simple Commuter Jet
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The examples in these tutorials will consist mostly of symmetric or half models, where only one side of
the vehicle is generated. This is done so that internal details of the meshes can be viewed easily. Project 2
will show how to modify the input file to produce a full vehicle model.

A good practice is to start the file with a few comment lines describing the file. The tutorial projects will
also use comments throughout the files being created for ease of reading and to explain what is going on.
These are completely optional. So, the input file starts:

# Loft Tutorials: Project 1
# A Simple Airliner
# Created 4/16/03 by N. Jineer

Generally, a user will want to describe a vehicle starting at one end and moving sequentially from major
component to major component. This example starts with the nose:

# The nose
object dome Nose

Object is a Loft command. As might be inferred from its name, it creates a new object. That’s all that
is needed, assuming the desired result is a spherical dome that is one unit in radius and one unit in length.
But, let’s change from the default values. To do that, parameters are supplied for the object command. All
parameters are optional. It’s only when the default values need to be overridden or when the user wants
clarity that they are needed. For instance, the initial default value for the curvel parameter (as found in
the dome object documentation in Chapter 7) is sc, so the first new line below isn’t actually necessary at
this stage.

curvel sc
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length -15.0
cl xscale 10.0
cl yscale 10.0

The curve library section of chapter 7 shows the various curve shapes that Loft currently supports and
the mnemonics by which a user references them. The sc mnemonic produces a semi-circle. The 1length
parameter controls how long the dome is. Since the positive axial direction for Loft is aft, and the nose
should be generated in the other direction, a negative value is given. The next two lines change the radius
of the circle in the horizontal (x) and vertical (y) directions. Here both scale factors, c1_xscale and
cl yscale, are set to be the same value of 10.0.

Now, let’s see the result. To do that, an output command is added to the file:

# Save and exit
write vrml projectl.wrl
end

The write command tells Loft to write the current mesh to a data file, in a variety of possible formats
(see the command reference in chapter 7 for supported formats). The end command is optional; Loft will
exit when it runs out of input. Save the file, then run Loft at a command line prompt (under Windows open
a MS-DQOS Shell window)

loft projectl.txt

Loft will produce a variety of text output describing what it is doing. If all went well, Loft created a new
VRML 2.0 file called “projectl.wrl.” Open this file in an appropriate viewer (one is not included with Loft)
and rotate the model to see it from various perspectives:

Obviously, the model could use some improvements. Open the input file in the editor again.

More parameters will be added to the end of the nose object definition, so move the cursor above the “#
Save and exit” line. From now on save, run Loft, and view the current object whenever desired to see
how things are going. Note that write commands can be added wherever desired in the input file, so “write
vrml projectl-nose.wrl” could be added after all the nose object parameters and “write vrml
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projectl-nose-and-body.wrl” after the body is added, etc. Remember, however, that all parame-
ters for a command (such as the object command currently being edited) need to follow that command
directly; once another command is encountered (i.e., a write command) the previous command is fin-
ished.

The first thing to change is the curvature of the nose. Referring to the “taper library” section of chapter
7, there are illustrations of differently shaped dome objects and the mnemonics necessary to use them.
Change from the default spherical tapered dome to a parabolic tapered one.

taper para

Now, drop the nose tip down a little so the pilots can see out.

zdroop 4.0

And make the mesh a little denser.

nodes circ 21
nodes axial 15
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Now, create a fuselage body. That requires a new section object.

# Fuselage

object section Fuselage
length 50

nodes axial 60

Notice that significantly fewer parameters are needed compared to the nose. Most of the nose shape
parameters are now the default for the next object. Only those that change need to be specified.

Next, add a flat bulkhead to show a little bit of internal detail. Note that a bulkhead is created by making
a dome object and specifying another taper schedule. A parabolic taper was used for the nose; here a bulk-

head taper is used.

# Bulkhead

object dome Bulkhead
taper bulk

nodes axial 10
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Each new object is automatically positioned behind the previous object: the fuselage is behind the nose,
and the bulkhead is behind the fuselage. This makes building sequential structures like this very simple.
Manually positioning objects will be covered shortly.

Next, add the rear part of the fuselage. In this case, it will look very much like the nose, but drooping in
the opposite direction.

# Rear Cap

object dome Rear cap
taper para

length 15.0

zdroop -4.5

nodes circ 21

nodes axial 15

Next, move onto the wing.

# Main Wing

object wing Main Wing
span 40

chord 20

taper 0.5
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sweep 20
mesh 1
rootnaca 3412
tipnaca 3410
sparpos 10
sparpos 25
sparpos 75
ribpos 33
ribpos 66
wingbox 5
boxfront 2

That’s a lot of parameters, but the meaning of most of them should be obvious (refer to wing object
documentation in chapter 7 if needed). Spars are positioned at 10, 25, and 75 percent of chord and ribs at
33 and 66 percent of the span (ribs are automatically created at 0 and 100 percent). The last two lines ask
for Loft to create a wingbox carry-through. The default behavior is to extrude the front most and rear most
spars to make this box, but the boxfront parameter here says to use the second front-most spar instead
(thus extruding from the 25 and 75 percent spars, not the 10 percent.) The resulting model looks like this:

The wing shape is correct, but it’s in the wrong place. Why is that? First, dome objects’ lengths do not
alter the default starting point of the next object. And the origin of a wing object is at its leading edge root.
So, the leading edge root point of the wing is sitting at the rear center point of the fuselage section.

There are a couple of ways to move the wing. It is possible to specify the exact position of the leading
edge root point with the transx, transy, and transz parameters. There are cases when this is the way
to go, but in most cases, the relative translation parameters relx, etc. are better. These values are transla-
tions relative to the default position. Doing things this way will result in the wing staying in the same spot
at the rear of the fuselage even if the fuselage length is later changed.

relx 5
rely -9.5
relz -25

The x translation moves the carry-through to the centerline. The y translation moves the wing down to
the bottom of the fuselage, and the z translation moves the wing forward.
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Now, add a vertical tail to the top of the rear cap.

# Vertical Tail
object wing Vertical Tail
span 18

chord 15
rootnaca 0412
tipnaca 0410
halfwing bottom
wingbox 1

rotz 90

rely 19.5

relz 25

relx -5

Here symmetric airfoil sections were chosen, and since the tail is on the line of symmetry, only half of
it was generated by specifying the hal fwing parameter. The default position for the tail object is at the
leading edge root point of the main wing, so the x translation moves the origin (leading edge root) of the
tail back to the centerline, the y translation moves it to the top of the fuselage, and the z translation moves
it back to the end of the fuselage section object. The rotation command spins the tail to be vertical. With
the halfwing option, it’s possible to see the internal spars and ribs on the tail, which are in the same

position as on the main wing (since no change was specified). Finally, add a high horizontal tail to the top
of the vertical tail:
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# Horizontal Tail

object wing Horizontal Tail
chord 7.5

span 11.0

rely 18

relz 6.551

rotz O

The rotz parameter needs to be reset back to zero, from its new default of 90. Notice, however, that
the hal fwing parameter did not have to be turned off — as seen in the wing object definition in chapter
7 it always defaults to of £. The chord length and y and z translations are chosen to position the horizontal
tail aligned with the top of the swept vertical tail.
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Note that the various wing objects are not actually connected (in a finite element sense) to the fuselage
or each other at this stage. Before using this model to perform an analysis, some work should be done with
the mesh density on the horizontal tail (to make it match that on the vertical tail), and some ring frames
should probably be added where the wing and tail connect to the fuselage to provide stronger attachment

points.
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Project 2: Converting Project 1 Mesh to a Full Vehicle

There are three different ways to accomplish this task. Each will be demonstrated in this tutorial. The
choice as to which option is better depends on the situation. The first approach is to modify a few lines in
the input deck to change the half pieces to full ones and to make portside wing surfaces. The second ap-
proach is to use Loft’s internal clipboard to clone and mirror the half vehicle. The third approach uses a
single macro command to perform the mirroring operation. It produces the same mesh as the second ap-
proach. The first option is better if only a full model is desired. The second/third options are convenient if
both models are needed for different reasons.

Approach 1: Change from half objects to full

Copy projectl.txt file to project2a.txt. Open the new file in the editor and move down to the second non-
comment line: “curvel sc.” Change the sc to cir. Running Loft on this modified file produces:

S ———

The new full circle curvel parameter becomes the default for the rest of the fuselage objects by only
changing the one line at the beginning of the file. You may also want to double the circumferential node
density so that the spacing is the same as before: “nodes circ 41.” Now, fix the wings.

After the Main Wing object (which could be renamed as Starboard Wing), add the following:

object wing Port Wing
wingside port

wingbox 5

relx -10

This can be short because all of the Main Wing geometric parameters have become the default for any
subsequent wing object. The wingbox parameter, however, always defaults to zero (see the wing object
documentation in chapter 7) so it needs to be set again. And other than the two parameters specified in the
new lines above, that’s exactly what is wanted.
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Why has the vertical tail

of using relative position

transx 0.0

Also, delete the tail’s hal fwing parameter. Finally, create a port horizontal tail object by adding these

two lines after the starboard horizontal tail object:

object wing P Horizontal Tail
wingside port

With all of the edits, the final input deck is:

# Loft Tutorials: Project 2a
# A Simple Airliner
# Created 4/16/03 by N. Jineer
# The nose
object dome Nose
curvel cir
length -15.0
cl xscale 10.0
cl yscale 10.0
taper para
zdroop 4.0
nodes circ 41
nodes axial 15
# Fuselage
object section Fuselage

length 50
nodes axial 60
# Bulkhead
object dome Bulkhead
taper bulk
nodes axial 10
# Rear Cap

object dome Rear cap

41

moved? This is one of the hazards
parameters: the vertical tail is now
5 units to the port of the origin of the port wing (leading edge root), rather than the origin of the starboard
wing. Instead of changing the tail’s “re1x -5 parameter to “relx 5,” change it to:



taper para
length 15.0
zdroop -4.5
nodes circ 21
nodes axial 15
# Main Wing
object wing Starboard Wing
span 40
chord 20
taper 0.5
sweep 20
mesh 1
rootnaca 3412
tipnaca 3410
sparpos 10
sparpos 25
sparpos 75
ribpos 33
ribpos 66
wingbox 5
boxfront 2
relx 5
rely -9.5
relz -25
object wing Port Wing
wingside port
wingbox 5
relx -10
# Vertical Tail
object wing Vertical Tail
span 18
chord 15
rootnaca 0412
tipnaca 0410
wingbox 1
rotz 90
rely 19.5
relz 25
transx 0.0
# Horizontal Tail
object wing SB Horizontal Tail
chord 7.5
span 11.0
rely 18
relz 6.551

42



rotz O

object wing P Horizontal Tail
wingside port

# Save and exit

write vrml projectla.wrl

end

which produces the complete model shown below. As with the half model, stitching of the wing surfaces
to each other and the fuselage would be necessary prior to any finite element analysis.
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Approach 2: Clone the half model into a full model

This part of the tutorial will create a very similar mesh another way. Start by copying the original pro-
jectl.txt file to project2b.txt. Open the file and move the cursor down past all the object commands and
parameters and before the “# Save and exit” line. Add the following lines:

# Store the starboard half model
store SB
# Recall and mirror it
recall SB
move
scalex -1.0
flip

These commands start by moving the half model to the internal clipboard and naming it “SB.” The
store command clears and resets the active workspace. So, the next command recalls it back into
active memory. The next three lines perform two stack level move operations. The “scalex -1.0"
parameter changes the sign of all nodes’ x coordinates. This mirrors the mesh, but also has the undesired
effect of causing all the element normal vectors to point inward rather than outward. The £1ip parameter
reverses all the normal vectors. At this stage, the model looks exactly like before, but mirrored onto the port

side:
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Now, to get the original starboard mesh recalled and merged, just add:

# Recall it again
recall SB

The merge part of the operation, which is performed automatically, can be a little slow, particularly
when the same object is being combined. The final mesh looks like:

The meshes produced by these two approaches are in many ways identical. The nodes and the elements
are in the same places (the cloned approach may have extra nodes and elements in the vertical tail due to
being created as two half wings). The real differences are subtle. If FEA mesh files were created, the dif-
ferences could be located. In the first case, the two wing and the two horizontal tail meshes each have dif-
ferently named properties and groups associated with them. With the second approach, the two wings share
properties and groups, and the two horizontal tails do as well.

Approach 3: Clone the half model into a full model using a macro command

Adding the single line below to the initial project instead of the 9 lines in the previous example will
accomplish the steps in approach 2 with the same resulting mesh.

mirror x
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Project 3: Creating and Using User-defined Curves

Part A: Interpolated Curves

Loft’s curve library covers the basic shapes used for many aerospace vehicle components. But, the li-
brary can’t contain everything. This project explains how to use the interpolated curve definition capability
to create user-defined shapes.

Defining an interpolated curve is easy. Just provide a sequential list of nodes that define the corners of
the shape. Start at the top of the curve (12 o’clock) and define nodes in a clockwise fashion.

In general, try to define your curve with a nominal radius of 1.0. The user then defines an object’s size
with the xscale and yscale parameters. Alternatively, give full-scale coordinates for the curve’s defi-
nition points and keep the object scale parameters close to 1.0.

The figure above is generated using the built-in semi-circle shape on the right end and two user-defined
interpolated curves at the center and left end. The center shape is a half diamond. The cross section looks
like:
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To define this shape to fit in a unit circle, start at the top. The coordinates are x=0, y=1. The midpoint
of the shape is at x=1, y=0, and the bottom point is at x=0, y=-1. The command and parameters to specify
these coordinates as a Loft interpolated curve named “sd” are:

# half diamond shape
curve interpolated sd
start 0.0 1.0
line 1.0 0.0
line 0.0 -1.0

Once defined, the “sd” mnemonic can be used in any subsequent objects as if it were a curve in the
library.

The user should keep in mind that due to the sampling scheme used by Loft to distribute nodes, the points
given when defining the shape may or may not appear exactly in the final meshed objects that use the curve.
When the user has finished defining a curve, Loft will compute the lengths of each segment and the total
length of the curve. Then, when the curve is used it will evenly distribute the meshed points along the total
length of the curve.

For example, if the user specifies the above “sd” curve and has a nodes circ parameter of three, Loft
will generate nodes at 0, 50, and 100 percent along the curve, and by coincidence, create the exact inputted
shape:

But, if the user instead had a nodes_circ parameter of four, Loft would generate nodes at 0, 33, 66,
and 100 percent along the curve, giving a cross sectional shape that looks like:
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By the way, Loft will show this same corner-rounding behavior when using library curves and the other
types of user-defined curves. The user may need to experiment with the number of nodes specified if hitting
the corners exactly is important. See project 5 for some additional ways to address this issue.

To finish this project, define a second interpolated curve (the M-shaped left side of the original figure)
and then use both curves:

curve interpolated toothout
start 0.0 1.0
line 1.0 1.0
line 0.25 0.0
line 1.0 -1.0
line 0.0 -1.0
object section Barrel
curvel sc
curve?2 sd
cl xscale 15.589
cl _yscale 15.589
c2_xscale 15.589
c2_yscale 15.589
nodes_circ 21
length 50
nodes_axial 30
components_axial 6
object section Barrel?2
curve?2 toothout
length 40
nodes_axial 25
object frame Ring Frames
# save
write vrml project3a.wrl
end

The complete file specifies two user-defined curves and then builds two sections. The first section blends
a semi-circle to the user’s semi-diamond shape. The second section blends the semi-diamond to the letter
“M” shaped “toothout” curve. Note that in the finished mesh the corner of the “sd” curve is sampled exactly,
as is the middle corner of the “toothout,” but the two intermediate corners are slightly rounded. Finally, a
frame object is added to the second section. The white lines in the figure show the circumferential beam
elements that make up the frame. They align precisely with the section mesh at each station.
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Part B: User-defined Compound Curves

A more powerful option for user-defined curves is the compound curve. As the name implies, compound
curves are combinations of previously defined curves. In fact, any previously defined curve can be used as
a child curve to build up a more complex parent compound curve. Any library curve, as well as any
previously defined interpolated, compound, or lofted (see project 3C below) curve, can be used.

Loft is currently unable to compute the intersections of two arbitrary curves, so the user must tell the
code where to stop using one child curve and where to start using the next. Loft can locate the intersection
points of circles and semi-circles with other circles or semi-circles. However, any other curve combination
will need user intervention to specify intersection locations.

The Compound Curve Concept

To picture the basic idea of a compound curve, imagine a sheet of rolled dough and a handful of inter-
estingly shaped cookie cutters. Imagine selecting a cutter and making an impression in the dough with it
but not removing the cookie. Then, select another (or perhaps the same) cutter and make another impression
that intersects the first. Continue this process as long as desired. Now imagine using a finger to re-blend all
of the internal lines leaving only the outer-most indention. This could produce a very strange shape. That’s
basically what the compound curve type allows one to do.

The “s” Parameter

Internally, Loft’s curves are generated based on fractional location along their perimeter. This perimeter
coordinate is called “s” and varies between zero and one. If the user generates a barrel object with three
nodes in the circumferential direction, Loft will generate nodes at s = 0.0, s = 0.5, and s = 1.0 on each curve
and linearly connect them.

The library curve subroutines’ only function is to accept an “s” value as input and to return the two-
dimensional coordinates of the point at that fraction along the curve. All library curves are defined with s
=0 at the 12 o’clock position, and s increasing as one moves clockwise around the curve to s = 1 at its end.

This is the semi-circle subroutine:

angle = (90.0 - 180.0 * s) * pi / 180.0;
X = cos (angle);
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y = sin(angle) ;
The full circle routine uses instead:
angle = (90.0 - 360.0 * s) * pi / 180.0;

Looking at these two code snippets confirms that s = 0 generates the (X, y) coordinates of a node on the
curve at 12 o’clock and a nominal radius of 1.0. Any other value for s generates the coordinates for that
fractional location along the curve.

Of Parents, Children, and Arcs

Return to the dough and cookie cutter metaphor above. Each time a cookie cutter was used a child
curve was created. Now picture the outer-most “parent” boundary line. Each portion of that curve contrib-
uted by a new child is called an “arc.”

The task when defining a compound curve is to sequentially specify the child curves necessary to
generate each arc of the final curve. In many cases, a particular child will be specified more than once since
it may contribute to more than one section of the parent curve.

For each child curve, specify the mnemonic for the chi1d curve, its center coordinates, and its radius.
The next step is to specify what portion of the chi 1d will contribute to the parent curve. This is done with
the sstart and sstop parameters. These are the “s” coordinates of the child curve that mark the
endpoints of the arc being specified. Optionally, Loft can automatically compute these parameters when
two circle or semi-circle children intersect.

For proper extruding and connection of panels, the final compound curve should start on the horizontal
centerline at the 12 o’clock position and trace clockwise around to the end of the curve. Typically, the end
will be either at 6 o’clock or back at 12 o’clock. Put some planning into the radius values used for the
child curves. Ideally, the resulting parent curve should have a nominal unit radius. This will make later
use of the compound curve and selection of x and y scale values consistent with the scale values used with
the library curves. Alternatively, the compound curve can be specified with actual dimensions. In such a
case, the x and y scale values for objects using those curves will be near unity. Just keep in mind that the
radii and center points specified when defining the curves will be scaled later by the meshing routines.

How Loft Uses a Compound Curve

Once a compound curve has been defined, Loft calculates the circumference of each arc (by a piecewise-
linear approximation for non-circular arcs) and sums them to compute the total circumference for the com-
pound curve. Each child’s contribution to the total circumference is used to determine what range of the
parent’s “s” coordinate for which it is responsible. When the compound curve code is asked for an (x,y)
coordinate based on a particular “s,” Loft will figure out which child is responsible for that location and
where on that child’s arc the point is. This information is used to compute a “local s parameter for the
child curve. The coordinates returned by the child are scaled and translated to generate the coordinate of

that spot on the parent curve.

A Compound Curve Example

50



The first example project is a half-model of a three-lobe tank cross section. Looking at the picture above
imagine making the shape by combining a semi-circle on the left with a full circle on the right.

Start with the user specified curve command, specify compound as the type of user curve, and supply
a curve name:

curve compound half3lobe

From the picture above, there are three “arcs” that make up the full compound curve. So, three child
blocks must be specified to define the curve. In this case the first and the last arc are made from the same
child, but this is not necessarily always the case. For this first project the semi-circle and circle library
curves are used. Since they are circular shapes, Loft can compute the intersection points rather than requir-
ing the user to specify the endpoints of each arc with the sstop and sstart parameters.

So, the first child is a semi-circle centered at (0,0) with a radius of 5:

child sc

x 0.0

y 0.0
radius 5.0

Then, the next arc uses the full circle library curve:

child cir
X 3.5
y 0.0
radius 4.0

The last arc is part of the first curve, so that block is copied here:

child sc

x 0.0

y 0.0
radius 5.0
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Finally, to generate the picture above, create a very short section object using the new compound curve

object section Barrel
curvel half3lobe
curve2 half3lobe
length 1
nodes_circ 51
nodes_axial 2
# save
write vrml project3bl.wrl
end

The next step is to generate a different compound curve. This time, using a half square and a circle to
generate a shape like this:

First, start a new compound curve:
curve compound roundbox

The mnemonic for a half (or semi) square is ss. The compound curve parameter radius can be used
for any child curve to scale it up from the default nominal unit radius. The two corners of the square occur
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at 25 and 75 percent along the curve. For the first arc only the top edge of the curve is needed, so the arc
goes from s = 0.0 to s = 0.25. Since sstart = 0.0 is the default, it does not have to be specified.

child ss

x 0.0

y 0.0
radius 3.0
sstop 0.25

Next, a full circle is specified with the same radius and an sstop parameter of 0.5:

child cir
x 3.0
y 0.0
radius 3.0
sstop 0.5

(Yes, a semi-circle could have been used here with no sstop parameter necessary.) Finally, to specify the
bottom flat arc, return to the semi-square and specify portion between s = 0.75 and 1.0.

child ss

x 0.0

y 0.0

radius 3.0

sstart 0.75

To generate a sample representation of the new compound curve just add:

object section Barrel
curvel roundbox
curve?2 roundbox
length 1
nodes_circ 51
nodes_axial 2

object frame Ring Frames

# save

write vrml project3b2.wrl

end
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Finally, create the picture at the top of this tutorial by combining the two compound curves in a file that
contains the two curve specifications. The ring frame object is optional but demonstrates that beams can be
created that will follow the interpolated shape between the two user-defined compound curves (they are the

white lines at either end and the center in the figure).

object section Barrel?2
curvel roundbox
curve2 half3lobe
c2_xscale 1.0
c2_yscale 1.0
length 20
nodes_axial 21
nodes_circ 31
components_axial 3

object frame Ring Frames

# save

write vrml project3b3.wrl
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end

Part C: User-defined Lofted curves

The third type of user-defined curve is the “lofted” curve. Loft generates, but does not save, curves
automatically when building a section object. At each station along the section object the program computes
the intermediate cross section as it transitions from the curvel end to the curve2 end. The lofted curve
type allows the user to do the same thing, with or without actually creating a corresponding section object.
Another way to look at these curves is that they create a cross-sectional slice shape from a (possibly virtual)
section.

To create a lofted curve, the user specifies the curves at that are to be blended to form the new cross
section. As with the compound curve, any type of curve including user-defined curves can be used as the
end shapes. The user then specifies the fractional position along the transition from curvel to curve2
with the station parameter. A station value of 0.0 would result in a curve exactly matching curvel.
A value of 1.0 would match curve?2. The example below uses 0.5, which is 50% along the transition from
1 to 2 and results in the cross section shown.

curve lofted lcurvel
curvel sc
curve?2 ss
station 0.5

object section test-section
curvel lcurvel
curve?2 lcurvel
length 0.1
nodes_axial 3
nodes_circ 30

write vrml project3cl.wrl

end
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One use of this curve type is to generate mid-section bulkheads:

# test of mid-section bulkheads
curve lofted lcurvel
curvel sc
curve?2 ss
station 0.5
object section test-section
curvel sc
curveZ ss
length 4.
nodes_axial 11
nodes_circ 29
object dome bulkhead
taper bulk
curvel lcurvel
relz -2
write vrml project3c2.wrl
end
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Care should be taken if node-stitching is desired to make sure that the bulkhead is positioned at a spot
on the section object with nodes. In the above example, an odd number of nodes was used axially to ensure
that a node line existed at the 50% axial station on the section. The lofted curve was defined as a 50% blend
of the two end curves. And the created bulkhead, which by default would have been positioned at the rear
(square end) of the section, had a re 1z of —2 applied to position it at the midpoint of a 4 unit long section.

