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Nomenclature

CQ = rotor torque coefficient
CT = rotor thrust coefficient
cd = airfoil drag coefficient
cl = airfoil lift coefficient
cm = airfoil pitching moment coefficient
FM = rotor figure of merit (hover efficiency)
LDE = rotor lift to drag (forward flight efficiency)
MAE = mean absolute error (surrogate model accuracy)
MAPE = mean absolute percent error (surrogate model accu-

racy)
α = angle of attack, deg

I. Introduction

T HE characterization of airfoil performance across a range of
Mach numbers, Reynolds numbers, and angles of attack

remains a key aspect for a vast array of midfidelity aerospace
analysis and design methods. The computation of aerodynamic
loads on rotors and wings often relies on previously computed
airfoil performance tables. Although the midfidelity tools rely on
these tables to reduce their computational cost, the process of
creating accurate lookup tables is often a computationally intensive
and time-consuming task. Due to the still high computational cost of
high-order CFD solvers, airfoil performance tables at proximal but
mismatched Reynolds and Mach numbers are often used in con-
ceptual design. These tables are sometimes created either with
existing experimental data, which are limited by the test Mach
and Reynolds numbers, or using a lower-fidelity approach such as
XFOIL or MSES [1,2]. Past studies by Patt and Youngren [3] and
Cornelius and Schmitz [4] document both the need for higher
refinement implementations of C81 tables and the improvements

obtained by using them, highlighted when analyzing rotors with
multiple airfoils, large changes in radial chord distribution, and
variable-speed (varying-RPM) operation [4].
Creating high-fidelity lookup tables in each iteration of con-

ceptual design is currently cost-prohibitive. As a result, concep-
tual designers often make simplifying assumptions, such as using
a set of tables at a constant Reynolds number even as the chord-
based Reynolds number changes in successive design iterations,
as done in Ref. [5]. An alternative approach is to use fast but
lower-fidelity methods such as XFOIL or the XFOIL-generated
UIUC database [6] to update the airfoil performance tables
between iterations. Given the high cost of creating these lookup
tables, there has been a growing interest in the aviation commu-
nity to leverage various machine learning (ML) approaches to
derive sufficiently accurate, low-cost surrogate models for pre-
dicting airfoil performance.
Some recent studies have used neural networks to create highly

efficient airfoil performance surrogate models to update the lookup
tables as the conceptual design progresses, but they have typically
been based on lower-fidelity training data [7]. Another study
applied neural networks to data from the thin-layer Navier–Stokes
flow solver ARC2D using the wrapper C81Gen [8], although with
a coarse Mach discretization and at a single Reynolds number.
The use of these surrogate models for airfoil performance predic-
tion has recently received much attention [9–13], with various
approaches used to define the airfoil geometry, such as the ParFoil
tool and class shape transformations. Li et al. recently provided a
review on this topic [14]. These studies, however, typically rely on
class shape transformations such as Bernstein and Chebyshev
polynomials [15–17]. Although this process has been adopted as
a leading research approach for airfoil shape optimization, the
surrogate models can introduce some inaccuracy as compared to
the original CFD calculations for airfoils in the training datasets
due to imperfect representations of the airfoil shape.
This work pursues the creation of a comprehensive, high-fidelity

airfoil performance database with the high-order-accurate OVER-
FLOW CFD solver using the NASA High-End Compute Capability
(NASA-HECC). The airfoils in the database consist of first- and
second-generation rotorcraft airfoils created first by the National
Advisory Committee for Aeronautics (NACA), with continued
development at NASA [18–22]. The scale and fidelity of this data-
base distinguish it from prior efforts, where prohibitive computa-
tional costs often limited researchers to lower-fidelity solvers or
smaller datasets. To the best of the authors' knowledge, this is
among the first attempts to provide such a large-scale, high-fidelity
airfoil database specifically tailored to rotorcraft-relevant applica-
tions, establishing a benchmark resource for the community.
Machine learning (ML) methods are then employed as a demon-
stration of how the database can be effectively leveraged for surro-
gate model development, including best practices for model training
and evaluation. This enables rapid generation of airfoil performance
tables at intermediate Mach and Reynolds numbers, grounded in
high-order accurate OVERFLOW solutions. A downstream appli-
cation of the database is demonstrated, using the derived ML model
predictions to integrate into CFD-BEM rotor simulations, signifi-
cantly reducing computational cost while retaining highly accurate
rotor performance predictions in a range of flight conditions.

