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A Dual-Approach Framework for eVTOL Climb Noise Mitigation

Summary

Technological advances in Urban Air Mobility (UAM) will bring new aircraft to the skies
above metropolitan regions. With noise pollution emerging as a major barrier to public
acceptance, mitigating the sound produced by electric vertical takeoff and landing (eVTOL)
vehicles is essential to the future viability of UAM. This paper focuses on the climb phase of
eVTOL operations, one of the loudest and most prolonged noise-generating segments of flight. We
present two viable approaches for generating and evaluating climb trajectories with respect to
both acoustic impact and energy use. The first uses direct collocation via the PSOPT (Problem
Solving for Optimal Control) framework, an open-source software package for optimal control
problems, to generate climb trajectories of a commercial quadrotor at varying gradients. These
trajectories are then evaluated for Sound Exposure Level (SEL) and energy consumption using a
simplified model in lieu of full-scale simulation tools; we report separate minima for noise
exposure and energy consumption rather than a weighted multi-objective optimum. The second
approach, developed in parallel by our team, outlines a deep reinforcement learning (DRL)
framework to explore climb planning from a data-driven perspective. In this setup, a DRL agent,
using Q-learning algorithms, is designed to adjust climb profiles based on feedback from SEL and
energy metrics, offering a data-driven complement to the model-based approach. Together, these
methods lay the groundwork for a modular, scalable framework to support noise- and
energy-aware trajectory design in future eVTOL operations. While our paper outlines both
methodologies, only preliminary results are presented for the optimal control approach, with DRL
training and multi-objective weighting left for future work.

Keywords: Electric Vertical Takeoff and Landing (eVTOL), Climb Trajectory Optimization,
Noise Mitigation, Sound Exposure Level (SEL), Energy Efficiency, Direct Collocation, Double
Deep Q-Network (DDQN), PSOPT
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1 Nomenclature

Table 1.—Description of Variables Used in Vehicle Dynamics and Reinforcement Learning Frame-
work. SI units are used throughout; acoustic levels are reported in dB re 20 µPa, unless noted.

Symbol Description

λ Latitude of the aircraft
τ Longitude of the aircraft
h Altitude above mean sea level of the aircraft
m Mass of the aircraft
V True airspeed of the aircraft
Vl Lateral component of true airspeed
Vv Vertical component of true airspeed
Vg Groundspeed of the aircraft
γ Aerodynamic flight path angle of the aircraft
ψ Heading angle of the aircraft
χ Course angle of the aircraft
D Parasite drag on the aircraft
T Net thrust
θ Rotor tip-path-plane pitch angle
ϕ Rotor tip-path-plane roll angle
κ Induced power factor
ω Rotational speed of the rotor blades
σ Thrust-weighted solidity ratio
Cd ,mean Mean blade drag coefficient
Arotor Rotor disk area
R Radius of the rotor
vi Rotor induced velocity during forward flight
Trotor Thrust produced by an isolated rotor
CT Rotor thrust coefficient
Prequired Power required for flight
ρ Air density
REarth Radius of the Earth
we East component of wind velocity
wn North component of wind velocity
wv Vertical component of wind velocity
T0 Reference time, 1 second
p(t) Instantaneous sound pressure
pref Reference sound pressure
t1, t2 Start and end times of the acoustic event
N Total number of discrete trajectory nodes
p2
i Instantaneous squared sound pressure at node i

Continued on next page
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Table 1 – continued from previous page
Symbol Description

∆ti Time interval associated with node i
d Three-dimensional Euclidean distance between the eVTOL and listener
heVTOL Instantaneous eVTOL altitude
hlistener Listener’s altitude
Ls,1m Source sound pressure level at 1 meter
Tac Average total thrust of the eVTOL
Lref,1m Reference sound pressure level at 1 meter
nT Constant factor
Tref Reference thrust
Pavg Average power
Vairspeed Average airspeed of the eVTOL
Lp Received instantaneous sound pressure level at the listener’s location
dref Reference distance, 1 meter
∆LGR Ground reflection factor
Lp,i Instantaneous sound pressure level at node i
at Action vector at time t
st State vector at time t
rt Intermediate reward at time t
RT Terminal reward
Q(s, a) Q-value for state–action pair
V (s) Value of being in state s
π Policy function
∆dOD Distance-to-goal from origin to destination per timestep
∆Et Energy used per timestep
∆Etotal Total energy used
SELt Sound Exposure Level at time t
w1, w2, . . . , w5 Reward weighting coefficients
ϵ-greedy Exploration–exploitation decay mechanism

2 Introduction

Urban Air Mobility (UAM) and Advanced Air Mobility (AAM) are emerging transportation
systems designed to alleviate surface congestion by enabling short-range, low-altitude transporta-
tion using electric vertical takeoff and landing (eVTOL) aircraft. These vehicles are intended for
applications such as air taxis, emergency response, and intermodal connectivity in dense urban en-
vironments (Ref. 1, 2). They rely on compact platforms like quadrotors capable of vertical takeoff
and landing in constrained settings.

Despite their promise, UAM systems face several operational challenges. A primary concern
is community noise, which poses a barrier to public acceptance and regulatory approval (Ref. 3).
Unlike high-altitude commercial flights, eVTOL aircraft operate near the ground and frequently
over populated areas, increasing acoustic exposure. Additionally, battery limitations constrain
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range and flight profiles (Ref. 4).
This paper focuses on investigating strategies for mitigating noise during the climb phase, where

eVTOL aircraft operate at high thrust and low altitude, producing significant acoustic output.
Sound Exposure Level (SEL), a standard metric that integrates noise intensity and duration, is used
throughout this study to quantify acoustic impact (Ref. 5–7). While noise along fixed trajectories
has been studied, few works have explored how trajectory-level adjustments, such as climb angle,
might reduce noise.

