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1. Introduction and Purpose 
 

To enable autonomy in space, machine-learning and computer vision applications become 
invaluable for sensor processing. However, these algorithms are computationally complex and 
unfeasible for many embedded central processing units (CPUs) and usually require external 
coprocessors, such as graphics processing units (GPUs) or accelerators specific to the 
application, including application specific integrated circuits (ASICs). In power-constrained 
systems, GPUs tend to consume more power than is acceptable (>40W), so lower-power 
accelerators have shown promise to provide the performance needed under spacecraft 
constraints. For radiation engineers, developing methodologies that can properly test CPUs, 
GPUs, and accelerators, and enable comparisons between them remains a necessary 
complication to solve as the devices become more complex. The methodology in this test aims to 
be a start in developing a baseline single-event effect (SEE) test for client-device machine 
learning accelerators. This category of devices does not host their own operating system. 

This testing campaign is a continuation of a previous 200 MeV proton test performed in January 
2024 [1] and a heavy ion test campaign performed in April and June of 2024 [2]. Specifically, this 
testing campaign evaluates the next generation card from EdgeCortix, the SAKURA-II machine-
learning accelerator [3].  

This experiment characterizes SEEs and data error susceptibility of the SAKURA-II accelerator 
under heavy ions. The device was monitored for single event upsets (SEUs), single event 
functional interrupts (SEFIs) and Single Event Latchup (SEL) at the Texas A&M K500 cyclotron. 
The SAKURA-II board accelerates machine-learning inference applications on a host computer 
through an m.2 x16 connector. For the purposes of devising an end-to-end automated analysis 
workflow for this experiment and a comparison to the SAKURA-I chip, the YOLO-V5 objection-
detection model and the ResNet-50 classification models were used as a representative suite of 
analytical machine-learning models. 

2. Test Result Summary 
 
The SAKURA-II card was irradiated with the 25 !"#

$%&
 beam tune at the TAMU K500 cyclotron. 

Linear Energy Transfers (LETs) were tested up to 40.9 𝑀𝑒𝑉	 '%
!

%(
 at a fluence of >1E7 𝑐𝑚). A fitted 

Weibull curve for SEFIs is presented in this report, with an onset LET of 0.9 𝑀𝑒𝑉	 '%
!

%(
 and a limiting 

cross section of 1.00E-04 𝑐𝑚!. 
 
The SAKURA-II card did not experience any destructive SEEs nor any observed SEL during the 
heavy ion testing campaign. The most commonly observed effects were SEFIs within the PCIe 
interface. SEUs were observed in the form of changes in the output confidence scores of the 
models. Tolerable SEUs that were observed in the object-detection models were defined as 
inferences where the confidence scores were different from the expected value, but the objects 
in the image were correctly identified with only minor changes in the bounding box. For the image 
classification models, tolerable errors were described by changes in the output confidence scores 
that did not lead to a misprediction. Conversely, there were also several cases where the model 
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began consistently predicting incorrect objects from what was expected, requiring a system reset 
to fix the issue. 
 
Similar to the results of the SAKURA-I chip, tolerable upsets were self-recovered on the next 
inference due to refreshing from off-chip DRAM that was not under irradiation. However, there 
were events in which the scores were permanently altered, and a system reboot was needed to 
recover.  

3. Device Description 
 

The device-under-test (DUT) was the SAKURA-II card, an m.2 2280 ASIC accelerator designed 
to accelerate inference on machine-learning applications on the edge. It contains 20 MB of on-
chip memory and 16 GB of external LPDDR4. The interface for the card connects to a host PC 
via an m.2 2280 x16 slot. Further details can be seen in Table 1. A picture of the card used in the 
test can be seen in Figure 1 

For test preparation, the ASIC SAKURA-II card, was decapsulated and thinned to 100 𝜇𝑚 by 
Sage Analytical Labs in San Diego, CA. The card, after decapsulation and thinning, can be seen 
in Figure 2. The depth maps for each card from Sage Analytical Labs can be seen in Figure 3.  

