
NASA/TM–2025

Formal Structures in Systems
Ontology towards Air Traffic
Management Architectures

Monte Mahlum, Samantha Jarvis, Nelson Niu
NASA Langley Research Center, Hampton, Virginia

Angeline Aguinaldo, Amanda Hicks
Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland

Ian Levitt, Supervising Author
NASA Langley Research Center, Hampton, Virginia

ember 2025

NASA STI Program Report Series

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NTRS Registered and its public
interface, the NASA Technical Report
Server, thus providing one of the largest
collections of aeronautical and space science
STI in the world. Results are published in
both non-NASA channels and by NASA in
the NASA STI Report Series, which includes
the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and
personal search support, and enabling data
exchange services.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page
at http://www.sti.nasa.gov

• Help desk contact information:
https://www.sti.nasa.gov/sti-contact-form/

and select the “General” help request type.

NASA/TM–2025

Formal Structures in Systems
Ontology towards Air Traffic
Management Architectures

Monte Mahlum, Samantha Jarvis, Nelson Niu
NASA Langley Research Center, Hampton, Virginia

Angeline Aguinaldo, Amanda Hicks
Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland

Ian Levitt, Supervising Author
NASA Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

ember 2025

The use of trademarks or names of manufacturers in this report is for accurate reporting and
does not constitute an official endorsement, either expressed or implied, of such products or
manufacturers by the National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 150
NASA Langley Research Center

Hampton, VA 23681-2199

Abstract

Driven by the need for a new aviation system architecture that can accommodate
autonomy and its associated rapidly emerging technologies, NASA Langley Research
Center (LaRC) and the Johns Hopkins University Applied Physics Laboratory (JHU
APL) have been collaborating on a novel approach to system engineering that com-
bines the mathematics of category theory with the philosophy of ontology. From
the summer of 2024 through the summer of 2025 a group of NASA interns worked
alongside NASA LaRC and JHU APL to refine the nascent approach. In this pa-
per, the authors establish a basic framework for describing fundamental aspects of
engineered systems, and for encoding that information into rigorous mathematical
constructions that can be used for computations. This paper should serve as a start-
ing point for advancing the ideas coming out of the collaboration between NASA
LaRC and JHU APL, and putting them into practice.

1

Contents

1 Introduction 3

2 Ontology 3
2.1 Realization Pattern . 4
2.2 System Ontology (SO) . 5

3 Mathematics of Category Theory 6
3.1 Preorders and categories . 7

4 Formal Structure of Architecture 11
4.1 Definition of the System . 11
4.2 Performer and Behavior Hierarchies 12
4.3 Context, Realization, and Behavior Boxes 15

5 Conclusion 16

6 Acknowledgements 17

A From Basic Formal Ontology to Systems Ontology 19

2

1 Introduction

The network of controlled and uncontrolled airspace and airports in the United
States operates around the clock to the tune of 45,000 flights per day, transporting
more than 2.9 million passengers at a level of safety that is the gold standard for
transportation. This capability is made possible only through a careful combination
of personnel, processes, and technologies known as the National Airspace System
(NAS) [1].

The NAS is a notoriously complex system whose behaviors are governed by an
architecture of many interacting components, many of which date back to over a
century. With the advent of Advanced Air Mobility (AAM) and flight operations
occurring beyond visual line of sight (BVLOS) of a human operator, it is becoming
broadly accepted that a critical transition of the NAS architecture is necessary to
effectively accommodate new ways of operating, and to do so with even greater
safety [2].

The socioeconomic system of stakeholders who are collectively and individually
interested in the success of the NAS are just as complex as the NAS itself. The oper-
ators, users, regulators, researchers, developers, etc., all interact in ways that govern
both the operation of the NAS and its evolution. There can be a butterfly effect in
the ecosystem, wherein small misalignment between individuals and organizations
lead to large unintended and deleterious system behaviors.

Shared knowledge of the system is key. The NAS of today relies on a sound
foundation of formalized information like standards and regulations, with a wealth
of less-structured knowledge like policies, procedures, and common practices that
largely rely on the human element. The demands on NAS operations are becoming
increasingly complex, and we are at the beginning of a digital transformation for
aviation where machines are expected to play safety-critical roles in the NAS at scale.
Abstract (but formal) models of the NAS architecture [3] can help through weaving
together behaviors and capabilities, in a machine-readable way, and establishing a
common vision that is understood consistently by all stakeholders.

This paper provides the ingredients for such a model, beginning with a new
domain-level ontology termed the System Ontology (SO). We leverage a well-known
feature of Basic Formal Ontology (BFO) called the Realization Pattern to define a
schema on the realizations of a system behavior, and a mathematical construction
termed a behavior box that serves as a formal description for how the system acts.

We will derive the SO from the BFO in Section 2. In Section 3 we will describe
the requisite mathematical tools necessary for the construction of behavior boxes in
Section 4. Additional information on BFO is provided in Appendix A.