To address this, we evaluate two complementary approaches. The first employs direct collocation
via the PSOPT optimal control framework to generate climb trajectories for a reference quadrotor,
assessed with a simplified noise model. The second leverages a Double Deep Q-Network (DDQN)
reinforcement learning agent to learn noise-aware strategies through feedback from noise and energy
metrics.

The remainder of this paper is structured as follows. Section 3 reviews background and mo-
tivation. Section 4 states the problem formulation. Section 5 summarizes modeling assumptions.
Section 6 develops the optimal control framework, including vehicle dynamics, power modeling,
acoustic emission modeling, and the trajectory evaluation workflow. Section 7 presents the deep
reinforcement learning framework, covering the simulation environment and agent design. Section
8 reports results. Section 9 provides conclusions. Section 10 outlines future work.

3 Background and Motivation

3.1 Background
UAM systems aim to offer efficient, low-emission aerial transportation in metropolitan regions.

By bypassing surface congestion, these systems could improve urban mobility and reduce travel
times. At the core of UAM are eVTOL aircraft, designed for vertical operations in tight urban
spaces. These vehicles are expected to operate at relatively low speeds and altitudes, often in
corridors shared with other air traffic, infrastructure, and environmental constraints.

However, the deployment of eVTOLs introduces unique acoustic challenges. Unlike conventional
aircraft that rapidly ascend to cruise altitudes, eVTOLs remain within urban airspace for a longer
portion of their flights. As a result, noise emissions become more relevant to communities directly
below flight paths. Rotorcraft, especially multirotor eVTOLs, produce nonstationary, broadband
noise that varies with operating conditions. During low-altitude segments, such as takeoff, climb,
and landing, this noise becomes particularly prominent (Ref. 8).

Technical factors such as rotor configuration, tip speed, blade loading, and control surface
activity influence both the frequency content and magnitude of acoustic emissions (Ref. 9). In
particular, blade-vortex interactions and rapid thrust changes can generate tonal components that
are more perceptible and objectionable to human listeners (Ref. 10). The growing diversity in
vehicle designs, ranging from coaxial rotors to tilt-wing architectures, further complicates noise
prediction and certification efforts.

In response, regulatory bodies are working to develop noise certification metrics that reflect
the distinct operational patterns of UAM systems, with a focus on frequent, low-altitude flights in
noise-sensitive areas (Ref. 11). However, most existing tools evaluate noise along static, predefined
trajectories. There is limited integration between flight dynamics, vehicle control, and acoustic
modeling in current planning frameworks. As a result, there is a growing interest in dynamic
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trajectory design that can respond to noise constraints in real time.
Early studies such as Pradeep et al. (Ref. 12) explored the energy and time implications

of different climb profiles for multirotor vehicles. These efforts provide a basis for examining
how trajectory-level control could influence acoustic outcomes in urban airspace. Building on this
direction, our work focuses on using physically grounded models to analyze the potential of climb
trajectory design as a tool for noise mitigation.

3.2 Motivation
Community noise has emerged as one of the most persistent obstacles to the widespread adoption

of UAM services (Ref. 13). Aircraft noise has been linked to a range of negative health outcomes,
including elevated stress, cardiovascular issues, and impaired sleep. In children, chronic exposure
is associated with reduced cognitive performance and behavioral disturbances (Ref. 14). These
effects are amplified in dense urban settings, where repeated exposure from multiple flights can
accumulate over time.

Unlike conventional airports, future vertiports may be embedded directly into neighborhoods,
atop office buildings, hospitals, or transit hubs. This proximity increases the importance of under-
standing how different flight phases contribute to perceived noise. Among these phases, climb is
particularly consequential. It involves high power output and relatively slow ascent, which extends
the duration of noise exposure near the departure point.

Current trajectory optimization methods often emphasize objectives like energy efficiency or
travel time. While these are critical to operational feasibility, they may overlook how small changes
in climb angle or acceleration affect the spatial and temporal distribution of noise. By incorporating
noise considerations into trajectory design, UAM operators could reduce community impact without
significant performance tradeoffs.

In this study, we evaluate whether noise-aware climb profiles can be developed using either
optimal control or reinforcement learning approaches. We simulate a commercially scaled quadrotor
(Ref. 15) using simplified but consistent models of aerodynamics, power consumption, and noise
propagation. While this paper emphasizes early results from the optimal control approach, the
broader goal is to lay the foundation for adaptive trajectory planning methods that support both
operational efficiency and public acceptability.

4 Problem Formulation

A fundamental challenge in UAM deployment is minimizing noise at the point of departure.
Vertiports may be located atop hospitals, schools, or residential buildings, sites with low tolerance
for acoustic disturbance. Reducing sound exposure near takeoff locations is therefore crucial for
public trust and scalable operations.

This work focuses on the climb phase, where the vehicle transitions from liftoff to cruise. During
this period, it operates at high power while in close proximity to ground observers. The trajectory
geometry directly influences the intensity and duration of noise received. Figure 1 illustrates how
different climb angles alter acoustic impact for a microphone located at the vertiport.
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Figure 1.—Flight phase terminology for Urban Air Mobility (UAM) operations. The climb phase
is characterized by flight path angle γ, with three example angles illustrated: steep (γ = 60°),
moderate (γ = 45°), and shallow (γ = 30°).