If the desired position of the bulkhead is not at an easy-to-align position (e.g., 46.4543% of the section
length), then the best approach will be to create the lofted curve and use it to create a forward section
(curvel to the bulkhead), the bulkhead, and the aft section (bulkhead to curve?) as three objects rather
than two. This approach allows for easy and exact positioning and node-stitching at completely arbitrary
axial stations. The following input file generates the same result as before, but creates three objects:

curve lofted lcurvel
curvel sc
curve?2 ss
station 0.5
object section forward
curvel sc
curve?2 lcurvel
length 2.
nodes_axial 6
nodes_circ 29
object dome bulkhead
taper bulk
object section aft
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curve2 ss
length 2.
nodes_axial 6
write vrml project3c3.wrl
end

A very similar approach can be used to create a bulkhead that supports an internal structure such as a
tank. The bulkhead would be constructed using a zero-length section object with one end curve defined as
a lofted curve extracted from the desired position along the fuselage section and the other end as a lofted
curve extracted from the tank object. See the annotated TSTO orbiter example at the end of this manual for
a demonstration of this process.
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Project 4: A Tapered Four-Lobe Tank

This project represents a tank that might be used in a vehicle nose cone if very tight packaging were
necessary.

The first step to building this tank is to define our compound four-lobe curve.

Remember, our task is to define this curve in a clockwise fashion starting at 12 o’clock. Thus, we start
with the upper-right circle:

curve compound 4lobe
child cir

x 1.0

y 1.0

radius 2.0

The default for any child curve is to start at s = 0. This is not what we need here. Some trigonometry
will show that the 12 o’clock point is at (0.0, 1.732). This corresponds to 30° counter-clockwise from ver-
tical, or 330° clockwise. Using the full circle formula from project 4, we get:

sstart 0.916666667
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We don’t need to specify sstop since Loft can automatically calculate it for the intersection of two
circles. So, we can just specify our remaining three lobes:

child cir
x 1.0

y -1.0
radius 2.0
child cir
x -1.0

y -1.0
radius 2.0
child cir
x =-1.0

y 1.0
radius 2.0

Since we’re not specifying any further child curves, we again need to do some math to find that the point
(0, 1.732) is 30° clockwise from curve four’s start, resulting in:

sstop 0.083333333
To generate the rest of the pictured tank you can add:

object dome front
curvel cir
cl xscale 1.5
cl yscale 1.5
nodes_circ 37
length -1
nodes_axial 5
object section Barrel
curve?2 4lobe
c2 xscale 1.0
c2 yscale 1.0
length 5
nodes_axial 21
components_axial 3
object frame Ring Frames
object dome back
length 3
nodes_axial 13
# save
write vrml projectd.wrl
end
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Project 5: Controlling Circumferential Node Distribution

By default, Loft distributes nodes spaced evenly along a curve’s circumference (with a couple of minor
exceptions — see the breadbox and filleted square curves descriptions in the chapter 7). This is the best
general approach for producing a smooth finite element mesh, but it may fail to capture details in some
cases. This “sampling error” was discussed briefly in tutorial project 3 on creating interpolated curves.

This project discusses several advanced approaches to addressing problems with the circumferential
node distribution. Some are rather involved.

Approach 1: Change the Node Count

By far the easiest technique to address a sampling problem is to change the value of the nodes_circ
parameter. Generally, increasing this value will do a better job of accurately capturing any particular curve’s
shape.

But, if you have insight into where a particular feature occurs along a curve, choosing a value of this
parameter that places a node that percentage along the shape can also improve the modeling of that feature.
This may mean decreasing the nodes_circ value. The interpolated curve tutorial showed an example
where a value of 3 did a better job of catching a sharp point than a value of 4.

The annotated TSTO orbiter example demonstrates a case in which ensuring a node is placed at 40% of
the circumference of a curve is necessary for successful node merging. This leads to a requirement to use a
multiple of five plus one as the circumferential node count. A count of 6 will generate nodes at 0, 20, 40,
60, 80, and 100%. A count of 11 will generate nodes at 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100%, etc.
The “plus one” part of this formula is necessary because of the node at 0%.

Approach 2: Local s-distribution

A relatively easy way to address sampling problems with user-defined curves is to switch to local rather
than global s-distribution. Each child-arc of a user-defined curve contributes some fraction of the total
circumference of the parent curve. That fraction of the total nodes in the circumferential direction will be
used to sample that curve. In the default global s-distribution approach, the nodes are spaced evenly along
the parent curve.

The local s-distribution option moves the nodes that model each child-arc to be evenly spaced along the
child-arc. This has the effect of forcing a node to be generated at most junctions between child-arcs. If a
child-arc is too short to qualify for a node in the global approach, it won’t get one in the local approach
either. If the detail from that short child-arc is important, the user will need to resort to one of the other
approaches in this section to capture that detail.

The s-distribution approach is controlled by the parameters c1_s and c2_s. Thus, you can use different
approaches for each end of a section object. Valid values for the parameter are global (the default),
local, and copy.

The copy option indicates that the curve is to use the same s-distribution as used for the other end of
the section. This can produce less twisted elements if the local distribution on the other end of the section
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has significantly moved nodes. The use of the copy option only has practical effect if the other end is set to
local. (If both ends are set to copy, the global approach will be used on both ends).

Like all circumferential parameters, the settings of these two parameters are used to change the defaults
for all subsequent objects. Be sure to reset their values when they are no longer needed. Be careful using
these parameters when adjacent objects are expected to stitch together. Nodes that have different spacing
are unlikely to be merged accurately. The copy option is particularly likely to create these kinds of prob-
lems, as it may copy its s-distribution from a completely different curve than the adjacent object.

Approach 3: Sub-Curves

A rather involved approach that gives much more control is to create a user-defined curve, then use
Loft’s debug output to break the curve back into “sub-curves” that are used to generate partial objects. This
is a lot more work but allows the user to specify exactly how many nodes are to be used to represent each
child-arc of the original parent.

If you look at the program debug output that is generated when using the “roundbox” compound curve
created in the previous tutorial, you’ll see this summary of the calculations that Loft made to use the curve.
For each child-arc, the output lists its circumference, the local “s” start and end points of the arc, and the
global “s” start and stop points:

finish ccurve: Summary of Compound Curve roundbox

child circ local sstart local sstop global sstart global sstop

0 1.000000 0.000000 0.250000 0.000000 0.194305
1 3.141560 0.000000 0.500000 0.194305 0.804724
2 1.005000 0.750000 1.000000 0.804724 1.000000

End of Summary for Compound curve roundbox

The global “s” start and stop points indicate what portions of the parent curve are contributed by each
child. We can use those values to extract just those contributions into new compound curves:

curve compound rb-arcl
child roundbox

sstart 0.0

sstop 0.194305

curve compound rb-arc?
child roundbox

sstart 0.194305

sstop 0.804724

curve compound rb-arc3
child roundbox

sstart 0.804724

sstop 1.0

(Remember that the “roundbox” curve definition needs to be copied into this new input file — user-
defined curves are not added to Loft’s internal library permanently.)
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Now, each of these new sub-curves can be used to create partial objects with much more control over
node density on each arc. Here’s an example creating an extruded “roundbox” object with varying mesh
densities.

object section arcl
curvel rb-arcl
curve?2 rb-arcl
length 5
nodes _circ 11
nodes_axial 5

object section arc?2
curvel rb-arc?
curve?2 rb-arc?
nodes_circ 31

object section arc3
curvel rb-arc3
curve?2 rb-arc3
nodes _circ 21

This figure shows the three new curves separately. The bottom section does have twice the mesh density
of the other two sections, and nodes are created exactly at the junction points of the arcs. But, the automatic
positioning in Loft is putting each new section object immediately behind the previous one. To fix that, add
a“relz —5” parameter to both “arc2” and “arc3.” Notice that no positioning is needed in the x or y
directions, since the new curves are already positioned correctly in x and y. Once that is done, the result is:
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This sub-curve technique gives the user a lot of additional control on mesh density and locating im-
portant nodes, but it is a lot more effort than the other approaches. The main drawback in this approach is
the difficulty in obtaining compatibility with meshes generated without sub-curves. Generally, objects gen-
erated from sub-curves can only be effectively attached to other sub-curve-based objects without a lot of
additional work.

Finally, note that if the goal of this sub-curve project was only to double the mesh-density on the bottom
plate of the curve, the same result could have been accomplished with just two sub-curves. The first would
be the top plate and round section (from s = 0.0 to 0.804724) and the second would be the bottom plate.
The sub-curve approach can be used to grab any portion of another curve.
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Project 6: Introduction to Regions

The Loft command region contains a powerful set of tools to allow the user to query, modify, and/or
mark portions of the current stack. This tutorial illustrates a small portion of these capabilities. Chapter 3
of this manual documents the full set of region definition and operation parameters.

Start with an ogive-shaped nose cone with a short barrel. The colors on the picture indicate the two
property sets used in the model. Also note the beams running the length of the model that represent the
separation joint for the shroud.

~
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object dome Nose
curvel cir
cl xscale 1.0
cl yscale 1.0
length -550.000
nodes circ 41
nodes axial 35
components circ 1
components axial 1
taper ogive
paraml 55.
param2 983.230
param3 198.0
zdist 0.73
transz 618.0

object dframe Sep Joints
count 3
align axial

#

object section Barrel
length 200.0
cl xscale 198.0
cl yscale 198.0
c2 xscale 196.0
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c2 yscale 198.0
nodes axial 12
components axial 1
object frame Bottom Ring
count 1
position 1.0
object frame Top Ring
count 1
position 0.0
object frame Sep Joints
count 3
align axial
# rotate so that x is aft
move
roty 90

Next, use the region mode to specify a volume and change the element property settings within that
volume. Here, the goal is to make the elements on the very tip of the nose into a different component for
later sizing purposes:

# Nose Cap

region
iadd xcyl 0.0 0.0 0.0 30.
pprem Nose Sep
setpp Nose Cap

There are two parts of defining this region. The inclusive add parameter iadd adds all elements that
have any nodes within the specified cylindrical area. In this case, the beam elements that represent the
separation joint should not be updated. So, the remove by physical property name parameter pprem is used
to delete those elements from the region specification (but not from the stack!). Finally, the remaining
elements are changed to a new physical property name using the setpp parameter.

The first two parameters are “passive” parameters. They have not changed the stored stack data in any
way. The last parameter, setpp, changed the stored stack data. This is an example of an “active” region
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parameter. Any number of passive parameters may be performed to set up and query a region. But for the
sake of clarity, only one active parameter is allowed per region definition.

The next step is to stencil out a door on one side of the barrel. This is very similar to the previous
example. However, we’ll go one step further and specify a doorframe of panel elements around the door
itself. This requires two region parameters to perform the two active operations.

# Cut out a door with frame border
region
iadd box 732. 0. 198. 85. 72. 120
setpp Large Door Frame
region
eadd box 732. 0. 198. 85. 72. 120
setpp Large Door

Note that the two add parameters use exactly the same coordinates and dimensions. The difference is
that the second operation uses the exclusive add parameter eadd rather than the inclusive add parameter
iadd. The eadd parameter requires that all nodes for an element fall in the specified volume while the
iadd parameter requires only one node to be in the volume. This difference makes building these border
frames easy. Note that it is possible for the volume to exactly intersect a line of nodes and produce identical
results along an edge for the two parameters.

The region command can also be used to produce partial models. The following code creates an output
file that does not contain the door or door frame:

#

region
ppadd Large Door Frame
ppadd Large Door
inverse

rwrite vrml projectéba.wrl
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The additional input lines add the door and frame to the region, then invert the region membership.
Finally, an output file containing just the elements in the region is written. These elements will have the
same indices and properties as they do in the full model. Thus, this approach can be used to generate models
for tasks such as mapping aerodynamic loads to the exterior elements of a model. The resulting load data
can then be applied to the full model (with interior elements) with no element renumbering required.

For a more complex model with many more objects, the object level mark command can be used to
arbitrarily apply labels to each component such as “OML” or “LH2.” Objects can have any number of
marks. Then the region-mode parameterss mkadd and mkrem can be used to add/remove groups of com-
ponents by these labels.
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Project 7: Variables and Math

Loft supports two types of variables: “user-defined” and “system.” This capability greatly expands the
parametric power of the program by allowing critical dimensions or values to be set once and then used
repeatedly. If a requirement changes, only that single value must be updated. The basic math support in the
Loft input file reader adds even more flexibility. Named variables can also significantly improve input file
clarity and reduce the chance of errors.

Input Line Math

Loft supports simple math operations on an input line. These operations are addition, subtraction, multi-
plication, and division. The corresponding operation symbols are the normal “+,” “-” “*” and *“/.” A space
must be used on either side of the operation symbol. Any number of operations can be performed on a line.
All math calculations are performed left to right, with no preference given to multiplication or division.
Parentheses are not supported. Multiple variables defined on multiple lines can be used to perform separate
parts of a complex computation where order must be controlled.

Since computation of math operations is performed left to right, the expression “50 + 10 * 3” evaluates
sequentially as:

50+10*3=60*3=180
User-defined variables

A variable can be defined in a Loft input file by using the define command. Any desired name (with
no spaces) can be used for the variable name. To reference a user variable, the dollar symbol, “$,” is placed
before the variable name. These variables can be used in any Loft input command or parameter as needed.

Here are some examples:

define varl 50.0
define var2 10.0
define var3 S$varl + S$Svar2 * 3.0
define varl 40.0

The user variable var3 is computed using the previously defined var1 and var2 variables. It has the
value of 180.0 (see discussion of input line math above). The last example redefines var1. Any later ref-
erences to that variable will use the new value.

System Variables

System variables are the collection of Lofi’s current default values for object parameters. These values
are continuously updated as the user specifies parameters. Thus, there is ho define command, per se, to
set these values. Rather, they are set through the normal use of Loft.

System variables are referred to by a specific name (see a chart of all available variables chapter 7 of this
manual). To reference a system variable an “at” symbol, “@),” is placed before the variable name.
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Examples:

object wing demo
span 10.0
chord @wing.span / 2.0

Math Functions

Loft supports some standard math functions including trigonometry, roots, etc. See the math function
chart later in chapter 7 of this manual for a full list of supported functions. Math functions are called by using
the percent symbol and the function mnemonic. They must be placed at the end of a line after any variable
or arithmetic. Multiple functions can be used on a single line. Each function will be applied to the preceding
number in the order read. Note that the @pi system variable could also have been used rather than being
defined as a user variable.

Examples:

define pi 3.14159265359

define four 4.

define two $four %$sqgrt

define zero $pi %sin

define negone S$Spi %cos

define zerocagain Spi * S$pi %$sqgrt %sin

Logical Operations

Loft supports six logical operations “>,” “>=" “<” “<=" “="" and “!=" (greater than, greater than or
equal, less than, less than or equal, equal, and not equal). When they are encountered, the values will be
compared and a 1.0 will be returned if the equality/inequality is true and a 0.0 will be returned if it is false.
Remember the left to right sequential operation of the math preprocessor. If complex comparisons are de-
sired, use multiple lines and variables to construct the desired result. These operations are most commonly
used with the if flow control command.

Example: A Compound Wing
Loft supports only trapezoidal wing planforms. More complex shapes can be built up from multiple trap-

ezoids and the math and variables capability of Loft can be used to make this assembly easier. For this
example, we’ll construct a swept wing with a large root strake.
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Math is used first to calculate the strake’s taper ratio directly from the root and tip chords rather than
requiring the file creator to do the calculation. Then, the chordwise mesh density of the outboard section is
computed using the system variables that contain the outboard section’s root chord and the strake’s taper
ratio.

object wing strake
chord 900.
span 80.

# Use math to calculate tip/root = 0.48
taper 432. / 900.
sweep 80.0
rootnaca 2212
tipnaca 2208
Sparpos reset
sparpos 10.
sparpos 36.
sparpos 80.
ribpos reset
ribpos 33.
ribpos 66.
notip 1
meshchord 0.02
meshspan 0.06
meshthick 0.02

#

object wing mainwing
chord 432.
span 251.

# to match strake, divide its mesh value by its taper ratio = 0.0416
meshchord @wing.mesh_chord / @wing.taper
taper 0.37037
sweep 45.0
naca 2208
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relx 80.
relz 453.70255

An Important Caveat

The math and variable support described in this project is implemented as a preprocessor that immediately
replaces all the variables with their corresponding values and performs all the requested calculations before
handing the now conventional input line to the main Loft user interface. Objects are only actually created
when a new command is read and Loft determines that the user is therefore done with specifying parameters
for that object. Finally, the positioning system variables (@t ransx, etc.) are only updated after an object
has been created and merged into the current stack.

The combination of these three factors can lead to some confusion. Consider the following code example,
which will result in different values assigned to the two user variables varl and var2.

object section fuselage
length 10

define varl @transz

define var2 @transz

Loft will read these lines in order. It will start a new section object and define its length to be 10. Then it
will read the first de fine command and the preprocessor will replace the @t ransz system variable with
the value of 0. Then, the main Loft code will determine that a new command has been specified and thus the
user is done with the previous object. The section object will be created and the @t ransz system variable
will be assigned a new value of 10. Next, Loft will actually create the var1 variable and assign it the value
of 0 that the preprocessor had already placed on the input line. Finally, the last de fine command will be
read. The preprocessor will replace the variable @t ransz with the value 10 and then the main code will
assign that value to var2. Thus, for very subtle reasons, the values of var1 and var2 will be different.

A work around for this issue is to put another command between the last object parameter and the first
define command. That command will trigger the generation of the object and the updating of the
@transz system variable before the definition command is read and handed to the preprocessor. For in-
stance, just adding the command nu11 before the var1 definition would result in both variables have the
same, expected, value of 10.
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Project 8: Bodies of Revolution, Toroids, and Helixes

Any curve type can be used to create a body of revolution in Loft. Five parameters in the section object
type can be used to create bodies of revolution, toroids, and helixes. These parameters are radius, cl_ro-
tation, c2_rotation,cl_yoffset,and c2_yoffset.

Some caveats for these objects: These meshes will not stack well in a sequential object generation (like the
full examples at the end of this manual). Currently frames won’t generate on the rotated object except at the
initial curvel position. Finally, the model will not be aligned with the center of rotation at zero; it will need
to be moved if that is desired (use transx -1 * <radius>).

The parameter radius is used to specify the desired distance from the y-axis aligned rotation axis to the
x=0 point on the curve being extruded. On half curves in the built-in library, x=0 on the line of symmetry of
the curve (where the missing mirror half would start). For full curves, x=0 on the centerline of the curve.

The simplest body of rotation using a half curve is illustrated below where a semi-breadbox (“sbb”) library
curve (square bottom half, circular top half) is rotated 360 degrees. The Loft input file to generate this mesh
is:

# Body of revolution

object section bor
curvel sbb
curve? sbb
nodes axial 36
nodes circ 21
length O
radius O
cl_rotation O
c2_rotation 360

# save

write vrml bor.wrl

end

The two rotation parameters are used to specify the arc in degrees that the corresponding end is rotated.
Using 0 and 360 will produce a full body of revolution.
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By using a much higher value for the rotation, such as 3600
degrees (10 revolutions), and a yof fset at one end, a helix can
be produced.

# Helix

object section Spring
curvel cir
curve? cir
nodes axial 360
nodes circ 10
length O
radius 2
cl_rotation O
c2_rotation 3600
c2_yoffset 30

move
transx -2

# save

write vrml spring.wrl

end

Any Loft curve type can be used including user-defined curves. Curvel and curve2 can even be differ-
ent, which will work fine for a helix or partial body of revolution but will not stitch well in a full 360 body.
The examples below used a variety of cross section curves (cir, fillet, and squ), 360-degree rotation,
a radius value higher than one, and zero yoffset. Note the move command that aligns the x=0 axis
with the center of the finished object. Only one input file is shown.

# Simple Toroid
define myrad 3.0
object section tankl
curvel cir
curve? cir
cl yscale 1.5
c2_yscale 1.5
nodes_axial 36
nodes circ 20
length O
radius Smyrad
cl_rotation O
c2_rotation 360

move
transx -1 * $myrad

# save

write vrml toroid.wrl

end
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Project 9: Program Flow Control

Program flow control is the ability of the user to direct Loft to read/operate on its input in a way other
than sequential. This can be a jump to a different section of the input file, a loop that repeats a block of
input, a conditional execution of some input, or a subroutine that can be called with a different input.
These capabilities are implemented with a very minimal but functional set of commands.

Flow control requires the use of Loft’s variable and math functionality (see previous tutorial). The logi-
cal operators (>, <, >=, <=, =, ! =) are particularly useful. The logical operators return 1.0 when the
comparison is true and 0.0 when it is false.

The 1inelabel command is the base for most of the program flow control capabilities. It does not
perform any action other than marking a location in the input file with an identification line number. The
argument for the command is a unique value. If duplicate line numbers are assigned, Loft will use the ear-
liest position in the input where that number is encountered and ignore later occurrences. Variables can be
used to specify line numbers but exercise care with changing those values.

The goto command is the next program flow control command. Its argument is a line number. When
read, Loft’s execution will jump to the specified 1inelabel line. This can be before or after the current
execution location. Line numbers can be used in external input files that are inserted with the include
command, but Loft will not be able to jump forward into an external file that has not yet been read; it can
only jump backwards into a previously included file.

I£ isthe conditional program flow command. Its argument is most commonly a logical comparison
(e.g., “if $i > 5”)but can be anything that produces a value. If the argument value is non-zero, the
result is treated as true and the next input line is read and executed. If the value is near zero (defined as
between +/- 1.0E-4 to allow for round off errors), the result is treated as false and the next input line is
skipped.

These three commands enable powerful control of the flow of Loft’s execution. They can be combined
to create loops, branching execution, functionality like the switch/case logic in the C programming lan-
guage or the “on/goto” logic in the BASIC programming language, etc.

The i £ command can be used to support multiple configurations of a model in a single input file. The
TSTO orbiter example included at the end of this manual defines a variable called fullvehicle near
the top of the file. If the value is set to zero (false), then a half vehicle is generated. If the value is set to
one (true), a full vehicle is generated. See the annotated example for more details.

To create a loop, start by initializing a counter variable. Then, add a line number that is the beginning of
the loop. Now, write the input that you want to repeat several times. At the end of that input, increment
the counter variable. Now, do a comparison to see if the counter is more than the desired number of loop
executions and either loop back to the top or exit the loop and continue with the rest of the file. Here is an
example of doing that:

define i 0

linelabel 10
<do something we want to repeat>
define i $i + 1

if $1i <=5
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goto 10
<rest of input file>

Care should be taken to avoid infinite loops. Ensure that the counter initialization is outside the loop and
that the counter incrementing is inside the loop. This example will perform the commands within the loop
five times. One application of loops could be to make an array of identical tanks. The user would need to
make sure that each new tank was rotated or translated to a different location inside the loop to avoid du-
plicates being automatically merged.

To have Loft select between multiple potential blocks of code, create a destination line number variable
and math calculations to set that variable to one of several possible values.

define destination $length * 10.
goto $destination

This approach can produce program logic that is similar to “switch/case” in the C programming lan-
guage or “on/goto” in the BASIC language. Just ensure that line numbers are set up for all possible values
of the destination variable.

The include command is used to insert lines from an external file into Loft’s input stream. It can be
used for many reasons, including file readability, defining a set of variables that is used by multiple pro-
jects and needs to be consistent, or as a subroutine. A simple example of this subroutine approach is
shown below:

# main program

define radius 10

include generate tank.txt
write vrml rlOtank.wrl
new

define radius 20

include generate tank.txt
write vrml r20tank.wrl

And the generate_tank.txt file that is being included:

# generate tank.txt file
object dome tanktop
cl xscale Sradius
cl yscale Sradius
length S$radius * -1.0
object dome tankbot
length $radius

Here the included file enables the creation of two spherical tanks with different radii without having to

create duplicate code. Note that the output files have different names and the write command is not in
the subroutine.
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Project 10: NASTRAN bonus features

A collection of Loft features was designed to add analysis capabilities beyond mesh generation. These
features are currently only fully applicable to NASTRAN output files. A few features are written to
VRML files. Output support for other formats may be added in the future.

These features make use of Loft’s region mode capabilities that can mark nodes and elements based on
their object names (e.g., “main wing”), portion of an object (e.g., “upper skin”), or geometric location.
Combinations of these factors can be used to focus in on only a few nodes and/or elements for which ap-
plying analysis entities is desired.

These analysis entities include forces, pressures, temperatures, boundary conditions, rigid boundary ele-
ments (RBEs), and point masses. A single NASTRAN case control block that references the loads and
boundary conditions can also be generated and written.

The annotated TSTO orbiter example included at the end of the manual makes extensive use of each of
these capabilities. This tutorial shows the use of a few representative features necessary to generate a
wing model, apply a uniform pressure to the upper skin, constrain the model at the root-spar nodes, and
write a ready-to-run NASTRAN deck for the loaded model.

First, define the wing. Since we’ll be constraining the nodes on the spar root, we need to request that
spars be generated. This example uses a biconvex airfoil with the default 10% thickness to chord ratio.

object wing demo wing
span 30
chord 20
taper 0.5
sweep 20
nspars 2
nribs 3
naca bicon
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meshchord 0.5
meshspan 0.5
meshthick 0.5

Next, let’s list some of the groups and properties that were automatically created by Loft to go with this
wing.

list groups
list pprops

These commands are optional. They produce output to the screen (shown in text box below) that will be
helpful in creating the load and boundary condition sets that we’ll do next.