2 Ontology

A powerful tool for unifying language used among experts is an ontology. Loosely
speaking, an ontology is a framework wherein we can describe classes of entities
and the relationships between them; it is scaffolding to which we can attach our
knowledge and organize it. Upper-level ontologies, which can describe all types of

3

entities, are specialized into domain-specific ontologies.
In this approach we define a specialization of an upper-level ontology, namely

Basic Formal Ontology (BFO) [4], to a domain-specific ontology for describing
systems, which we will refer to as the Systems Ontology (SO).

2.1 Realization Pattern

The domain-level ontology that we will describe for systems will be a special case of
the Realization Pattern from BFO, depicted in Figure 2.2. The three main types of
entities in the Realization Pattern are Process, Independent Continuant, and
Realizable Entity.

process independent continuant

realizable entity

has participant

realizes

participates in

bearer of

realized by
inheres in

Figure 1. Realization Pattern from BFO

These three classes are disjoint, and their meanings can be more or less under-
stood colloquially. The term Process hews closely to its colloquial meaning, so no
further description is offered h ere. I ndependent C ontinuants a re understood t o be
objects, as opposed to processes. A Realizable Entity is understood to be an at-
tribute of an object that can be actualized (or in BFO-terms, realized) through a
process. More information about BFO can be found in Appendix A.

The meaning of the relations between classes can also be understood colloquially,
and it is in fact the properties of these relations enumerated in Table 1 that is of
particular importance. Here, intransitive means that the relation does not carry over
across multiple links. For example, if A “has participant” B, and B “has participant”
C, it does not follow that A “has participant” C. Anti-symmetric means that if a
relation holds in one direction, it cannot hold in the opposite direction between the
same two entities—for instance, if A “inheres in” B, then B cannot “inhere in” A.
Functional means that the relation can only link an entity to one unique counterpart
(e.g., a property can ”inhere in” only one bearer), whereas non-functional means
that multiple such links are allowed (e.g., an event can be “realized by” multiple
processes). Finally, an inverse relation captures the opposite perspective of the
original relation: if A “has participant” B, then B “participates in” A.

4

Relation Properties

has participant Intransitive
Anti-symmetric
Non-functional
Inverse relation: participates in

inheres in Intransitive
Anti-symmetric
Functional
Inverse relation: bearer of

realized by Intransitive
Anti-symmetric
Non-functional
Inverse relation: realizes

Table 1. Relations and their associated properties

2.2 System Ontology (SO)

In this section, we establish SO as a formal ontology for clear and consistent represen-
tation of complex systems and their behaviors. We do so by providing descriptions
for Performer, Disposition, and System Behavior which apply to any system,
and by defining how they fit within the framework of Basic Formal Ontology (BFO)
and Common Core Ontology (CCO) [5].

below provides a simplified correspondence between the BFO and SO,
showing how disposition, system behavior, and performer form a specialization of
the Realization Pattern.

process realizable entity independent continuant

behavior performer

disposition

has participant

realizes

participates in

bearer of

realized by
inheres in

Figure 2. Systems Ontology (lower triangle) as it relates to classes in Basic Formal
Ontology (top row). Again, the solid arrows depict the predicate “is a...”. For
instance, ‘a disposition is a realizable entity.’

5

Performer. Given a system that is to be described using SO, the physical objects
or beings in the system that are capable of acting or being acted upon would be
considered the performers. In the NAS, some examples of such performers are an
individual airplane, an individual pilot, or an individual Air Traffic Control (ATC).

Disposition. A disposition is already defined in BFO, and we use it directly in the
SO to apply to systems. A disposition is understood to be an attribute, power, or
potential which exists due to the physical makeup of a performer, and the performer
is called its bearer. For instance, an aircraft has (bears) the disposition of creating
powered lift, a pilot has the disposition to visually detect other aircraft, and a
controller has the disposition to determine safe altitudes.

A disposition exists due to the performer’s physical makeup. For example, if
the airplane’s engines are removed during routine maintenance then the physical
makeup of the airplane would be changed and the airplane would no longer have
the disposition to create powered lift.

A disposition that inheres in a performer need not always be realized. For
example, the airplane has the disposition to create powered lift even when it is
parked and not engaged in the process of creating powered lift.

System Behavior. We define a system behavior to be a process by which a dis-
position of some performer is realized. This is not the same as the CCO’s definition
of Behavior, however we will drop the qualifier ”system” when the context is clear.
For example, the behavior of flight has the aircraft as one of its participants, and
the behavior of safe separation is realized partly due to the pilot’s disposition to vi-
sually detect other aircraft. While the distinction between behavior and disposition
is usually clear, it can sometimes be subtle. A simple way to tell them apart is to
view the behavior as the process that occurs, and the disposition as an attribute of
the performer that is involved.

This paper will build an initial mathematical model of systems around these three
terms. Central to understanding how they tie together is the concept of realization.
A given disposition of the system at any time may be dormant, or it may be manifest
but only if the conditions for its manifestation exist. When we say that a disposition
is realized by a behavior, we mean that whenever there is a particular temporal
unfolding of the process where the performer that bears the disposition is actively
participating and the disposition is successfully manifest.