Noise exposure is nonlinear and sensitive to both trajectory and vehicle characteristics. Even
small changes in flight path can significantly alter the acoustic footprint. This work supports the
goals of NASA’s Advanced Air Mobility (AAM) Project by investigating trajectory-based noise
mitigation strategies that promote community integration and safe, acceptable urban flight (Ref.
16).

5 Assumptions

To enable simpler modeling and reduce computational complexity, we introduce several as-
sumptions regarding our system. These assumptions help guide the formulation of the simplified
dynamics model used in our trajectory generation.

From an environmental standpoint, we include a constant wind component during the climb
phase, ignoring wind variability with altitude due to minimal altitude discrepancies during the
climb. Specifically, we assume a steady 5 m/s eastward wind based on average wind patterns ob-
served in San Francisco (Ref. 17, 18).

Operationally, the climb begins at an altitude of 15 m above ground level (AGL), to account
for the vehicle’s transition phase, and ends at 488 m, a typical cruise altitude for urban air taxis.
The climb is modeled as a straight ascent with a constant heading of 180°, assuming no horizontal
maneuvering during the climb. We also assume a constant lateral airspeed of 30 m/s, as established
in prior UAM literature (Ref. 19). This ensures that as the vehicle increases its climb angle (γ), the
power consumption adjusts accordingly. Additionally, for our deep reinforcement learning setup, we
adopt minimum energy consumption (∆e) as the baseline criterion, enabling a direct comparison
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between energy-optimal climb trajectories and noise-minimizing climb profiles.
For simulation setup, the trajectory origin is fixed above Golden Gate Park in San Francisco,

chosen to provide a consistent geographic reference, while also simplifying altitude measurements,
since MSL (Mean Sea Level) and AGL measurements are effectively equal at Golden Gate Park
due to its proximity to sea level. Lastly, we model the vehicle as the quadrotor seen in Figure 2,
a well-characterized eVTOL platform with detailed performance specifications, seen in Table 2,
publicly available in the UAM research community (Ref. 15).

Figure 2.—Quadrotor eVTOL (Ref. 15)

Table 2.—Quadrotor Parameters Used in Dynamics and Power Models (Ref. 12)

Parameter Symbol Value

Rotor radius R 4.0 m
Rotor disk area Arotor 50.26 m2

Mass m 2940 kg
Fuselage drag correction factor Fp 0.97
Thrust coefficient CT 0.0055
Maximum velocity Vmax 56 m/s

6 Optimal Control Framework

6.1 Optimal Control Overview
6.1.1 Direct Collocation Method

To generate climb trajectories that are both feasible and energy-efficient, we frame the task at
hand as an optimal control problem. This allows us to find control inputs, such as thrust and blade
pitch, that guide the aircraft from its starting point to a target altitude while minimizing energy
use and staying within physical boundaries. We use direct collocation, a numerical method that
is well-suited for problems involving nonlinear dynamics and multiple constraints, such as those
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present in our system.
In direct collocation, the continuous flight path is broken up into a series of time steps, called

collocation points. At each point, the aircraft’s motion is approximated using polynomial curves,
and the laws of motion, expressed as differential equations, are applied as algebraic constraints.
This process converts the continuous-time problem into a nonlinear programming (NLP) problem.
A detailed explanation of direct collocation can be found in Kelly’s article (Ref. 20).

We implement this approach using PSOPT (Problem Solving for Optimal Control), an open-
source software that handles the transcription of system dynamics and constraints. The resulting
NLP is solved using IPOPT (Interior Point OPTimizer), a numerical solver for large-scale con-
strained optimization problems.

6.2 Vehicle Dynamics Model
6.2.1 Simplified Dynamic Formulation

To aid in understanding the variables and reference frames used in our formulation, Figures 3
and 4 illustrate the key geometry and pitch-plane variables applied in the vehicle dynamics model.
Figure 3 shows the navigation frame geometry, including wind, airspeed, and ground speed vectors,
along with heading and track angles. Figure 4 depicts the pitch-plane variables, highlighting the
aircraft reference point and climb-related angles. These definitions establish the notation applied
in Equations 1–14.

Figure 3.—Navigation frame geometry showing wind vector WE , airspeed vector Vl, ground speed
vector Vg, and angles ψ (heading) and χ (track).
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Figure 4.—Variable definitions in the pitch plane. The purple dot denotes the aircraft reference
point. A zero bank angle (ϕ = 0) is assumed, meaning the roll axis (not shown) is perpendicular
to the pitch plane.