Read line: list groups

Group list for mesh demo wing:

0: demo wing ROOT NODES members 4, type nodes, id 0
1: demo wing TIP NODES members 4, type nodes, id 1
2: demo wing ROOT SPAR NODES members 6, type nodes, id 2
3: demo wing ROOT RIB NODES members 25, type nodes, id 3
4: demo wing CARRYTHR NODES members 0, type nodes, id 4
5: demo wing SKIN UP ELEMS members 84, type elems, id 5
6: demo wing SKIN LOW ELEMS members 84, type elems, id 6
7: demo wing SPAR ELEMS members 56, type elems, id 7
8: demo wing RIB ELEMS members 36, type elems, id 8
9: demo wing QUARTER CHORD VECT members 0, type nodes, id 9
10: demo wing ALL NODES members 219, type nodes, id 10
11: demo wing ALL PANELS members 260, type elems, id 11

Read line: list pprops

List of physical properties:
demo wing RIB
demo wing SPAR
demo wing SKIN UPPER
demo wing SKIN LOWER

w N = O

End of physical property list.

Now, we can use this information to create a pressure load set and a root-spar-node boundary condition
set. For the pressure, we specify the upper skin element group, a value of 1.0 for a unit load up, and a
NASTRAN setid of 100.

object press upper skin 1lift
groupl demo wing skin up elems
value 1.0
setid 100

For the root boundary conditions we specify that they are to be applied to the root spar nodes and are to
constrain the translation in all three directions (degrees of freedom 1, 2, and 3) and use a setid of 200.

object bc root bc
groupl demo wing root spar nodes
doflist 123
setid 200
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Then, we set our NASTRAN parameters to refer to the two previous setids and to use NASTRAN solu-
tion 101:

nastran sol 101

nastran loadset 100
nastran spc 200

And finally, we write out the generated file in two formats:

write vrml projectlO.wrl
write nastran projectlO.bdf

After Loft is run using this input file, the resulting bdf file can be imported into Patran to inspect the
load and boundary conditions and run in NASTRAN to produce stress and deflection results.

Upward unit pressure load created by Loft

Read through the annotated TSTO orbiter example at the end of this manual for more detailed and com-
plex generation of NASTRAN analysis entities including forces, point masses, and rigid boundary ele-
ments (RBES).

Root spar translation boundary conditions
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Project 11: Automatic Stitching

Loft will automatically merge nodes and elements that are coincident. Stacks of objects that form a fuse-
lage will generally align and automatically merge as long as node count and distribution are the same.

The meshes on wing roots and fuselage sidewalls are inherently different; there are not coincident nodes
to automatically merge. Aerodynamically, a fairing is often used to blend the wing to the fuselage. But,
the structural loads are generally designed to be carried by wing spars connected to fuselage bulkheads
and/or ring frames. Since Loft is a structurally focused program, the second approach is the recommended
technique and the one that will be demonstrated in this project.

The annotated TSTO orbiter model in the examples at the end of this manual uses the techniques that
this project will demonstrate to attach both its wing and its vertical tail. It does this parametrically so that
if vehicle dimensions change or the user switches between half and full models, the stitching still works.
This example demonstrates the approach with a much simpler configuration.

The steps necessary for this approach are:
1. When building the model consider the structural load paths between the wing and vehicle
body. Position bulkheads and/or ring frames near the wing spars.
2. Isolate and mark the portions of the spars and bulkheads that are going to be connected and
use the region “corner” operation to identify the corners of the marked areas.
3. Create rigid boundary elements (RBESs) that connect the identified corners.

For this simplified case, we’re going to model a wing and only the section of the fuselage that is beside
the wing. Two spars and two bulkheads will be positioned at one-third and two-thirds of the chord. These
will then be marked and connected to each other. For visualization purposes, an axial offset will be applied
to the bulkheads so that they do not perfectly align with the spars. This will allow us to better see the
generated RBE elements. This offset can be modified to zero if desired.

define chord 20
define offset 3
define meshdens 1.0
# derived dimensions
define fuserad S$chord / 2.
define lengthl 33.3333 - S$Soffset * Schord / 100.
define length2 66.6666 + $offset * $chord / 100. - $lengthl
define length3 $chord - $lengthl - $length?
list variables
# make fuselage in 3 sections with a bulkhead between each
object section fusel
length $lengthl
cl xscale Sfuserad
cl yscale S$fuserad
c2 xscale S$fuserad
c2 yscale $fuserad
nodes axial $lengthl * Smeshdens
nodes circ 20 * Smeshdens
object dome bulkheadl
taper bulk
nodes axial 10 * Smeshdens
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object dframe ringl
object section fuse?
length Slength?
nodes axial $length2 * Smeshdens
object dome bulkhead?2
taper bulk
nodes axial 10 * Smeshdens
object dframe ring2
object section fuse3
length Slength3
nodes axial $length3 * Smeshdens
# make wing
object wing mywing
span S$chord * 1.5
chord $chord
taper 0.5
sweep 20
nspars 2
nribs 3
wingbox $fuserad
meshchord 0.5 * S$Smeshdens
meshspan 0.5 * Smeshdens
meshthick 0.5 * Smeshdens
transz 0.0
transx $fuserad

The wingbox and bulkheads that we want to stitch together:
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Now that the model is built with the spars and bulkheads positioned close to each other (step 1 in our
process) we can prepare to perform step 2 which is identifying the nodes that we want to connect. To help
with marking the desired stitching areas, a list of automatically generated groups is requested:

list groups

The output from this command is written to the screen or piped to a file using the windows ‘“>" pipe
command (e.g., loft projectll.txt > projectll.out). Itlistsseveral groups for each of the
objects in the model. We are particularly interested in the nodes on both bulkheads and on the carry-through
spars. Looking at the group list, we can see the groups we want:

8: bulkheadl ALL NODES members 91, type nodes, id 8
17: bulkhead2 ALL NODES members 91, type nodes, id 17
34: mywing CT SPAR ELEMS members 16, type elems, id 34

Another option is to use the carry-through nodes.

26: mywing CARRYTHR NODES members 99, type nodes, id 26

It would be a little more work to isolate the desired spar nodes from the carry-through nodes group. Your
groups could have different id numbers, but the names are what we need for the next step and they should
not change. This listing of the groups is not required for the stitching operation but is included as part of
this tutorial project to clarify where the names used in the next step were obtained.

The next set of lines performs step 2 for the forward bulkhead. All of the nodes on the bulkhead are
added to a region, then only the nodes that are vertically within 1/5 of the radius from the center are re-
tained using two ikeep operations. The division by 5 in this step could be changed to another value if a
broader or tighter area were desired. The bulkhead mesh density will also have an impact on this choice
because at very low mesh densities nodes may or may not exist in the specified region if it is very narrow.
A broader area (dividing by 3 or 4 instead of 5) would be more robust but perhaps less realistic.

region
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mkadd bulkheadl ALL NODES
ikeep yle S$fuserad / 5.

ikeep yge -1.0 * Sfuserad / 5.
corner bulklattach

The corner operation identifies the four nodes that are still in the region and that are the most distant
from the centroid of the region in each coordinate quadrant. The nodes are added to a group hamed
“bulklattach” and will be used as connection points. The carry-through spar nodes are marked in a
similar process. Here the i keep operation keeps the spar nodes that are in the front half of the model.

region
mkadd mywing CT SPAR ELEMS
ikeep zlt S$chord / 2.
corner winglattach

The connections for the rear spar/bulkhead pair are marked similarly using the second bulkhead and a
“zgt” inequality rather than “zlIt” to select the rear half of the model.

region
mkadd bulkhead?2 ALL NODES
ikeep yle $fuserad / 5.
ikeep yge -1.0 * Sfuserad / 5.
corner bulk2attach

region
mkadd mywing CT SPAR ELEMS
ikeep zgt Schord / 2.
corner wingZattach

We have completed step 2 of our stitching process. Step 3 is performed easily by referencing the four
groups of corner nodes that we have created:

object rbe forward attach
groupl bulklattach
group?2 winglattach

object rbe aft attach
groupl bulk2attach
group2 wingzattach

The very last step of the project is to save the model. The new RBEs will be visible on the VRML
model as lines. The spar nodes at the wing root are just outside the fuselage, so the outboard RBES are
only partially visible from the inside. Resetting the o f fset variable to zero to make the spars and bulk-
heads coplanar would make the RBEs very short and difficult to see but is what would probably work
best for analysis.

write vrml projectll.wrl
write nastran projectll.bdf
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Diagonal green lines are the new RBEs connecting the wing to the bulkheads

84



Chapter 3: Regions

The region tool set is a feature of Loft that allows the user to query or modify a section of the current
stack. Regions are inherently temporary constructs, but their effects may include permanent changes to the
mesh by deleting parts, changing property assignments, etc. Regions can also be used to query statistics on
the mesh and produce reports.

There are two parts of the region process. The first is to specify what nodes and elements make up the
region. The second is to perform the desired task(s) on those nodes and elements.

Defining a Region

There are multiple ways to identify nodes and elements to add to a region. A control volume such as a
box or sphere can be specified. A coordinate inequality can be used to keep or remove everything on one
side of a cutting plane. A material property, physical property, or automatically generated group can be
used. A name previously used in a Loft mark command can be accessed to add those elements to a region.
Multiple combinations of these options can be strung together.

For instance, one could define a region as all elements marked as “OML” that do not have “main wing”
as their physical property. While exact syntax will be discussed later in this chapter, the logic of this oper-
ation would be “add all elements marked oml” followed by “remove elements with physical property main
wing.”

Acting on a Region

There are two classes of actions that can be performed on a region. Passive actions are actions such as
queries that do not change the mesh data. Active actions modify the mesh data in the region by changing
properties, deleting nodes or elements, etc. Only one active action can be performed in any particular
use of the region command, as the node and element lists that Loft uses to define that region will become
stale. A new region command can be started to perform additional active operations.

Like the stack-level move command operations, the region parameters are acted upon sequentially.
Thus, one could add some elements, do a (passive) query, add some more elements, do another query,
remove some elements, query, and then perform an (active) cut action to complete the current region com-
mand.

Region Commands

Region mode is entered by issuing the Loft command region. Any number of region-mode operations
can be specified in sequence until another Loft command is encountered. After the first active operation,
any further operations will be ignored and a warning to that effect issued. A new region command must
be started for each additional active operation that the user wishes to perform. All region commands
reset the initial list of selected nodes and elements in the region to be empty.

Mesh Selection Parameters

These parameters add or remove elements and nodes from the current selection list. They are all passive.
85



The volumetric selection parameters identify nodes that fall in the specified volume. Loft then adds all
elements that use those nodes to its selection list as well. This element addition can be “inclusive,” resulting
in the addition of any element that has at least one of its nodes in the specified volume, or it can be “exclu-
sive,” where all element nodes must be in the volume for that element to get added to the selection list.

The property selection parameters identify elements that have the specified material property, physical
property, or Loft mark. Inturn each node that those elements use is also added to the selection list.

Volumetric Selection Parameters

iadd - Inclusive node addition. Adds all nodes that fall within a specified volume of space. Any ele-
ments that use any of these nodes will be added as well. VVolumes are specified by use of simple three-
dimensional shapes including spheres, cylinders, and boxes. Cylinders are aligned with an axis and are
infinite in length. Warning: Any beams whose alignment nodes fall in the specified volume, even if the
beam end points themselves do not, will also be added. The type “all” will add all nodes (and thus all
elements) in the current stack. No dimensions are required for the “all” type.

For the coordinate comparisons (xeq, xgt, xge, xIt, xge, etc.) a single value is specified and the node is
added if its coordinate meets the criteria. The planar division options (pX, nx, etc.) represent positive or
negative coordinates and do not require a value. They are just a shortcut; “px” is treated as “xgt 0.”

Usage: iadd <volume type> <center of volume> <dimensions of volume>
Or: iadd <coordinate comparison type> <value>
Or: iadd <planar division comparison type>
Examples: iadd sphere 10. 20. 25. 5.
iadd yge -4.3
iadd nx
Volume Type = “all,” “sphere,” “xcyl,” “ycyl,” “zcyl,” “box”
Coordinate comparison type = “xeq,” “yeq,” “zeq,” “xgt,” “ygt,” “zgt,” “zge,” “yge,” “zge,” “xIt,” “ylt,”
“zlt,” “xle,” “yle,” “zle”
Planar Division comparison type = “px,” “py,” “pz,” “nx,” “ny,” “nz”
Center = X, y, z coordinate of center of volume
Dimensions = radius for sphere and cylinders,
= xlength, ylength, zlength for box.
Value = coordinate to be compared to

irem — Inclusive node removal. Removes from the selection list all nodes that fall within a specified
volume of space. Any elements that use any of these nodes will be removed as well. This operation does
not delete anything from the mesh, it just removes the specified items from the region selection list.
Warning: Any beams whose alignment nodes fall in the specified volume, even if the beam end points
themselves do not, will also be removed. The type “all” will remove all nodes (and thus all elements) in the
current stack. Arguments and usage are the same as the i add parameter .

eadd — Exclusive node addition. Adds all nodes that fall within a specified volume of space. Any ele-

ments with all of their nodes in the selection list will be added as well. Arguments and usage are the same
as the 1add parameter .
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erem — Exclusive node removal. Removes from the selection list all nodes that fall within a specified
volume of space. Any elements with all of their nodes in the volume will be removed as well. Arguments
and usage are the same as the iadd parameter .

ikeep/ekeep — Inclusive/exclusive node removals that are the inverse of the i rem/erem commands.
In other words, nodes/elements that fall within the specified volume are retained and those that do not are
removed. Thus, “1keep all” has no effect. Arguments and usage are the same as the iadd parameter .

Property Selection Parameters

mpadd — Add elements to the selected list based on their material property name. The material property
name is used to indicate where on the component the elements reside and vary based on the compo-
nents_axial and components_circ object variables. All nodes used by the elements are also added
to the selected list. Use the “1ist mprops” command to see current project material properties.

Usage: mpadd <material property name>
Example: mpadd SB 0 CB O

mprem — Remove elements from the selected list based on their material property name. The material
property name is used to indicate where on the component the elements reside and vary based on the com-
ponents_axial and components_circ object variables. All nodes used by the elements are also
removed from the selected list. If some of those nodes are used by other elements that are still selected, an
update operation may be desired.

Usage: mprem <material property name>
Example: mprem SB 0 CB 0

ppadd — Add elements to the selected list based on their physical property name. The physical property
name is in most cases the object name given by the user. All nodes used by the elements are also added to
the selected list. Use the “1ist pprops” command to see current project physical properties.

Usage: ppadd <physical property name>
Example: ppadd lox tank

pprem — Remove elements from the selected list based on their physical property name. The physical
property name is in most cases the object name given by the user. All nodes used by the elements are also
removed from the selected list. If some of those nodes are used by other elements that are still selected, an
update operation may be desired.

Usage: pprem <physical property name>
Example: pprem lox tank

mkadd — Add elements to the selected list based on their marks. Marks are set using the ma rk parameter
during object creation. An object can have any number of marks. By default, it will have one that contains
its object name. In preparation for the use of this command the user can assign marks such as “OML,”
“fuselage,” “tankage,” “bulkheads,” “wings,” etc. and then add and remove multiple objects based on the
chosen marks. All nodes used by the elements are also added to the selected list. Use the “1ist groups”
command to see current project marks/groups/labels.
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Usage: mkadd <mark name>
Example: mkadd OML

mkrem — Remove elements from the selected list based on their marks. Marks are set using the mark
parameter during object creation. An object can have any number of marks. By default, it will have none.
In preparation for the use of this command, the user can assign marks such as “OML,” “fuselage,” “tank-
age,” “bulkheads,” “wings,” etc. and then add and remove multiple objects based on the chosen marks. All
nodes used by the elements are also removed from the selected list. If some of those nodes are used by other
elements that are still selected, an update operation may be desired.

Usage: mkrem <mark name>
Example: mkrem OML

Passive Operation Parameters

Passive operations can be used to change membership of a region or list information about the current
nodes or elements that are in the selected list. By default, the output is printed to the screen and the user has
the option of piping the output to a file using the command line. Alternatively, the user can specify an
output filename for the query results to be sent to. The user can also specify that the data is to be formatted
as FEA file data lines (e.g., the node list could be in NASTRAN GRID cards) or (by default) in a more
human readable format. Some query results will not have an appropriate FEA format to be printed in and
will only be reported in the Loft native style.

inverse/invert — Change all items in the selection list to not-selected and all not-selected items to
selected. Both spellings have the same effect.

Usage: Inverse
Example: inverse

update — Re-add all nodes used by elements in the selection list to the node selection list. Depending
on the order of addition and removal operations and the choice of exclusive or inclusive, the two lists may
not be completely synced. If syncing is desired, this will force an update.

Usage: update
Example: update

fileout/fileappend — Specify an output file to send query and rwrite outputs to. By default,
this output is printed to the screen. All output is appended to the end of a (possibly) pre-existing file. Either
command name may be used.

Usage: fileout <filename>
Example: fileout regionl.wrl

filenew/filewrite — Specify an output file to send query and rwrite outputs to. By default,
this output is printed to the screen. This variant creates a new file (overwriting any existing file of the same
name) rather than appending to a possibly pre-existing file as £ileout does.

Usage: £ilenew <filename>
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Example: filenew regionl.wrl

format — Specify the format for the query outputs. The Loft default is a human readable chart format.
Other options are “nastran,” “abaqus,” “stl,” and “vrml.” Some queries may produce output not suitable for
the requested format in which case that output will be presented in the Loft format. This value will be reset
to the default when a new region is created.

Usage: format <filetype>
Filetype = “loft,” “nastran,” “abaqus,” “stl,” “vrml.” (loft is the default)
Example: format vrml

query — Request various reports on the items in the selected list. Specifying “nodes” will list the se-
lected node numbers and each node’s coordinates. “Elements” will list the element numbers, their nodes,
their properties, and (as supported by the chosen format) any marks on the elements. “rbes” will list all of
the rbe/be/force/mass/press objects in NASTRAN format. “Matprop” will list the material properties used
and “physprop” will list the physical properties used. “Properties” will list both the material and the physical
properties used by the selected elements.

Usage: query <type>
Type = “nodes,” “elements,” ”properties,
Example: query elements

99 99 99 99 99 99

matprop,” ’physprop”

mark — Add a label to all of the nodes or elements in the region. Items can have as many different
labels as desired. Marks have limited uses. They can use used to sort elements in the region command and
will be output as groups when an I-DEAS output file is created. Support for NASTRAN SET grouping can
be enabled by removing a comment in “nastran.c.” The mark parameter takes two arguments: the group
type (node, element, or rbe) and the group name. A marked group can contain either nodes or elements, but
not both. If the type parameter is not present, the “element” type is used.

Usage: mark <type> <name>
Example: mark element OML

comment — Write a commented line of text to current output in the current format.

Usage: comment <text of comment>
Example: comment These elements are all marked OML

rappend — Write the selected items as if they were a complete mesh. The output is appended to, rather
than overwriting, the specified file This command ignores the fileout, filenew, and format settings,
rather matching the syntax of the non-region write command and the alternative form of the rwrite
command, requiring the format and filename be supplied with the command.

Usage: rappend <format> <filename>
Alternate example: rappend nastran region.bdf

rwrite — Write the selected items as if they were a complete mesh. Uses the values set by the format
and fileout or £ilenew commands. There is an alternate form of rwrite where the format and file-
name are specified along with the command (as is the case with the non-region write command) and the
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format, fileout, and £ilenew commands are ignored. In the alternate form, a new file is always
created. If appending to an existing file is desired either use the rappend command or the non-alternate
form of the rwrite command with a previous £ileout specification.

Usage: rwrite

Example: rwrite

Alternate usage: rwrite <format> <filename>
Alternate example: rwrite nastran region.bdf

corner — ldentifies up to 8 nodes that are most distant from the centroid of the region’s nodes, one in
each of 8 coordinate quadrants relative to the centroid. These nodes are added to the named group for later
use. If the object is not aligned with the coordinate axes, some rotation to align may be desired to correctly
identify the corners.

Usage: corner <name>
Example: corner Main Wing spar corners

Active Operation Parameters

Active operations attempt to change the selected region’s mesh in some way. This can be a property
change, deletion, rotation, flipping of elements, etc. Again, once one active operation has been performed
on the specified region, the selection list is marked as being “stale” (since nodes and elements it points to
may no longer exist or may no longer meet the region selection criteria) and no further operations are
permitted on the region.

cut — Remove selected elements and nodes. This operation has two modes. The “element” mode will
remove only the elements in the current region. No nodes will be deleted. The “node” mode will remove
both the marked elements and the marked nodes. Additionally, non-selected elements may be deleted de-
pending on the number of their nodes that remain after node deletion. Panels that end up with three nodes
are converted to triangles. Panels with two or fewer nodes are deleted. Bars or beams that lose any nodes
(including their alignment node) will also be deleted. The node version of this operation is similar, but not
identical, to the (non-region) subtract command.

Usage: cut <type>
Type = “element,” “node”
Example: cut element

setmp — Change elements to use the specified material property. If the property name does not exist, it
will be created.

Usage: setmp <name>
Example: setmp door cutout

setpp — Change elements to use the specified physical property. If the property name does not exist it
will be created.

Usage: setpp <name>
Example: setpp nose cap
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£1ip — Reorder element nodes to reverse normal vector direction.

Usage: £1ip
Example: f1ip

rotate — Reorder element nodes to rotate element orientation. The original node 2 becomes node 1,
the original node 3 is now node 2, etc., and the original node 1 becomes node N.

Usage: rotate
Example: rotate

beamalign — Re-align orientation of any beams to use a new alignment node. Coordinates of the node
can be specified or the first node in a specified group of nodes will be used. This operation does not modify
bars (that start with no alignment node since they have only an axial degree of freedom.)

Usage: beamalign <x> <y> <z> or beamalign <node group name>
Examples: beamalign 0.1 0.2 0.3

beamalign a group with nodes

baralign — Convert bars to beams, adding an alignment node. The alignment of any existing beams
will not be changed, use beamalign for that operation.

Usage: baralign <x> <y> <z> 0r baralign <node group name>
Examples: baralign 0.1 0.2 0.3
baralign a group with nodes

beam2bar — Convert beams to bars, removing the alignment node.

Usage: beam2bar
Examples: beam2bar
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Chapter 4: Tips and Best Practices

Names

Loft automatically creates a lot of names. It creates lots of groups and enables easy manual creation of
even more. It is important to choose good names so that Loft and any external analysis packages that use
the names (e.g., HyperX) can be used effectively.

For instance, an object named “bulkhead” is fine if it is the only one. If there are several in the model,
then “bulkhead 1,” “bulkhead 2,” etc. will work. But, “fwd lox support bulkhead” is even clearer. It not
only provides better understanding, it also permits adding more bulkheads as your design matures so that
you don’t end up with “bulkhead 1.5.” Be clear with your naming logic so that you don’t confuse “fwd tank
aft bulkhead” with “aft tank fwd bulkhead.”

Similarly, have a clear plan for your other named items like variables and labels to improve readability
and reduce the chance of using the wrong item.

Comments

As with any other type of coding, make substantial use of comments. The pound symbol, “#,” is used to
indicate the start of a comment. A comment can either be on a line by itself or placed at the end of a line
after a command or parameter.

It is good practice to start an input file with several lines of comments that give information about the file
itself, including what is being modeled, who created the file, what date it was created and/or last modified,
what units the dimensions are in, etc.

Variables

An excellent modeling approach is to have a section at the beginning of your input file with your main
driving dimensions defined using good variable names. This makes the input file easier to read, reduces
chances of typos, makes it easier to update the model, and makes it easier to validate that your model is
correct. See the annotated TSTO orbiter example model. It has a very long section defining nearly every
dimension on the vehicle. It is easy to understand and to change as the design evolves.

Even if this level of parameterizing is not needed, using variables when a value needs to be referenced
multiple times reduces errors. And using meaningful names for your variables can make it possible for
someone else to understand your model (perhaps that someone else will be you a few years later.)

One very common and recommended variable is a global mesh density variable. This can be included in
every object definition with an appropriate multiplier to produce a clean mesh. Adjust the multipliers as
you develop the model so that you have a consistent, low aspect ratio, mesh size throughout the model. A
low value of the mesh density variable can be used for very rapid model generation while the model is
being created and debugged. Once the layout is correct, increasing the mesh density variable at the begin-
ning of the file will generate a denser mesh suitable for analysis.

Use the 1ist variables command to list all of the user defined variables and their values. Check
carefully for any variables with unexpected zero values. That generally indicates that there was a spelling
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error in defining the name of that particular value variable. Loft will return a value of zero for any undefined
variable that is used and generate a warning that an undefined variable was referenced.

Piping output

Loft is very verbose with its output. If everything runs correctly, you probably won’t need to read any of
it. But, while you are creating the model and things are not working as desired, the screen output can be
very useful. The amount of output can make it frustrating to scroll back through to find the problem.

An approach to address this is to pipe the output to a text file that you can then open in an editor to more
easily scroll and search through all of the text. In Windows, the greater than sign, “>,” instructs the system
to write the program output to a file. Two greater than signs, “>>," will append the output to an existing
file if you want to check the output from multiple models. This approach is used when a validation run of
a new version of Loft is performed on all of the tutorial and example files in this manual.

loft inputfile.txt > outputfile.txt

In Linux or UNIX the pipe symbol is the vertical bar “|”:

loft inputfile.txt | outputfile.txt

Open the output file in notepad, vi, emacs, or other favorite text editor. You can then scroll through the
file to find the section of the output that you are currently working on by searching for the text of an input
line since they are echoed to the screen as they are executed. Or you could search the file for the words
“warning” or “error” to see if Loft identified a problem.