3 Mathematics of Category Theory

Category theory is a way of looking at mathematics that focuses on the connections
between ideas rather than just the details of each one. It gives us a shared language
for patterns that show up across math, logic, and computer science. For a friendly
introduction, Eugenia Cheng’s The Joy of Abstraction [6] does a great job of showing
both the intuition and elegance behind the subject. Another helpful resource is

6

Seven Sketches in Compositionality by Fong and Spivak [7], which lays out some of
the foundations and offers inspiration, especially in areas like wiring diagrams.

In Section 4, we will describe a formal structure called a behavior box as a
tool for tying together the behaviors, performers, and dispositions of a system using
the SO. This will be done by applying the tools and definitions of category theory,
and the relevant background is provided in this section. Specifically, we’ll describe
some of the basic constructions of category theory.

3.1 Preorders and categories

Before we describe what a category is, we define a mathematical structure called a
preorder that will turn out to be a special case of a category.

Definition 3.1. A preorder (P,≤) is a set P with a binary relation ≤ satisfying the
following axioms:

• (reflexivity) for all x ∈ P, we have x ≤ x.

• (transitivity) for all x, y, z ∈ P such that x ≤ y and y ≤ z, we have x ≤ z.

A partially ordered set or poset is a preorder which also satisfies the following:

• (anti-symmetry) for all x, y ∈ P, if x ≤ y and y ≤ x, then x = y.

A totally ordered set is a poset which is strongly-connected:

• (strong-connectivity) for all x, y ∈ P, either x ≤ y or y ≤ x.

Preorders are convenient mathematical settings in which to compare two ele-
ments, although preorders that are not totally ordered may contain incomparable
elements. Preorders appear in many contexts, including systems engineering. For
example, when comparing the quality of two system designs, the behaviors of one
may be safer while the behaviors of another may be more efficient. These designs
may then be incomparable in the poset of system designs, and this is at the heart
of systems engineering tradeoff analysis.

Example 3.2. The real numbers R with the usual ordering ≤ forms a totally
ordered set.

Example 3.3. Let A = {a, b, c}. The power set of A, denoted P(A), is the set of
all subsets of A:

P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, A}

where ∅ denotes the empty set. We can order P(A) by inclusion, denoted by ⊆ or,
in the diagram below, by arrows. This is then a poset that is not totally ordered,
as we cannot compare {a} and {b}: neither {a} ⊆ {b} nor {b} ⊆ {a}. Below is a

7

simple figure, called a Hasse diagram, depicting the poset P(A):

A

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

This diagram does not depict every ⊆-relation in P(A): for example, we also have
{a} ⊆ A, even though there is no arrow directly from {a} to A. To complete this
diagram, we would add an arrow between any two subsets that have a directed
path between them by transitivity, as well as an arrow from every subset to itself
by reflexivity. However, this diagram contains enough information to deduce all of
the relations in P(A) via reflexivity and transitivity. For this reason, we call it a
presentation of P(A).

Example 3.4. Define ≤Z on Z by n ≤Z m ⇐⇒ |n| ≤ |m|, where ≤ is the usual
ordering on R and | · | is the absolute value function. We then inherit reflexivity and
transitivity from the order on R, but this relation is not antisymmetric: −1 ≤Z 1
and 1 ≤Z −1, but 1 �= −1. So (Z,≤Z) is a preorder but not a poset.

Example 3.5. There is a totally ordered set Bool with two elements {false, true},
with false ≤ true.

Next, we generalize the definition of a preorder to the definition of a category.

Definition 3.6. A category C consists of the following data:

• a collection of objects, also denoted by C.

• for each pair of objects c, d ∈ C, a set of morphisms (or arrows) denoted by
C(c, d) called the hom-set from c to d.1 We depict a morphism f ∈ C(c, d) by

f : c → d or c
f−→ d to emphasize that it is a morphism from c to d. We call c

the domain of f and d the codomain of f .

• for each object c ∈ C, a morphism c
idc−−→ c called the identity on c.

• a composition rule which assigns to each pair of morphisms c
f−→ d and d

g−→ e

a composite morphism c
g◦f−−→ e.

These data must satisfy the following axioms:

• (identity) for all morphisms c
f−→ d, we have f ◦ idc = f = idd ◦f .

1Notations for the hom-set vary, and you may also see homC(c, d) or hom(c, d).

8

• (associativity) for all composable triples h, g, f , i.e. a
f−→ b

g−→ c
h−→ d, we

have associativity of composition: (h ◦ g) ◦ f = h ◦ (g ◦ f). This allows us to
unambiguously write h ◦ g ◦ f for either composite morphism.

Example 3.7. The category of sets, denoted Set, has sets as objects and functions
between sets as morphisms.

It turns out that all preorders are categories with a single morphism between
every related pair. For instance, we can view the preorder Bool as a category as
follows.