To implement our trajectory optimization in PSOPT, we require a set of nonlinear dynamic
equations that describe the motion of the quadrotor. These equations must define how the system’s
state variables evolve over time in response to specific control inputs. Based on the assumptions
outlined in the previous section, we begin with the full 6-axis dynamic model of the commercial
quadrotor platform as described in Pradeep et al.’s study and seen in equations 1-7 (Ref. 12). We
then simplify this model to suit our specific use case, vertical climb under fixed heading, eastward
wind, and constant lateral velocity.

dVl
dt

= T cosϕ sin θ −D cos γ
m

(1)
dVv
dt

= T cosϕ cos θ −D sin γ −mg

m
(2)

dψ

dt
= T sinϕ

mVl
(3)

dλ

dt
= Vl cosψ + wn

REarth + h
= Vg cosχ
REarth + h

(4)

dτ

dt
= Vl sinψ + we

(REarth + h) cosλ = Vg sinχ
(REarth + h) cosλ (5)

dh

dt
= Vv + wv (6)

tan γ = Vv
Vl

(7)

The resulting differential equations 8-14, shown below, represent the vehicle’s longitudinal and
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vertical motion and serve as the system dynamics passed to the direct collocation solver.

dVl
dt

= 0 (8)
dVv
dt

= T cos θ −D sin γ −mg

m
(9)

dψ

dt
= 0 (10)

dλ

dt
= 30 · cos(180◦) + 0

REarth + h
= −30
REarth + h

(11)

dτ

dt
= 30 · sin(180◦) + 5

(REarth + h) cos(λ) = 5
(REarth + h) cos(λ) (12)

dh

dt
= Vv + 0 = Vv (13)

tan γ = Vv
30 (14)

To simplify the aircraft dynamics for trajectory solving in PSOPT, we apply assumptions aligned
with the climb phase of the quadrotor. The heading angle is fixed at ψ = 180◦, corresponding to
due south in aviation coordinates, which yields cosψ = −1 and sinψ = 0. These values simplify
the geodetic equations for latitude and longitude. The lateral (horizontal) velocity is held constant
at Vl = 30 m/s, which implies dVl

dt = 0. We assume zero roll, ϕ = 0, and no yawing motion, so
dψ
dt = 0.

The wind field is assumed to have only an eastward component of 5 m/s, i.e., (wn, we, wv) =
(0, 5, 0). This eliminates the vertical and northward wind terms. As a result, the latitude rate
reduces to a constant, dλ

dt = −30
(REarth+h) , and the longitude rate simplifies to dτ

dt = 5
(REarth+h) cosλ

due to the combined effects of southward motion and eastward wind. The altitude rate is given by
dh
dt = Vv, and the climb angle is expressed as tan γ = Vv

30 . These simplifications preserve the essential
dynamics for evaluating climb energy and noise while allowing for ease in trajectory solving.

6.2.2 Power Consumption Modeling

We adopt the total power model for rotorcraft flight used in (Ref. 12), which is derived from
classical formulations of helicopter aerodynamics (Ref. 15, 21). This model is well-suited for
integration into our trajectory optimization framework, which evaluates state-dependent power at
each collocation node. The total required power includes induced, parasitic, climb, and profile
components:

Prequired = Pinduced + Pparasite + Pclimb + Pprofile (15)
Following (Ref. 12), we compute the total power as:

Prequired = κ
4∑

n=1
(Trotorvi)n + TV sinα+ ρArotor(ωR)3σCd,meanFP

8 (16)

Here, vi is the induced velocity of each rotor (solved numerically), α is the angle of attack,
and σ, Cd,mean, and FP represent blade-specific aerodynamic parameters. κ accounts for empirical
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corrections to the induced power model. While this equation is taken from prior literature, we
uniquely apply it within a PSOPT-based optimal control framework and focus specifically on climb
profiles under fixed heading, roll, and lateral speed.

To support these calculations, we extract relevant physical characteristics of the quadrotor (e.g.,
rotor radius, mass) from the vehicle specification table (Table 2).

6.3 Acoustic Emission Modeling
To evaluate the noise generated by an eVTOL climb, a simplified noise model was developed

as a separate Python script that uses the trajectory summary data produced by PSOPT. We used
this due to limited time and resources, however, if the most accurate output were required, we
would recommend using NASA’s AirNoiseUAM tool. The noise model estimates the SEL at a fixed
listener location directly beneath the takeoff point, providing a preliminary approximation suitable
for trend analysis and visualization.

6.3.1 SEL Calculation

The SEL is a measure of the total sound energy of a single acoustic event, normalized to a 1 s
duration. The continuous formula for SEL is given by (Ref. 22):

SEL = 10 log10

(
1
T0

∫ t2

t1

p2(t)
p2

ref
dt

)
(17)

For discrete implementation within the computational framework, this integral is approximated
by a summation over trajectory nodes:

SEL = 10 log10

(
N∑
i=1

p2
i

p2
ref
∆ti

)
(18)

Here, p2
i is the instantaneous squared sound pressure at node i, p2

ref = (20 × 10−6 Pa)2 is the
reference squared pressure, and ∆ti is the time interval associated with node i.

The instantaneous squared pressure, p2
i , for each node is determined through a sequence of

calculations.
First, the three-dimensional distance (d) between the eVTOL and the listener at any given

moment is computed. This is a Euclidean distance incorporating both horizontal (dhorizontal) and
vertical separation:

d =
√

(heVTOL − hlistener)2 + d2
horizontal (19)

Here, heVTOL is the instantaneous eVTOL altitude, hlistener is the listener’s altitude (assumed 15.2
m), and dhorizontal is the horizontal distance derived from the differences in longitude and latitude
using a flat-Earth approximation.

The source sound pressure level at 1 meter (Ls,1m) is then estimated based on the eVTOL’s
average (Tavg):

Ls,1m = Lref,1m + 10 · nT · log10

(
Tavg
Tref

)
(20)

12



In this simplified model, Tavg is calculated as the average power required (Pavg) divided by the
average airspeed (Vairspeed):

Tavg = Pavg
Vairspeed

(21)

Where Pavg is derived from energy consumption over the mission. This Tavg represents an equiv-
alent total system thrust, serving as a proxy for the overall propulsive effort given the eVTOL’s
average power required. It is important to note that this is a simplification, as it does not distin-
guish between power consumed for pure propulsion versus power consumed to overcome induced
or parasitic drag at a specific instant.

