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1. Introduction and Purpose

To enable autonomy in space, machine-learning and computer vision applications become
invaluable for sensor processing. However, these algorithms are computationally complex and
unfeasible for many embedded central processing units (CPUs) and usually require external
coprocessors, such as graphics processing units (GPUs) or accelerators specific to the
application, including application specific integrated circuits (ASICs). In power-constrained
systems, GPUs tend to consume more power than is acceptable (>40W), so lower-power
accelerators have shown promise to provide the performance needed under spacecraft
constraints. For radiation engineers, developing methodologies that can properly test CPUs,
GPUs, and accelerators, and enable comparisons between them remains a necessary
complication to solve as the devices become more complex. The methodology in this test aims to
be a start in developing a baseline single-event effect (SEE) test for client-device machine
learning accelerators. This category of devices does not host their own operating system.

This testing campaign is a continuation of a previous 200 MeV proton test performed in January
2024 [1] and a heavy ion test campaign performed in April and June of 2024 [2]. Specifically, this
testing campaign evaluates the next generation card from EdgeCortix, the SAKURA-II machine-
learning accelerator [3].

This experiment characterizes SEEs and data error susceptibility of the SAKURA-II accelerator
under heavy ions. The device was monitored for single event upsets (SEUs), single event
functional interrupts (SEFIs) and Single Event Latchup (SEL) at the Texas A&M K500 cyclotron.
The SAKURA-II board accelerates machine-learning inference applications on a host computer
through an m.2 x16 connector. For the purposes of devising an end-to-end automated analysis
workflow for this experiment and a comparison to the SAKURA-I chip, the YOLO-V5 objection-
detection model and the ResNet-50 classification models were used as a representative suite of
analytical machine-learning models.

2. Test Result Summary

MeV

The SAKURA-II card was irradiated with the 25 beam tune at the TAMU K500 cyclotron.

amu

Linear Energy Transfers (LETs) were tested up to 40.9 MeV % at a fluence of >1E7 cm?. A fitted

Weibull curve for SEFIs is presented in this report, with an onset LET of 0.9 MeV % and a limiting

cross section of 1.00E-04 ¢cm?.

The SAKURA-II card did not experience any destructive SEEs nor any observed SEL during the
heavy ion testing campaign. The most commonly observed effects were SEFIs within the PCle
interface. SEUs were observed in the form of changes in the output confidence scores of the
models. Tolerable SEUs that were observed in the object-detection models were defined as
inferences where the confidence scores were different from the expected value, but the objects
in the image were correctly identified with only minor changes in the bounding box. For the image
classification models, tolerable errors were described by changes in the output confidence scores
that did not lead to a misprediction. Conversely, there were also several cases where the model



began consistently predicting incorrect objects from what was expected, requiring a system reset
to fix the issue.

Similar to the results of the SAKURA-I chip, tolerable upsets were self-recovered on the next
inference due to refreshing from off-chip DRAM that was not under irradiation. However, there
were events in which the scores were permanently altered, and a system reboot was needed to
recover.

3. Device Description

The device-under-test (DUT) was the SAKURA-II card, an m.2 2280 ASIC accelerator designed
to accelerate inference on machine-learning applications on the edge. It contains 20 MB of on-
chip memory and 16 GB of external LPDDR4. The interface for the card connects to a host PC
via an m.2 2280 x16 slot. Further details can be seen in Table 1. A picture of the card used in the
test can be seen in Figure 1

For test preparation, the ASIC SAKURA-II card, was decapsulated and thinned to 100 um by
Sage Analytical Labs in San Diego, CA. The card, after decapsulation and thinning, can be seen
in Figure 2. The depth maps for each card from Sage Analytical Labs can be seen in Figure 3.