Example 3.8. The category Bool has two objects, false and true, and three mor-
phisms: the two identity morphisms and a morphism false → true.

Example 3.9. If C is a category, then its opposite category Cop is the category with

the same objects as C but with the morphisms reversed: for each morphism c
f−→ d

in C, there is a corresponding arrow d
f−→ c, so that the composite c

g◦f−−→ e in C of

c
f−→ d and d

g−→ e corresponds to the composite e
f◦g−−→ c in Cop of e

g−→ d and d
f−→ c.

For example, if P is a preorder with ordering ≤, there is an opposite preorder
Pop with ordering ≥, where p ≤ q if and only if q ≥ p for all p, q ∈ P.

One useful feature of category theory is that it may be used to study itself. For
example, there is a category whose objects are categories and whose morphisms are
called functors. A functor is a map between two categories that preserves their
categorical structure: identities and composites. Below, C and D are categories.

Definition 3.10. A functor F : C → D consists of:

• an assignment to each object c ∈ C an object F (c) ∈ D.

• an assignment to each morphism a
f−→ b of C a morphism F (a)

F (f)−−−→ F (b) of
D.

These must satisfy the following axioms:

• (Identity-preserving) F (idc) = idF (c) for all objects c ∈ C.

• (Composite-preserving) F (g ◦ f) = F (g) ◦F (f) for all composable morphisms
g, f of C.

Example 3.11. A functor F : Bool → D is precisely the data of a morphism c
f−→ d

in D. More explicitly:

• F sends the object false ∈ Bool to an object c = F (false) ∈ D and the object
true ∈ Bool to an object d = F (true) ∈ D.

• F sends the morphism false → true of Bool a morphism c
f−→ d in D.

9

Example 3.12. There is a functor Set → Set that sends each set X to the Cartesian
product X × X = {(x, x′) | x, x′ ∈ X}. It then sends each function f : X → Y to
the function f × f : X ×X → Y × Y given by:

(f × f)(x, x′) = (f(x), f(x′)).

Example 3.13. If (C,≤C) and (D,≤D) are preorders viewed as categories, a functor
F : C → D is an order-preserving (i.e. monotone) map: if a ≤C b for a, b ∈ C, then
F (a) ≤D F (b) in D.

Just as two sets may be paired up by taking their Cartesian product, two cate-
gories have a product as well.

Definition 3.14. The product category of C and D is a category C × D satisfying
the following:

• its objects are ordered pairs (c, d) with c ∈ C and d ∈ D.

• its morphisms (c1, d1) → (c2, d2) are ordered pairs (c1
f−→ c2, d1

g−→ d2).

• composites are computed componentwise:

(c2
h−→ c3, d2

k−→ d3) ◦ (c1 f−→ c2, d1
g−→ d2) = (c1

h◦f−−→ c3, d1
k◦g−−→ d3).

Example 3.15. Viewing the preorders (R,≤) and Bool as categories, the product
category R× Bool is itself a preorder. It has pairs (x, ϕ) for x ∈ R and ϕ ∈ Bool as
objects, and (x, ϕ) ≤ (y, ψ) in R× Bool if and only if:

• x ≤ y and

• if ϕ is true, then so is ψ.

More generally, given preorders (P,≤P) and (Q,≤Q), their product is the preorder
(P×Q,≤) with objects (p, q) with p ∈ P and q ∈ Q satisfying (p, q) ≤ (p′, q′) if and
only if p ≤P p′ and q ≤Q q′.

Finally, we provide the definition of a special kind of functor called a Bool-
profunctor, which will be used in the construction of behavior boxes on the next
section.

Definition 3.16. A Bool-profunctor is a functor

M : Pop × R → Bool

where P and R are preorders. Explicitly, if P has ordering ≤P, so that Pop has
ordering ≥P, and R has ordering ≤Q, then M sends pairs (p, r) with p ∈ P and
r ∈ R to either true or false so that:

• if p, p′ ∈ P and r, r′ ∈ R with p′ ≤P p and r ≤R r′, then if M(p, r) is true, so
is M(p′, r′).

A Bool-profunctor M : Pop × R → Bool is interpreted as follows. Each r ∈ R is
an input or resource and each P is an output or product. Then M(p, r) is true if it is
feasible to convert r into p and false if not. Furthermore, if it is feasible to convert
r into p, then it is feasible to convert a larger resource r′ with r ≤R r′ in R into p.
Similarly, it is also feasible to convert r into a smaller product p′ ≤P p in P.

10

4 Formal Structure of Architecture

In this section, we apply the mathematics from Section 3 to the SO defined in
Section 2, presenting a preliminary construction that may give way to meaningful
computations on system architectures. No explicit computations are presented here,
instead the focus is on tools to capture the essential information about a system that
could be used in such computations.

We begin by considering the definition of system behavior in light of it being
a process having, loosely speaking, inputs and outputs. We will then organize the
information associated with the occurrence of a behavior into a construction we
term a behavior box 2. Rather than inputs and outputs, the behavior boxes will be
wired with what we will define as the context and the realization.