Lref,1m, nT , and Tref are model parameters. Subsequently, the received instantaneous SPL (Lp)
at the listener’s location is calculated by accounting for spherical spreading loss and a constant
ground reflection factor:

Lp = Ls,1m −
(

20 log10

(
d

dref

))
+∆LGR (22)

Here, dref is the reference distance (1 m), and ∆LGR is the ground reflection factor.
Finally, the instantaneous SPL is converted to squared pressure (p2

i ) using the reference pressure,
to facilitate energy summation for SEL:

p2
i = p2

ref · 10
(

Lp,i
10

)
(23)

This p2
i value is then used in the discrete SEL summation.

6.3.2 Acoustic Model Parameters

The noise model relies on the following key parameters:

• Lref,1m = 170.0 (dB): Reference SPL at 1 meter from the source.

• Tref = 28.8 (kN): Reference thrust for noise scaling (e.g., hover thrust).

• nT = 1.5: Exponent for the thrust-noise relationship.

• ∆LGR = 3.0 (dB): Additive factor for ground reflection.

6.3.3 Modeling Scope and Limitations

It is critical to acknowledge the significant simplifications inherent in this noise model. The noise
model provides extremely simplified estimates to offer a general preview of the trend of SEL vs.
energy consumed, and relies on numerous simplifying assumptions. Consequently, these results are
not suitable for precise acoustic certification or detailed environmental impact assessments. Tools
like NASA’s AirNoiseUAM would be a much better alternative for more sophisticated and accurate
noise modeling.

Key limitations of the current model include the following: The eVTOL is treated as a single,
omnidirectional noise source, ignoring complex noise generation from multiple rotors and the air-
frame (Point Source Assumption). The flight profile is assumed to be a simplified steady-state climb
with constant airspeed and a linear flight path. Furthermore, a basic empirical power law relates
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total thrust to noise, which does not account for detailed aerodynamic noise mechanisms. Sound
attenuation due to atmospheric conditions is not modeled. Noise radiation is assumed uniform in
all directions, neglecting the directional nature of rotor noise. Finally, a fixed value is used for
ground reflection, assuming a perfectly reflective, flat surface.

6.4 Trajectory Performance Evaluation
To evaluate the noise impact and energy tradeoffs of various climb profiles, we construct a multi-

stage solution pipeline that combines trajectory generation, noise modeling, and data analysis. The
complete process is illustrated in Figure 5.

We begin by specifying a set of fixed climb angles and inputting initial conditions and vehicle
performance parameters. For each climb angle, we use the PSOPT framework to generate feasi-
ble trajectories using direct collocation. Although PSOPT is capable of solving optimal control
problems, in this study it is used to produce valid 4-D trajectories under predefined control inputs.
PSOPT also outputs time histories of relevant state and control variables, including energy con-
sumption.

These trajectories are then passed to a noise estimation module, which produces SEL along the
flight path. While NASA’s AirNoiseUAM tool is conceptually intended for this purpose, prelimi-
nary results are obtained using a simplified internal noise model due to time constraints.

Finally, both energy consumption and SEL are passed to a data analysis step. Here, we construct
a tradeoff analysis between noise and energy to assess the cost of each climb angle and identify a
set of favorable profiles for further study.

Figure 5.—Multi-stage evaluation of climb profiles using trajectory solver, noise modeling and
data analysis

7 Deep Reinforcement Learning Framework

7.1 DRL Methodology
7.1.1 DRL Approach Overview

While optimal control generates noise-aware climb profiles via model–based transcriptions, Deep
Reinforcement Learning (DRL) offers a data-driven alternative capable of discovering novel maneu-
ver strategies without explicit linearization or collocation. In this work, we frame climb-trajectory
optimization as a Markov decision process in which an agent selects discrete climb-angle adjust-
ments to minimize a weighted sum of SEL and energy consumption.
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7.1.2 Simulation Environment

Two simulation frameworks that utilize NASA’s Flexible Engine for fast-time evaluation of flight
environments Fe3 (Ref. 23) are used to model the climb phase of an electric Vertical takeoff and
Landing (eVTOL) vehicle. Flight dynamics, flight kinematics, energy consumption, and motor
speed have been incorporated into Fe3 to simulate eVTOL behavior. The reinforcement learning
(RL) agent learns a policy that optimizes for energy consumption in one simulation framework and
learns a policy that minimizes noise in a second simulation framework.

This method uses the deep learning library PyTorch and the reinforcement learning framework
TorchRL to train the agent to ultimately minimize noise exposure and energy consumption by
adjusting the flight path angle (γ) during the initial climb phase. During simulation, Fe3 generates
and updates the simulation time and eVTOL state at a fixed time step of 0.5 s. These states
(eVTOL, simulation time, maneuver information) are stored in shared GPU memory accessible by
both the Fe3 and Python processes. Based on these observations, the Python process computes
an adjustment to the angle of climb and writes the result to the shared GPU memory. Fe3 then
reads the new maneuver input, updates the vehicle state, and simulates the vehicle’s next state.
Compute Unified Device Architecture (CUDA), NVIDIA’s parallel computing platform for GPU
programming, is used for inter-process communication (IPC) alongside Unix-named first-in-first-
out pipes (FIFO) to share the state data between the Fe3 and Python process (Ref. 24). This
communication loop continues until the agent reaches its target altitude of 488 m.