Table 1: SAKURA-II Card Details [1]

Part SAKURA-II Edge Accelerator
REAG ID 25-026
Manufacturer EdgeCortix
Cache 20MB
External Memory 16 GB LPDDR4
Reported Performance 60 TOPS (INT8)
Reported Power 8w
Interface m.2 2280 form factor
PCle Gen 3.0 x16
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Figure 2: De-lidded and thinned SAKURA-II card
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Figure 3: Depth map from Sage Analytical for the tested SAKURA-II device and its respective serial number.
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4. Test Setup

The SAKURA-II card was mounted and clamped at normal incidence to the end of the beam line
approximately 1 cm away from the beam port. and connected to a host PC running Ubuntu 20.04
via a 0.5 m PCle extension cable. Additionally, a modified m.2 X16 bus breakout card with external
power was used to isolate the current draw of the device from the rest of the test bench. A one-
inch collimator was used to narrow the beam to roughly the size of the ASIC. Two images of the
test setup can be seen in Figure 4. Compressed air was used to cool the ASIC in a laminar flow
(noted by the orange nozzle in the picture on the right).

Figure 4. Test setup of the radiation test.

5. Test Facility

Facility: Texas A&M K500 Cyclotron
Type of Radiation: Heavy lon
Energy: o5 MeV

amu



6. Test Conditions

Temperature: Room Temperature
In-Air or Vacuum: In-air

Supply Voltages: 12V

Distance to beam port: ~1cm

7. Test Methods and Procedures

This section covers the methodology used in this experiment. Details about the model choices
and how runs were defined are discussed herein.

7.1. Model Selection

YOLOv5m and ResNet50 was chosen as the object detection and image classification models
to focus on since it was the model that was used in the high energy proton test and the heavy
ion tests done on the SAKURA-II card. The sample sizes of each model in this experiment can
be seen in Table 2.

Table 2. Sample sizes for each model.

Model Sample Size
ResNet-50 21
YOLOv5m 19

The YOLOV5 [4] object detection models were used with images selected from the Common
Objects in Context (COCO) 80 dataset, which contains 80 classes [5] of objects. To control the
input data to the model, only one image was cycled due to the number of objects that would be
detected within it, after significant input dependence was not observed in [6] and [1]. By
reducing the inputs to a small number, thereby limiting the overall quantity of objects that could
be observed across all input images, the output vectors will be consistent between runs without
introducing the additional data size of having too many input vectors. Restricting the experiment
to only one image, keeps the test realistic to a real-world case, where there would likely be
inferences on only one item at a time from a continuous feed, while still analyzing how different




confidences affect the results. Analyzing only one image also acts as an experimental control to
make SEU analysis easier. The images used for this test can be seen in Figure 3. An example
of a correctly classified outcome can be seen in Figure 5.

Figure 5. Output of object detection algorithm for a single image

For image classification, the ResNet50 model was used with images from the ImageNet dataset
[7], which contains 1000 classes of objects. The same images were used for every run as an
experimental control. Image Classification, as a contrast to object detection, which identifies
several classes of objects within an image, assigns just one class to the object(s) within an
image. An example of an image used in this test can be seen in Figure 7, with the class of “cat.”



Figure 6. ImageNet image of a cat used for classification [3].

7.2. Run Methodology

The test performed in this experiment was an extension of the high energy proton test performed
in [1] and an equivalent of the heavy ion test performed in [2]. The device memory was
programmed with a known pattern, irradiated, and then evaluated for single-event upsets. Two
test conditions were used in this test for both image classification and object detection with varying
experimental controls. These tests help understand the nature of any upsets seen within the
SAKURA-II chip. These experiments were the following:

1. Running repeated inferences without any data transfers with the host beyond the initial
setup with one input image. This allows us to observe any degradation in the output, if
any, when inferences are run without constantly updating model parameters from the host.

2. Running repeated inferences with a reloading of the model parameters after a specified
number of iterations. This allows us to observe if there is a recovery from recent upsets, if
any, upon a refresh from the host PC.

Since the host PC was not in the beam path, and any critical or relevant data is passed to the
DUT on a run start, the PC was only rebooted when there was a system hang, or PCle
communication with the card was upset. At the beginning of each new beam run, all model data
and configuration were sent from the host PC to the DUT. The beam was powered on
simultaneously with a run start.