Using this construction, we will discuss how behaviors can be composed both in
time (one behavior after another) and in detail (two behaviors combine to provide
a new behavior). This will suggest areas of inquiry for developing compositional
computations.

4.1 Definition of the System

Per the remark at the end of Section 2, formally defining system behaviors will hinge
on the concept of the realization of its dispositions and the performers who bear
them. To do this we will differentiate between classes and instances3 of behaviors,
performers, and dispositions.

We will denote classes in uppercase, and instances in lowercase. In particular
a given behavior B can be treated as a class whose instances b are the various
occurrences of B, and we will write b ∈ B to indicate that b is an occurrence of
B. A performer P can be treated as a class whose instances p are various physical
implementation of P , and we say p ∈ P whenever p is a specific version of P . Finally,
a disposition D is a class whose instances d are the various manifestations of D and
we say d ∈ D when d is a manifestation of D.

As an example, consider a behavior B = takeoff and climb to 2,500 feet

and an occurrence b ∈ B which is the takeoff of the plane with tail number N49
that commenced at 10 : 05 June 7th, 2025 and which reached 2,500 feet at 10 : 07.
We also have P = plane and the particular instance p ∈ P which is the aircraft
with tail number N49. There is also a disposition D = operate at 2,500 feet,
where d ∈ D is the particular disposition of p which was realized on June 7th, 2025
at 10 : 07 by b.

Note that, because D specifically depends on P , it is impossible to describe an
instance d of D without also describing the p ∈ P which bears it. We define a
description to be a disposition-performer pair (D,P) where an instance (d, p) ∈
(D,P) is an instance of D and an instance of P , where d is inhered in p. In order

2This construction is guided by similar principles and ideas as are found in the original definition
of wiring diagram [7].

3It should be noted that is not necessarily aligned with the use of “instance” in the literature,
and in particular needs to be resolved with the notion of universals, particulars, and types in BFO
in order to complete the theory.

11

for (D,P) to be a valid description, it must be the case that every instance of
P bears some instance of D. For example, fragility does not inhere in all vases,
and so (fragility, vase) is not a valid description. We can, however, say (with high
confidence) that fragility inheres in all vases that are made only of a single gram of
glass and hold at least 1 liter of water.

Define a system S to consist of three sets, where the definitions and schema
described in Section 2 apply:

1. S(performer), of relevant performer classes,

2. S(behavior), of relevant behavior classes, and
3. S(disposition), of relevant disposition classes.

We impose the following requirements on the choices for S:
• all dispositions in S(disposition) must inhere in some performer in S(performer),
i.e., for all D ∈ S(disposition), there exists P ∈ S(performer) such that (D,P)
is a valid description, and

• all behaviors in S(behavior) must realize some disposition in S(disposition),
i.e., for allB ∈ S(behavior), there existsD ∈ S(disposition) and P ∈ S(performer)
such that (D,P) is a valid description, and there exists b ∈ B, (d, p) ∈ (D,P)
such that b realizes d.

These requirements ensure that the system is sufficiently self-contained, i.e., it
does not reference any dispositions which do not inhere within the system, and it
does not reference any behaviors which do not have an occurrence realizing some
disposition of the system. On a practical note, we remark that the only classes in a
system which must be explicitly declared are the performer classes of S(performer),
e.g., if P = airplane it is not all airplanes that are relevant to the system and
to establish this, the set corresponding to this airplane should be associated to
some list of registered planes within the system database. On the contrary, all
instances of D ∈ S(disposition) and all occurrences of B ∈ S(behavior) need not
be accounted for. Instead, we build up the set of those instances and occurrences
which are relevant (i.e., those which inhere in a system performer or realize a relevant
disposition, respectively) via system analysis or we propose them via an architectural
hypothesis.

Given this pre-conditioning of the ontological objects of a system, we may now
define some associated categories.

4.2 Performer and Behavior Hierarchies

The collection of performers and behaviors are often identified by the system ar-
chitect as refining hierarchies. For example, the three performers in our example
architecture are Air Traffic Controller (ATC), Pilot-In-Command (PIC), and
Aircraft, which are all elements of the set of all performers named the System,
which is itself a performer. The hierarchical structure of the performers corresponds

12

roughly to the physical decomposition of the system into subsystems, and are im-
portant for many practical reasons. We define it here as a category:

We call a given arrangement of performer hierarchy, PerHier. Evidently, if we
consider the nodes in this hierarchy to be sets and the edges between nodes as set
inclusion, the PerHier forms a poset. In general, we can assume to have an empty
performer at the bottom of the poset, and a maximal performer, called System, at
the top of the poset. We usually think of PerHier as being on an underlying finite
set of objects representing all types of performers, called Per. More specifically, we
have:

Definition 4.1 (PerHier). PerHier is the hierarchy category of performers.