Named pipes are used to ensure proper data flow and avoid race conditions between the Fe3

and Python processes. The Python process opens two pipes: one that it can only read from and
one that it can only write to. The Fe3 process opens the same pipes in opposite modes: one in
read-only mode and one in write-only mode. During the main simulation loop, these pipes are used
to relay status messages when a process is done reading or writing simulation data.

Simulation data is stored on a shared GPU memory, to which both the Fe3 and the Python
processes have access. The shared GPU allows both processes to read and write to the same
block with minimal overhead. Additionally, the Python process stores other tensors on the GPU,
including the weights for the neural network policy. Fe3 stores memory on the GPU necessary for
simulation, such as way-point data and wind data.

As shown in Figure 6, the energy-optimization configuration is solely focused on minimizing
energy consumption throughout the climb. The Python agent accesses both previous and current
simulation time and the previous and current eVTOL states to calculate the energy expended (∆Es)
over that interval and determine the effectiveness of the last maneuver. Using this pair of points,
the agent computes a new angle-of-climb (γ) maneuver that aims to minimize energy used in the
next pair of points. The latest action is written back to GPU memory, then read by Fe3 for the
next step in the simulation.

The noise-optimization configuration, shown in Figure 7, extends upon the energy-optimization
framework by integrating the AirNoiseUAM module (Ref. 7), a software tool that models the noise
exposure of Urban Air Mobility (UAM) operations. At each simulation step Fe3 and the Python
process record both the previous and current eVTOL states. The AirNoiseUAM module accesses
this segment information, as well as preprocessed Noise-Power Distance (NPD) data, to compute
the SEL (Ref. 22) at the vertiport 1. The RL (Reinforcement Learning) agent receives both the
current and prior eVTOL states and evaluates the noise impact resulting from the previous action
using the SEL value at the vertiport. The Python process then calculates a new climb maneuver
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Figure 6.—Shared memory and inter-process communication between Python and Fe3 processes
for energy-optimization configuration (Ref. 25).
that seeks to minimize the acoustic footprint while progressing towards the target altitude.

When used in tandem, the energy and noise optimization simulation frameworks enable a com-
prehensive exploration of tradeoffs between energy usage and community impact during the eVTOL
climb phase. By independently training reinforcement learning under each objective (minimizing
energy consumption and acoustic exposure-performance tradeoffs), areas of overlap or conflict be-
tween objectives can be quantified.

Figure 7.—Shared memory and inter-process communication between Python and Fe3 processes
for noise-minimizing configuration (Ref. 25).
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7.1.3 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning that involves an agent taking
actions in an environment to maximize a cumulative reward. An RL problem is defined by the
components of the tuple (S, A, P, R, γ), where γ is now defined as the discount factor. At
each time step, t, the agent observes the current state (St ∈ S) and selects an action (At ∈ A)
according to policy (π), which is a function mapping states to a probability distribution over actions.
S and A represent all possible state and action spaces within the environment. Based on the state-
action pair (S, A), the state is then updated to St+1 and the agent receives a reward (Rt). The
environment’s dynamics, defined by the transition probability P (St+1|St, At), determine how the
state progresses from St to St+1 given action At. After the agent reaches state St+1, the reward
function R(Rt+1|St, At, St+1) assigns the reward to the agent.

The agent’s objective is to take actions according to the optimal policy (π∗) that maximizes the
cumulative reward over time. This optimal policy is expressed as follows:

π∗(t) = arg max
π

|E
[ ∞∑
i=0

γiRt+i+1 | π
]

(24)

A proper design of the reward function is critical, as it directs the agent’s behavior by specify-
ing desirable outcomes without telling the agent how to achieve the desired outcome (Ref. 26).
The discount factor γ ∈ (0, 1) determines the value of future rewards; when γ −→ 0, the agent
prioritizes immediate rewards and when γ −→ 1, the agent emphasizes future rewards. Ultimately,
reinforcement learning yields a policy that maximizes the long-term reward (Ref. 26).

There are two approaches used to train an agent to discover its optimal policy: value-based and
policy-based methods. Value-based methods teach the agent to learn which state is more valu-
able through learning a value function that maps the expected value of being at that state. The
state value function (Vπ(St)), is the first representation of the value function, which expresses the
expected return of acting according to the policy

(
Eπ
[
Rt+1 + γRt+2 + γ2Rt+3 + . . . | St

])
starting

in state St. The action-value function or the second representation of the value function Qπ(St,
At) reflects the expected discounted reward when starting in state St, taking action At, and fol-
lowing the policy

(
Eπ
[
Rt+1 + γRt+2 + γ2Rt+3 + . . . | St

])
. Contrastingly, policy-based methods

(π(St)=P(At|St)) directly learn the optimal policy from the agent’s interactions with the environ-
ment, without having to maintain a value function estimation. An optimal value function (V∗ or
Q∗) is reached when it meets the Bellman optimality equation (Ref. 27) in Equation 25.