II. PALMO Database Generation Version 1.0
NACA 4 Series

The PALMO database was generated using the NASA High-End
Compute Capability (NASA-HECC). OVERFLOW simulations
that are second-order accurate in time and fourth-order accurate
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in space are run with the Spalart–Allmaras turbulence closure to
develop the airfoil performance training datasets [23,24]. The airfoil
simulations are run using the OVERFLOW wrapper AFTGen [25].
Grid studies have been carried out to ensure grid convergence to less
than 1% in the linear region of the lift-curve slope following the
approaches documented by Cornelius, Koning, and Kallstrom
[26–28]. A typical simulation has 501 wrap-around points, 601 grid
points normal to the airfoil, and 41 points on the blunt trailing edge,
giving approximately 325,000 cells. Whenever possible, subsets of
the OVERFLOW-generated data will be compared to existing exper-
imental datasets for validation of the training data used in the surro-
gate model generation [18–22,29,30]. Additional details about the
database generation, including airfoil coordinate file generation, grid
convergence studies, and OVERFLOW setup, have been documented
as a NASATechnical Memorandum [31].
The foundation of the in-development PALMO database is the

airfoil base cube, which is a high-density parameterization of OVER-
FLOW simulation data for a single airfoil. For each airfoil, 3280
OVERFLOW simulations are run at all possible combinations of the
Mach numbers, Reynolds numbers, and angles of attack reported in
Table 1. The airfoil dataset was generated using uniform sampling of
the NACA 4-series parameter space. This approach provides a struc-
tured and reproducible grid of airfoils, ensuring that the database
can serve as a benchmark resource for the community. While Latin
hypercube sampling (LHS) is widely used in surrogate modeling due
to its efficiency in exploring high-dimensional design spaces, the
structured nature of the NACA definitions makes uniform sampling
more appropriate in this context. The resulting dataset enables both
straightforward interpolation and consistent coverage of the param-
eter space, while remaining extensible to alternative sampling strat-
egies in future work. This first version of the PALMO database has 16
base cubes, with each base cube representing a single NACA 4-series
airfoil. The database currently contains 52,480 OVERFLOW simu-
lations (i.e., 3280 × 16 simulations). Each base cube required 5 days
of wall-clock time on sixteen 28-core Broadwell compute nodes. This
resulted in a total computational cost of around 860,000 CPU hours.
The first set of airfoils included in the database is the NACA 4

series. This first-generation airfoil family was selected for the first
release of the PALMO database for the following reasons:
1) Ample publicly available experimental data in NASA and

NACA documents [18,29,30].
2) Complete parameterization of the airfoil coordinates using just

thickness and camber.
3) Relevance to a wide variety of aerospace design applications.
These conditions include a wide range of anticipated operating

conditions from subsonic to transonic, Reynolds numbers of
75,000–8 million, and angle-of-attack values from −20 to �20 deg.
This is expected to bound many rotorcraft-relevant applications that
CFD simulation data would generally be used for. Below a Mach
value of 0.25, the flow can be assumed subsonic, and thus the values
from the lowest Mach in the database can be used. Below the mini-
mum Reynolds number, which may be encountered by micro
unmanned aerial systems (MUAS) or extraterrestrial Mars helicopters,
specially tailored OVERFLOW simulations beyond the scope of this
work are required. For conditions in deep stall, higher-fidelity simu-
lations are required, which are again beyond the scope of this
database.
The database is expanded beyond a single base cube with the

addition of airfoil parameterization. Figure 1 shows a parameter-
ization of the NACA 4 series, with variations in percent camber and