• The underlying set of objects is S(performer)

• Morphisms are given by an inclusion hierarchy which form a preorder on
S(performer)

Example 4.2. An example of a given performer hierarchy, PerHier is:

System

Human

Air Traffic Controller (ATC)

Pilot-in-Command (PIC)

Automated

Flight Management System (FMS)

Airborne Collision Avoidance System (ACAS)

Similarly, a hierarchy of behaviors is a common and useful way to understand
how a system decomposes functionally. A similar structure is defined, which we call
BehHier:

Definition 4.3 (BehHier). BehHier is the hierarchy category of behaviors.

• The underlying set of objects is S(behavior)
• Morphisms are given by an inclusion hierarchy which form a preorder on
S(behavior)

For example, the behaviors Detect Conflict, Implement Solution, Monitor
Solution, etc. are elements of the set called Separation Provision—the standard
procedures exercised by ATC to prevent aircraft from conflicting.

Example 4.4. An example of a given behavior hierarchy, BehHier:

Separation Provision

Detect Conflict

Measure Distance

13

Formulate Solution

Implement Solution

Monitor Solution

An example table of dispositions associated to the performer hierarchy, PerHier,
is:

Performer Dispositions

System Maintain safe separation of aircraft
Optimize airspace capacity
Resolve conflicts across subsystems

Human Perceive and interpret information
Communicate decisions and actions
Apply judgment under uncertainty

Air Traffic Controller
(ATC)

Monitor aircraft trajectories
Detect potential conflicts
Formulate separation solutions
Issue clearances via communication

Pilot-in-Command (PIC) Control aircraft trajectory
Comply with ATC instructions
Maintain awareness of weather

Automated Process sensor data
Execute programmed algorithms
Generate automated advisories or commands

Flight Management Sys-
tem (FMS)

Compute optimal flight path
Update trajectory based on constraints
Interface with autopilot for trajectory

Airborne Collision Avoid-
ance System (ACAS)

Detect intruder aircraft via transponder data
Generate resolution alerts

Table 2. Performers and their associated dispositions

One can easily check that PerHier and BehHier are categories.

14

4.3 Context, Realization, and Behavior Boxes

For a given occurrence of a behavior b ∈ B, we now formalize what we mean by
(1) the context in which b occurs and (2) the dispositions that b realizes. System
behaviors unfold and exist over time, possessing temporal parts (see Definition A.3).
The conditions that trigger or permit the “unfolding” or “existing” of an occurrence
of a behavior we will refer to as its context, and the dispositions which are realized
when the behavior occurs we will refer to as realization (outputs).

For any D, define a poset (D,≤) whose objects are the instances of d. We say
that x ≤ y iff we somehow prefer the instance y over the instance x. This notion
of goodness among instances is assumed to be assigned by the system architect,
depending on the goals of the system’s design. For example, consider two instances
of the disposition of a banana to ripen, where one results in a perfectly ripe banana
and the other results in an overripe banana. If the goal is to create a delicious
banana then the first instance is preferred, but if the goal is to decompose a banana
into compost then the second instance is “greater than” the first instance.

The construction of the context and realization for a behavior B of S proceeds
as follows:

1. Define a collection {Ij}nj=1 (I for input) of dispositions which are relevant to
the context in which B can occur. The choice of Ij should encompass all of
those dispositions of the system whose realizations may impact how or if B
can occur.

2. For each j, define Pj to be the performer which bears the disposition Ij . For
each occurrence b ∈ B, there exists a j such that (ij , pj) is realized for some
ij ∈ Ij and pj ∈ Pj .

3. We do the same for the realization information: define a collection {Oj}mj=1

(O for output) of dispositions which are realized by b.

4. For each j, define Qj to be the collection of performers which bear the dispo-
sition Oj . For each occurrence of b, there exists j such that an instance qj of
Qj bears an instance oj of Oj .

5. Next define the products I :=
∏n

j=1 Ij and O :=
∏m

j=1Oj inheriting the pre-
order structure as described above.

We refer to the collection {(Ij , Pj)}j as the context, and {(Oj , Qj)}j as the
realization of B.

The data of when a behavior may occur, and how occurrences of that behavior
instantiate the realization of dispositions, can be encapsulated in a profunctor

FB : Oop × I → Bool,

which tells us when it is feasible for the behavior b to occur and have the desired
effect of realizing a disposition d. More precisely,

FB(o1, o2, ..., on, i1, i2, ..., im) = true

15

if all, and only those, descriptions

{(oj , qj)}j
are realized whenever the descriptions

{(ij , pj)}j
are realized and further, this process constitutes an occurrence of the behavior B.

It is worth explaining the condition encapsulated in the “and only those” par-
enthetical in the axiom above. This requires that for a behavior box to be valid,
the behavior can be executed without realizing any dispositions other than those
specified by its profunctors. The necessity of this condition is to ensure that com-
positionality can be verified from the data given in a behavior box.