 
Table 1: SAKURA-II Card Details [1] 

Part SAKURA-II Edge Accelerator 

REAG ID 25-026 

Manufacturer EdgeCortix 

Cache 20MB 

External Memory 16 GB LPDDR4  

Reported Performance 60 TOPS (INT8) 

Reported Power 8W 

Interface m.2 2280 form factor  
PCIe Gen 3.0 x16 
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Figure 1: Image of the m.2 SAKURA-II Card [3] 

 

 
Figure 2: De-lidded and thinned SAKURA-II card 

 

 
Figure 3: Depth map from Sage Analytical for the tested SAKURA-II device and its respective serial number.  
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4. Test Setup 
 

The SAKURA-II card was mounted and clamped at normal incidence to the end of the beam line 
approximately 1 cm away from the beam port. and connected to a host PC running Ubuntu 20.04 
via a 0.5 m PCIe extension cable. Additionally, a modified m.2 X16 bus breakout card with external 
power was used to isolate the current draw of the device from the rest of the test bench. A one-
inch collimator was used to narrow the beam to roughly the size of the ASIC. Two images of the 
test setup can be seen in Figure 4.  Compressed air was used to cool the ASIC in a laminar flow 
(noted by the orange nozzle in the picture on the right).  

 
Figure 4. Test setup of the radiation test. 

5. Test Facility  
 

Facility: Texas A&M K500 Cyclotron 
Type of Radiation: Heavy Ion 

Energy: 25 !"#
$%&
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6. Test Conditions 
 

Temperature: Room Temperature 

In-Air or Vacuum: In-air 

Supply Voltages: 12 V 

Distance to beam port: ~1 cm 

  

  

7. Test Methods and Procedures 
 

This section covers the methodology used in this experiment. Details about the model choices 
and how runs were defined are discussed herein. 

7.1. Model Selection 
 

YOLOv5m and ResNet50 was chosen as the object detection and image classification models 
to focus on since it was the model that was used in the high energy proton test and the heavy 
ion tests done on the SAKURA-II card. The sample sizes of each model in this experiment can 
be seen in Table 2. 

Table 2. Sample sizes for each model. 
Model Sample Size 

ResNet-50 21 
YOLOv5m 19 

 

The YOLOv5 [4] object detection models were used with images selected from the Common 
Objects in Context (COCO) 80 dataset, which contains 80 classes [5] of objects. To control the 
input data to the model, only one image was cycled due to the number of objects that would be 
detected within it, after significant input dependence was not observed in [6] and [1]. By 
reducing the inputs to a small number, thereby limiting the overall quantity of objects that could 
be observed across all input images, the output vectors will be consistent between runs without 
introducing the additional data size of having too many input vectors. Restricting the experiment 
to only one image, keeps the test realistic to a real-world case, where there would likely be 
inferences on only one item at a time from a continuous feed, while still analyzing how different 
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confidences affect the results. Analyzing only one image also acts as an experimental control to 
make SEU analysis easier. The images used for this test can be seen in Figure 3. An example 
of a correctly classified outcome can be seen in Figure 5. 

 

 
Figure 5. Output of object detection algorithm for a single image 

 

For image classification, the ResNet50 model was used with images from the ImageNet dataset 
[7], which contains 1000 classes of objects. The same images were used for every run as an 
experimental control. Image Classification, as a contrast to object detection, which identifies 
several classes of objects within an image, assigns just one class to the object(s) within an 
image. An example of an image used in this test can be seen in Figure 7, with the class of “cat.” 

 



8 
 

 
Figure 6. ImageNet image of a cat used for classification [3]. 

7.2. Run Methodology 
 

The test performed in this experiment was an extension of the high energy proton test performed 
in [1] and an equivalent of the heavy ion test performed in [2]. The device memory was 
programmed with a known pattern, irradiated, and then evaluated for single-event upsets. Two 
test conditions were used in this test for both image classification and object detection with varying 
experimental controls. These tests help understand the nature of any upsets seen within the 
SAKURA-II chip. These experiments were the following: 

1. Running repeated inferences without any data transfers with the host beyond the initial 
setup with one input image. This allows us to observe any degradation in the output, if 
any, when inferences are run without constantly updating model parameters from the host. 

2. Running repeated inferences with a reloading of the model parameters after a specified 
number of iterations. This allows us to observe if there is a recovery from recent upsets, if 
any, upon a refresh from the host PC. 