For each run, the number of inferences was defined by a command line argument on start.
Additionally, a command line argument was used to define the number of model parameter
reloads if the run was following experiment #2. For both test conditions, the image with the giraffes
and geese were used for object detection, shown in Figure 5, and the image of the cat was used
for image classification, shown in Figure 6. After a run, the fluence was recorded along with the
output confidence scores for all objects detected within the image. Additionally, the confidence
score for all 80 classes within the dataset for each object were also recorded to observe any
changes within any other class score, even if it was not the predicted output.



7.3. Data Analysis

To analyze the data, the confidence scores of the top scoring class for each detected object or
image was plotted against the inference iteration number. This provides a timeline of how the
confidence scores change over time. The model should be deterministic without any upsets. In
other words, without radiation, the plot of confidence score vs inference iteration number should
be a straight, horizontal line, both in object detection and in image classification. An example of
this deterministic behavior in object detection and image classification can be seen in Figure 7
and Figure 8, respectively, which were run prior to the radiation experiment.

Golden Object
Detection Scores
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Figure 7. Golden confidence scores for one image of Object Detection

Golden Image
Classification Scores

Confidence Score

3.00
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Inference Number

Figure 8. Top five golden confidence scores for Image Classification



The confidence scores were monitored for any upsets or deviations from the expected outcome.
An error was considered tolerable if the expected output deviated but did not lead to a
misprediction and recovered on the next inference. Any deviation from these golden scores is
considered an upset, even if they were tolerable errors.

8. Test Results

The SAKURA-II card was irradiated with the 25 po—
Upsets were seen in the form of a drop or change in confidence score of the output classes. No

MeV

beam tunes at Texas A&M’s K500 cyclotron.

destructive effects were observed during this heavy ion test, through a LET of 40.9 MeV% ata

fluence up to >1E7 cm™2.

8.1. Object Detection Single-Event Effects

The single event effects observed were similar in type as those seen in [2]. For object detection,
tolerable upsets were observed in the form of a small change in the output scores and bounding
boxes for all objects within the image. Minor mispredictions were observed but were corrected
upon the next inference, likely due to a cache refresh from the DDR outside the beam path. The
small changes in the bounding boxes were likely due to the non-maximum suppression
algorithm embedded in the model selecting a different, slightly less optimized bounding box for
the detection. Persistent errors were observed where the upsets behaved in an uncontrolled
fashion until a full reset of the system. These persistent errors were potentially tolerable and
intolerable. Finally, there were catastrophic model failures where the outputs were entirely
incorrect, no objects in the image were correctly detected or no objects were detected at all, and
there were many false positives detected in the corners of the image. A more detailed
description of the upsets observed, along with plots and image examples can be read about in
the proton test report for the SAKURA-I card [1].

8.2. Image Classification Single-Event Effects

For many of the upsets seen, the error signature was a tolerable, small change in the confidence
scores that were immediately recovered to its expected state on the next iteration. This is likely
due to model data being transferred to the on-chip memory from off-chip DDR memory, which
was not under irradiation, on the start of every iteration, even if there are no data transfers with
the host PC. These temporary upsets seemed tolerable and did not impact the overall accuracy
of the model across the inference iterations. This result is consistent with the results found during
the proton test and the heavy ion tests [1][2] of the SAKURA-1 card.

Tolerable, non-persistent upsets were observed as small spikes in the output scores. An
example of this kind of non-persistent error for the top five scoring classes of ResNet50 for the
cat image can be seen in Figure 9.

10
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Figure 9. Example of image classification tolerable errors in the top five scoring classes which recover on
the next inference.

Similar to object detection and the results seen in [2], the image classification models also saw
persistent upsets. These persistent upsets required a full restart of the system to recover. Two
examples of a persistent upset in the top scoring class of image classification can be seen in
Figure 10 and Figure 11.
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Image Classification
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Figure 10. Persistent upset example in ResNet50.
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Figure 11. Persistent SEU in ResNet50 where the class scores all converge.
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8.3. Fluence to Failure of Persistent Upsets

Both object detection and image classification saw persistent upsets that required a full system
reset to recover. The fluence to persistent upset of the SAKURA-II card was measured. This
measurement included the fluence up to the point of a persistent error, called fluence to failure
(FTF). A persistent error for this measurement was any error that persisted for 5 or more
iterations, any error that needed a reboot to recover, or any error that led to more than the
expected number of detected objects in the case of object detection models.