For this construction to yield a profunctor (Definition 3.16), the preorder struc-
tures on I and O must be compatible with the feasibility axioms. We interpret the
preorders as an encoding of difficulty in the following sense. In the case of the pre-
order on the context, for i, i′ ∈ I, we interpret i ≤I i′ to mean that it is (somehow)
easier to execute b when i′ is realized than when i is realized. In the case of the
preorder on the realization, for o, o′ ∈ O, we interpret o ≤O o′ as it being easier for
b to realize o′ than for b to realize o.

The behavior box is depicted in the figure below.

(I1, P1)

(I2, P2)

(In, Pn)

(O1, Q1)

(O2, Q2)

(Om, Qm)

B

..
.

..
.

Figure 3. A depiction of a behavior box for a behavior B. The profunctor FB tells
us which instances of (O,Q) are feasible in the context of which instances of (I, P)

In Figure 4, we present a simplified example of a behavior box for the detection
of a conflict by the pilot, using onboard surveillance and onboard calculations by
aircraft systems.

(Surveillance, Onboard Radar)

(Prediction, Flight Computer)

(Situation Awareness, PIC)

(Conflict Awareness, PIC)Detect Conflict

Figure 4. Behavior box for Detect Conflict.

5 Conclusion

In the last section, we defined behavior boxes which, in principle, are able to store
all information about a given behavior that is relevant to compositionality. The

16

practicality of the approach will rely on the ability to compose and compute various
profunctors that arise in the system design. There are a few areas where the theory
needs further development in order to be applied.

There are multiple aspects of the SO that need more development in order for
the mathematics to be well-defined. Our use of “instance” in the theory is not
consistent with all conventions, and BFO has the notion of Universals, Particulars,
and Instances which should be more rigorously applied. Furthermore, role and
quality are important dependent continuants that need to be included alongside
dispositions to form a complete theory. Finally, a sufficiently comprehensive set
of specific terms (like pilot, aircraft, flight, separation provision, detect conflict) to
build out enough of the ontology to be useful is an essential next step.

The posets on (instances of) dispositions is at the heart of the utility of our
approach, but needs to be better understood. The notions of it being easier for a
behavior to be executed, or eaiser for a behavior to realize a disposition need to
be tested with more examples that test these comparisons. Crucially, more under-
standing is needed around what is required of these posets so that two behavior
boxes can be composed when realization of one matches the context of another.

6 Acknowledgements

The authors would like to acknowledge our colleagues from NASA and JHU APL
who have enriched this work with their expertise, namely—Brian Nolan, Daniel
Raible, Nipa Phojanamongkolkij, Michael Castle, Walter Bender, Charles Leeper,
and Eric Merrell.

17

References

[1] Federal Aviation Administration, National airspace system (nas), https://
www.faa.gov/air_traffic/nas, Accessed: 2025-09-17, 2025.

[2] Federal Aviation Administration, NextGen Office, “Urban air mobility (uam)
concept of operations, version 2.0,” U.S. Department of Transportation, Fed-
eral Aviation Administration, Tech. Report FAA-UAM-ConOps-2.0, Apr. 2023,
Accessed: 2025-09-17. [Online]. Available: https://www.faa.gov/sites/faa.
gov/files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%20of%

20Operations%202.0_0.pdf.

[3] Object Management Group, Omg systems modeling language (omg sysml), ver-
sion 1.6, 2019. [Online]. Available: https://www.omg.org/spec/SysML/1.6.

[4] R. Arp, B. Smith, and A. D. Spear, Building Ontologies with Basic Formal On-
tology. The MIT Press, 2015, isbn: 9780262329583. doi: 10.7551/mitpress/
9780262527811.001.0001.

[5] Ontology Research Group, University at Buffalo, Common core ontologies (cco),
https://github.com/CommonCoreOntology/CommonCoreOntologies, Ac-
cessed: 2025-09-17, 2018.

[6] E. Cheng, The Joy of Abstraction: An Exploration of Math, Category Theory,
and Life. Cambridge University Press, 2022, isbn: 978-1-108-47722-2. doi: 10.
1017/9781108769389.

[7] B. Fong and D. I. Spivak, Seven Sketches in Compositionality: An Invitation to
Applied Category Theory. Cambridge University Press, 2019, isbn: 9781108711821.
doi: 10.1017/9781108668804. [Online]. Available: https://doi.org/10.
1017/9781108668804.

18

Appendix A

From Basic Formal Ontology to Systems Ontology

There are three types of entities which are central to engineered systems: per-
formers (actors or components), system behaviors, and system dispositions. At its
highest level, SO describes where these three classes fall on the BFO hierarchy and
how they are interrelated. This information, along with some of the interrelations
between these concepts, is depicted in Figure 2. Just as in BFO, there is a formal
definition a ssociated t o e ach c lass. We n ow p resent t he r elevant d efinitions from
BFO, followed by those of SO.

Ontological Definition A .1 (BFO, [4, p . 1 68]). A continuant i s an entity that
continues or persists through time. A continuant is said to be independent if it is
the bearer of qualities and a participant in processes.