Since the host PC was not in the beam path, and any critical or relevant data is passed to the 
DUT on a run start, the PC was only rebooted when there was a system hang, or PCIe 
communication with the card was upset. At the beginning of each new beam run, all model data 
and configuration were sent from the host PC to the DUT. The beam was powered on 
simultaneously with a run start. 

For each run, the number of inferences was defined by a command line argument on start. 
Additionally, a command line argument was used to define the number of model parameter 
reloads if the run was following experiment #2. For both test conditions, the image with the giraffes 
and geese were used for object detection, shown in Figure 5, and the image of the cat was used 
for image classification, shown in Figure 6. After a run, the fluence was recorded along with the 
output confidence scores for all objects detected within the image. Additionally, the confidence 
score for all 80 classes within the dataset for each object were also recorded to observe any 
changes within any other class score, even if it was not the predicted output. 
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7.3. Data Analysis 
 

To analyze the data, the confidence scores of the top scoring class for each detected object or 
image was plotted against the inference iteration number. This provides a timeline of how the 
confidence scores change over time. The model should be deterministic without any upsets. In 
other words, without radiation, the plot of confidence score vs inference iteration number should 
be a straight, horizontal line, both in object detection and in image classification. An example of 
this deterministic behavior in object detection and image classification can be seen in Figure 7 
and Figure 8, respectively, which were run prior to the radiation experiment. 

 
Figure 7. Golden confidence scores for one image of Object Detection 

 

 
Figure 8. Top five golden confidence scores for Image Classification 
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The confidence scores were monitored for any upsets or deviations from the expected outcome. 
An error was considered tolerable if the expected output deviated but did not lead to a 
misprediction and recovered on the next inference. Any deviation from these golden scores is 
considered an upset, even if they were tolerable errors. 

8. Test Results 
The SAKURA-II card was irradiated with the 25 	!"#

$%&
 beam tunes at Texas A&M’s K500 cyclotron. 

Upsets were seen in the form of a drop or change in confidence score of the output classes. No 
destructive effects were observed during this heavy ion test, through a LET of 40.9	𝑀𝑒𝑉 '%!

%(
 at a 

fluence up to >1E7 𝑐𝑚*). 

8.1. Object Detection Single-Event Effects 
The single event effects observed were similar in type as those seen in [2]. For object detection, 
tolerable upsets were observed in the form of a small change in the output scores and bounding 
boxes for all objects within the image. Minor mispredictions were observed but were corrected 
upon the next inference, likely due to a cache refresh from the DDR outside the beam path. The 
small changes in the bounding boxes were likely due to the non-maximum suppression 
algorithm embedded in the model selecting a different, slightly less optimized bounding box for 
the detection. Persistent errors were observed where the upsets behaved in an uncontrolled 
fashion until a full reset of the system. These persistent errors were potentially tolerable and 
intolerable. Finally, there were catastrophic model failures where the outputs were entirely 
incorrect, no objects in the image were correctly detected or no objects were detected at all, and 
there were many false positives detected in the corners of the image. A more detailed 
description of the upsets observed, along with plots and image examples can be read about in 
the proton test report for the SAKURA-I card [1]. 

8.2. Image Classification Single-Event Effects 
For many of the upsets seen, the error signature was a tolerable, small change in the confidence 
scores that were immediately recovered to its expected state on the next iteration. This is likely 
due to model data being transferred to the on-chip memory from off-chip DDR memory, which 
was not under irradiation, on the start of every iteration, even if there are no data transfers with 
the host PC. These temporary upsets seemed tolerable and did not impact the overall accuracy 
of the model across the inference iterations. This result is consistent with the results found during 
the proton test and the heavy ion tests [1][2] of the SAKURA-1 card. 

Tolerable, non-persistent upsets were observed as small spikes in the output scores. An 
example of this kind of non-persistent error for the top five scoring classes of ResNet50 for the 
cat image can be seen in Figure 9. 
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Figure 9. Example of image classification tolerable errors in the top five scoring classes which recover on 

the next inference. 
 

Similar to object detection and the results seen in [2], the image classification models also saw 
persistent upsets. These persistent upsets required a full restart of the system to recover. Two 
examples of a persistent upset in the top scoring class of image classification can be seen in 
Figure 10 and Figure 11. 
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Figure 10. Persistent upset example in ResNet50. 