thickness being added to the database. For each airfoil, all possible
combinations of the Mach number, Reynolds number, and angle of
attack from Table 1 are simulated. The database includes the sym-
metric 4-series airfoils as well as airfoils with 2% and 4% camber.
The maximum percent thickness also varies from 6% to 24%. This
allows predictions for any arbitrary combination of camber and
thickness within the bounds of the training data, i.e., from the
NACA 0006 to the NACA 4424.
The red stars in Fig. 1 represent additional test data generated

beyond the original 4-series parameterization. These test data were
generated using the same approach in OVERFLOW but are meant to
assess the accuracy of downstream surrogate models. This first
release of the full PALMO 4-series database thus has 16 base cubes:
the 12 cubes shown in blue with 4 additional test cubes, denoted by
the red stars, for the NACA 3415, 3418, 4415, and 4421. All 52,480
simulations could be used directly or as training data for surrogate
models. For surrogate model development and testing, the 12 blue
base cubes could be used as training data while holding out some or
all the red stars for test data.

III. Surrogate Model Demonstration Case

An example surrogate model will now be presented to demon-
strate the use of the PALMO database. Although users can directly
use the data as is, creating surrogate models from the data allows for
airfoil performance prediction at intermediate airfoils and condi-
tions not explicitly included in the database. Notably, surrogate
model interpolation of the database is shown to be more accurate
than linear interpolation. Although not shown in this work, the
surrogate model prediction speed for the neural networks used is
faster than linear interpolation. This enables the user to rapidly
generate airfoil lookup tables of similar accuracy to directly running
OVERFLOW.
Throughout this work, all models were trained on the 12 baseline

airfoils (the blue boxes from Fig. 1). To assess the predictive
capabilities of the models on test data, airfoil performance was
predicted for the NACA 3415 airfoil. The 3415 airfoil was one of
the test base cubes from Fig. 1, represented as a red star, which has
different thickness and camber values from all the grid of blue box
base cubes, making it a completely “unseen” set of datapoints.
Three single-output models were trained using TensorFlow to

predict the airfoil performance coefficients cl, cd, and cm sepa-
rately for a given airfoil camber, thickness, angle of attack, and
Mach and Reynolds numbers. The training data were normalized
using min-max scaling, with the Reynolds number transformed
logarithmically to better align with the scale of the other dependent
variables. For this demonstration case, the hyperparameters of the
networks, such as the number of neurons and layers, as well as the
optimizer algorithm, learning rate, and number of training epochs,
were determined through a parametric sweep. The final networks
had 3 layers with 150 neurons each for cl, 3 layers with 120
neurons for cd, and 5 layers with 150 neurons for cd. A formal

Table 1 Parameterized conditions (3,280) in
a PALMO base cube

Characteristic Discretization

Mach number 0.25, 0.35, 0.45, 0.55, 0.65,
0.70, 0.75, 0.80, 0.85, 0.90

Reynolds number 75k, 125k, 250k, 500k,
1M, 2M, 4M, 8M

Angle of attack −20 to �20, 1 deg increments

Fig. 1 PALMO Database Version 1, NACA 4-series (red stars for test
data cubes).
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hyperparameter optimization will be considered in future work and
is likely to further improve the prediction accuracy. As a general
observation, shallow and wide networks consistently proved more
accurate and less prone to overfitting than deeper networks for the
PALMO database. Each model was trained for 200 epochs using a
Nestrov-accelerated Adam optimizer with a constant learning rate
of 0.001 and a mean absolute error (MAE) loss function. The MAE
loss function, in contrast to mean square error (MSE), tends to
reduce the impact of outliers and was found to yield better pre-
diction accuracy when evaluating the trained models on the held-
out test data. The training time associated with these models
employed on the CPU of a standard engineering workstation
was approximately 2 min.
Predictions from the neural network model were compared

against both the OVERFLOW CFD data and a linearly interpo-
lated model, which has traditionally been used in the absence of

exact CFD and experimental data. These predictions were made
using a multidimensional linear interpolation approach on the
CFD training data. Predictions of airfoil lift and drag coefficient
from both the neural network model and the linear interpolation
are plotted against the OVERFLOW CFD data in Fig. 2. The
condition shown is for a Mach number of 0.25 and a Reynolds
number of 1 million. The neural networks are seen to consistently
correlate better with the CFD data, especially in the nonlinear
regime.
In contrast to the three separate single-output models, a

multi-output approach was also considered in this work. This
model simultaneously predicts the three aerodynamic perfor-
mance coefficients, offering compactness and less overhead,
but with increased model size and longer training time. The
multi-output model architecture in this work has 7 hidden layers
with 100 neurons each. Similar to the single-output models, no