Debugging with the list command

Loft’s 1ist command is a powerful validation tool to make sure that you are creating what you intend.
Make heavy use of it and pipe the program output to a text file (see previous tip) so that the listed data can
be examined more easily.

The 1ist command has a large number of parameters to select which data is listed:

* ccurves, icurves, lcurves — user defined curves (compound, interpolated, lofted)
* stacks — models saved with the store command

* variables - names and values

* groups,marks —synonyms for labeled node/element lists

* mprops, pprops — property lists

* ribs, spars—wing rib/spar locations

* mesh - gives various data counts

* rbes — NASTRAN bonus data: forces, pressures, shcs, rbes

* input —the current Loft input stream as modified by program flow control operations

* all -—stand back, that’s a lot of information (but not actually all of the above)!
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A Quality Bonus Tip

Another tip is to suggest the use of the quality command. This will do a number of basic checks on
the quality of the mesh, including looking for high aspect ratios, degenerate objects (where a node is used
more than once), non-planar panels, etc. Addressing identified issues may be as simple as adjusting your
object mesh densities or merge tolerance or may take some redesign of your modeling approach.
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Chapter 5: Programmer’s Guide and Reference

Introduction

This portion of the Loft user’s manual can be used to gain a deeper insight into how Loft functions. But
itis really intended for someone who wants to add new object types or functions to the program. The chapter
starts with a conceptual description of how the program works, followed by an overview of the code struc-
ture. Finally, there are sections that describe how to add objects, commands, new output types, and new
curve types to the program.

As program operations are described, the C file and/or subroutine that performs the function will be
listed in the form “subroutine.c/function-name.”

Geometries and Meshes

A Loft input file contains a user’s definition of a vehicle’s geometry. The user’s specified object types,
dimensions, and meshing parameters are called the “abstract geometry.” Loft’s main function is to read this
abstract geometry and turn it into a concrete mesh made of nodes, elements, and a wide collection of ele-
mental properties.

Loft does not internally store the abstract geometry of a vehicle. It has a “master” abstract geometry that
consists of one object of each supported type. This master geometry is populated at program start with the
default values described in the object descriptions in chapter 7. (interface.c/initial de-
faults). As the program reads the user’s geometry parameters, this master geometry is updated with the
user’s specified values (interface.c/generate_object). When an object definition is completed,
a mesh is generated for the object and the master geometry is updated by copying appropriate changes to
the other object types and by resetting other parameters to their initial values.

Loft works with two mesh data structures at a time. Both start with no data. The “stack” is a mesh
containing all the previously generated objects’ nodes, elements, and elemental properties. The “mesh” is
the structure containing the current object. Both data structures are stored in the exact same way. An object
generation subroutine is passed an empty mesh for which it allocates memory, populates with nodes and
elements, and returns. When the mesh is completed, it is immediately merged with the stack and then erased
by freeing its allocated memory. (The store command works very much like the “cut” command on a
word processor. A pointer to the current stack is stored, and then a new empty working stack is created.
Similarly, a recall command is like a “paste” command. The same routine that combines the main stack
and a new mesh (util.c/merge_sections) combines the current working stack with the specified
stored stack. In this case, the stored stack is not erased.)

Code Overview

Data structure/Constant definitions
loft.h
loft-const.h

Mesh storage and manipulation
util.c
modify.c
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Mesh generation
loft.c
wing.c

Curve definitions
curves.c

Region operations
region.c

Output routines
abaqus.c
ideas.c
nastran.c
vrml.c
stl-ascii.c
tecplot.c
custom.c

User input/Program control
interface.c
variables.c

Adding a New Object Type to Loft

The first step in adding a new object type to Loft is design. Determine the parameters that the user must
set to define the abstract geometry of the new object and select default values for those parameters. Then,
work out the logic of using those parameters to generate nodes, elements, and properties.

Now that there is a plan, it’s time to start coding. In broad terms, there are two parts to writing the code:
writing the meshing routine itself and adding support for the new object to the user interface. Both are
somewhat involved.

Both parts of the coding will rely heavily on the object definition in “1oft . h.” Edit this file and move
down to the abstract geometry object definitions section. Add a new structure here that defines the abstract
geometry’s parameters for your new object. Be sure to include structure members to define the object
name, position, alignment, and a marklist. Finally, add your geometry structure to the “master _geom” struc-
ture near the end of the file.

The New Meshing Routine

You can add your meshing routine to “loft . c” or start a new source file. Your choice should be made
based on the length and complexity of the meshing code. For instance, the various wing related meshing
routines were created in a separate “wing. c” file. If you create a new file, remember to update the makefile
so that it will be compiled and linked. Take a look at the various existing meshing routines for a feel of how
they are written. The basic outline of each of these codes is as follows:

1. Based on geometry input parameters, make a conservative estimate of the number of nodes,
elements, material properties, and physical properties needed by the new mesh. It is okay to
allocate a little more space than is actually used if an exact calculation is difficult.

2. Call malloc_mesh to allocate memory for that data.
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3. Create appropriate loops to generate the mesh data. As it is generated, store each piece of data by
using the data storage routines from “util.c,”e.g., storenode, storequad,
storetri, storegroup, addgroupmember, createproperty, etc.

4. Update the mesh node (mesh->nnodes) and panel (mesh->npanels) counts with the actual
numbers of objects created.

5. Warp, rotate, and move the mesh.

6. Call group_all nodes and group_all elem.

If you look at the wing generation code, you’ll note that it intentionally creates many duplicate nodes. It
is okay to do this as long as space is allocated for them in the call to malloc mesh. Just add a call to
merge points to the end of your routine to consolidate these duplicates.

Integrating Your New Object into the User Interface

The first step is to edit “1oft-const.h” and create a new constant for your object type in the section
that starts with “#define OBJ_NONE O0.” Use the next available integer after the ones that are currently
in use. For illustration purposes, let’s say the new routine is used to create a wheel object and that the last
object type used was number 12. Add “#define OBJ WHEEL 13” atthe end of the block.

Next, there is a lot of work to be done in “interface.c.” Here we’re going to create a new routine
to parse the parameters for your new object, and then add support for the new object to the “parse_input,”
“parse_new_object,” “generate_object,” and “initial_defaults,” routines.

The parameter parsing routine created should be similar to “interface.c/ parse_sec-—
tion_param.” This routine will receive each line of text that is a parameter for the object. It should parse
the parameter name and values from that line and assign them to appropriate data blocks in the abstract
geometry structure. Finally, it should issue a warning if it was unable to do anything with the parameter it
was given.

Remember to add a prototype for the new parsing routine to the top of the interface file.

The next step is to add the object to the “parse_input” routine. There are only two parts to this. First,
add a malloc call at the top of the routine to make space to store your abstract geometry data. Be sure to
add your new structure to the section that checks that the malloc succeeded. Then, scroll down to the line
“case CMD_NONE” and add a line to the end of the parsing routines. It should be something like:

if (current object == OBJ WHEEL)
parse wheel param(line,master.wheel);

Now, move down to the “generate_object” routine. Add a pointer variable for the abstract geom-
etry and extract that pointer from the master geometry. Then, add a block that calls the new meshing routine
if the object is of your new type, i.e.,

if (type == OBJ WHEEL) {

printf(* Calling make wheel\n”);
make wheel (*wheel geom,mesh);
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After the new mesh is generated, we need to update the defaults of any abstract geometry types that need
it. In most cases, you’ll want to leave the current object’s parameters as the defaults for the next object of
the same type, but in some cases, you’ll want to set them back to the defined default every time. You can
update the defaults for any other geometry types as well. Add lines to your version of the block above in
“generate object” to update the desired defaults.

Scroll down to the “initial_defaults” routine. As with the previous routine, the first step is to
add and extract a pointer variable for your abstract geometry. The other task here is to add a block that
populates every data item in your geometry structure with its default value. Your defaults should be chosen
such that if the user specifies no parameters, the meshing code will still generate a valid mesh.

Finally, scroll down to the “parse_new_object” routine. Again, add and extract a pointer variable
to your abstract geometry. Next, add a block that tests for an object type name of your new type, sets the
object name, and sets the current object variable to your new type if it’s found. For example:

if (strncmp (type, "wheel",5)==0) {
sprintf (wheel geom->name,"%s",objectname);
*current object=0BJ WHEEL;
return;
}
Now, compile, test, and debug your new object.

Adding a New Command to Loft

Adding a new command is a very similar process to adding a new object. As before, there are two steps:
creating the routine to perform the new operation and integrating the command into the interface. It’s dif-
ficult to be more specific since new commands could do anything and be logically integrated in many
different places. You will probably want to add a new command number to “loft-const.h” and a
“case” statement to the main loop in “interface.c/parse input.”

Adding a New Output Type

Loft currently supports six types of mesh outputs. With accurate documentation of the new desired
output format, it should be straightforward to use one of the existing output types as a basis for the new
type and then edit the “interface.c/output_stack” routine to add a new block for your output
routine.

A special case is the “custom” output type. This was created to make it easier for the user to modify the
output to be exactly as they desire. No editing of the interface code is required; modify “custom.c” to pro-
duce the desired output and recompile. Typically, this approach has been used to make a short-term modi-
fication to one of the existing output types. For example, one could copy the NASTRAN output routines
into custom. ¢, rename the functions, and then make small changes that might a) specify a non-structural
mass for some elements, b) change the order that elements are written, or ¢) reduce the number of properties
that the elements use. By making these types of changes to the custom output type, no hard to remove
changes are made to the core output routines.
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Adding a New Curve Type

The curve primitive routines are all located in the “curves. c” file. Scroll down to look at the semi-
circle routine. The variable “s” is an input variable that ranges between 0.0 and 1.0. It represents the frac-
tional position along the curve from its start (0.0) to end (1.0) for which coordinates are desired. The vari-
ables “x” and “y” are output values used to return the coordinates. If you’re creating a curve family like the
filleted curve, then “x” is also used as an input variable giving the family shape parameter.

The first step is to write a generation routine for your new curve type similar to the others in the file.
Remember when modifying the variables “x” and “y” that their pointers are being passed rather than the
variables themselves. Thus, your routine needs to set “*x” to the computed x coordinate.

Next, to add the new curve to the interface, return to the top of the “curves.c” file. Add a prototype
for your generation routine. Now, scroll down a little and add a block for your new curve type and genera-
tion routine to the “curves.c/curvefunctionptr” routine. Note that there are different sections for
non-family curves, family curves, and user-defined curves.

Be careful when selecting your curve’s mnemonic to avoid collisions with other curves. For instance, if
you want to use the mnemonic “ssquiggle,” you need to add your check to curvefunctionptr
before the check for the semi-square curve, since that check compares the first two characters of the curve
name to “ss.” It might be clearer if you chose “semisqg” for your mnemonic instead. (You can see in the
current routine that the check for the semi-circle “s c” mnemonic occurs after the check for the semi-cosine-
wiggle “sccw.”

Now, save, compile, and test your curve. It should be usable from any object that uses curve primitives.
There is no need to modify any of the meshing routines or user interface routines.
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Chapter 6: External Utility Programs

In order to integrate Loft into a variety of multidisciplinary analysis systems, several utility programs
have been written. These were created with general utility in mind and are therefore included in the Loft
distribution and documentation. These programs can be used in a batch mode or can be used to speed up a
manual model generation. They create normal Loft input files that can be modified as desired.

WingCoords2Loft

WingCoords2Loft is a utility that reads a
file containing wing cross section data at
various stations along the span of the wing
and generates a Loft input file to create
that wing. The resultant model can be
viewed as piecewise trapezoidal.

WingCoords2Loft reads two input files. “hrm2wingcoords.out” contains the wing cross section data.
“wingcoords2loft.in” is an optional input file that specifies structural details such as rib and spar locations
and mesh density.

It creates multiple output files. “wingcoords2loft.out” contains a Loft input file for the wing.
“wingcoords2loft.spars” contains the x (axial) coordinate of the spar roots in feet.

When that input file is run, Loft creates NASTRAN, VRML, and Tecplot versions of the FEA model. Loft’s
region mode is used to create additional files that are used to automate analysis of the model. “upper-
skinelems.txt” contains a list of elements on the wing upper skin. It also contains the total wing planform
area. If the weight parameter is used in wingcoords2loft.in, then a smeared pressure value is printed that
will produce 25% of that weight as lift when applied to the listed skin elements. “lowerskinelems.txt” is a
similar file containing the lower skin elements. “rootnodes.txt” contains a list of nodes at the centerline. It is
intended to be used to automate boundary condition application. “rootprops.txt” contains a list of the
NASTRAN physical and material properties used on the root spars.

hrm2wingcoords.out

This file contains the wing cross section data. Note that for the purposes of this program, the normal NASA
coordinate system is used: x is axial (chordwise), y is lateral (spanwise), and z is vertical. This is different
than the base coordinates used for Loft. Also, the interleaving text lines shown in the example file are required
to be present although they are not required to contain anything specific. Input units are feet. The models
created by Loft are scaled to be in inches.
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double x0,y0,z0 = coordinates of wing reference location (leading edge root). Will be added to sec-
tion x,y,z values below to produce true positions of wing nodes. Should be 0,0,0 if section x,y,z's are ab-
solute positions. Units are feet.

double Wfuse =_half of average or maximum (selection based on AVG|MAX flag in input) width of
vehicle fuselage along wing. This value is used to create non-skinned carry-through.

integer N =supplied number of wing sections. This could be slightly different than the N requested in
the input due to curvature awareness, but the relationship between Ninput and Noutput should be mono-
tonic; a lower value of Ninput should produce a lower value of Noutput.

N lines of double Xle,Yle, Zle,Xte,Yte, Zte, Tmax Where
X1le =X location (axial) of section leading edge
Xte = X location of section trailing edge
Yle, Ytz =y location (span) of leading/trailing edge section nodes
Zle, Zte = Z locations (height) of leading/trailing edge nodes. This will affect Loft positioning
and wing twist
Tmax = Maximum thickness of wing section in inches. WingCoords2Loft will convert this to per-
cent thickness to generate an approximate NACA airfoil section.

Example hrm2wingcoords.out file
Wing Reference Coordinates
50.0 0.0 3.0

Maximum Fuselage Half Width
0.75

Number of Sections

4

Section Details (X,Y,Z)le
0.0 0.75 0.0 5.0 0.75 0.0
3.0 15.0 0.0 8.0 15.0 0.0
6.0 25.0 0.0 12.0 25.0 0.0 0.2
10.0 40.0 0.0 15.0 40.0 0.0 0.2

, (X,Y,72)te, Tmax
0.2
0.4

wingcoords2loft.in

This file contains the information on desired structural details for the model. It is optional. If it is not
present, default values are used. As with Loft itself, all parameters in this file are also optional. Again, default
values will be used for any non-specified parameters.

As with Loft, the user can either specify a rib/spar count or give exact positions but not both. Giving a
rib/spar count will result in that many evenly distributed ribs or spars. (e.g., an input of "nspars 2" will
give the exact same result as "sparpos 0.3333"and "sparpos 0.66666.") Rib and spar posi-
tions are specified in percentages of span and chord. The two styles of rib/spar specification should not be
mixed. Using both won't break things for either code but may result in unexpected outcomes. In both
codes only the last style of specification will be used by the code. Earlier parameters will have no effect.
Unlike the default behavior of Loft, ribs are not automatically created at 0 and 100% span; they will need
to be specified in this file (using an nribs value of 2 will create just the 0 and 100% ribs.).

Parameter List (can be specified in any order):
Nribs (default 2): number of evenly spaced ribs to create
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Nspars (default 0): number of evenly spaced spars to create

ribpos (ho default): percent span (0-100) location to create a rib

sparpos (no default): percent chord (0-100) location to create a spar

mesh : Finite element mesh density per unit length (higher values produce a denser mesh) for all three
mesh directions. When used, the three specific parameters meshthick, meshspan, and meshchord
are reset to this value.

meshchord (default 3.0): Finite element mesh density per unit length in the chordwise direction (higher
values produce a denser mesh). Note that tapering of chord length and thickness across the span of the
wing will not cause a change in mesh counts; there will be the same number of nodes along the tip rib as
on the root rib. Example: a setting of 5 on a wing with a 5 unit long chord setting will result in approxi-
mately 25 nodes in the chordwise direction on both the top and bottom skin (the exact node count will de-
pend on spar positions and integer math truncations). This is a real number not an integer and can be less
than one if desired. This parameter changes the chordwise mesh distribution for the skins and ribs.
meshspan (default 3.0): Finite element mesh density per unit length in the spanwise direction. (See dis-
cussion above.) This parameter changes the spanwise mesh distribution on the skins and spars.
meshthick (default 3.0): Finite element mesh density per unit length in the thickness direction. (See
discussion above.) This parameter changes the vertical mesh density of the ribs and spars. It has no effect
on the wing skins.

rotx (default 0.0): specifies a desired rotation about the x (axial) axis (dihedral) of completed wing
roty (default 0.0): specifies a desired rotation about the y (spanwise) axis (angle of attack) of completed
wing.

rotz (default 0.0): specifies a desired rotation about the z (vertical) axis of the completed wing.
weight (default 0.0): specifies vehicle weight. Used to compute pressure required on wing to support
this weight. A line of text specifying that pressure is added to the upper and lower skin element output
files. This pressure is sufficient to support one quarter of the specified weight on each of the upper and
lower wing surfaces.

mergetol (default 0.02) specifies tolerance for Loft’s node equivalence operation. Any nodes that are at
the specified value or closer will be merged together.

minthick (default 1) integer value specifying minimum percent thickness for wing sections.

naca (default “00XX”): specifies the NACA 4 or 5 digit airfoil series to use for the wing. The last two
digits represent the wing thicknesses and are replaced at each section by the value derived from the geom-
etry information.

halfwing (default: off): Flag to turn on generation of just the top or bottom half of the wing. Used
primarily for vertical tails on the symmetry lines of a half vehicle. Values are “off,” “on,” “bottom,” and
“top.” (“top” and “on” are the same).

wingside (default: starboard) Flag to control which side of the vehicle to build the wing for. Values are
“starboard,” “port,” “right,” and “left” (starboard = right, port = left).

Example wingcoords2loft.in file:

sparpos 25.

sparpos 45.

sparpos 65.

ribpos 0.

ribpos 30.

ribpos 60.

ribpos 100.

mesh 0.8

naca 00XX
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weight 25000.

wingcoords2loft.out
Running WingCoords2Loft will produce this output file. This file is a Loft input file for the specified wing.
Running it with Loft will produce FEA models of the wing.

upperskinelems.txt

This file contains a list of elements on the wing upper skin. It also contains the total wing planform area.
If the weight parameter is used in wingcoords2loft.in, then a smeared pressure value is printed that will
produce 25% of that weight as lift when applied to the listed skin elements.

Example partial upperskinelems.txt file:
These are upper skin elements.

Planform area is 36666.497808 square inches.
Constant pressure for 5250.000000 of 1ift is -0.143182 psi.

Region Element Listing
i nodel node2 node3 noded4 matprop physprop

13 2 9 8 1 1 3
14 4 11 9 2 1 3
15 6 13 11 4 1 3
16 15 21 13 6 2 3

lowerskinelems.txt

This file contains a list of elements on the wing lower skin. It also contains the total wing planform area.
If the weight parameter is used in wingcoords2loft.in, then a smeared pressure value is printed that will
produce 25% of that weight as lift when applied to the listed skin elements.

rootnodes.txt
This file contains a list of nodes at the centerline. It is intended to be used to automate boundary condition

application.

Example rootnodes.txt file:
$ These are the wing centerline nodes to have BC applied.
GRID 49 6.3728E2-9.6E-134.0013E1

GRID 50 6.3725E2-9.4E-135.2924E1
GRID 51 8.0024E2-1.2E-124.1210E1
GRID 52 8.0024E2-1.2E-125.2714E1
GRID 53 9.6320E2-1.5E-124.1476E1
GRID 54 9.6324E2-1.5E-124.8343E1

wingcoords2loft.spars
This file contains the x (axial) coordinate of the spar roots in inches.

rootprops.txt
This file contains a listing of the properties used in the spar root.
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FuseCoords2L oft

FuseCoords2Loft is a similar utility program that generates a Loft input file for a vehicle fuselage. The
input files describe the cross-sectional dimensions of the fuselage at various stations and optionally the lo-
cation of desired bulkheads.

FuseCoords2Loft reads two input files. “hrm2fusecoords.out” contains the cross-sectional dimensions at
various stations. “fusecoords?loft.in” is an optional file that contains structural model details such as bulk-
head locations and mesh density.

The program writes a Loft input file to “fusecoords2loft.out.”

When the Loft input file is run, Loft creates NASTRAN, VRML, and Tecplot versions of the FEA model.
Region mode commands are included that create a list of the requested bulkheads and their NASTRAN
property IDs in “bulkprops.txt.”” This information is used to tell NASTRAN how to “glue” the wing spars to
the appropriately positioned bulkheads.

hrm2fusecoords.out

This file contains the fuselage cross section data. Note that for the purposes of this program, the normal
NASA coordinate system is used: x is axial (chordwise), y is lateral (spanwise), and z is vertical. This is
different than the base coordinates used for Loft. Also, the interleaving text lines shown in the example file
are required to be present although they are not required to contain anything specific. Input units are feet.
The models created by Loft are scaled to be in inches.

double x0,y0, z0 = coordinates of fuselage reference location (nose).

integer N =supplied number of fuselage sections. This could be slightly different than the N re-
guested in the input due to curvature awareness, but the relationship between Ninput and Noutput should
be monotonic; a lower value of Ninput should produce a lower value of Noutput.

N lines of double x, z,Rhorz,Rvert, where
X = axial station of section
z = vertical station of the section center
Rhorz = horizontal radius of fuselage at that station
Rvert = vertical radius

Example hrm2fusecoords.out file:
Fuselage Reference Coordinates
50.0 0.0 3.0

Number of Sections

6
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Section Details x,z,rhorz,rvert
0.0 0.1 0.0 0.0

0.5 0.0 .08 .08

2.0 0.1 .1 .12

4.0 -0.1 .1 .1

5.5 -0.01 .08 .08

6.0 0.1 0.0 0.0

fusecoords2loft.in

This file contains the information on desired structural details for the model. It is optional. If it is not
present, default values are used. As with Loft itself, all parameters in this file are also optional. Again, default
values will be used for any non-specified parameters.

Parameter List (can be specified in any order):
Mesh : Finite element mesh density per unit length (higher values produce a denser mesh) for both mesh
directions. When used, the two specific parameters meshcirc and meshaxial are reset to this value.
MeshAxial (default 3.0): Finite element mesh density per unit length (higher values produce a denser
mesh) in the axial direction.
MeshCirc (default 3.0): Finite element mesh density per unit length (higher values produce a denser
mesh) in the circumferential direction.
bulkhead (default none): Specifies the name and absolute axial position of a requested bulkhead. A
corresponding entry listing its assigned property id will be written to bulkheadlist.txt. Bulkheads can be
specified in any order. FuseCoords2Loft will sort them and create them.

Example: bulkhead mainwing 28.75
rotx (default 0.0): specifies a desired rotation about the x (axial) axis of completed fuselage. (roll)
roty (default 0.0): specifies a desired rotation about the y (spanwise) axis of completed fuselage. (pitch)
rotz (default 0.0): specifies a desired rotation about the z (vertical) axis of completed fuselage. (yaw)
curve (default sc): specifies a Loft curve name to be used for the fuselage.

Example fusecoords2loft.in file:
meshaxial .1
meshcirc 1.
bulkhead gluel 51.588333
bulkhead glue2 62.863333
bulkhead glue3 74.138333

fusecoords2loft.out
Running FuseCoords2Loft will produce this output file. This is a Loft input file that generates the specified
fuselage. Running it with Loft will produce the FEA models.

bulkprops.txt
This output file contains the NASTRAN property 1Ds for the requested bulkheads.