The mean fluence to failure (MFTF) for each model was measured, seen in Figure 12 along with
standard deviation. Both models showed very high errors due to low sample size. However, [2]
found no significant differences between models and MFTF, and it is expected that this would
be consistent here as well.

Mean Fluence To Failure

1200
1000
800

600

400

Mean Fluence to Failure (cm”-2)

200

ResNet50 YOLOvV5mM

Figure 12. Mean Fluence to Failure for all models tested with standard error and sample size.

8.4. Single-Event Functional Interrupts

Most of the upsets that ended a run were categorized as single-event functional interrupts
(SEFIs). These SEFIs were often seen and defined as losses in the communication with the
device and required a restart of the system to recover, or a loss of ability to write data out. As
expected, the cross section of the SEFIs increased with LET, as seen in the Weibull curve fit in
Figure 13. These errors likely consisted of either an upset within the m.2-PCle hardware in the
card or a system hang which led to a loss in data telemetry. Additionally, the Weibull parameters
can be seen in Table 3. Throughout the entire heavy ion test, the SAKURA-II never experienced

13



any permanent or destructive effects up to Xe with an LET of 40.9 MeV %. Inferences performed

after the beam test performed as expected.

SEFI Cross Section
1.E-03

1.E-04

1.E-05

Cross Section (cm?2)

1.E-06

1.E-07
0 10 20 30 40 50 60 70
LET (MeV-cm?2/mg)

Figure 13. SEFI cross section and Weibull fit for the SAKURA-II.

Table 3. Fitted Weibull Parameters

Parameter Fitted Value

2

Onset LET 0.9 MeV =

mg

Limiting Cross Section (Max) 1.00E-04 cm?

Shape 0.9

2
Width 27.0 MeV =

mg

To compare the results of the SAKURA-II card to the SAKURA-I [2], the SEFI cross section curves
were overlayed. This overlay shows that the SEFI results between the SAKURA-I and SAKURA-
Il are effectively identical. This is the expected result as the test models were the same, and the
lithography between the two generations are identical. The difference in m.2 vs full-size PCle as
the connector shows no difference likely due to m.2 following the same control logic and drivers
as PCle. The comparison between the SEFI curves between SAKURA-I and SAKURA-II can be
seen in Figure 14.

14



SAKURA-I vs SAKURA-II SEFI Cross Sections
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Figure 14. Comparison in SEFI cross sections between SAKURA-I and SAKURA-II.

An interesting implication of the results shown in Figure 14 is that the test methodologies
between the heavy ion tests became more refined for the SAKURA-II test. There is less
variation in the cross section results in the more recent test due to understanding the error
signatures of the card prior to irradiation which enables more accurate fluence measurements
when upsets occur. The methodologies used in this test will hopefully aid in the experimental
design of future radiation tests on machine-learning accelerators.

9. Conclusion

This test report evaluates the second generation of the EdgeCortix machine-learning
accelerator, the SAKURA-II. This work compares the results to the heavy ion and proton tests of
the SAKURA-I card, evaluated in 2024 [1][2]. Most of the errors were hangs and crashes in the
system that required a reboot to recover, classified as a SEFI. Of the data errors, most of the
SEUs observed were temporary changes in the class confidence scores which recovered on the
next inference iteration. However, some upsets saw persistent errors in the model which
required a power cycle of the host PC. Throughout the entire test campaign, the SAKURA-II

card did not experience any observe latchup events up to an LET of 40.9 MeV% at a fluence

up to 1E7 cm™2. The results from the SAKURA-II card shows extremely similar results to that of
the SAKURA-I card.
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10. Appendix

This section summarizes the orbital correlation results pertaining to the Lunar space
environment for the SAKURA-II device. This device was subjected to accelerated radiation
testing using Heavy lons. The statistical data from those tests was used with SPENVIS to
calculate on-orbit single event upset rates. SPENVIS is ESA's SPace ENVironment Information
System, an internet interface to models of the space environment and its effects, including
galactic cosmic rays and Solar energetic particles. Because the failure metric in the radiation
test data was a single event functional interrupt (SEFI), which requires a device power cycle, the
resultant orbital rates from SPENVIS are for SEFIs. Mitigations such as redundancy or planned
system resets may be necessary to assure availability of the device within a system.