 

 
Figure 11. Persistent SEU in ResNet50 where the class scores all converge. 
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8.3. Fluence to Failure of Persistent Upsets 
Both object detection and image classification saw persistent upsets that required a full system 
reset to recover. The fluence to persistent upset of the SAKURA-II card was measured. This 
measurement included the fluence up to the point of a persistent error, called fluence to failure 
(FTF). A persistent error for this measurement was any error that persisted for 5 or more 
iterations, any error that needed a reboot to recover, or any error that led to more than the 
expected number of detected objects in the case of object detection models.  

The mean fluence to failure (MFTF) for each model was measured, seen in Figure 12 along with 
standard deviation. Both models showed very high errors due to low sample size. However, [2] 
found no significant differences between models and MFTF, and it is expected that this would 
be consistent here as well. 

 
Figure 12. Mean Fluence to Failure for all models tested with standard error and sample size. 

8.4. Single-Event Functional Interrupts 
Most of the upsets that ended a run were categorized as single-event functional interrupts 
(SEFIs). These SEFIs were often seen and defined as losses in the communication with the 
device and required a restart of the system to recover, or a loss of ability to write data out. As 
expected, the cross section of the SEFIs increased with LET, as seen in the Weibull curve fit in 
Figure 13. These errors likely consisted of either an upset within the m.2-PCIe hardware in the 
card or a system hang which led to a loss in data telemetry. Additionally, the Weibull parameters 
can be seen in Table 3. Throughout the entire heavy ion test, the SAKURA-II never experienced 
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any permanent or destructive effects up to Xe with an LET of 40.9 𝑀𝑒𝑉 '%!

%(
. Inferences performed 

after the beam test performed as expected. 

 

 
Figure 13. SEFI cross section and Weibull fit for the SAKURA-II. 

 

Table 3. Fitted Weibull Parameters 

Parameter Fitted Value 

Onset LET 0.9 𝑀𝑒𝑉 '%!

%(
 

Limiting Cross Section (Max) 1.00E-04 𝑐𝑚) 
Shape 0.9 

Width 27.0 𝑀𝑒𝑉 '%!

%(
 

 

To compare the results of the SAKURA-II card to the SAKURA-I [2], the SEFI cross section curves 
were overlayed. This overlay shows that the SEFI results between the SAKURA-I and SAKURA-
II are effectively identical. This is the expected result as the test models were the same, and the 
lithography between the two generations are identical. The difference in m.2 vs full-size PCIe as 
the connector shows no difference likely due to m.2 following the same control logic and drivers 
as PCIe. The comparison between the SEFI curves between SAKURA-I and SAKURA-II can be 
seen in Figure 14. 
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Figure 14. Comparison in SEFI cross sections between SAKURA-I and SAKURA-II. 

 

An interesting implication of the results shown in Figure 14 is that the test methodologies 
between the heavy ion tests became more refined for the SAKURA-II test. There is less 
variation in the cross section results in the more recent test due to understanding the error 
signatures of the card prior to irradiation which enables more accurate fluence measurements 
when upsets occur. The methodologies used in this test will hopefully aid in the experimental 
design of future radiation tests on machine-learning accelerators. 

9. Conclusion 
 

This test report evaluates the second generation of the EdgeCortix machine-learning 
accelerator, the SAKURA-II. This work compares the results to the heavy ion and proton tests of 
the SAKURA-I card, evaluated in 2024 [1][2]. Most of the errors were hangs and crashes in the 
system that required a reboot to recover, classified as a SEFI. Of the data errors, most of the 
SEUs observed were temporary changes in the class confidence scores which recovered on the 
next inference iteration. However, some upsets saw persistent errors in the model which 
required a power cycle of the host PC. Throughout the entire test campaign, the SAKURA-II 
card did not experience any observe latchup events up to an LET of 40.9 𝑀𝑒𝑉 '%!