Fig. 2 Single-output model predictions, surrogate model versus linear interpolation, NACA 3415, Mach number = 0.25, Reynolds number � 106.
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formal hyperparameter optimization was conducted but will be
undertaken as future work. The model was trained for 1000
epochs. The same model training loss function, MAE, was used
and compared to the MAE from the three single-output “expert”
models. The test MAEs generated when predicting the NACA
3415 airfoil data are reported in Table 2. In this example, the
model accuracy is comparable across the single- and multi-output
approaches. The multi-output model performs better for two of
the three airfoil performance coefficients, namely cd and cm.
Although this is not always the case, observing this outcome for
this data could be because the multi-output model benefits from
the additional information yielded by including the relationships
between lift, drag, and pitching moment coefficients. Still, this
is a valuable sanity check and comparison study that should be
conducted for each new set of data.
When these airfoil performance lookup tables are used in

downstream applications, predictive accuracy around the nominal
operating angle of attack will drive accuracy of the analyses. Thus,
in addition to the full test data set, prediction errors were also
computed for the angle-of-attack range from 2 to 8 deg. In Table 3,
the MAE as well as the mean absolute percentage error (MAPE)

are reported for the multi-output model. The MAPE values are
informative but can become inflated due to prediction values close
to zero. Considering MAE, the lift coefficient is predicted within
0.01, and drag is predicted within eight drag counts, which gives a
mean absolute percentage error of less than 2%. The associated
coefficient predictions and OVERFLOW test data for a Mach
number of 0.25 and Reynolds number of 1 million are shown
in Fig. 3, with the angle-of-attack range of particular interest
highlighted in green.
To further characterize the predictive accuracy in the context of

rotor optimization problems, Fig. 4 displays parity plots of the
multi-output model prediction of the maximum lift-to-drag ratio
and minimum drag. These comparisons are plotted for all Mach
and Reynolds numbers included in the PALMO dataset, as reported
in Table 1. The predictions fall nearly on top of each other with an
MAPE of 1.5% for the maximum lift-to-drag ratio and an MAPE of
2.5% for the minimum drag coefficient. These numbers quantify the
predictive performance of the surrogate model at the likely operat-
ing points of interest for the airfoil. Accuracy within 1–3% for an
airfoil unseen in the training data is a strong correlation suitable for
conceptual and preliminary design.

Table 2 Test prediction error results
on NACA 3415

Parameter Single-output MAE Multi-output MAE

cl 0.0059 0.0069
cd 0.0062 0.0011
cm 0.0077 0.0015

Table 3 Multi-output model errors on NACA
3415 test data (angle of attack 2 ≤ α ≤ 8)

Parameter MAE MAPE, %

cl 0.0072 3.6
cd 0.0008 1.3
cm 0.0020 3.4

Fig. 3 Multi-output model predictions on NACA 3415 test data, Mach number�0.25, Reynolds number� 106 [cl (top left), cd (top right)]. Close-up at
−10 < α < 10 [cl (bottom left), cd (bottom right)].
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IV. PALMO Accuracy in Downstream Use Case:
Rotorcraft CFD