Example bulkprops.txt file:
$ These are the fuselage bulkheads and their propeties.
$ Loft physical property 100006 is mapped to the following Nastran p- cards
$ Pset: "gluel" will be imported as: "pshell.170000"
PSHELL 170000 100000 1.0000 100000 100000

105



$ Loft physical property 100008 is mapped to
$ Pset: "glue2" will be imported as: "pshell
PSHELL 190000 100000 1.0000 100000
$ Loft physical property 100010 is mapped to
$ Pset: "glue3" will be imported as: "pshell
PSHELL 210000 100000 1.0000 100000
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Chapter 7: Command & Object Reference

Alphabetical Command List

Clone — Create one or more duplicates of the current stack. These are positioned evenly rotated around the
specified axis. For example, “clone x 17 will produce one duplicate rotated 180 degrees around the x
axis from the original. See similar mirror command for a slightly different result. Note: this operation
creates stored stacks called clonetempN as part of its functionality, which could overwrite a user stored
stack if the same name were used.

usage: clone <axis> <number>
defaults: <axis>=x, <number>=1
example: clone y 2

Curve — Define a user curve

usage: curve <type> <mnemonic>

type = “interpolated,” “compound,” “lofted”
mnemonic = name for the curve

example: curve compound 31t

Define — Define a variable

This command allows the user to define a named variable to be used later in the input deck. The dollar
symbol, “$,” is used to invoke a variable and tell Loft to replace the text with the previously specified value.

usage: define <name> <value>
variable usage example: length Smydimension
example: define mydimension 5.6

End — End current Loft run (optional). Note that if used in an include file, the program will still stop and
not return to reading the previous input file.

usage: End

GoTo — Move input file reading to another point in the file. Argument is a unique integer that matches the
number used ina LineLabel line. This labeled line can either be anywhere in the main input file or in a
current or previously read include file. A line in an include file that is referenced after the goto
command cannot be located. If a text label is desired, use a previously defined variable with a descriptive
text name. Note that if variables/math are used for any labels that are later in the file, those math calculations
will be performed using the present values of the variables. Therefore, define these variables before use as
a label or in a goto and generally avoid the use of any variable that changes (e.g., system variables like
@transz.)

usage: GoTo <unique integer>

examples: goto 100
goto $tank generation_section
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Ideas — Indicate I-Deas version for output

This command only affects which datasets are used in any I-DEAS universal files that are written after
the command is used. It does not affect Loft’s internal data. Thus, it is possible to write different output
files with different I-DEAS versions for the same data.

usage: Ideas <version>
version =8 or 9

default: 9

example: ideas 8

If - Conditional program control command. If the argument is zero or approximately zero (absolute value
< 0.0001), the test is false and the next input line is skipped. If the argument is non-zero, the test is true and
the next input line will be executed. The logical operators “<,” > “= “>=> “<="" and “!=" may be used,
or any other combination of Loft variables and math that will produce a true or false result (non-zero or zero).
When used in combination with the goto command and a counter variable, a loop functionality can be
created.

usage: If <test>
example: if $i > 5

Include — Read input from another file and then return to the previous file once the second file is
completed. Note that since this is a command, any object that is in the process of being defined will be
generated before the new file is read. Multiple levels of include are allowed. Loft will stop execution if the
specified file is not found.

usage: Include <filename>
example: include moreloftstuff.txt

LineLabel — Assign a label to a location in the input file that Loft can seek to using the goto command.
The command’s argument is a unique integer that is not required to be sequential with other line labels. If a
text label is desired, a previously defined variable with a descriptive name can be used. Note that if varia-
bles/math are used for any labels that are later in the file, those math calculations will be performed using
the present values of the variables. Therefore, define these variables before use as a label or in a goto and
generally avoid the use of any variable that changes (e.g., system variables like @transz.)

usage: LineLabel <unique integer>
examples: 1inelabel 100
linelabel $tank generation _section

List — Output various lists to the screen. This command is intended for model debugging purposes. The
options “groups” and “marks” are synonymous. The “input” option will output the current Loft input lines
as modified by any include commands already read and any commands that act as macros like mirror
and clone. The “input” option does not get included when ““all” is chosen.

usage: List <type>
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9% ¢ 9% ¢C 99 ¢ 99 Ceg

type = “ccurves,” “icurves,” “lcurves,” “stacks,” “variables,” “groups,” “input,” “marks,” “mprops”
(material properties), “pprops” (physical properties), “ribs,” “spars,” “mesh” (gives various data counts),
“rbes” (lists RBE, BC, MASS, TEMP, FORCE, and PRESS objects) or “all”

default: (none)

example: 1ist stacks

99 <¢ 99 <c

MergeTol — Distance for considering nodes to be identical. These nodes are merged by removing higher
numbered duplicates and replacing references to them with references to the lower numbered, remaining,
node. This merging is done at various points in wing generation as well as when adding new objects to the
current stack.

usage: MergeTol <distance>
default: 0.001
example: mergetol 0.01

Mirror — Create a duplicate, but reversed, object on the other side of a specified axis. See similar clone
command for a slightly different result. The mirror command can be used to convert from a half-vehicle
model to a full vehicle. Note: this operation creates a stored stack called “mirrortemp” as part of its function-
ality, which could overwrite a user stored stack if the same name were used.

usage: mirror <axis>
default: x
example: mirror x

Move — Rotate, translate, scale, warp, split and/or flip the full stack
Note that, unlike the rotation and translation parameters for an individual object, results of this command
do depend on the order of the parameters — each operation is executed following each parameter.

Rotation and translation values are set with the rotx, roty, rotz, transx, transy, and
transz parameters just like those allowed for single objects. (Note that these are absolute translations and
rotations, not relative to any previous settings.) In addition, the scalex, scaley,and scalez param-
eters can be used to adjust the size of the current stack.

There are also six “warp” parameters that distort part of the stack. The six parameters are warppx,
warpnx, warppy, warpny, warppz, and warpnz. The two letters after the “warp” prefix indicate
the region of action of the warping. Thus, warppx will scale the parts of the stack that are in the positive
X region and leave the nodes where x<=0 alone. These six parameters all take three values that are the
amount to scale that region in the X, y, and z directions. So, a move parameter that said “warpnz 1.0
2.0 1.0” would double the y coordinates of all nodes that started with z less than 0. Use of the rotation
and translation parameters before and after a warp operation allows fine-tuning of the area to be affected.
The warp options are intended to be used to make shapes such as the fuselage for a lifting body. Care
should be taken with the scale factors and the object mesh options to keep element aspect ratios reasonable.

Gradient warps are also possible with the six gwarp parameters. These are gwarppx, gwarpnx,
gwarppy, gwarpny, gwarppz,and gwarpnz. They work identically to the constant warp parame-
ters above, but the distortion increases linearly from zero distortion at the axis to the specified values at a
unit distance from the axis and higher further away from the axis. So, a parameter like “gwarppy 2.0
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1.0 1.0” would double the x coordinates of any node at y equals 1 and quadruple the x coordinate of any
node at y equals 2.

The £11ip parameter reverses the node ordering for panel elements, thus changing the direction of their
normal vectors. It takes no arguments.

The split parameter breaks each quadrilateral element into two triangular elements with node ordering
going from 1-2-3-4 to 1-2-4 and 3-4-2.

usage: Move
example: Move
Scalex 0.5
Scaley 0.2
Transx 30.5
Roty 33.3
Warpnz 1.0 2.0 1.0
Gwarppy 2.0 1.0 1.0
Flip
Split

Nastran — Controls NASTRAN format output options. A minimal case control block is written to every
full NASTRAN format file. If either or both “spc” or “load” setids are given, then a simple subcase is added
to the control block using those ids.

usage: Nastran <parameter> <value>
examples: nastran grid 8, nastran cylx, nastran spc 1000

List of Nastran command parameters:

Grid = number of columns used in grid cards. Values are 8 or 16. Default is 8.

Cylx, cyly, cylz = flag to turn on cylindrical coordinate output. Last letter indicates the non-transformed
axis (axial direction). Coordinates are converted on the fly as the NASTRAN file is written; the internal Loft
coordinates are not transformed.

Cart = flag to restore Cartesian coordinate output, which is the default setting.

hmcom/nohmcom = flags to turn on/off (off by default) a limited set of HyperMesh style comments to
allow model importation into HyperX

spc = setid for boundary condition cards in a simple case control subcase

load = setid for load cards in a simple case control subcase

sol = solution number for the NASTRAN run (default = 101)

subcase = subcase number for NASTRAN run (default = 1)

thick = dummy panel thickness written to PSHELL cards (default = 0.1)

New — Deletes current stack from memory
By default each new object’s mesh is added to the previous meshes - creating a stack. This command
starts a new stack (presumably after issuing a store or write command to save the previous one.) All

defaults are reset to their initial values.

usage: New

110



Null — No effect command. The main use of this command is to force the completion of the current object
and update all of the system variables to reflect its creation.

usage: Null
Object — Create a meshed object

usage: Object <type> <name>

type = type of object to create, e.g., dome, section, wing, tank, etc.

name = descriptive name of the object, 40 characters or less, used to mark elements
example: object dome LOX Tank Aft Dome

Offset — Define index offset for written meshes. This value can be set by output file type or globally. If
no type is specified, all the offset for all types are set. Note that the offset value is not used for VRML or
Tecplot output as nodes receive their index implicitly by their order in the output file.

usage: Offset <type> <value> or Of £set <value>

type = output file type effected. Valid types are “nastran,” “ideas,” “abaqus,” and “region.” The “region”
type affects the output of the query parameter in region mode.

value = amount to offset the indices. Loft internal indices start from 0. NASTRAN, for instance, does not
support an element or node numbered as 0, so a value greater than zero should be specified. Default for ideas
and abaqus is 1. Default for nastran and region is 100000.

examples: offset nastran 100000

offset 50

Quality — Performs mesh quality checks on the current stack and prints a report.
usage: Quality
Read — Reads a supported format mesh into Loft as a new object

This command allows the import of a variety of externally generated meshes into Loft. This is an ex-
tremely simplified process focusing on capturing nodes and connectivity. All property information is lost.
All elements are converted to simple 4-node rectangles, 3-node triangles, or 2-node bars. Unusual element
types are very likely to fail.

usage: Read <file type> <file name>

file type = type of file to read: vrml, abaqus, or nastran
file name = Name of file to be read

example: read nastran myinput.bdf

Recall - Copies a clipboard stack into the active stack

This command copies a previously stored stack (see store command) from the temporary stack
clipboard back into active memory. The copy on the clipboard is not deleted and can be recalled any number
of times. Multiple recalls of the same complex object can take some time to accomplish, as the various
merging operations for items with the same name can be slow. A recall operation does not change any
default geometric values.
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usage: Recall <name>
example: recall External Tank

Region — Enter region mode.

The region tool set is a powerful feature of Loft that allows the user to query or modify a section of the
current stack. Regions are inherently temporary constructs, but their effects may include permanent changes
to the mesh by deleting parts, changing property assignments, etc. Regions can also be used to query statistics
on the mesh and produce reports. The region mode has a long list of parameters that are described in
chapter 3 of this manual. These abilities partially overlap the 1ist and subtract commands.

usage: Region
Reset — Reset defaults to initial values, without deleting the current stack.
usage: Reset
Store — Move the current stack to a temporary clipboard and start over, reset-ing all default values.

The current stack is assigned the supplied name and stored in memory. The active stack that commands
operate on is cleared and values are set back to the initial defaults. Any number of stacks can be simultane-
ously copied to the clipboard.

usage: Store <name>
example: store External Tank

Subtract — Delete all nodes that fall within a specified volume of space. Any elements that use these
nodes will be deleted as well. Quads (4-node elements) that lose one node will be converted to triangles.
Volumes are specified by use of simple three dimensional shapes including spheres, cylinders, and boxes.
Cylinders are aligned with an axis and are infinite in length. Warning: Any beams whose alignment nodes
fall in the specified volume, even if the beam end points themselves do not, will also be deleted. A similar,
but not identical, effect can be produced by the region mode “cut” operation.

usage: Subtract <type> <center of volume> <dimensions of volume>
type = “sphere,” “xcyl,” “ycyl,” “zcyl,” “box”
center = X, Y, z coordinate of center of volume
dimensions = radius for sphere and cylinders,
= xlength, ylength, zlength for box.
example: subtract sphere 10. 20. 25. 5.

Units — Specify unit set. (default = inch)
Loft is unit-less. For NASTRAN output this command affects the magnitude of the values used on prop-
erty or material cards. For I-DEAS universal file output, this command just changes which units are indicated

for any files written after the command.

usage: Units <length unit>

112



length unit = “foot,” “feet,” “inch,” “cm,” “meter”
example: units meter

Vrml — Control vrml color output

Selects if the vrml output mesh contains color information and if so, which color pallet to use. Options
listed below in parenthesis are synonyms of each other. The forward option produces a more red/blue picture.
The backward option produces more yellow/pink.

usage: Vrml <option>

option = (“off,” “no”), (“forward,” “on”), (“reverse,” “backward”), “rainbow,” “primary”
default: primary

example: vrml reverse

Write — Write current mesh to an output file.

usage: Write <file type> <file name>

file type = type of file to save: “custom,” “vrml,” “unv,” “abaqus,” “tecplot,” “stl,” or “nastran”
file name = Name of output file

example: write vrml rocket.wrl

VRML and Tecplot files containing small portions of a large model will still be large files. This is due to
the way nodes are implicitly indexed in the files based on their definition order rather than an explicit index
number. This means that every node needs to be included in the file even if there are only a small number
of panels in the partial model.

STL (STereo Lithography) is a 3D printing file format. Loft will output a readable mesh for all triangles
and quads in the model, but that model will not necessarily be manifold/watertight (in fact none of the
models in this manual are). Some additional effort with adding endcaps or suppressing internal detail can
produce a printable model. Alternatively, some third-party tools (for example, Microsoft’s 3D-Builder) may
be able to make the model watertight and printable.

113



Object Types and Parameters
Common Parameters

All object types except the individual beam and rbe objects use these parameters. They control position-
ing, rotation, distortion, alignment, and group marking.

rotx — angle to rotate object about its origin’s x axis in degrees (absolute)
default = 0, or last value specified

roty - angle to rotate object about its origin’s y axis in degrees (absolute)
default = 0, or last value specified

rotz - angle to rotate object about its origin’s z axis in degrees (absolute)
default = 0, or last value specified

transx — distance to translate object’s origin from the global origin in the x direction
default = 0, or endpoint of previous section (domes do not update this default)

transy- distance to translate object’s origin from the global origin in the y direction
default = 0, or endpoint of previous section (domes do not update this default)

transz-— distance to translate object’s origin from the global origin in the z direction
default = 0, or endpoint of previous section (domes do not update this default)

relrotx —angle to rotate object from its default position about the x axis in degrees.
default =0

relroty —angle to rotate object from its default position about the y axis in degrees.
default=0

relrotz —angle to rotate object from its default position about the z axis in degrees.
default =0

relx — distance to translate object’s origin from its default position in the x direction.
default =0

rely — distance to translate object’s origin from its default position in the y direction.
default =0

relz — distance to translate object’s origin from its default position in the z direction.
default =0

f1ip — change the element normal direction to point inward rather than outward. This parameter takes no

argument. It must be specified for each object where flipping is desired (it does not change the default
orientation). This parameter is not available for the block object type.
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warppx, warppy, warppz, warpnx, warpny, warpnz — distort the part of the object in the region

specified by the last two letters (p means positive, n means negative, and x, y, and z, are the coordinate

axes) by the specified three values. Only one warp or gwarp parameter may be specified per object.
default: (no warp)

gwarppx, gwarppy, gwarppz, gwarpnx, gwarpny, gwarpnz - distort the part of the object in
the region specified by the last two letters (p means positive, n means negative, and x, y and z, are the
coordinate axes) by the specified three values. Scaling of the original coordinates varies linearly with the
node’s original distance from the specified axis. Only one warp Or gwarp parameter may be specified per
object.

default: (no warp)

mark — add a label to a group of nodes or elements. Items can have as many different labels as desired.
Marks have limited uses. They can be used to sort elements in the region command and will be output as
groups when an I-DEAS output file is created. Support for NASTRAN SET grouping can be enabled by
removing a comment in “nastran.c.” The Mark parameter takes two arguments: the group type (node,
element or rbe) and the group name. A marked group can contain either nodes, elements, or rbe class
objects.

Example: mark element OML

default: none
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Section/Truss

A section is a 3-D object made by interpolating between two 2-D curves. Curved transitions may be
generated using the taper parameter. The origin of the object is the center point of curve 1 (which for semi-
curves is on the axis of symmetry).

A truss is a standalone object made of bars or beams that generates ring frames at the 0 and 100 percent
ends of the object and diagonal cross supports between them. The number of truss nodes used is set with
the tnodes parameter. Strut endpoints are evenly distributed but attached to the closest existing node on
the 0/100 end rings. Thus, a higher value or very careful selection of nodes_circ may produce a cleaner
truss. Also, a value of 2 for nodes_axial is recommended, but not required. A value higher than 2 may
produce unsupported degrees of freedom as well as potentially curved struts due to the interpolation be-
tween the two end shapes.

Parameter List
Note that most axial direction defaults do not change to match earlier inputted values (the transx
parameter is an exception).

curvel —mnemonic for first curve (see curve library)
default = sc, or last curve used

curve?2 —mnemonic for second curve (see curve library)
default = sc, or last curve used

cl_xscale — factor to scale x dimensions of curve 1 by
default = 1, or last x scale

cl_yscale — factor to scale y dimensions of curve 1 by
default = 1 or last y scale

c2_xscale —factor to scale x dimensions of curve 2 by
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default = 1, or last x scale

c2_yscale —factor to scale y dimensions of curve 2 by
default = 1, or last y scale

cl_xoffset —distance to horizontally translate curve 1
default = 0, or last x offset

cl_yoffset —distance to vertically translate curve 1
default = 0, or last y offset

c2_xoffset — distance to horizontally translate curve 2
default = 0, or last x offset

c2_yoffset —distance to vertically translate curve 2
default = 0, or last y offset

cl_rotation — angleindegrees to rotate end 1 about
the y axis. This parameter is intended to make toroidal or
helixical shapes. For instance, setting one end to zero, the
other to 3600 (ten 360 rotatations) and the yoffset on an
end to something greater than 10 times the yscale will
produce a 10 revolution spring.

default = 0, or last rotation

c2_rotation — angleindegrees to rotate end 2 about
the y axis. This parameter is intended to make toroidal or
helixical shapes.

default = 0, or last rotation

cl_s — scheme to use to distribute nodes circumferentially along curvel. Values may be “global,”
“local,” or “copy.” A “global” distribution spaces nodes evenly along the circumference of the un-scaled
curve. A “local” distribution spaces nodes evenly along each arc of a user-defined piecewise curve
(interpolated or compound). This has the effect of positioning nodes at each joint between child arcs. A
“copy” distribution uses the node spacing of the other end of the section in order to produce less twisted
elements. If both ends of the section are set to “copy,” a “global” distribution will be used.

default = “global,” or previous c2_s

c2_s —scheme to use to distribute nodes circumferentially along curve 2. See discussion of c1_s above.
default = “global,” or previous c2_s

length - length of section
default =1

radius - rotation radius used when c1_rotation Or c2_rotation are non zero.
default = 1, or last radius
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nodes_circ —number of finite element nodes to use in the circumferential direction
default = 10, or last value specified

nodes_axial — number of finite element nodes to use in the axial direction
default = 10

components_circ —number of different material props to use in circumferential direction. Use of this

parameter overrides the circ_cpos list of component edge positions and creates evenly distributed

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of circumference)
default = 1, or last value specified

components_axial — number of different material properties to use in axial direction. Use of this

parameter overrides the axial cpos list of component edge positions and creates evenly distributed

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of length)
default =1

axial_cpos — position of one axial component edge in percent. Values can be the word “reset” to remove
the current list of positions, or between 0 and 100 to set the percentage where elements created after that
location will be in a new component. Multiple positions can be set. Use of this parameter overrides the
components_axial setting and vice versa.

circ_cpos — position of one circumferential component edge in percent. Values can be the word “reset”
to remove the current list of positions, or between 0 and 100 to set the percentage where elements created
after that location will be in a new component. Multiple positions can be set. Use of this parameter overrides
the components_circ setting and vice versa.

taper — This setting controls how quickly curvel transitions to curve2. This taper option will have signif-
icant effect only if the scales and/or offsets of the two end curves are significantly different. Pictures of these
taper types are shown in the library section at the end of the chapter 7. Those pictures show a section that
transitions between two semi-circles of different size and offset.
For the 1inear option, value has no effect. For the cosine option, value is the number of half waves.
For the power option, value is the exponent of the interpolation curve (1.0 gives linear).

Usage: taper <type> <value>

Type = “linear,” “power,” “cosine”

Defaults: type = linear

value =1.0

tnodes — number of truss endpoints to use
type — kind of 1-D object to generate for a truss object. Should

be beam, rod, or bar (rod and bar are the same).
Default: beam
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A TSection is an under-development variation on the Section object type. This object allows the user to
specify a different value of nodes_circ at each end of the section. This results in a number of triangular
elements being created to gradually change from one node count to the other.

No TFrame object has been created to allow ring frames and longerons to attach to a T Section. A con-
ventional Frame object may be used. It should stitch well along edges of the section but will generally not
attach properly across the middle of a TSection. If such a mid-frame is desired use multiple base objects to
force straight element edges at the desired location.

The TSection object uses the same parameters as the Section object with one addition:
Additional Parameter List
nodes_circ2 —number of finite element nodes to use in the circumferential direction at the second end

of the section.
default = 10, or last value specified
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Dome
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A Dome is a 3-D object made by extruding a single 2-D curve to a single nose point. The origin of the
object is the center point of curve 1 (which for semi-curves is on the axis of symmetry). Adding a dome
object does not change the default position of the next object (unless a translation/rotation parameter is
specified).

Parameter List
curvel —mnemonic for first curve (see curve library)
default = sc, or last curve used

cl_xscale — factor to scale x dimensions of curve 1 by
default = 1, or last x scale

cl_yscale - factor to scale y dimensions of curve 1 by
default = 1 or last y scale

cl_xoffset — distance to horizontally translate curve 1
default = 0, or last x offset

cl_yoffset —distance to vertically translate curve 1
default = 0, or last y offset

c1_s —scheme to use to distribute nodes circumferentially along curve 1. Values may be “global,” “local,”
or “copy.” A “global” distribution spaces nodes evenly along the circumference of the un-scaled curve. A
“local” distribution spaces nodes evenly along each arc of a user-defined piecewise curve (interpolated or
compound). This has the effect of positioning nodes at each joint between child arcs. A “copy” distribution
uses the node spacing of the other end of the section in order to produce less twisted elements. If both ends
of the section are set to “copy,” a “global” distribution will be used.

default = “global,” or previous scheme
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length - length of section
default =1

nodes_circ — number of finite element nodes to use in the circumferential direction
default = 10, or last value specified

nodes_axial — number of finite element nodes to use in the axial direction
default = 10

components_circ —number of different material props to use in circumferential direction. Use of this

parameter overrides the circ_cpos list of component edge positions and creates evenly distributed

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of circumference)
default = 1, or last value specified

components_axial - number of different material properties to use in axial direction. Use of this

parameter overrides the axial_ cpos list of component edge positions and creates evenly distributed

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of length)
default=1

axial_cpos — position of one axial component edge in percent. Values can be the word “reset” to remove
the current list of positions, or between 0 and 100 to set the percentage where elements created after that
location will be in a new component. Multiple positions can be set. Use of this parameter overrides the
components_axial setting and vise-versa.

circ_cpos — position of one circumferential component edge in percent. Values can be the word “reset”
to remove the current list of positions, or between 0 and 100 to set the percentage where elements created
after that location will be in a new component. Multiple positions can be set. Use of this parameter overrides
the components_circ setting and vise-versa.

taper —mnemonic for taper schedule (see taper library)
default = elli

droop — mnemonic for droop schedule (see droop library)
default = line

zdist - controls distribution of nodes axially. The value must be greater than zero and less than or equal
to one. The lower the value specified the more the nodes are biased toward the dome nose. A value of one
(the default) results in nodes being distributed linearly in the z direction. A value of 0.5 results in nodes
spaced in such a way as to produce equal radial spacing when viewed from nose on.
The actual equation used is: z;= length * (i/nodes axial)?dist

default=1.0

zdroop — distance to droop nose point from centerline
default =0

paraml, param2, param3 — additional parameters whose meanings vary depending on the value of
the taper option chosen. Since the meaning may change from an exponent expected to be between zero
and one to a radius that may be hundreds of inches, exercise care in the use of these values. These values
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are reset to -1.0 after use. This indicates to Loft that the default value should be used. Thus, any desired
parameters need to be set for each dome created. (see taper library at end of chapter 7).
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TDome

A TDome is an under-development variation on the Dome object type. This object allows the user to
specify a different value of nodes_circ at each end of the section. This results in a number of triangular
elements being created to gradually change from one node count to the other.

No TDframe object has been created to allow ring frames and longerons to attach to a TDome. A con-
ventional DFrame object may be used. It should stitch well along edges of the section but will generally not
attach properly across the middle of a TDome. If such a mid-frame is desired use multiple base objects to
force straight element edges at the desired location.

The TDome object uses the same parameters as the Dome object with one addition:
Additional Parameter List
nodes_circ2 — number of finite element nodes to use in the circumferential direction at the nose end of

the dome (the tip is a single node, and this value is the count of nodes in the row just before the nose).
default = 10, or last value specified
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A Wing object is a 3-D object composed of panels that represent a lifting surface’s skin, ribs, and spars.
This object creates one trapezoidal planform lifting surface (a right wing, a tail, a winglet) per call. It allows
the user to specify spar and rib positions and which spars to extrude to form the wingbox carry-through.
Other optional settings allow wing twist, different airfoil shapes at the root, tip, top, or bottom and beam/bar
stiffening of the ribs and spars. Partial generation of the wing in the chordwise direction (to support things
like control surfaces) is also supported.

Beam stiffening is only partially implemented at this time. The beams are connected properly, but their
alignment is not properly set. (They are all aligned with node 1.)

The object local origin is the leading edge root node.