V ∗ (St) = max
At

E [Rt+1 + γV ∗ (St+1)]

Q∗ (St, At) = E
[
Rt+1 + γmax

At+1
Q∗ (St+1, At+1)

] (25)

7.1.4 Double Deep Q-Learning Network (DDQN)

A Double Deep Q-Network (DDQN) is an improved version of the traditional Deep Q-Network
(DQN) used in Deep Reinforcement Learning (DRL). Like DQN, DDQN enables an agent to learn
how to make optimal decisions in various situations, thereby maximizing rewards. The key improve-
ment in DDQN is that it can accurately estimate the value of actions and reduce overestimation
bias, which happens when the network consistently produces overly optimistic value estimates (Ref.
28).
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DDQN is a temporal-difference (TD) learning method that updates value estimates based on
the immediate reward and the estimated value of the next state, without waiting for an episode
to complete. The main Q-learning update uses the “TD target” and measures the TD error to
quantify the difference between the prediction and the actual outcome (Ref. 29).

DDQN handles this bias by using two neural networks instead of one: an online network and
a target network. During training, the online network is used to take the best action for the next
state, while the target network estimates the value of that action. By splitting the action selection
and evaluation between two networks, DDQN gives a more stable and accurate value estimate
and more robust policies. The target network is updated less frequently than the online network,
helping to stabilize training.

To ensure the agent can explore various actions and avoid settling too early on a less effective
choice, an epsilon-greedy policy is also used during training to balance exploration (trying new
actions) and exploitation (choosing the best-known action). This approach allows the agent to
select the highest-valued action a majority of the time, while occasionally choosing a random
action with probability epsilon (ε). ε starts high to allow for exploration, and then is gradually
reduced during training to allow the agent to exploit acquired knowledge (Ref. 29).

Additionally, DDQN uses experience replay, where as the agent interacts with the environment,
the experiences (such as state, action, reward, next state) are stored in a tuple and sampled
randomly for training the Q-network. This improves learning efficiency and mitigates forgetting of
previous experiences.

7.2 Reinforcement Learning Framework
7.2.1 Environment

The simulation will create a relatively stable environment. The randomly generated situations
will only adjust the climb angle(γ) at each 0.5 s time step, maintaining constant heading. The
climb angle will stay within a range of a minimum of 3°, and a maximum of 90°, ensuring the agent
moves upwards and does not change lateral direction. The simulation will assume that there are
no harsh weather conditions, with a consistent wind speed going eastward at 5 m/s derived from
National Climatic Data Center observations, with altitude-dependent wind variations excluded
from this preliminary approach (Ref. 30) and no flight path obstacles, allowing for simple optimal
trajectories for noise and energy during the climb phase. The eVTOL will need to reach a cruise
altitude of 488 m going at a constant lateral speed of 30 m/s and at that point the episode ends.

7.2.2 State Space

Clearly defining the state space (St) is crucial because it determines what information the agent
uses to make decisions. A poorly designed state space can lead to ineffective learning or unsafe
behavior (Ref. 29). The state space for our drone takeoff and landing simulation captures all
the essential variables that describe the eVTOL’s situation at any given time step. This includes
the climb angle (γt), as well as energy consumption(Et), distance moved towards the destination
(∆dOD), and SEL value (SELt).
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7.2.3 Action Space

The action space defines all possible moves or decisions an agent can take at any given state.
To get the optimal action using the Q-function, the action space needs to be discretized such that
the number of output neurons matches the number of actions (Ref. 29). The bounds for our action
space are γt ∈ [−30, 30] where γt is segmented at intervals of 1 degree. This means that at each
timestep, the maximum by which γ can be adjusted is 30°

7.2.4 Reward Function

The reinforcement learning framework uses both intermediate and terminal rewards to get the
eVTOL to have an energy-efficient and minimal sound level exposure value during its trajectory.
The reward function is therefore split into two primary optimization objectives: energy efficiency
and noise mitigation.

Intermediate rewards are measured and evaluated at every time step, t, to ensure that the agent
can efficiently maintain its trajectory while prioritizing energy efficiency and noise mitigation. Ter-
minal rewards are calculated at the end of an episode to allow the RL agent to reflect on the
success of their actions in terms of the total energy used and the overall noise impact. This process
is especially useful for building a better and more efficient reward based algorithm for future learn-
ing. The base reward is a fixed incentive to reach the terminating altitude, telling the agent that
completing the episode is a desired behavior. The reward functions incorporate the following factors:

1. Energy-optimization Rewards

a. Intermediate Reward
i. To incentivize the agent to progress towards its destination, the distance flown toward

the destination (∆dOD) during each time step is multiplied by a positive weight (w1).
ii. Fe3 models the consumption of energy for each time step. To encourage energy-efficient

maneuvers, energy consumption (∆Et) is multiplied by a negative weight (w2) to avoid maneuvers
or paths that have high energy costs.

b. Termination Reward
i. For the energy-optimizing termination reward function, a base reward of 0.75 is added

to indicate that reaching the episode’s end condition is a desirable behavior
ii. Multiplying total energy consumed by a negative weight (w5) creates a total energy

consumption penalty, which is applied to the base reward, eliminating flight trajectories with inef-
ficient total energy costs.

2. Noise-optimization Rewards

a. Intermediate Reward
i. Similar to the energy optimization function, the agent must progress to the destination

in the noise-optimization function, so the distance flown toward the destination ∆(dOD) for each
time step is multiplied by a positive weight (w3)

ii. For noise optimization, Fe3 will use the NPD table and calculate the SEL value (SELt)
for each time step and multiply it by negative weight (w4), penalizing higher noise levels.
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b. Termination Reward
i. For the noise-optimizing termination reward function, a base reward of 0.75 is added

to indicate that reaching the episode’s end condition is a desirable behavior
ii. The peak noise penalty takes the greatest SEL from the episode and imposes a fixed

punishment to discourage situations with extreme maximum noise levels
Considering the above components, the intermediate (Rt+1) and termination (Rt) signals for

energy optimization can be formulated as in Equation 26 and Equation 27, respectively, with the
initial network weights in Table 3. Similarly, the intermediate (Rt+1) and termination (Rt) signals
for noise optimization can be formulated as in Equation 28 and Equation 29, respectively, with the
initial network weights in Table 3.