This section demonstrates the downstream accuracy of aggregate
rotor performance metrics when using airfoil lookup tables generated
with the previously discussed surrogate models. A generic rotor
model was created using OVERFLOW’s actuator disk implementa-
tion to compare rotor performance results when using the CFD airfoil
performance lookup tables versus tables generated from the surrogate
models. For rotorcraft applications, the airfoil performance lookup
tables are formatted as C81 tables. A rotor was created with a radius
of 5 m, a constant chord of 0.25 m, and a blade-tip Mach number of
0.6. The C81 airfoil performance lookup tables were created for both
the NACA 0012 and NACA 3415 profiles using 1) the actual data
from the raw OVERFLOW simulations and 2) data predicted by the

surrogate model. The tables use Mach numbers from the database and
the closest Reynolds number values to the true chord-based Reynolds
number at each Mach number. This was done to isolate the impact on
predictive error to only the error between the direct CFD and pre-
dicted values. Since the NACA 0012 airfoil was included in the
surrogate model training dataset, the lookup tables are expected to
be in close agreement. The NACA 3415 airfoil has a unique camber
and thickness, neither of which is explicitly included in the training
dataset. The effect of camber and thickness, however, is indirectly
accounted for in the training database, and this is thus a true demon-
stration for a PALMO use case. A sample forward flight simulation of
the OVERFLOW rotor model is shown in Fig. 5.
Rotor performance metrics are first compared using the NACA

0012 airfoil. Plots of rotor figure of merit (FM) and thrust coefficient
versus torque coefficient are reported in Fig. 6. The dashed red line

Fig. 4 Multi-output model predictions of NACA 3415 airfoil performance: �cl∕cd�max (left) and cd;min (right).

Fig. 5 CFD simulation of OVERFLOW actuator disk model in forward flight, advance ratio 0.17, rotor shaft angle 0 deg, rotor collective 4 deg.

Fig. 6 NACA 0012 rotor CFD vs PALMO-predicted C81 tables: hover (left) and forward flight (right).
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is using C81 tables from the direct OVERFLOW data, while the
solid black line is using data from the surrogate models. The two
lines are essentially indistinguishable from each other. Forward
flight values are reported in Table 4. The maximum calculated
discrepancy in rotor effective lift-to-drag ratio is 0.45% and occurs
at a rotor collective setting of 6 deg. Still, the performance is
predicted within 1% over the entire range.
The more meaningful test of the PALMO methodology is a

comparison of rotor predictions using the NACA 3415 airfoil, since
that data was not included in the surrogate model training data.

Equivalent comparisons for the held-out NACA 3415 airfoil are
plotted in Fig. 7, and the forward flight metrics are reported in
Table 5. The comparisons are again very close, and the effective
rotor lift-to-drag ratio is predicted within 2.1% over the entire rotor
collective range. The accuracy is observed to improve with increas-
ing collective values, which appears to be a result of the same
approximate absolute errors with increasing predicted values. The
result suggests that any arbitrary NACA 4-series airfoil within the
bounds of the database can now be modeled with accuracy similar to
the CFD predictions.

Table 4 NACA 0012 forward flight comparison (advance ratio 0.17, rotor shaft angle 0 deg)

Collective, deg CT predicted CT CFD CQ predicted CQ CFD LDE predicted LDE CFD LDE % error

4 0.0060 0.0060 0.00036 0.00036 1.66 1.67 0.40
6 0.0094 0.0093 0.00056 0.00055 1.68 1.69 0.45
8 0.0127 0.0126 0.00085 0.00084 1.49 1.49 0.25
10 0.0159 0.0159 0.00126 0.00126 1.26 1.26 −0.03
12 0.0178 0.0177 0.00204 0.00203 0.87 0.87 −0.07
14 0.0194 0.0193 0.00280 0.00279 0.69 0.69 −0.07

Fig. 7 NACA 3415 rotor CFD vs PALMO-predicted C81 tables: hover (left) and forward flight (right).

Table 5 NACA 3415 forward flight comparison (advance ratio 0.17, rotor shaft angle 0 deg)

Collective, deg CT predicted CT CFD CQ predicted CQ CFD LDE predicted LDE CFD LDE % error

4 0.0098 0.0097 0.00067 0.00068 1.47 1.44 −2.11
6 0.0130 0.0130 0.00093 0.00095 1.39 1.37 −1.56
8 0.0164 0.0163 0.00130 0.00129 1.26 1.26 −0.23
10 0.0196 0.0195 0.00176 0.00175 1.11 1.11 −0.05
12 0.0224 0.0223 0.00232 0.00231 0.97 0.97 0.09
14 0.0246 0.0246 0.00306 0.00305 0.81 0.80 −0.12