The wing object supports two types of parameters: specific and generic. Generic parameters change one
or more specific parameters. For instance, the generic naca parameter will change the values of the specific
parameters rootnaca, tipnaca, nacatop, and nacabot. The main parameter list contains just the
specific parameters. A separate list of generic parameters is given at the end of this object section. The
effect of the two parameter types is read-order specific. Specifying “naca 2015 followed by “root-
naca 22127 will result in the root using a 2212 airfoil and the tip using a 2015. If the rootnaca
parameter was specified before the naca parameter then both the root and tip would use a 2015 airfoil. If
the user desires to be more specific, the top and bottom shapes can be specified separately using the root-
nacatop, rootnacabot, tipnacatop, and tipnacabot parameters. Also, in addition to specifying a 4- or 5-digit
NACA airfoil shape, the user may also specify a biconvex airfoil with a desired thickness to chord ratio or
any defined Loft curve (built-in, interpolated, or compound).

Historic note: Loft has had a large collection of different wing object types. To reduce confusion these
have all been collected into one wing type using the same parameters and generation code. For the short
term, the additional wing object types are still available to be used but are not documented and will
eventually be eliminated. This has the advantage of only having to maintain one wing generation routine.
(Most of the generic parameters are from the older, less powerful, wing object types.)
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Parameter List (Specific and more specific)
chord - root chord length
default: 1

span - single wing span
default: 1

taper — ratio of tip chord length to root chord length
default: 1

sweep — leading edge sweep angle in degrees
default: 0

rootnaca, tipnaca — specific airfoil NACA designation (contains camber and thickness data) for
wing root/tip. May be a NACA 4- or 5-digit airfoil specification, a biconvex airfoil with a desired thickness
to chord ratio (default 0.1), or the name of any valid Loft curve (built-in, interpolated, or compound). For
Loft curve use, since the normal definition of curves starts at (0,1), the x and y values of the curve will be
swapped so that the curve is horizonal rather than vertical. The specified thickness to chord will be used to
scale the now vertical x values of the Loft curve. Both the top and bottom surface of the root or tip are set
by these parameters.
defaults: 2410
thickness to chord 0.1
Examples: rootnaca 2030
rootnaca biconvex 0.20
rootnaca sc 0.10

nacatop, nacabot — specific airfoil designation for the top/bottom of the wing. Each sets both the root
and tip of either the top or bottom to that specification.

rootnacatop, rootnacabot, tipnacatop, tipnacabot —more specific airfoil designation
parameters for the wing end surfaces separately.

rootaoa - root twist angle in degrees. Wing half-chord is the rotation axis, positive twist produces a
higher section angle of attack (root up).
default: 0

tipaoa - tip twist angle in degrees. Wing half-chord is the rotation axis, positive twist produces a higher
section angle of attack (tip up).
default: 0

twist —synonym for tipaoa parameter.

rootvert - vertical offset of wing root. Positive is up.
default: 0

tipvert - vertical offset of wing tip. Positive is up. Can be used to produce wing dihedral.
default: 0
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wingbox — carry-through length. May be zero. At least 2 spars must be specified if a carry-through is
desired. This value is always reset to zero after object generation, so any desired non-zero values must be
set for each new object.

default: 0

sparpos — percentage of chord to place a spar. These can be specified in any order; the program
automatically sorts them as they are read. If either of the words “reset” or “clear” is specified rather than a
percentage, the current list of spars is deleted and the boxfront and boxrear parameters are reset to
their default values. This reset option is needed because the lists of spars and ribs are kept as the default
from one wing to the next.

ribpos — percentage of span to place a rib. Automatic ribs are created at 0 and 100 percent span and do
not need to be specified by the user. These can be specified in any order; the program automatically sorts
them as they are read. If either of the words “reset” or “clear” is specified rather than a percentage, the
current list of ribs is deleted (with the 0 and 100 percent automatic ribs being immediately re-added). See
the not ip parameter if suppression of the tip rib is desired.

boxfront — spar number to extrude to make wingbox carry-through front (used only if the wingbox

parameter is > 0). Numbering is based on proximity to the wing leading edge, not on the order that the

sparpos parameters occur. This value is reset to the default if the list of spar positions is cleared.
default: 1

boxrear —spar number to extrude to make wingbox carry-through back (used only if wingbox parameter
is > 0). Numbering is based on proximity to the wing leading edge, not on the order that the sparpos
parameters occur. This value is reset to the default if the list of spar positions is cleared.

default: (last spar)

meshchord — finite element mesh density per unit length in the chordwise direction (higher values
produce a denser mesh). Note that tapering of chord length and thickness across the span of the wing will
not cause a change in mesh counts; there will be the same number of nodes along the tip rib as on the root
rib. Example: a setting of 5 on a wing with a 5 unit long chord setting will result in approximately 25
nodes in the chordwise direction on both the top and bottom skin (the exact node count will depend on spar
positions and integer math truncations). This is a real number, not an integer, and can be less than one if
desired. This parameter changes the chordwise mesh distribution for the skins and ribs.
default: 3.0

meshspan — finite element mesh density per unit length in the spanwise direction. (See discussion above.)
This parameter changes the spanwise mesh distribution on the skins and spars.
default: 3.0

meshthick — finite element mesh density per unit length in the thickness direction. (See discussion
above.) This parameter changes the vertical mesh density of the ribs and spars. It has no effect on the wing
skins.

default: 3.0

sparstiff —flagto turn on generation of stiffening bars/rods or beams at the top and bottom of the spars.

Values are “off,” “on,” “beam,” “bar,” and “rod.” (“on,” “bar,” and “rod” are all equivalent).
default: off
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ribstiff —flag to turn on generation of stiffening bars/rods or beams at the top and bottom of the ribs.
Values are “off,” “on,” “beam,” “bar,” and “rod.” (“on,” “bar,” and “rod” are all equivalent).
default: off

halfwing — flag to turn on generation of just the top or bottom half of the wing. Used primarily for
vertical tails on the symmetry lines of a half vehicle. Values are “off,” “on,” “bottom,” and “top.” (“top”
and “on” are the same).

default: off

wingside —flag to control which side of the vehicle to build the wing for. Values are “starboard,” “port,”
“right,” and “left.” (starboard = right, port = left).
default: starboard

notip — flag to control generation of outboard (100% span) rib. This is useful when you are building up a
compound wing of multiple trapezoidal sections and do not want a double rib at the junction. Values of
“1,” “on,” or “true” will disable the wingtip rib generation. Values of “0,” “off,” or “false” will re-enable
it. This flag is always reset to off after each wing generation.

default: off (wingtip rib is generated)

nowbrib —flag to control generation of the rib at the end of the wingbox carry-through. Generally this rib
would fall on the centerline of the vehicle. Values of “1,” “on,” or “true” will disable the wingbox rib
generation. Values of “0,” “off,” or “false” will re-enable it. This flag is always reset to off after each wing
generation.

default: off (wingbox rib is generated)

start — percentage of chord length to start generating the object. Any spars that are specified at lower
positions than this value are ignored. The start and stop parameters are used to generate partial wing objects
(e.g., control surfaces).

default: 0

stop — percentage of chord length to stop generating the object. Any spars that are specified at higher
positions than this value are ignored. The start and stop parameters are used to generate partial wing objects
(e.g., control surfaces).

default: 100

gen_up_skin — flag to control the creation of the wing upper skin. Values are “on” and “off.” This flag
is always reset to “on” after an object has been created.
default: on

gen_low_skin —flag to control the creation of the wing lower skin. Values are “on” and “off.” This flag
is always reset to “on” after an object has been created.
default: on

gen_spars — flag to control the creation of the wing spars. Values are “on” and “off.” Even when off, the
other wing elements will be positioned to align with the spars that are specified in the object geometry.
Thus, each part of the wing could be generated separately and merged to create the same mesh as if they
were created together. This flag is always reset to “on” after an object has been created.
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default: on

gen_ribs — flag to control the creation of the wing ribs. Values are “on” and “off.” Even when off, the
other wing elements will be positioned to align with the ribs that are specified in the object geometry. Thus,
each part of the wing could be generated separately and merged to create the same mesh as if they were
created together. This flag is always reset to “on” after an object has been created.

default: on

Expanded view of Wing parts created by sequential use of each of the gen XXX flags

Parameter list (Generic)

mesh — finite element mesh density per unit length (higher values produce a denser mesh). This is a global
setting for the entire object. When used, the three specific parameters meshthick, meshspan, and
meshchord are reset to this value.

naca — airfoil NACA designation (contains camber and thickness data). When used, the more specific
rootnacatop, rootnacabot, tipnacatop, and tipnacabot are reset to this value.

nribs — number of wing ribs, including root and tip. Must be greater than or equal to 2. When used, the
current ribpos parameter settings are erased and the specified number of new evenly spaced ribs are
placed in the ribpos list.

nspars — humber of wing spars. When used, the current sparpos parameter settings are erased and the
specified number of new evenly spaced spars are placed in the sparpos list.

nodeschordwise — approximate number of finite element nodes to use along each chord line (the top
surface and the bottom surface will each have this many nodes.) This will reset the meshchord value to
(specified value)/(current chord). The actual number of nodes may vary due to integer math and positioning
of nodes exactly at spar positions.

elemperspanbay — approximate number of finite elements to use between each rib. This parameter will
reset the meshspan parameter to (specified value) * (current number of ribs) / (current span).
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Frame/DFrame

A Frame is an object made of beam elements distributed between two curves. Frame objects are based
on the last Section object — taking their shape and dimensions from that section.

A DFrame is also a frame type object but is based on/attached to the previous Dome object. It has the
same parameters as the frame object.

For both object types, the a1l ign parameter can be used to select axial or circumferential alignment. If
a single line of beams is desired, the count variable can be set to one, and the position parameter can
be used to specify the position along the curve. A frame object does not change the default position of the
next object. All beams are by default aligned with a node set at x = 0, y = 0, z = <beam start point z>. This
may not be what is desired in all cases, so the x3, y3, and z3 parameters can be used to override this
setting. The bright lines in the figure above are thrust structure stiffening beams created using both frames
and dframes. Loft will detect and remove duplicate beam/bar elements created at the junction points of two
adjacent sections.

Parameter List
align —direction of beam elements: “axial” or “circ”
default: circ

count — number of frames to make (integer)

default: components setting of parent section/dome +1 in direction specified. The frames will be
positioned at the same component edge locations that are used in the parent object, whether set by count
(components_axial) or by explicit location (axial_cpos). Overriding the count will lose this
location paring and result in even spacing of the specified number of frames.

position — location of a single frame, in fraction of the direction specified, must be between zero and
one. Ignored if count does not equal 1.
default: 0

type — kind of 1-D object to generate. Should be “beam,” “rod,” or “bar”” (rod and bar are the same).
default: beam

x3,y3, z3 — location of beam alignment node
default: x3 =0, y3 =0, z3 = beam start coordinate
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Beam

A Beam is a one-dimensional object where the user specifies the absolute position of the end points.
This object type can generate either a beam (has axial and bending stiffness) or a rod/bar (has only axial
stiffness). The parameters specified for this object do not change the defaults for the other object types (but
are remembered for other beam objects). None of the general object parameters (move, rotate, scale,
warp, £1ip) are supported at the object level.

Parameter List
type — kind of 1-D object to generate. Should be “beam,” “rod,” or “bar” (rod and bar are the same).
default: beam

x1,y1, z1 —end point coordinates
default: 0,0,0, or previous settings

x2,vy2,z2 —end point coordinates
default: 1,1,1, or previous settings

x3,y3, z3 —beam alignment node coordinates
default: 0,1,0 or previous settings
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Tank

A Tank is a meta-object composed of three objects: an elliptical dome of negative length, a tank barrel
section, and an elliptical dome with positive length (the same as the negative length). The three objects will
be named based on the supplied name for the tank meta-object but will have “ FD,” “ B,” or “ AD” (for
“forward dome,” “barrel,” and “aft dome”) added. The tank object shares the section object parameters and
defaults, with one additional parameter: dome length.

The tank local origin point is the center point of curve 1 (the center of the front of the barrel section).
Use of a tank object does update the global default creation point to the center of curve 2.

Additional Parameter List
See Section object type above for a base list of parameters.

domelength — length of the elliptical domes
default: 0.707 * Average of corresponding section end’s scale_x,scale_y
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StiffTank
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A StiffTank is a ring frame stiffened tank meta-object. It is constructed the same as the tank meta-object
with the addition of circumferential ring frames being added along the edge of each barrel component (as
controlled by the components_axial parameter). The string “ R” is added to the object name for the
frame object. See the tank and section objects for its parameters. No stiffening is added to the domes.
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Box

A Box is a trapezoidal flat faced object with the front and back surfaces parallel. Stiffeners may optionally
be placed along face component edges and/or through the volume of the box using the stiff_skin_Xand
stiff_vol_ X parameters detailed below. There are no parameters to specify cross sectional shape—a
square is always used. Note that like the wing object this object will not generally automatically stitch
properly to an adjacent section or dome object as the node distribution will be different.

Parameter List
cl xscale —factor to scale horizonal dimension of front end by
default =1

cl yscale —factor to scale vertical dimension of front end by
default =1

cl xoffset —horizontal distance to move front end
default =0

cl yoffset — vertical distance to move front end
default =0

c2_xscale — factor to scale horizonal dimension of aft end by
default =1

c2_yscale —factor to scale vertical dimension of aft end by
default =1

c2_ xoffset — horizontal distance to move aft end
default =0

c2_yoffset — vertical distance to move aft end
default =0
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length — axial length of box
default =1

nodes_vert —number of nodes in the vertical direction
default = 10

nodes_horz —number of nodes in the horizontal direction
default = 10

nodes_axial —number of nodes in the axial direction
default = 10

components_vert —number of components in the vertical direction
default = 3

components_horz —number of components in the horizontal direction
default =3

components_axial —number of components in the axial direction
default =3

stiff skin vert — controls the creation of stiffeners in the vertical direction on the front, back, left,
and right skin panels. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or
“false” will disable them.

default = off

stiff skin horz—controls the creation of stiffeners in the horizontal direction on the front, back, top,
and bottom skin panels. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or
“false” will disable them.

default = off

stiff skin axial — controls the creation of stiffeners in the axial direction on the top, bottom, left
and right skin panels. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or
“false” will disable them.

default = off

stiff skin all —toggles all three stiff_skin_X settings to the specified value. Values of “1,”

“on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable them.
default = off

stiff vol vert —controlsthe creation of stiffeners in the vertical direction in the box internal volume.

Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable them.
default = off

stiff vol horz —controls the creation of stiffeners in the horizontal direction in the box internal vol-
ume. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable
them.

default = off
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stiff vol axial—controls the creation of stiffeners in the axial direction in the box internal volume.

Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable them.
default = off

stiff vol all-—togglesallthree stiff_ vol_X settings to the specified value. Values of “1,” “on,”

or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable them.
default = off

135



Block

The Block object creates a three-dimensional, solid-element-based trapezoidal prism object. It has two
rectangular ends with variable scales, horizonal offsets, and vertical offsets supported at each end. Output
in NASTRAN will produce 8-node CHEXA elements, and in VRML each element face will be written as
a flat panel. Other output formats are not currently supported for this object. All of the rotation, transla-
tion, and warping parameters (in the common parameters list) are supported except for the £1ip parame-
ter.

Parameter List
cl xscale —factor to scale horizonal dimension of front end by
default =1

cl yscale —factor to scale vertical dimension of front end by
default=1

cl xoffset —horizontal distance to move front end
default =0

cl yoffset — vertical distance to move front end
default =0

c2_ xscale —factor to scale horizonal dimension of aft end by
default =1

c2_yscale —factor to scale vertical dimension of aft end by
default =1
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c2_xoffset — horizontal distance to move aft end
default =0

c2_yoffset — vertical distance to move aft end
default =0

length — axial length of block
default =1

nodes_vert —number of nodes in the vertical direction
default = 10

nodes_horz —number of nodes in the horizontal direction
default = 10

nodes_axial —number of nodes in the axial direction
default = 10

components_vert —number of components in the vertical direction
default =3

components_horz —number of components in the horizontal direction
default =3

components axial —number of components in the axial direction
default = 3
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BC/RBE/FORCE/MASS/PRESS/TEMP

The BC/RBE/FORCE/MASS/PRESS/TEMP object types map user supplied values to the project mesh.
Currently, they will be reflected only in NASTRAN format output files. An exception is that an RBE ele-
ment will be depicted in VRML as a 1-D line.

The BC object creates boundary conditions (NASTRAN SPC cards) with the user specified degrees of
freedom (dof) constrained. The RBE object creates rigid body elements that connect degrees of freedom
for two or more nodes. The FORCE object type applies a specified force vector (NASTRAN FORCE card)
to a group of nodes. The MASS object type applies a concentrated mass (NASTRAN CONM2 card) to a
group of nodes. Both FORCE and MASS values can be given as a value to be applied to every specified
node or as a value to be smeared across the nodes producing the value as a total. The PRESS object type
applies a specified pressure (NASTRAN PLOAD?2 card) to a group of elements. The TEMP object applies
a specified initial or boundary condition temperature (TEMP or SPC card) to a group of nodes.

For RBE objects, if the node1 and node2 parameters are used then those nodes are connected and the
approach parameter is ignored. If node1 and group2 parameters are used and approach is given as
spider, then nodel is connected to every node in group2. Otherwise group1 is connected to group?2
using the specified approach.

For non-RBE object types, node1l, groupl, and group?2 can all be used to specify nodes (or elements
in the PRESS case) that are to have the specified values mapped to them. Node?2 is a synonym for setid
for these cases.

The group membership used for these objects is frequently created using the corner parameter in the
region command mode. Please refer to that section of the manual for additional insight.

Parameter List
nodel — index of first node to use
default = -1
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node?2 — index of second node use. (Note that this shares storage with the setid parameter, so each will
overwrite the other.)
default = -1

groupl — name of first group of nodes (or elements for a PRESS type)
default = null

group2 — hame of second group of nodes (or elements for a PRESS type). Group2 is optional for BC,
FORCE, MASS, and PRESS objects but if used will produce the same type of cards for the second group
of nodes/elements. For RBE objects it is used as a list of nodes to connect to the nodes in group1 using
the specified approach.

default = null

doflist — list of degree of freedom numbers to use for a boundary condition or an RBE object. This
value is ignored for FORCE, MASS, and PRESS objects. These are given in a NASTRAN style adjacent
list containing the digits 1,2,3,4,5, and/or 6.

default = 123456

type — choice between “rbe2” or “rbe3,” “bc,” “force,” “mass,” or “press.” A rbe can be specified as either
a four character string or a single digit (“rbe2” or ’2”) or (“rbe3” or ’3”). This t ype parameter is automat-
ically set when using the corresponding name to create the object. In other words, if an object is created
using “object force thrust” then the typeissetto force.

default = rbe?2 for RBE object, object type for other objects.

approach — method used, in RBE object, to connect multiple nodes, or in MASS or FORCE object to
compute the applied value to each node. Only the first three letters of the chosen approach need to be given.

“sequential” — the first node of group1 will be connected to the first node of group2, second
node to second, etc. until one group runs out of nodes. Remaining nodes are not connected.

“reverse” —the first node of group1 will be connected to the last node (N) of group2, the second
node to the last but one, etc. until one group runs out of nodes. Remaining nodes are not connected.

“closest” — each node in group1 is connected to the closest node in group2. This is not neces-
sarily a unigue pairing.

“shortest” — (not currently implemented) the shortest total length of unique connections between
groupl and group?2 are created, nodes are not reused so uneven groups will result in unused nodes

“spider” — node specified in node1 parameter or the first node in group1 is connected to every
node in group?2.

“smeared” — if specified for a mass or force object, the specified values (valuel-3) will be di-
vided by the number of nodes that have the value applied so that the total value applied is the specified
amount. If “smeared” is not specified, then every node will have the unscaled value applied.

“thc” — “thermal boundary condition,” if specified for a thermal object, the specified value will be
applied as a boundary condition and generate a thermal SPC card. (thermal default)

“tic” — “thermal initial condition,” if specified for a thermal object, the specified value will be
treated as an initial temperature and generate a TEMP card.

default = sequential

mark —add new elements to specified group
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setid —index for boundary condition, force, or pressure card numbers. (Note that this shares storage with
the node2 parameter, so each will overwrite the other.) This index then needs to be referenced in the case
control section of a NASTRAN analysis file in order to be used.

value/valuel — floating point value used for PRESS object pressure, MASS object mass, or the x
component of the applied force on a FORCE object. “value” with no number after it will also be inter-
preted as “valuel.”

value2 — floating point value used for the y component on a FORCE object
value3 — floating point value used for the z component on a FORCE object

Example object commands and parameters:

object rbe forward wing rbes
groupl mainwing fwd corners
group2 Front bulkhead corners
object bc symmetry bc
groupl centerline
setid 999
dof 345
object force thrust
groupl engine ring
setid 1000
valuel -100.0
value2 0.0
value3 0.0
object press 1lift
groupl mainwing skin SKIN UP ELEMS
setid 1001
valuel -1.0
object mass ballast
groupl nosecap ALL NODES
value 1000
approach smeared
object temp root temp
groupl wing root nodes
value 100.0
approach tbc
setid 100
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Node

A Node object is used to create a single node in the mesh. One application is to use variables to parametri-
cally position a node that will be used as the hub of a rigid body element (RBE) spider. This spider can be
used to distribute a load over a collection of connected nodes.

Parameter List
x, vy, z — specifythe x,y, or z coordinate of the node
default =-1.0

mark — label to apply to the node. Note that a group called “<object name> ALL NODES” is automatically
created. Any group can then be used, for instance, in a RBE object creation process. Creating a group of
elements is not supported in the node creation object.

default: none

example: mark node My node group
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User Curve Types and Parameters

The internal library curves are all defined such that they have a nominal radius of one. For instance, a
square is two units long on an edge. This allows the use of object level curve scaling parameters to reflect
the actual dimensions desired for the mesh. This approach is recommended, but not required, for user-
defined curves. For proper alignment of normal vectors, curves should be defined sequentially in a clock-
wise fashion.

Mnemonics for user-defined curves can be chosen such that they override internally defined curves (i.e.,
a user-defined “sc” curve would replace the internal one). Defining a second user-defined curve with the
same name generally will not override the previous shape. When data from a curve is needed, Loft scans
through the curve libraries in the following order and stops when it gets a match: 1) Interpolated curves, in
the order they were defined, 2) Compound curves, in the order they were defined, 3) Lofted curves, in the
order they were defined, and 4) Internal curves. If no match is found, Loft will use a semi-circle.

Interpolated Curves

Interpolated curves are defined by specifying x and y coordinates of points along the curve. Point order
is important. Various interpolation options may be available in the future, but currently only linear interpo-
lation is supported. “y” is the vertical coordinate and “x” is the horizontal.

Parameter List
start —initial point coordinates
Example: start 0.0 1.0

line — coordinates of new point to be connected to the previous point by a line.
Example: line 1.0 1.0

Compound Curves

Compound curves are curves built up by combining previously defined curves. Any curve type (built-
in, interpolated, lofted or previous compound) can be used. Only circles and semi-circles have modules that
will automatically compute their intersection points with each other. If an intersection is not between two
circle or semi-cirle chi1d curves, then the user will need to specify the portions of each curve that is to be
used. See the project 3 tutorial in chapter 2 of the manual for a more complete explanation of this process.

Parameter List
child-name of child curve. This starts a new child curve definition. All parameters that follow will refer
to this child until a new child starts or the entire compound curve definition is finished by another command.

x — X coordinate to use for center of child curve
default 0.0

y — Y coordinate to use for center of child curve
default 0.0

radius — scale factor for curves
default 1.0
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sstart, sstop — fraction along a curve’s circumference to start/stop (defaults 0.0, 1.0). For circle/sc
curves these values are overwritten when the curve intersection code is called: e.g., curve 3’s sstop value
is reset when curve 4 is specified. Thus, sstart will have an effect only on the first specified circle/sc
curve and sstop will have an effect only on the last circle/sc specified curve. For curve types where
intersection calculation code has not been written (i.e., anything other than circle or semi-circle), these
values will not be overwritten and in fact are the only way to use these types of curves in a compound curve.

Lofted Curves

Loft inherently creates a “lofted” curve whenever it creates a dome or a section and is creating nodes at a
station between the two ends of the object. The “lofted” user-defined curve type allows the user to extract
one of these intermediate shapes for later use. Applications include creation of mid-section bulkheads. Any
curve types can be used as the end curves.

Parameter List
curvel — name of first source curve.
default = sc

curve?2 — name of second source curve.
default = sc

station — fractional position between the two curves used to create the new user curve.
0.0=curvel, 1.0=curve?2

default = 0.5

Example:

curve lofted midbarrel
curvel sc
curve?2 ss
station 0.3
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Libraries

Curve Library

This is a list of the currently coded curves and their mnemonics. All curves have a nominal radius of
one.

Curve families allow the user to tack a single parameter onto the name of the curve to affect the final
shape generated. No space is left between the mnemonic and the parameter, e.g., fillet0.44 or
sccw3. 2. The parameter is optional.

Most curves are available in both a full, 360-degree version and a semi, 180-degree version. When using
a full curve, Loft will use the nodes_circ parameter to generate the curve, but the first and last nodes (at
0 and 360 degrees) will be merged and the mesh will have one fewer node in that direction than was spec-
ified by the user. Keep this in mind and increase the value of the parameter if necessary.