Renergy
t+1 = rbase + w1 ·∆dOD + w2 ·∆Et (26)

Renergy
t = 0.75 + w5 ·∆Etotal (27)
Rnoise
t+1 = rbase + w3 ·∆dOD + w4 · SELt (28)

Rnoise
t = 0.75 + PeakNoisePenalty (29)

Table 3.—Reward Function Weights

w1 w2 w3 w4 w5
0.001 -0.002 0.001 -0.5 -0.001
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8 Results

In this section, we present the relationship between climb angle, energy consumption, and acous-
tic impact. To illustrate these tradeoffs, Figures 8 and 9 plot the total energy consumed and the
estimated Sound Exposure Level (SEL) as functions of flight path angle. Together, these figures
highlight the fundamental trends that guide our analysis of noise–energy tradeoffs during the climb
phase.

Figure 8.—Energy Consumed vs. Flight Path Angle (Steady State Climb)

The results show a clear pattern in how energy usage and noise change during a steady-state
climb at different pitch angles. Figure 8 displays the energy consumed in MJ as a function of
flight path angle. At lower angles (30-40°), the eVTOL consumes the most energy. This is likely
because the eVTOL needs to stay in the air longer to cover the same vertical distance, flying more
horizontally and using more power to maintain lift and speed. Energy consumption drops and stays
relatively low from about 50° to 60°, where the eVTOL climbs efficiently without extreme power
demands.
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Figure 9.—Estimated SEL vs. Flight Path Angle (Steady State Climb)
A similar pattern is seen in Figure 9, which estimates the SEL produced during the climb.

SEL values are highest at shallower angles, above 55 dB at 30° and steadily decrease as the pitch
increases. This suggests that flying at steeper angles produces less acoustic footprint, possibly
because the eVTOL spends less time flying horizontally over a given area.

Together, these trends show there’s a clear tradeoff: shallow climbs use a lot of energy and
produce more noise, while steeper climbs are quieter and more efficient up to a point, but become
power-hungry as the angle nears vertical. From an optimization standpoint, steeper climb angles
(between 45–60°) offer the best noise reduction.

9 Conclusions

As eVTOL aircraft become more widespread with the development of UAM, noise pollution
has emerged as a significant component in vehicle implementation and operational planning. This
report outlines a conceptual framework using two complementary methodologies, trajectory solv-
ing through PSOPT and a deep reinforcement learning (DRL) framework, to explore different
maneuvers that mitigate noise during the eVTOL climb phase. The PSOPT approach uses di-
rect collocation to evaluate the effects of fixed climb angles on energy use and estimated SEL,
while the DRL framework proposes a learning-based agent that adapts climb trajectories based on
SEL and energy feedback. While only preliminary results were obtained for the optimal control
method, and the implementation of the DRL agent remains ongoing, the parallel development of
both approaches may inform future research for UAM trajectory design with an emphasis on both
communal impact and operational feasibility. Beyond technical feasibility, the ultimate measure of
success for noise-mitigation strategies lies in their effect on surrounding communities. By reduc-
ing acoustic exposure during climb, even marginal improvements in trajectory design could lessen
health impacts and improve public acceptance of UAM operations.
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10 Future Work

Future efforts may focus on extending the conceptual approach beyond the climb phase to
also incorporate the cruise segment of the flight. The Q-function (Equation 25) will be redefined
as the sum of performance metrics over both climb and cruise phases, providing a more holistic
assessment of noise and energy efficiency for a full 3.7 km trajectory, beginning at vertical takeoff
and extending through the top of climb to the cruise phase. In this extended model, the Q-function
will be adapted to track performance across the entire 3.7 km area of interest, allowing the agent
to learn policies that account for trade-offs between climb angle and the following cruise duration.
A steeper climb angle results in a shorter climb phase and a correspondingly longer cruise phase,
while a shallower angle leads to a longer climb and shorter cruise. Modeling these trade-offs will
allow for more accurate evaluation. Calculating the SEL over a radius of 3.7 km ensures a more
comprehensive assessment of noise impact, rather than being limited to the takeoff location. By
extending SEL analysis across a larger radius, the framework will more accurately simulate the
influence of different flight profiles on community noise exposure.

On the optimal-control side, we’ll extend the PSOPT setup to cover both the climb and a
short level-cruise segment. The solver will choose when the climb ends and cruise begins. To keep
energy results comparable, every trajectory will cover the same total downrange distance (e.g.,
3.7 km) from lift-off to the mission end point. We’ll require the solution to reach the target cruise
altitude and speed, and the cruise segment will hold a zero climb angle (level flight). Over this
fixed distance, we’ll run two separate cases: one that minimizes total energy used and one that
minimizes community noise, with noise evaluated over a grid of ground receivers within 3.7 km.
The DRL setup will follow the same rule (episodes end once the fixed distance is reached), and we
may also report results per unit distance (e.g., MJ/km) to allow direct, like-for-like comparison.
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