Fig. 8 Angle-of-attack distribution: 6 deg collective (left); 10 deg collective (right).
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Actuator rotor disk data was pulled from the NACA 3415 hover
simulations to take a closer look at radial distributions of some of the
metrics used in calculating rotor thrust and torque. The radial values
are an azimuthal average over the entire rotor disk. The rotor blade
angle of attack is plotted in Fig. 8 for two values of rotor collective.
The predicted and true values are nearly indistinguishable. In the
following plots, “true” is used to denote the direct OVERFLOW
CFD data as “truth” data. The “predicted” values are derived from
the surrogate models attempting to predict what would be the
OVERFLOW CFD truth data.
Figure 9 plots the relevant lift coefficient values being pulled at

each of the angles of attack reported in Fig. 8. For the results to match,

the actuator disk must be calculating the same inflow velocity and
thus angle of attack over the rotor, in addition to the C81 tables
matching at the same value of alpha. Figure 9 shows a near-perfect
agreement between the simulations using the true OVERFLOW C81
tables and the surrogate-model-predicted C81 tables. A slight dis-
crepancy is observed at the highest angles of attack for the lower
collective condition, but from Fig. 8, these values are observed at the
inboard radial station and thus have a small contribution to the
aggregate rotor thrust and torque metrics.
The azimuthally averaged lift coefficient is plotted in Fig. 10

versus the normalized rotor blade radius. The slight deviation at
the lower collective setting’s most inboard station is observed,
but otherwise the predicted and true tables have great agreement.
Figure 11 further quantifies this agreement by plotting the mean
absolute percent error of the rotor mean lift coefficient. The largest
discrepancy is roughly 3% at 8 deg of collective.

V. Conclusions

This work presented and discussed the PALMO database. This first
release of the database, Version 1.0, includes predictions from 52,480
OVERFLOWairfoil simulations. The database spans ranges of Mach
number, Reynolds number, and angle of attack relevant to many
aerospace problems, especially rotorcraft applications. PALMO was
created to enable surrogate model development and fast yet accurate
airfoil performance prediction. This enables engineers to rapidly
generate airfoil performance predictions with similar accuracy to
OVERFLOW-generated data for any airfoil and conditions within
the bounds of the database without high-performance computing.
PALMO is also well suited to be a benchmark dataset for the

development and testing of machine learning methods in aerospace
engineering. Example surrogate models were trained and compared.
Both single-output models and a multi-output model were created.
The multi-output model, which is more compact, was found to out-

Fig. 9 Lift coefficient comparison: 6 deg collective (left); 10 deg collective (right).

Fig. 10 Lift coefficient distribution: 6 deg collective (left); 10 deg collective (right).

Fig. 11 Mean lift coefficient comparison and mean absolute percent
error.
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perform the single-output models. A true hyperparameter optimization
was not carried out, but it is expected that such an optimization would
likely yield even better surrogate model predictive performance.
Airfoil performance lookup tables were created to use in OVER-

FLOW actuator disk simulations. Simulations using the surrogate-
predicted and CFD-generated tables for the NACA 0012 airfoil,
which was included in the surrogate model training data, were within
1% of each other for forward flight rotor effective lift-to-drag calcu-
lations. For the NACA 3415 airfoil, which had no common thickness
or camber with the training data, the surrogate-predicted and CFD-
generated tables were within 2.1% of each other in the forward flight
lift-to-drag metric. This suggests that performance tables generated
for airfoils within the bounds of the PALMO database will yield
aggregate rotor performance predictions on par with tables generated
from directly running OVERFLOW airfoil calculations. The predic-
tion speed using the surrogate models is negligible, on the order of
microseconds depending on specific computing hardware.
This work advanced the state-of-the-art in rotor aerodynamic

modeling and simulation by directly incorporating an airfoil perfor-
mance surrogate model into the three-dimensional OVERFLOW
rotor calculations. The approach is ideal for increasing the accuracy
of applications such as real-time closed-loop simulation and rotor
design optimization while reducing the computational cost com-
pared to existing approaches.
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