Simple Curves
Circle — “cir” — unit radius full circle.

Semicircle — “sc” — unit radius half circle.
Square — “squ” — full square of width and height 2.
Semi-square — “ss” — half square of dimension 2 (encloses radius 1 circle exactly)
Breadbox — “bb” — circular on top, square on the bottom. (Note: for compatibility with the other library
curves, the breadbox curve has s=0.25 and 0.75 at the junctions of the circle and the square. These are not
25% and 75% along its circumference.)
Semi-breadbox — “sbb” — half section with top half circular and bottom half square. (Note: for compatibility
with the other library curves, the semi-breadbox curve has s = 0.50 at the junction of the circle and the
square. This is not 50% along its circumference.)
Line — “line” — vertical line from +1 to -1, for webs and longitudinal bulkheads
Horizontal line — “hline” — horizontal line from +1 to -1
Curve Families
Semi-circle-cosine-wiggle — “sccw” — cosine wiggle shape

parameter meaning — number of full cosine waves to generate

default=2.5
Filleted box — “fillet” — square with rounded corners (Note: the distribution of s along the filleted box is
not exactly by circumference.)

parameter meaning — radius of fillet, between 0 and 1
default=0.25
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Semi-Filleted box — “sfillet” — half section square with rounded corners. (Note: the distribution of s along
the semi-filleted box is not uniform in circumferential distance.)

parameter meaning — radius of fillet, between 0 and 1

default=0.25

Library Curves illustrated with Dome Objects
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Fillet Semi-Fillet

L~

Cosine Wiggle Line or HLine
Dome Taper Library
This is a list of the currently coded dome taper schedules and the meaning of the paramn options.
Bulkhead — “bulk” — planar (zero length) bulkhead
Linear — “line” — linear taper (cone shaped)
Parabolic — “para” — power law nose shape
paraml = exponent of taper schedule.
default = 0.5 = true parabola
Elliptical — “elli” — elliptical taper for tank domes
Ogive — “ogive” — tangent ogive nose with spherical nose cap
paraml = nose cap radius. default = 1.0
param?2 = radius of main section curve. default = 0.0
param3 = radius of nose base. default = 1.0
Haack — “haack” — LD-Haack nose shape with optional spherical blunt cap
paraml = length of nose without blunt cap. default = dome length
param2 = nose cap radius. default = 1.0

param3 = nose cap length. default = 0.0

Dome Taper Library Examples

Elliptical Linear Parabolic
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Bulkhead Ogive Blunt LD-Haack

Section Taper Library

This is a list of the currently coded section taper schedules and the meaning of the value options. The
pictures show a section object that interpolates between one semi-circle and a larger, offset semi-circle.
Circumferential and axial frames are added.

Linear — “line” - linear taper

Power — “power” — power curve taper
value = exponent of taper schedule.
default = 1.0 = linear

Cosine — “cosine” — cosine schedule, offers tangency possibilities
value = number of cosine half waves.
default= 1.0

Examples

Linear Cosine 1.0 Cosine 0.5

Power 0.5 Power 1.5
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Droop Library

This is a list of the currently coded dome droop schedules.

Linear — “line” — nose centerline descends linearly

Parabolic — “para” — nose centerline descent smoothly increases

Droop Library Examples

U NN NN O

Parabolic

Linear
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System Variable List

This is a list of the system variables available for use in a Loft input file. They correspond to the object
parameters set by the user in the input file and will return the current values of those variable.

Global Variables

Variable Invoked by
transx — x coordinate for next object @transx
transy — y coordinate for next object @transy
transz — z coordinate for next object @transz
rotx — X rotation for next object @rotx

roty — y rotation for next object @roty

rotz — z rotation for next object @rotz

components_circ — components in circumfer-
ential direction

@components_circ

nodes_circ —nodes in circumferential direction

@nodes_circ

maxM, minM — highest or lowest value of co-
ordinate M in current stack

@maxx, @maxy, @maxz, @minx, @miny,
@minz

ponential function. ~2.71828

time — system time in seconds @time
clock — CPU time in seconds @clock
pi — ratio of a circle’s circumference to its di- | @pi
ameter. ~3.14152965

e — Euler’s constant, base of natural log and ex- | @e
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Section Variables

Variable

Invoked by

length — length of section object

@section.length

taper — taper value of section object

@section.taper

components_axial — components in axial di-
rection

@section.components_axial

nodes_axial — nodes in axial direction

@section.nodes_axial

Dome Variables

Variable

Invoked by

length — length of dome object

@dome.length

zdist — axial node distribution

@dome.zdist

droop — droop value of dome object

@dome.droop

paraml — parameter 1

@dome.param1l

param2 — parameter 2

@dome.param2

param3 — parameter 3

@dome.param3

components_axial — components in axial di-
rection

@dome.components_axial

nodes_axial — nodes in axial direction

@dome.nodes_axial
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Wing Variables

Variable Invoked by
chord @wing.chord
span @wing.span
taper @wing.taper
sweep @wing.sweep
twist @wing.twist

wingbox — wingbox length

@wing.wingbox

mesh_chord @wing.mesh_chord
mesh_span @wing.mesh.span
mesh_thick @wing.mesh_thick

wing transx — x position of next wing (wing
objects do not update the global transx/y/z var-
iables. Instead, the default position of a new
wing object is the same as the previous wing
object.)

@wing.transx

wing transy —y position of next wing

@wing.transy

wing transz — z position of next wing

@wing.transz
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Math Function List

Function Invoked by
Sine %sin
Cosine %cos
Tangent %tan
Arcsine %asin
Arccosine %acos
Arctangent Y%atan
Hyperbolic Sine %sinh
Hyperbolic Cosine %cosh
Hyperbolic Tangent %tanh
Hyperbolic Arcsine %asinh
Hyperbolic Arccosine %acosh
Hyperbolic Arctangent %atanh
Exp %exp
Log %log
Square root %sqrt
Cube root %chrt
Absolute value %abs
Integer or truncation %int

For these functions, all angles are in radians.
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Chapter 8: Example Input Files

Loft Example Input File #1

The first full example Loft input file builds a simple conceptual level finite element model of a Two Stage
To Orbit (TSTO) booster vehicle. A lot of the design details of the vehicle, such as stiffeners, are very
notional and the wing carry-through passes through the aft tank. It contains approximately 100 lines of
basic Loft commands and parameters. It does not make use of math, variables, user-defined curves, the
region mode, or perform any store/recall operations.

Testing full vehicle based vaguely on
ISAT Reference vehicle Mach 3.4 TSTO Vehicle
Booster

Our nose

object dome BST Nose

curvel sc

cl xscale 15.589

cl yscale 15.589

length -36

taper para

nodes_circ 21

nodes_axial 20

droop line

zdroop 8

components_axial 2

ErgEE S
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# Short fuselage extension to get nose
# not to impinge on forward tank
object section BST Nose Barrel

length 3.885

nodes_axial 3

components_axial 1

# Forward LOX Tank

object dome BST LOX FW Dome
length -11.02

taper elli

nodes_axial 8
components_axial 1
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object section BST LOX Barrel
length 23.205

nodes_axial 12
components_axial 1

0 o

object frame BST LOX Frame
align axial

object dome BST LOX AFT Dome
length 11.02

taper elli

nodes_axial 6
components_axial 1

L
!
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# Intertank adaptor
object section BST ITA
length 26.04
nodes_axial 12
components_axial 1

# LH2 Tank

object dome BST FW Dome
length -11.02

taper elli

nodes_axial 12
components_axial 1

object section BST LH2 Barrel
length 87.35

nodes_axial 44
components_axial 3
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object frame BST LH2 frame

object dome BST LH2 AFT Dome
length 11.02

taper elli

nodes_axial 6
components_axial 1

# Tank shroud

object section BST Tank Shroud
length 11.02

nodes_axial 6

components_axial 1
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# Wing
object wing Main Wing
chord 80
span 60
taper 0.25
sweep 40
wingbox 6
transx 6
relz -70
rely -12
nribs 4
nspars 3
meshchord .4
meshspan .4
meshthick .4
naca 2412

# Tip fin

object wing Winglet
chord 20

span 20

wingbox O

transx 66

relz 50.35

rotz 50
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meshchord 1.6
meshspan 1.6
meshthick 1.6

# Thrust structure shroud
object section BST TS Shroud
length 16.5

nodes_axial 6
components_axial 1

# Put a chopped off cone inside the shroud
# to represent the thrust structure

# note the relz parameter's use

object section BST Thrust Structure

length 3

c2 xscale 12

c2 yscale 12

relz -10.5

nodes_axial 4

components_axial 1
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# Vertical tail on line of symmetry
object wing Tail
naca 0612

nribs 3

nspars 2
halfwing bottom
chord 30

span 30

transy 15.589
rotz 90

relz -20

mesh .4

# bulkhead to close off thrust structure
object dome BST Thrust Bulkhead

taper bulk

components_axial 1

# save

write vrml full-color.wrl

end
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Obvious issues with this model include the wing carry-through passing through the aft tank and the various
wing surfaces needing to be stitched together. But this model is sufficient for some early configuration stud-
ies and to produce images for presentation and discussion. The next example produces a much more realistic
model of a very similar vehicle.
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Loft Example Input File #2

The second full example Loft input file builds a significantly more complex finite element model of a
similar Two Stage To Orbit (TSTO) orbiter vehicle suitable for advanced conceptual analysis. Most of the
neglected design details in the first example have been addressed in this model with carefully positioned
stiffeners and wings. This input file uses approximately 1100 lines of Loft commands and parameters.

This example has been significantly updated from the version included in earlier editions of this manual.
It is now completely parametric; all dimensions are specified as variables and positions are computed from
those dimensions. The wing and tail are automatically stitched to the fuselage bulkheads using rigid bound-
ary elements (rbes). Many other recently updated program features are also used, such as the mirror com-
mand, include file capability, generation of point masses and spider rbe connections for force and mass
distribution, and program flow control with logical operators, if statements, and gotos.

Significant use is made of user-defined curves to define the fuselage shape at various stations. The region
mode is used to change the property assignments needed to create the payload bay door and to create partial
models for loads mapping. The store/recall capability is used extensively to position major components and
to create presentation figures that focus on particular components. Substantial use is also made of user
variables and command line math.

The input file starts with some comments describing the model:
Loft input deck to generate

LaRC TSTO-2009-2A Orbiter

Revised model with RBE stitching

Units are in inches

H H= H H= =

The first command is a variable used to specify if the user desires a full model or a half model. The model
is created as a half vehicle. A later i £ command will check this variable and either execute or skip over a
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mirror operation. Also, symmetric boundary conditions will be applied to the centerline nodes if a half
model is desired but will not be created for a full model.

# select which version of model to create
# if fullvehicle = 0, a half model

# =1, a full model

define fullvehicle 0

The next block of commands defines the mesh density and derives number of nodes used circumferen-
tially on the fuselage. It is necessary to use a variable to store this value because the use of the store
command resets all default values including the nodes_circ setting. Variables are not reset by the
store command. The Smeshdensft variable is only used once (on the next line) so could be removed
and the value could be directly set on the $Smeshdens variable.

Global mesh controls

Orbiter is 138' long from nose tip to tip of vertical tail
meshdensft is approximately nodes/foot but will get
modified by integer math on each section

0.5 is probably a good initial analysis density.

0.25 or 0.125 can be used for faster runtimes while
testing the model

define meshdensft 0.125

define meshdens S$meshdensft / 2.

# for proper payload bulkhead stitching circnodes needs to be a
multiple of 5 plus 1

define circnodes 55 * Smeshdens %int

define circnodes S$circnodes * 5 + 1

H= = = o 3

Note the need for the Scircnodes variable to be a multiple of 5 in order for the payload bay bulkheads
to align and stitch. We’ll see the reason for that when we define the curves to build those bulkheads. The
plus one requirement is because there is a first and last node as well as all the nodes between them.

As a demonstration of Loft’s math functionality, pi is computed next using 2*cos*(0). It could also have
been just defined as a value or by using the @pi system variable.

# pi
define piover2 0.0 %acos
define pi Spiover2 * 2.

The next long section defines dimensions for all of the vehicle components. Any of these values can be
changed by the user and the vehicle model should adjust and be generated successfully. Variable names are
chosen to make their use clear, but some additional comments are added before or inline with a few of them
for clarity.

# Vehicle dimensions & stations

# nominal cross section radius of main fuselage
define fusescale 102.

# Nose

define noselength 450.54
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define
define
define
define

noseoffset -42.0

capradius 18.

caplength -1. * S$Scapradius / 2.

bulletbulk 100. # distance forward of const fuselage

place bulkhead (fwd LH2 support)

define
define
define

# Tanks

define
define
define
define
define

bulkheadl $noselength - S$bulletbulk / 4.
bulkhead2 $noselength - S$bulletbulk / 2.
bulkhead3 $noselength - S$bulletbulk

fwd tank 325.

aft tank 43.

aft dome 96

tankscale 96.

aft support Saft dome / 3.

# Skirts over domes

define
define
define

fwd tank skirt 62 # used only at aft of front tank
aft tank skirt 76 # used front and aft of aft tank
aft skirt 103.

# Fuselage

define
define
define

fuselength 1013.
longeron pos 0.18

fuse center bay S$fuselength - $fwd tank - Saft tank

saft skirt - $fwd tank skirt - Saft tank skirt

define
define

half 1h2 nose 200. / 2.
mid bulk $fwd tank + S$half 1h2 nose / 2

# Payload bay

define
define
define
define
define
# Wing
define
define
define
define
define
define
define
define
define
define
define
define
define

plb start $fwd tank + Sfwd tank skirt
plb length $fuse center bay

plb half $plb length / 2

plb third $plb length / 3

plb scale 72.

strakechord 498.196

strakespan 31.

straketipchord 377.777

straketaper $straketipchord / $strakechord
strakesweep 75.179

straketangent S$strakesweep * $pi / 180. %tan
mainchord $straketipchord

mainspan 233.

maintipchord 113.235

maintaper $maintipchord / $mainchord
mainsweep 45.854

sparl 10.

spar?2 36.
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define
# Tail
define
define
define
define

spar3 72.

tailchord 260.337
tailspan 281.5
tailtipchord 77.955
tailsweep 47.

# Thrust Cone
define thrustconelength 80
define thrustconelength Saft skirt + 10.

The next command references a second input file that contains commands that define all of the user-
defined curves needed to construct the vehicle. Use of an include file is not required. In this case, it is done

as a demonstration and to make the parent input file easier to read and edit.

# User defined curves
include tsto-curves.txt

The first user-defined curve is the half-slice-of-bread cross sectional shape of the fuselage. The final shape
is made of two circular portions: one at the top and one at the bottom outside corner, and two linear portions:
the flat bottom and a five degree sloped sidewall. The internal circle shapes can be used for the circular
portions, but the linear portions must be defined as interpolated curves. Then a compound curve named

“body” is defined that combines the four children into one curve

-

c
D

The next 88 lines of input are from “tsto-curves.txt.”

# Define child curves of unit half cross section

# (cross sectional shape fits in -1 to 1 square space)

# point definition:

# A = top (centerline) of curve

# B = intersection of circ top & 5deg side

# C = intersection of 5deg side and 1/17 fillet

# D = intersection of 1/17 fillet and flat bottom
# E = bottom (centerline) of curve

# line B-C

curve interpolated mylineBC
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start 0.996195 0.0871557
line 0.999776 -0.9360497
# line D-E
curve interpolated mylineDE
start 0.9411765 -1.0
line 0.0 -1.0
# combine into full cross section
curve compound body
child sc
sstop 0.47222222222
child mylineBC
child sc
sstart 0.47222222222
sstop 1.0
radius 0.0588235
x 0.941176
y —-0.94117647
child mylineDE

The next user-defined curves to create are those that define the mid-payload-bay support bulkheads. These
have circular cross sections at the top/inboard and match the just-defined fuselage cross section at the bot-
tom/outboard. The values of the sstart parameters were arrived at through trial and error. Note that the
actual bulkhead is not created here, just the curves that are used later when the payload bay is created. Also
note that variables defined in the parent input file are used here; Loft treats the include file input lines as if
they were inserted into the parent.

# Payload Bay Support bulkhead curves
# plbl = semi-circle bay shape
# plb2 = sidewall & floor shape
curve compound plbl
child sc
sstart 0.54
radius S$plb scale / $fusescale
x 0.0
y 24.0 / 102.
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curve compound plb2
child body
sstart 0.400

The fuselage side of the bulkhead curve definition specifies “child body” and “sstart 0.400.”
This copies the fuselage curve shape starting at 40% along its circumference. Recall that near the start of
the project we had a requirement that the Scircnodes variable be a multiple of 5 plus 1. That requirement
is to ensure that a fuselage node is always located at that 40% location for the bulkhead to connect to.

If the “plus 17 requirement is unclear, recall the “sd” semi-diamond shape in the user defined curve tuto-
rial (Chapter 3, Project 3A). To accurately sample the curve we needed a node at the 50% point. Having a
count of 3 placed nodes at 0, 50, and 100%. Having a count of 4 placed nodes at 0, 33, 66, and 100%.
Having 5 would place nodes at 0, 25, 50, 75, and 100%. Any even count would miss placing a node at 50%
and any odd count would hit 50%. Another way to state this is: to ensure a node occurs at 50% our node
count needs to be a multiple of 2 plus 1. For this payload bay example, we want to ensure a node at 40%,
which can also be written as two fifths. So, any multiple of 5 plus 1 will have nodes at zero, one, two, three,
four and five fifths of the circumference.

The orbiter nose starts with a small circular cap that transitions to the body cross section defined earlier.
The forward tank has a bullet shaped dome that projects a significant distance into the nose, making a
support bulkhead necessary in this region. Two curves are defined to support the tank dome at 50 percent
of its length: “forebullet” is the outer curve of the bulkhead which captures the fuselage nose shape at the
desired position, and “dome50” is the tank dome shape at the same station. Two additional lofted curves
are defined to allow the construction of full bulkheads in the nose designed to bracket the forward landing
gear location: “fore25,” and “fore50.”

# Pieces of forebody bulkhead
define nl2 S$noselength - S$bulletbulk
curve lofted forebullet

curvel sc

curve?2 body

cl xscale Scapradius

cl yscale Scapradius

cl yoffset Snoseoffset

c2 xscale Sfusescale

c2_yscale S$fusescale
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c2 yoffset 0.0
station $nl2 / $nl2
curve lofted forebulkl
curvel sc
curve?2 forebullet
cl _xscale S$capradius
cl yscale Scapradius
cl yoffset Snoseoffset
c2_xscale 1
c2 yscale 1
c2 yoffset 0.0
station $bulkheadl / $nl2
curve lofted forebulk?2
curvel sc
curve?2 forebullet
cl xscale Scapradius
cl yscale Scapradius
cl _yoffset Snoseoffset
c2 xscale 1
c2 yscale 1
c2_yoffset 0.0
station $bulkhead2 / $nl2
curve lofted domeb50
curvel sc
cl xscale $tankscale
cl yscale S$tankscale
taper elli
station 0.50
curve lofted aftdome
curvel sc
station 1 / 3
taper elli
cl xscale Stankscale
cl yscale S$tankscale
list ccurves
list lcurves

Following the completion of the curve definition section, the 1ist debugging command is used to con-

firm the creation of all of the desired curves. This step is optional. In the text output from Loft, these com-
mands produce:
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Current List of Compound Curves

body
plbl
plb2

[ R ]

Bead line: list lcurves
current List of Lofted Curves

0 forebullet
1 fore2s

2 foresd

Having finished reading the °~  “°™°Y curve-defining include file, Loft
returns to reading the main input file at the previous location. The input then starts defining the vehicle,
starting at the nose. Note the use of the previously defined $circnodes variable. Also notice that all
external components are given the “OML” mark and that both the external skin and the structural bulkheads

are given the “fuselage” mark.

#
# Build vehicle

object dome nosecap
curvel sc
cl _xscale Scapradius
cl yscale Scapradius
cl yoffset Snoseoffset
length S$caplength
nodes circ $circnodes
nodes axial Scaplength * Smeshdens * -1. * 2.
taper para
components axial 1
components circ 1
mark element OML
mark element fuselage
transz S$caplength
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The forebody section is created in multiple segments to force edges at 25 and 50% of its length. The nose-
gear bulkheads will be placed at these positions and will stitch to the fuselage correctly.

object section forebodyl
curve2 forebulkl
c2 xscale 1.0
c2_yscale 1.0
c2 yoffset 0.0
length S$bulkheadl
nodes axial $bulkheadl * Smeshdens
components axial 1
mark element OML
mark element fuselage
object section forebody2
curve?2 forebulk?2
c2_xscale 1.0
c2 yscale 1.0
c2 yoffset 0.0
length S$bulkhead2 - $bulkheadl
nodes axial Sbulkhead2 - Sbulkheadl * Smeshdens
components axial 1
mark element OML
mark element fuselage
object section forebody3
curve2 forebullet
c2 xscale 1.0
c2 yscale 1.0
c2_yoffset 0.0
length S$bulkhead3 - $bulkhead?
nodes axial Sbulkhead3 - Sbulkhead2 * Smeshdens
components axial 1
mark element OML
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mark element fuselage

object section forebody4
curve? body
c2_xscale Sfusescale
c2_yscale Sfusescale
c2 yoffset 0.0
length Sbulletbulk
nodes axial S$bulletbulk * Smeshdens
components axial 1
mark element OML
mark element fuselage

The null command below does not actually do anything. But, it does force Loft to generate the “fore-
body4” object and update the @t ransz System variable to reflect the new object. The Snoseend variable
is used later when the full vehicle is assembled from major components. Beams are also created along the
bulkhead/nose intersection. The zdroop parameters on the two bulkheads are used to move the center
node of the bulkhead down from the vehicle centerline to the object center.

null

define noseend @transz
# create 2 bulkheads using lofted curves

171



object dome Nose Front Bulk
curvel forebulkl
cl xscale 1.0
cl yscale 1.0
zdroop Snoseoffset * -0.71
length -0.0001
transz S$bulkheadl + S$caplength
nodes axial 100 * Smeshdens
zdist 0.6
components axial 1
mark element fuselage

object dframe nose fwd ring frame
count 1
mark element fuselage

object dome Nose Mid Bulkhead
curvel forebulk?2
zdroop S$noseoffset * -0.48
transz S$bulkhead2 + S$caplength
length -0.0001
nodes axial 100 * Smeshdens
zdist 0.7
components axial 1
mark element fuselage

object dframe nose mid ring frame
count 1
mark element fuselage

Finally, the completed nose is moved to the Loft internal clipboard with the st ore command. Remember
that the store command resets all object defaults and starts a new stack with no nodes or elements.

store nose

The constant cross-section portion of the fuselage is defined in several sections. These cuts were made to
force the creation of nodes at axial stations that will later have bulkheads. Each fuselage portion also has a
longeron created at 18 percent around the curve. The longeron runs the length of the rest of the vehicle,
including along the edge of the payload bay door and onto the thrust structure.

# ===================== Fuselage ==========================
# Along fwd tank barrel
object section fuselagel
curvel body
curve? body
cl xscale $fusescale
cl yscale $fusescale
c2 xscale $fusescale
c2 yscale $fusescale
length $mid bulk - $half 1h2 nose
nodes axial Smid bulk - S$half 1h2 nose * Smeshdens
nodes circ $circnodes
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components axial 1

components circ 1

mark element OML

mark element fuselage
object frame longeronl

count 1

align axial

position $longeron pos

mark element fuselage
object section fuselagel.5

curvel body

curve? body

cl _xscale $fusescale

cl yscale $fusescale

c2 xscale $fusescale

c2_yscale S$fusescale

length $mid bulk

nodes axial Smid bulk * Smeshdens

nodes circ $circnodes

components axial 1

components circ 1

mark element OML

mark element fuselage
object frame longeronl

count 1

align axial

position $longeron pos

mark element fuselage

# Along fwd tank aft dome
object section fuselage?
length $fwd tank skirt
nodes axial S$fwd tank skirt * Smeshdens
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nodes circ $circnodes
components axial 1
mark element OML
mark element fuselage
object frame longeron2
count 1
align axial
position $longeron pos
mark element fuselage
null
define plb start Qtransz
define plb center $plb start + $Splb half

m
EE
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In this case, the null command is not strictly necessary to force @transz to have the desired value; the
longeron object definition caused the generation of the “fuselage2” object and the updating of the @transz
system variable.