%(
 at a fluence 

up to 1E7 𝑐𝑚*). The results from the SAKURA-II card shows extremely similar results to that of 
the SAKURA-I card. 
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10. Appendix 
This section summarizes the orbital correlation results pertaining to the Lunar space 
environment for the SAKURA-II device.  This device was subjected to accelerated radiation 
testing using Heavy Ions.  The statistical data from those tests was used with SPENVIS to 
calculate on-orbit single event upset rates.  SPENVIS is ESA's SPace ENVironment Information 
System, an internet interface to models of the space environment and its effects, including 
galactic cosmic rays and Solar energetic particles.  Because the failure metric in the radiation 
test data was a single event functional interrupt (SEFI), which requires a device power cycle, the 
resultant orbital rates from SPENVIS are for SEFIs.  Mitigations such as redundancy or planned 
system resets may be necessary to assure availability of the device within a system.  
 
Weibull Parameters used in the following rate calculations are those found in Table 3. 
 
 

Table 4: Radiation Test Data Summary 

 
 

 

 

 

 

Lunar:  
This environment is defined as a 385K km near-earth interplanetary orbit and referred to as 
Lunar Cruise.  Guidance from NASA Ames Research Center’s avionics trade study regarding 
Mission Radiation Environment Modeling and Analysis for their GCD Rad-Neuro Project 
(NASA/TM-20220011775, pages 10 and 11) was utilized to identify the orbital parameters.  “The 
Moon has no atmosphere nor magnetosphere. At this distance from Earth, only the long tail of 
the magnetosphere proves any protection. Therefore, the Lunar mission environment is the 
same as the Cruise Phase radiation environment with one notable exception.” The notable 
exception is the aggregation of shielding from the spacecraft, the Lunar body, and the Earth.  
The calculations for the Sakura-II are for worst case and do not include any consideration for 
shielding from these larger bodies.  The critical time windows identified for this analysis were 2-
hours and 15 days.  The mission duration is 1 year. The results show that to assure system 
availability a system-level mitigation should verify functionality of the Sakura-II at least once 
every few days.  
 

Table 5: Radiation Models Used for GEO 
Trapped Radiation Models AP-8, AE-8 
Trapped proton anisotropy Badhwar & Konradi 1990 MAX 
Solar particle fluxes CREME-96 
Solar particle fluences ESP-PSYCHIC 
Galactic Cosmic Rays Spectra ISO-15390 
Shielded Flux MFLUX 

 

Avg Cross 
Section 

Degrees of 
Freedom 

95% Confidence 
Interval Lower 

Bound 

95% Confidence 
Interval Upper 

Bound 
7.63609E-05 9 2.82171E-04 4.14289E-04 

4.461E-05 8 1.63415E-05 2.09454E-04 
2.41407E-05 6 4.40106E-06 7.93099E-05 

8.246E-06 5 3.5232E-06 2.15469E-05 
1.57591E-06 5 6.73328E-07 4.11788E-06 
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Table 6: Single Event Functional Interrupt Rates for Lunar Cruise Environment 

Environment SEFI/second 
Worst Week - Solar Max 1.14E-07 
Worst Day - Solar Max 3.23E-07 
Worst 5 minutes - Solar Max 1.17E-06 
Worst Week - Solar Min 1.14E-07 
Worst Day - Solar Min 3.23E-07 
Worst 5 minutes - Solar Min 1.17E-06 

 
 

Table 7: Survivability Percentage for Lunar Cruise Environment 
Survivability per Environment 120 minutes 

(2-hours) 
1440 minutes 
(1-day) 

21600 
minutes 
(15-days) 

Worst Week - Solar Max 99.918% 99.836% 86.258% 
Worst Day - Solar Max 99.767% 99.535% 65.760% 
Worst 5 minutes - Solar Max 99.161% 98.330% 21.960% 
Worst Week - Solar Min 99.918% 99.836% 86.258% 
Worst Day - Solar Min 99.767% 99.535% 65.760% 
Worst 5 minutes - Solar Min 99.161% 98.330% 21.960% 

 
 

Table 8: Total Mission SEFIs for 1-year Mission Duration in Lunar Cruise Environment 
 Direct Ionization 
Solar Minimum 2.4971E-01 
Solar Maximum 2.4971E-01 

 

LEO: 
The environment for this study is defined as 800 km altitude with a 98.6° inclination. The 
mission duration is 7 years. The results show that to assure system availability a system-level 
mitigation should verify functionality of the Sakura-II at least once per week.  
 