Weibull Parameters used in the following rate calculations are those found in Table 3.

Table 4: Radiation Test Data Summary

95% Confidence 95% Confidence
Avg Cross Degrees of
] Interval Lower Interval Upper
Section Freedom
Bound Bound

7.63609E-05 9 2.82171E-04 4.14289E-04
4.461E-05 8 1.63415E-05 2.09454E-04
2.41407E-05 6 4.40106E-06 7.93099E-05
8.246E-06 5 3.5232E-06 2.15469E-05
1.57591E-06 5 6.73328E-07 4.11788E-06

Lunar:

This environment is defined as a 385K km near-earth interplanetary orbit and referred to as
Lunar Cruise. Guidance from NASA Ames Research Center’s avionics trade study regarding
Mission Radiation Environment Modeling and Analysis for their GCD Rad-Neuro Project
(NASA/TM-20220011775, pages 10 and 11) was utilized to identify the orbital parameters. “The
Moon has no atmosphere nor magnetosphere. At this distance from Earth, only the long tail of
the magnetosphere proves any protection. Therefore, the Lunar mission environment is the
same as the Cruise Phase radiation environment with one notable exception.” The notable
exception is the aggregation of shielding from the spacecraft, the Lunar body, and the Earth.
The calculations for the Sakura-II are for worst case and do not include any consideration for
shielding from these larger bodies. The critical time windows identified for this analysis were 2-
hours and 15 days. The mission duration is 1 year. The results show that to assure system
availability a system-level mitigation should verify functionality of the Sakura-Il at least once
every few days.

Table 5: Radiation Models Used for GEO

Trapped Radiation Models AP-8, AE-8

Trapped proton anisotropy Badhwar & Konradi 1990 MAX
Solar particle fluxes CREME-96

Solar particle fluences ESP-PSYCHIC

Galactic Cosmic Rays Spectra ISO-15390

Shielded Flux MFLUX

16



Table 6: Single Event Functional Interrupt Rates for Lunar Cruise Environment

Environment SEFI/second
Worst Week - Solar Max 1.14E-07
Worst Day - Solar Max 3.23E-07
Worst 5 minutes - Solar Max 1.17E-06
Worst Week - Solar Min 1.14E-07
Worst Day - Solar Min 3.23E-07
Worst 5 minutes - Solar Min 1.17E-06

Table 7: Survivability Percentage for Lunar Cruise Environment

Survivability per Environment 120 minutes 1440 minutes | 21600
(2-hours) (1-day) minutes
(15-days)
Worst Week - Solar Max 99.918% 99.836% 86.258%
Worst Day - Solar Max 99.767% 99.535% 65.760%
Worst 5 minutes - Solar Max 99.161% 98.330% 21.960%
Worst Week - Solar Min 99.918% 99.836% 86.258%
Worst Day - Solar Min 99.767% 99.535% 65.760%
Worst 5 minutes - Solar Min 99.161% 98.330% 21.960%

Table 8: Total Mission SEFIs for 1-year Mission Duration in Lunar Cruise Environment
Direct lonization
Solar Minimum 2.4971E-01
Solar Maximum | 2.4971E-01

LEO:

The environment for this study is defined as 800 km altitude with a 98.6° inclination. The
mission duration is 7 years. The results show that to assure system availability a system-level
mitigation should verify functionality of the Sakura-Il at least once per week.