# Payload Bay fuselage split into thirds for supports at 1/3 and
2/3
object section fuselage center bay
length $fuse center bay / 3.
nodes axial Sfuse center bay / 3. * Smeshdens
nodes circ $circnodes
components axial 1
mark element OML
mark element fuselage
object frame longeron3
count 1
align axial
position $longeron pos
mark element fuselage
object frame forward pl ring
count 1
align circ
position 0.0
mark element fuselage
object section fuselage center bay
length $fuse center bay / 3.
nodes axial $fuse center bay / 3. * Smeshdens
nodes circ $circnodes
components axial 1
mark element OML
mark element fuselage
object frame longeron3
count 1
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align axial
position $longeron pos
mark element fuselage
object section fuselage center bay
length $fuse center bay / 3.
nodes axial $fuse center bay / 3. * Smeshdens
nodes circ $circnodes
components axial 1
mark element OML
mark element fuselage
object frame longeron3
count 1
align axial
position $longeron pos
mark element fuselage
object frame aft pl ring
count 1
align circ
position 1.0
mark element fuselage

# Fuselage along Aft tank fwd skirt
object section fuselaged
length Saft tank skirt
nodes axial Saft tank skirt * Smeshdens
nodes circ $circnodes
components axial 1
mark element OML
mark element fuselage
object frame longerond
count 1
align axial
position $longeron pos
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mark element fuselage

# Fuselage along Aft tank barrel
object section fuselageb
length Saft tank + 64
nodes axial Saft tank + 64 * Smeshdens
nodes circ $circnodes
components axial 1
mark element OML
mark element fuselage
object frame longeron5
count 1
align axial
position $longeron pos
mark element fuselage

# Fuselage along Aft tank aft skirt
object section fuselageb

length Saft skirt

nodes axial Saft skirt * Smeshdens

nodes circ $circnodes

components axial 1

mark element OML

mark element fuselage
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object frame longeron6
count 1
align axial
position $longeron pos
mark element fuselage
define fuseend @transz + $noseend

The next step is to add some detail to the payload bay. The region command is used to modify the physical
property assignment of elements along the upper section of fuselage object “fuselage3.” These updated ele-

ments represent the payload bay doors.

region
iadd box 0. 102. $Splb center 130. 130. $plb length
pprem fuselage?
pprem fuselaged
setpp payload doors

Then full bulkheads are added at the front and rear of the payload bay and partial, support, bulkheads are
added at the 1/3 and 2/3 positions in the bay.

object dome payload bay fwd bulkhead
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curvel body

cl xscale $fusescale

cl yscale $fusescale

taper bulk

transz $plb start

transy 0.0

transx 0.0

nodes circ $circnodes

components axial 1

mark element fuselage
object dome payload bay aft bulkhead

curvel body

taper bulk

relz Splb length

transy 0.0

transx 0.0

components axial 1
mark element fuselage

object section payload bay fwd support
curvel plbl
curve2 plb2
length 0.0
transz $fwd tank + $fwd tank skirt + $plb third
components axial 1
components circ 1
nodes axial 100 * Smeshdens
nodes circ $circnodes * 0.6 + 1
mark element fuselage
object frame fwd plb support frame
count 1
align axial
position 0.0
mark element fuselage
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object frame fwd plb support frame
count 2
align circ
mark element fuselage

object section payload bay aft support
curvel plbl
curve2 plb2
length 0.0
relz $plb third
components axial 1
components circ 1
nodes axial 100 * Smeshdens
nodes circ $circnodes * 0.6 + 1
mark element fuselage

object frame aft plb support frame
count 1

align axial
position 0.0
mark element fuselage
object frame aft plb support frame
count 2
align circ
mark element fuselage

Finally, the completed fuselage component is moved so that it is immediately aft of the nose using the
previously created Snoseend variable. Then, the new end location is stored. Finally, the full stack is moved
onto Loft’s internal clipboard and a new stack is started.

move

transz $noseend
define plb end Qtransz
store fuselage

The next major component created in the input deck is the wing. The wing has two trapezoidal sections: a
narrow, inboard, strake and a wider outboard main section. The strake has one spar, positioned at the 10
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percent chord location. The strake is generated first. When the strake skin is created, it is created as if there
were additional spars at the 36 and 82 percent chord locations. This forces a line of nodes to be created along
the phantom spars and allows correct stitching with the main wing which does have spars at all three posi-
tions. Note the extensive use of the gen XXX flags and the use of the mark command to mark only the
wing skin as “OML.” a
# ======================== Wing ================s=s=========
define wingoffset S$noseend + Splb start - 115.87
object wing strake spar
chord S$strakechord
span $strakespan
taper S$straketaper
sweep Sstrakesweep
rootnaca 2407
tipnaca 2408
sparpos $sparl
ribpos reset
notip 1
meshchord $strakechord * $meshdens / 700.
meshspan $strakespan * S$meshdens / 20.
meshthick S$meshdens / 2.
transz $wingoffset
relx Sfusescale
rely $fusescale * -.9314
gen up_ skin off
gen low skin off

gen ribs off

mark element wing

#
# Generate the rest of the strake
# Position spars so that the skin aligns with the main wing
# but do not actually generate the spar elements
object wing strake

Sparpos reset

sparpos Ssparl

sparpos S$Sspar?2
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sparpos $spar3
notip 1
gen_spars off
mark element OML

mark element wing

The main wing is also specified as two objects. The reason for this is to apply the “OML” mark to only the
wing skin.

object wing mainwing stiffeners
chord $mainchord
span $mainspan
meshchord @wing.mesh chord / @wing.taper
taper $maintaper
sweep Smainsweep
rootnaca 2408
tipnaca 2313
ribpos reset
ribpos 20.
ribpos 40.
ribpos 60.
ribpos 80.
relx $strakespan
relz $mainoffset
wingbox $fusescale + $strakespan
gen up_ skin off
gen low skin off
nowbrib 1
mark element wing
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A careful examination of the crank area between the strake and the main wing will show that the strake is
properly stitched to the main wing along the rib at the crank location. The strake skin is also attached to its
leading edge (10 percent) spar but is not attached to any of the carry-through spars. Depending on element
flexibility, some manual stitching could be required to connect the strake root rib to the carry-through spars.

object wing mainwing skin
wingbox 0.0
notip 1
gen_ribs off
gen_spars off
mark element OML
mark element wing

Depending on your use of the OML group it may or may not matter that we’ve added the skin but
missed adding the tip rib to the OML group. So, to fix that issue we use the group with the ribs and retain
only the outermost one. Then we write out the model.

# Add tip rib to OML
region
mkadd mainwing stiffeners RIB ELEMS

ikeep xgt $fusescale + Sstrakespan + Smainspan - 1.0
mark element OML

write vrml orb-wing.wrl
store mainwing
list stacks
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The 1ist stacks debug command is optional and lists the stacks that have been stored on the internal
clipboard.

The next section generates an alternate “surrogate” version of the wing that has the same number of nodes
and elements but is scaled to a square shape with coordinates ranging from zero to one. The coordinates
represent the percent chord and percent span of the original wing. It does this by eliminating sweep and taper
for the wing and then scaling the final model by the total span or root chord dimensions. This alternate model
is used by an external code to generate pressure loads that are functions of wing position. This block can be
deleted if it is unneeded.

# ===== Surrogate model of wing: [0,1] square with same nodes
define totalspan $strakespan + S$Smainspan
object wing surrogatewing

chord $strakechord

span S$strakespan

taper 1.0

sweep 0.0

naca 2407

sparpos $sparl

ribpos reset

notip 1

meshchord $strakechord * Smeshdens / 700.

meshspan $strakespan * Smeshdens / 20.

meshthick $meshdens / 2.

transx 0.0

transy 0.0

transz 0.0

mark element surrogatewing
object wing surrogatewing

chord $strakechord

span S$mainspan

taper 1.0

sweep 0.0

ribpos reset

ribpos 20.

ribpos 40.

ribpos 60.

ribpos 80.

relx Sstrakespan

mark element surrogatewing
move

scalex 1. / Stotalspan

scaley 1. / Stotalspan

scalez 1. / S$strakechord

list variables

write vrml orb-surwing.wrl

store surrogatewing
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Next, the tail will be created as a new stack. As with the main wing components, it is created as two
objects so that the skin can be marked as “OML.”

f ===================== Tall ========================
object wing tail stiffeners

chord $tailchord

span Stailspan

taper $tailtipchord / $tailchord

sweep S$tailsweep

rootnaca 0613

tipnaca 0618

Sparpos reset

sparpos 19

sparpos 60

halfwing bottom

ribpos reset

ribpos 50

wingbox O.

meshchord $tailchord * $meshdens / 300.

meshspan $tailspan * $meshdens / 450.

meshthick 0.02

transz $fuseend - $tailchord

rely $fusescale

transx 0

rotz 90

gen up_ skin off

gen low skin off

mark element tail

object wing tail skin
halfwing bottom
gen_ribs off
gen_spars off
gen_up_skin on
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gen_low_skin on
mark element OML
mark element tail

write vrml orb-tail.wrl
store tail

Then, the input deck specifies the forward tank. Two of the user-defined lofted curves created at the be-
ginning of the file are used here to create the support bulkhead on the bullet shaped nose of the tank. Support
bulkheads are given the “fuselage” mark and tank walls are all given the mark “LH2.” These marks will be
used later to extract just these elements from the full model.

# Fwd Tank
define fwd tank start Snoseend - Sbulletbulk
object dome fwd tank fwd dome

curvel dome50

cl xscale 1.

cl yscale 1.

length -1 * $half 1h2 nose

transx 0.0

transy 0.0

zdist 0.7

transz $fwd tank start

nodes axial $half 1h2 nose * Smeshdens

nodes circ $circnodes

components axial 1

components circ 1

taper para
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mark element LH2

object section fwd tank fwd bulk
curve2 forebullet
length 0.0
components axial 1
nodes axial 100 * Smeshdens
mark element bulk
mark element fuselage

object frame fwd fwd ring frame
count 2
mark element fuselage

object section fwd tank dome?2
curvel dome50
curve2 sc
length Shalf 1h2 nose
cl xscale 1.

cl yscale 1.
c2_xscale Stankscale
c2 yscale S$tankscale
nodes axial $half 1h2 nose * S$meshdens
components axial 1

taper cosine 0.5

mark element LH2
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object section fwd tank barrel pt 1
length $mid_bulk - $half_lh2 nose
nodes_axial Smid bulk - $half 1h2 nose * Smeshdens
components_axial 1
mark element LH2
object section fwd tank mid bulk
curvel body
curve? sc
cl_xscale S$fusescale
cl_yscale $fusescale
length 0.0
components_axial 1
nodes_axial 100 * Smeshdens
mark element bulk
mark element fuselage
object frame fwd mid ring frame
count 2
mark element fuselage

object section fwd tank barrel pt 2
length $mid_bulk
nodes_axial Smid bulk * Smeshdens
components_axial 1
mark element LHZ2

object section fwd tank aft bulk
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curvel body
curve? sc
cl_xscale S$fusescale
cl_yscale $fusescale
length 0.0
components_axial 1
nodes_axial 100 * Smeshdens
mark element bulk
mark element fuselage

object frame fwd aft ring frame

count 2

mark element fuselage
object dome fwd tank aft dome

length 50

nodes_axial 50 * S$meshdens

components_axial 1

mark element LH2

write vrml orb-1h2.wrl
store fwd_tank

The aft tank is built in a similar process to the forward tank. It is shorter but still has mid-dome bulkheads
like on the front of the forward tank.

# ====================== Aft Tank
object dome aft tank fwd dome
curvel aftdome
length S$aft_support - $Saft_dome
cl_xscale 1.
cl _yscale 1.
nodes_axial Saft support - Saft dome * Smeshdens * -1.
nodes_circ $circnodes
components_axial 1
components_circ 1
taper para
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mark element LOX

object section aft tank fwd bulk

curvel body

curve?2 aftdome
cl_xscale $fusescale
cl_yscale $fusescale
c2_xscale 1.
c2_yscale 1.

length 0.0
components_axial 1
nodes axial 50 * Smeshdens
mark element bulk
mark element fuselage

null
define aftfwdbulk @transz
object frame aft fwd ring frame

count 2
mark element fuselage

object section aft tank fwd curve

curve?2 sc

c2 xscale Stankscale
c2_yscale Stankscale
length Saft support
taper cosine 0.5
mark element LOX
components axial 1
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nodes axial Saft support * Smeshdens

object section aft tank barrel
curvel sc
length Saft tank
nodes_axial Saft tank * Smeshdens
components_axial 1
mark element LOX
object section aft tank aft curve
curve?2 aftdome
c2_xscale 1.
c2_yscale 1.
length S$aft_support
taper power 1.0
mark element LOX

components_axial 1
nodes_axial Saft support * Smeshdens
object section aft tank aft bulk
curvel body
curve?2 aftdome
cl_xscale S$fusescale
cl_yscale Sfusescale
c2_xscale 1.
c2_yscale 1.
length 0.0
components_axial 1
nodes axial 50 * Smeshdens
mark element bulk
mark element fuselage
null
define aftaftbulk @transz
object frame aft aft ring frame
count 2
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mark element fuselage

object dome aft tank aft dome

curvel aftdome

length Saft dome - Saft_support

cl_xscale 1.

cl_yscale 1.

nodes_axial S$aft dome - Saft support *
Smeshdens

components_axial 1

taper para

mark element LOX

The position of the aft tank is computed from five previously saved lengths. The definition should all be
on one line in the actual input file, not wrapped as it is in this manual.

define aft_tank start S$noseend + $fwd _tank + S$fwd_tank skirt +
Sfuse_center_bay + Saft_tank_skirt
move
transz $aft_tank start
define aft_tank_end $aft_tank_start + @transz
write vrml orb-lox.wrl
store aft tank

The next object created is a notional thrust structure. It makes extensive use of stiffeners created with
frame and dframe objects. The first piece created accomplishes the transition from the half-loaf-of-bread
“body” user-defined curve to a semi-circle.

# ================= Thrust structure =====================
object section thrust cone

curvel body

curve?2 sc

cl_xscale $fusescale

cl_yscale S$fusescale

c2_xscale S$thrustconescale

c2_yscale Sthrustconescale
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length S$thrustconelength
components_axial 1
components_circ 1

nodes _circ S$Scircnodes
nodes_axial Saft skirt + 10. * Smeshdens
mark element fuselage

Five axial stiffeners are created. The first three (at 0, 50, and 100 percent of the circumference) are created
as one object. Then, two individual axial stiffeners are added, one at the $1ongeron pos position (18
percent) and one at 75 percent.

object frame thrust stiffeners
count 3
align axial
mark element fuselage

object frame thrust stiffeners
count 1
position $longeron_pos
align axial
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mark element fuselage

object frame thrust stiffeners
count 1
position 0.75
align axial
mark element fuselage

Five circumferential stiffeners are added:

object frame thrust cone rings
count 5
align circ
mark element fuselage

A circular flat plate is added with similar stiffeners:

object dome thrust plane
taper bulk
length 0.0
components axial 1
nodes axial Smeshdens * 80.
mark element fuselage
object dframe thrust rings
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align circ

count 1

position 0.2

mark nodes engine ring

mark element fuselage
object dframe engine rings

align circ

count 1

position 0.7

mark element fuselage
object dframe thrust diags

align axial

count 3

mark element fuselage
object dframe thrust diags

align axial

position $longeron pos

count 1

mark element fuselage
object dframe thrust diags

align axial

position 0.75

count 1

mark element fuselage

move
transz $aft_tank_end

define thrust end $aft tank end + Saft skirt + 10.

write vrml orb-thrust.wrl

store thrust

After positioning the thrust structure at the calculated location, it is saved to the clipboard.

All of the components of the vehicle have been created and stored. Next, they can be recalled in various
combinations for use. The first combination is the full vehicle with all the components in the correct position.
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Each recall command performs a node equivalence operation that stitches the model together where nodes
are coincident. This equivalence operation tends to be slow. Once they are recalled, the whole vehicle is
rotated such that the x coordinate direction becomes the axial axis. Then, VRML and NASTRAN files of the
full model are written.

Note that prior to actual analysis with the model, the wing and tail need to be stitched to the fuselage. This
operation will be accomplished later in the input file.

recall
recall
recall
recall
recall
recall

nose
fuselage
mainwing
tail

fwd tank
aft tank
thrust

# rotate so that x is aft

move

roty 90
store vehicle

recall

vehicle

vrml rainbow
write vrml tsto2025half.wrl
write nastran tsto2025half.bdf
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Now, the first variable defined in the file, $fullvehicle is checked. If it is true, a mirrored model is
created and written out to a VRML file; if it is false, the mirror and VRML writing are skipped. Then, the
final model (full or half) is stored as “stitchme.”

# =============== Mirrored model =========================
if $fullvehicle = 0
goto 100

mirror z

write vrml tsto2025mirrored.wrl
#

linelabel 100

store stitchme

recall stitchme

Next, the region mode is used to write out various partial versions of the model. These partial models retain
the node, element, and property numbering of the full model. They are used for mapping of external aerody-
namic loads (to the “OML” sub-model) and internal tank loads (to the “LH2” and “LOX"” sub-models). Note
the selection of elements based on the labels assigned with the “mark” command during model creation.

region
mkadd OML
rwrite vrml tsto20250ML.wrl
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rwrite nastran tsto20250ML.bdf

region
mkadd LH2
rwrite vrml tsto2025LH2.wrl
rwrite nastran tsto2025LH2.bdf

region
mkadd LOX
rwrite vrml tsto2025LOX.wrl
rwrite nastran tsto2025LOX.bdf
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region
mkadd wing
rwrite vrml tsto2025wing.wrl
rwrite nastran tsto2025wing.bdf

region
mkadd tail
rwrite vrml tsto2025tail.wrl
rwrite nastran tsto2025tail.bdf

Next, an expanded version of the model is created for use in slides and presentations.

new
recall nose
move

transz -100
recall fuselage
move

transz 0

transx -200
recall mainwing
move

transx 200

transy -100
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recall tail
move
transy 100
transx 200
recall fwd tank
recall aft tank
move
transx -200
transz -200
recall thrust
move
roty 90
write vrml tsto2025-exp.wrl

As previously discussed, one step that is required prior to using the model in a finite element analysis is to
stitch the wing and the tail to the fuselage. The next section of Loft input accomplishes this stitching. It does
this by using region mode to locate the corners of the wing and tail spars and the corners of the bulkheads
near those spars. Then, RBE objects are created to connect the appropriate corners. Note that it first recalls
either the half or full model that was saved as “stitchme” following the possible mirroring operation.

# RBE connections for wing/tail
linelabel 1000
new
recall stitchme
define sparlpos $sparl * $mainchord / 100. + S$wingoffset + Smainoffset
define spar2pos $spar2 * S$mainchord / 100. + S$wingoffset + Smainoffset
define spar3pos $spar3 * S$mainchord / 100. + Swingoffset + Smainoffset
list mesh
# find corner nodes within fuselage for all 3 spars
region

mkadd mainwing ribs spars CARRYTHR NODES

irem xgt S$sparlpos + 5.

irem zlt $fusescale * -1. + 5.

irem zgt Sfusescale - 5.

corner mainwing fwd corners
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region
mkadd mainwing ribs spars CARRYTHR NODES
irem x1t S$spar2pos - 5.
irem xgt $spar2pos + 5.
irem zlt $fusescale * -1. + 5.

irem zgt S$fusescale - 5.
corner mainwing mid corners
region
mkadd mainwing ribs spars CARRYTHR NODES
irem x1t $spar3pos - 5.
irem zlt $fusescale * -1. + 5.
irem zgt S$fusescale - 5.
corner mainwing aft corners
null

# find corner nodes near spars on fuselage bulkheads
region
ppadd payload bay fwd bulkhead
irem yge -80.0
corner Front bulkhead corners
region
ppadd payload bay fwd support
irem yge -80.0
corner Mid bulkhead corners
region
ppadd payload bay aft support
irem yge -80.0
corner Aft bulkhead corners
# connect spars to bulkheads with rbes
object rbe forward wing rbes
groupl mainwing fwd corners
group2 Front bulkhead corners
object rbe mid wing rbes
groupl mainwing mid corners
group2 Mid bulkhead corners
object rbe aft wing rbes
groupl mainwing aft corners
group2 Aft bulkhead corners
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# tail attachment RBEs

#
# find nodes to connect
region
mkadd aft tank fwd bulk ALL NODES
irem yle S$fusescale - 2.
irem ygt S$fusescale
corner tank fwd bulkhead corners
region
mkadd aft tank aft bulk ALL NODES
irem yle $fusescale - 2.

irem ygt $fusescale
corner tank aft bulkhead corners

region
mkadd tail stiffeners ROOT SPAR NODES
irem xle S$aftfwdbulk + Saftaftbulk / 2.
corner tail aft spar nodes

region
mkadd tail stiffeners ROOT SPAR NODES
irem xge $aftfwdbulk + Saftaftbulk / 2.
corner tail fwd spar nodes

object rbe forward tail rbes
group2 tank fwd bulkhead corners
groupl tail fwd spar nodes

object rbe aft tail rbes
group2 tank aft bulkhead corners
groupl tail aft spar nodes

list mesh
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Next, if we are building a half model, create symmetry boundary conditions along the center plane. If we
are building a full model, skip this step.

define bcset 0
if S$fullvehicle =1
goto 200
# centerline symmetry BCs - created for half model
define bcset 999
region
iadd zge -0.01
irem zge 0.01
mark nodes centerline
object bc symmetry bc
groupl centerline
setid Sbcset
dof 345
linelabel 200
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A RBE spider is then created with a 1000 pound thrust load applied to the thrust structure.

# force on engine thrust structure spider version
define loadset 1000
region
ppadd thrust rings
irem sphere Sthrust end 0. 0. 2. # del center alignment node
mark nodes thrust ring
object node thrust spider
x $thrust end + 20.
y 0.0
z 0.0
mark node fuselagenode
object rbe thrust
groupl thrust spider ALL NODES
group2 thrust ring
approach spider
dof 1
mark rbe fuselagerbe
object force total thrust
groupl thrust spider ALL NODES
valuel -1000.0
setid $loadset
mark rbe fuselagerbe

g 1000.0010
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Next, the fully stitched models are written out.

# write final stitched models
nastran sol 101

nastran subcase 500

nastran thick 1.0

nastran spc Sbcset

nastran load $loadset

list mesh

write vrml tsto2025stitched.wrl
write nastran tsto2025stitched.bdf

The final section of the input file creates a surrogate model of just the fuselage including all of the bulk-
heads and the thrust structure. The tanks are removed and replaced with point masses that are connected to
their support bulkheads with RBE spider connections, and a point mass representing the payload is con-
nected to the payload bay support bulkheads. The process is similar to the wing stitching process used
earlier. Here, the innermost nodes on each bulkhead are grouped for the forward tank, payload, and aft tank.
Then new nodes are created at the center point of the three zones, a point mass is attached to each node,
and RBEs are created to connect each point mass to its supports.

# Group all of the tank and payload bulkhead edge support nodes
linelabel 300
null
region
mkadd fwd fwd ring frame ALL NODES
mkadd fwd mid ring frame ALL NODES
mkadd fwd aft ring frame ALL NODES
# remove the nodes on the fuselage side of the bulkhead
ikeep xcyl 0. 0. 0. $tankscale + 1.
# remove beam alignment nodes
irem xcyl 0. 0. 0. Stankscale / 2.
mark node fwd tank support nodes
region
mkadd aft fwd ring frame ALL NODES
mkadd aft aft ring frame ALL NODES
ikeep xcyl 0. 0. 0. Stankscale + 1.
irem xcyl 0. 0. 0. Stankscale / 2.
mark node aft tank support nodes
region
mkadd fwd plb support frame ALL NODES
mkadd aft plb support frame ALL NODES
ikeep xcyl 0. 0. 0. $Splb scale + 1.
irem xcyl 0. 0. 0. Splb scale / 2.
mark node plb support nodes
# create point masses at centers of each tank and payload bay
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# and spider them to the corresponding support nodes
define fwdtankmass 1.0
define afttankmass 1.0
define payloadmass 1.0
object node fwd fuel
x $fwd tank / 2. + $fwd tank start
y 0.0
z 0.0
mark node fuselagemass
object node aft fuel
x Saft tank / 2. + Saft tank start
y 0.0
z 0.0
mark node fuselagemass
object node payload
x Splb half + $plb start + Snoseend
y 0.0
z 0.0
mark node fuselagemass
object mass fwd fuel mass
value S$fwdtankmass
groupl fwd fuel all nodes
mark rbe fuselagerbe
object mass aft fuel mass
value Safttankmass
groupl aft fuel all nodes
mark rbe fuselagerbe
object mass payload mass
value S$payloadmass
groupl payload all nodes
mark rbe fuselagerbe
object rbe fwd fuel rbes
groupl fwd fuel all nodes
group2 fwd tank support nodes
approach spider
mark rbe fuselagerbe
object rbe aft fuel rbes
groupl aft fuel all nodes
group2 aft tank support nodes
approach spider
mark rbe fuselagerbe
object rbe payload rbes
groupl payload all nodes
group2 plb support nodes
approach spider

205



mark rbe fuselagerbe
null
list mesh
list groups
list rbe

The region operation makes use of the labeling that was applied for the various fuselage components as
well as for the new nodes, point masses, and thrust force.

region

mkadd fuselage

mkadd fuselagenode

mkadd fuselagerbe

mkadd fuselagemass

rwrite vrml tsto2025-fuselage.wrl

rwrite nastran tsto2025-fuselage.bdf
end

Now that the main, partial, and surrogate models have all been generated and saved to various output
files, spend a little time looking at some of those output models in a VRML viewer or in a NASTRAN pre-
processor. You can also experiment with changing some of the vehicle dimensions or model settings (such
asthe Sfullvehicle or Smeshdens variables) and looking at the changes in the output models.
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