Remark A.2. A continuant is something that exists in full in any moment that it
exists, i.e., it does not have temporal parts. The only type of independent continuant
which will be relevant to us will be that of a material entity.

Ontological Definition A.3 (BFO, [4, p. 1 71]). A process is an entity that exists
in time by occurring or happening, has temporal parts, and always depends on at
least one independent continuant as participant.

Remark A.4. We will refer to each time that a process happens as a particular
occurrence of that process. Each occurrence may have different participants.

Ontological Definition A .5 (BFO, [4, p . 1 69]). A material e ntity i s a n inde-
pendent continuant that has some portion of matter as part, is spatially extended in
three dimensions, and that continues to exist through some interval of time, however

short.

Ontological Definition A.6 (BFO, [4, p. 1 71]). A realizable entity is a contin-
uant that depends on an independent continuant, its bearer, for its existence and
whose instances can be realized (manifested, actualized, executed) in associated
processes of specific correlated types in which the bearer participates.

Remark A.7. The realization of a realizable entity is akin to the occurrence of a
process. A realizable entity is “realized in bearer” during the time in which that
bearer is expressing said entity. For example, a realizable entity inhering in a plane
might be flight and this entity is realized while the plane is flying.

Ontological Definition A .8 (BFO, [4, p . 1 68]). A d isposition i s a realizable
entity (a power, potential, or tendency) that exists because of certain features of
the physical makeup of the independent continuant that is its bearer. Specifically,
a disposition is a realizable entity d such that:

1. if d ceases to exist, then the bearer is physically changed,

19

2. d’s realization occurs when and because this bearer is in some special physical
circumstance, and

3. this realization occurs in virtue of the bearer’s physical make-up.

Remark A.9. One can think of a disposition as an entity which, when realized, can
be used to describe the process its bearer is undergoing, or the physical state therein.
It is particularly the third requirement that gives us this intuitive connection to state
descriptions. We emphasize this descriptional nature of dispositions with our first
SO definition below.

Ontological Definition A.10 (SO). A description is a disposition-performer
pair (d,m) where the disposition d inheres in the material entity m. A description
(d,m) is said to be realized whenever d is realized in m.

Remark A.11. Building on our interpretation of dispositions as a means of describing
the physical state of its bearers, a description (d,m) can be thought of, when realized,
as describing the state of the associated material entity m, or any other material
entity in which m is contained.

Ontological Definition A.12 (SO). A behavior is a process such that for all
occurrences, a disposition of some material entity is realized, i.e., a description is
realized. Each occurrence of a behavior has actors, those material entities which
together execute (i.e., induce occurrence of) the behavior, and subjects, those for
whom a disposition is realized. Together the actors and subjects can be referred to
as the performers of the occurrence and in this occurrence they participate in the
behavior.

The neutral language of participation, as opposed to action and subjection, is
particularly useful when a behavior has all actors as subjects and vice-versa.

We now begin the process of combining the terms behavior, disposition, and
performers into a definition for system.

As motivation, consider the observation that when defining a particular system,
we often declare which performers we are considering along with some collection
of relevant behaviors and dispositions. When studying a system, we often consider
some compositions of our relevant behaviors and reason about those dispositions
which are realized in the composite process. In engineered systems, this composite
analysis is often done to study the capabilities of the system—a notion we will soon
introduce into the ontology directly.

Ontological Definition A.13 (SO). A system S is:

• a collection of material entities, here referred to as performers in S,
• a collection of dispositions, referred to as dispositions of S, each of which
inheres in at least one performer in S, and

• a collection of behaviors, referred to as behaviors of S, each of which has an
occurrence in which all actors are performers of S and at least one disposition
of S is realized.

20

A description (d, p) is said to be internal to a system S if p is a performer in S
and d is a disposition in S.

An occurrence of a behavior is said to be internal to a system S if all actors are
performers of S for which at least one disposition of S is realized.

This definition is equivalent to a more mathematical formulation presented be-
low. We use this latter definition as it prescribes a name to each of the three sets.

Definition A.14 (System, S). A system S consists of three sets:

1. S(performer), of relevant material entities referred to as performers,

2. S(behavior), of relevant behaviors, and
3. S(disposition), of relevant dispositions,

subject to the following requirements:

• all dispositions in S(disposition) must inhere in some performer in S(performer),
i.e., for all d ∈ S(disposition), there exists p ∈ S(performer) such that d in-
heres in p, and

• for all behaviors in S(behavior) there is an occurrence, whose actors are a
subset of S(performer), which realizes a disposition in S(disposition).

These requirements ensure that the system is sufficiently self-contained, i.e., it
doesn’t reference any dispositions which do not inhere within the system itself and
it does not reference any behaviors which are not both executable and recognizable
as such by the system. Furthermore, it is only those occurrences of the behaviors
which are studied in the analysis of a given system.

We allow for performers which do not participate in any relevant behaviors
nor bear any relevant dispositions, however, such a system should be viewed as
functionally equivalent to the same system without these extraneous performers.

21