Table 9: Radiation Models Used for GEO

Trapped Radiation Models AP-8, AE-8

Trapped proton anisotropy Badhwar & Konradi 1990 MAX
Solar particle fluxes CREME-96

Solar particle fluences ESP-PSYCHIC

Galactic Cosmic Rays Spectra ISO-15390

Shielded Flux MFLUX




Table 10: Single Event Functional Interrupt Rates for LEO Environment

Environment SEFI/second
Worst Week - Solar Max 2.95E-08
Worst Day - Solar Max 8.20E-08
Worst 5 minutes - Solar Max 2.95E-07
Worst Week - Solar Min 2.96E-08
Worst Day - Solar Min 8.20E-08
Worst 5 minutes - Solar Min 2.95E-07

Table 11: Survivability Percentage for LEO Environment

Survivability per Environment

days 1 2 4 5 6 7
minutes | 1440 2880 4320 5760 7200 8640 10080
Worst Week - Solar Max 99.745% | 99.491% | 99.237% | 98.984% | 98.732% | 98.480% | 98.229%
Worst Day - Solar Max 99.294% | 98.593% | 97.898% | 97.207% | 96.521% | 95.839% | 95.163%
Worst 5 minutes - Solar Max | 97.480% | 95.023% | 92.628% | 90.294% | 88.018% | 85.800% | 83.637%
Worst Week - Solar Min 99.745% | 99.491% | 99.237% | 98.984% | 98.731% | 98.480% | 98.229%
Worst Day - Solar Min 99.294% | 98.593% | 97.897% | 97.206% | 96.520% | 95.839% | 95.162%
Worst 5 minutes - Solar Min | 97.480% | 95.023% | 92.628% | 90.293% | 88.018% | 85.799% | 83.637%
Table 12: Total Mission SEFIs for 7-year Mission Duration in LEO Environment
Direct lonization | Proton Induced lonization Total
Solar Minimum | 1.8208E-04 9.4402E-01 9.4421E-01
Solar Maximum | 1.8208E-04 8.1138E-01 8.1156E-01

GEO:

The environment for this study is defined as 42K km with equatorial inclination (0°). The

mission duration is 5 years. The results show that to assure system availability a system-level

mitigation should verify functionality of the Sakura-Il at least once per day.

Table 13: Radiation Models Used for GEO

Trapped Radiation Models

AP-8, AE-8

Trapped proton anisotropy

Watts et al. 1989 VF1-

MAX
Solar particle fluxes CREME-96
Solar particle fluences ESP-PSYCHIC
Galactic Cosmic Rays Spectra ISO-15390
Shielded Flux MFLUX
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Table 14: Single Event Functional Interrupt Rates for GEO Environment

Environment SEFI/second
Worst Week - Solar Max 1.18E-07
Worst Day - Solar Max 3.33E-07
Worst 5 minutes - Solar Max 1.20E-06
Worst Week - Solar Min 1.18E-07
Worst Day - Solar Min 3.33E-07
Worst 5 minutes - Solar Min 1.20E-06

Table 15: Survivability Percentage for GEO Environment

Survivability per Environment

day 1 2 3 4 5 6 7
minutes 1440 2880 4320 5760 7200 8640 10080
Worst Week - Solar Max 98.989% | 97.989% | 96.998% | 96.018% | 95.047% | 94.087% | 93.136%
Worst Day - Solar Max 97.168% | 94.416% | 91.743% | 89.144% | 86.620% | 84.167% | 81.783%
Worst 5 minutes - Solar Max | 90.154% | 81.277% | 73.274% | 66.059% | 59.555% | 53.691% | 48.404%
Worst Week - Solar Min 98.989% | 97.989% | 96.998% | 96.018% | 95.047% | 94.087% | 93.136%
Worst Day - Solar Min 97.168% | 94.416% | 91.743% | 89.144% | 86.620% | 84.167% | 81.783%
Worst 5 minutes - Solar Min | 90.154% | 81.277% | 73.274% | 66.059% | 59.555% | 53.691% | 48.404%
Table 16: Total Mission SEFIs for 5-year Mission Duration in GEO Environment
| Dlregt Proton Induced lonization Total
onization
Solar Minimum | 7.3544E-01 | 1.7085E-02 7.5252E-01
Solar Maximum | 7.3544E-01 | 1.7085E-02 7.5252E-01
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