Table 9: Radiation Models Used for GEO 
Trapped Radiation Models AP-8, AE-8 
Trapped proton anisotropy Badhwar & Konradi 1990 MAX 
Solar particle fluxes CREME-96 
Solar particle fluences ESP-PSYCHIC 
Galactic Cosmic Rays Spectra ISO-15390 
Shielded Flux MFLUX 
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Table 10: Single Event Functional Interrupt Rates for LEO Environment 
Environment SEFI/second 
Worst Week - Solar Max 2.95E-08 
Worst Day - Solar Max 8.20E-08 
Worst 5 minutes - Solar Max 2.95E-07 
Worst Week - Solar Min 2.96E-08 
Worst Day - Solar Min 8.20E-08 
Worst 5 minutes - Solar Min 2.95E-07 

 
 

Table 11: Survivability Percentage for LEO Environment 
Survivability per Environment 

days 1 2 3 4 5 6 7 
minutes 1440 2880 4320 5760 7200 8640 10080 

Worst Week - Solar Max 99.745% 99.491% 99.237% 98.984% 98.732% 98.480% 98.229% 
Worst Day - Solar Max 99.294% 98.593% 97.898% 97.207% 96.521% 95.839% 95.163% 
Worst 5 minutes - Solar Max 97.480% 95.023% 92.628% 90.294% 88.018% 85.800% 83.637% 
Worst Week - Solar Min 99.745% 99.491% 99.237% 98.984% 98.731% 98.480% 98.229% 
Worst Day - Solar Min 99.294% 98.593% 97.897% 97.206% 96.520% 95.839% 95.162% 
Worst 5 minutes - Solar Min 97.480% 95.023% 92.628% 90.293% 88.018% 85.799% 83.637% 

 
 

Table 12: Total Mission SEFIs for 7-year Mission Duration in LEO Environment 
 Direct Ionization Proton Induced Ionization Total 
Solar Minimum 1.8208E-04 9.4402E-01 9.4421E-01 
Solar Maximum 1.8208E-04 8.1138E-01 8.1156E-01 

 
 
GEO: 
The environment for this study is defined as 42K km with equatorial inclination (0°).  The 
mission duration is 5 years. The results show that to assure system availability a system-level 
mitigation should verify functionality of the Sakura-II at least once per day.  
 

Table 13: Radiation Models Used for GEO 
Trapped Radiation Models AP-8, AE-8 
Trapped proton anisotropy Watts et al. 1989 VF1-

MAX 
Solar particle fluxes CREME-96 
Solar particle fluences ESP-PSYCHIC 
Galactic Cosmic Rays Spectra ISO-15390 
Shielded Flux MFLUX 
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Table 14: Single Event Functional Interrupt Rates for GEO Environment 
Environment SEFI/second 
Worst Week - Solar Max 1.18E-07 
Worst Day - Solar Max 3.33E-07 
Worst 5 minutes - Solar Max 1.20E-06 
Worst Week - Solar Min 1.18E-07 
Worst Day - Solar Min 3.33E-07 
Worst 5 minutes - Solar Min 1.20E-06 

 
 

Table 15: Survivability Percentage for GEO Environment 
Survivability per Environment 

day 1 2 3 4 5 6 7 
minutes 1440 2880 4320 5760 7200 8640 10080 

Worst Week - Solar Max 98.989% 97.989% 96.998% 96.018% 95.047% 94.087% 93.136% 
Worst Day - Solar Max 97.168% 94.416% 91.743% 89.144% 86.620% 84.167% 81.783% 
Worst 5 minutes - Solar Max 90.154% 81.277% 73.274% 66.059% 59.555% 53.691% 48.404% 
Worst Week - Solar Min 98.989% 97.989% 96.998% 96.018% 95.047% 94.087% 93.136% 
Worst Day - Solar Min 97.168% 94.416% 91.743% 89.144% 86.620% 84.167% 81.783% 
Worst 5 minutes - Solar Min 90.154% 81.277% 73.274% 66.059% 59.555% 53.691% 48.404% 

 
 

Table 16: Total Mission SEFIs for 5-year Mission Duration in GEO Environment 
 Direct 

Ionization Proton Induced Ionization Total 

Solar Minimum 7.3544E-01 1.7085E-02 7.5252E-01 
Solar Maximum 7.3544E-01 1.7085E-02 7.5252E-01 
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