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Summary

Acoustic emissions provide a non-intrusive window into the mechanisms and regimes of
incipient boiling triggered by localized heat leaks—a phenomenon relevant to Cryogenic Fuel
Management (CFM). This Technical Memorandum (TM) is an explicit machine-learning (ML)
companion to NASA/TM–20250009668, which establishes the experimental foundation and
physics-based interpretation of accelerometer signals synchronized with high-speed video in a
surrogate benchtop setup. Here we focus on operationalizing that regime understanding into an
interpretable classification workflow using 441 short-duration boiling runs labeled by human
annotators. We extract time- and frequency-domain features designed to capture event rate,
rhythmic structure, and spectral content, and we use (i) unsupervised clustering for regime
discovery and (ii) a decision-tree classifier selected for transparency and auditability. We also
provide a web-based application that reproduces the same feature pipeline for interactive
exploration and consistent classification of new runs. The resulting framework supports
scientifically grounded, interpretable mapping from acoustic signatures to boiling regimes,
complementing the physics-first narrative and enabling future physics-informed ML diagnostics.



1 Introduction

Incipient boiling at localized heat leaks can generate strong, structured mechanical
disturbances that couple into a tank wall. If these disturbances contain regime-specific
information, then acoustic emissions measured by externally mounted accelerometers may serve
as a scientific diagnostic of boiling mechanisms, not merely a threshold detector. Earlier work
(Ref. 1) establishes the experimental foundation and a physics-based interpretation of such
signals using accelerometer measurements synchronized with high-speed video in a surrogate
benchtop configuration.

A key implication of earlier work (Ref. 1) is that interpretability is a scientific requirement:
without a clear link between acoustic signatures and physical processes, data-driven models
become difficult to trust, difficult to debug, and difficult to use for hypothesis-building. This TM
adopts that constraint explicitly. Our objective is an interpretable, feature-transparent mapping
that operationalizes regime concepts while remaining consistent with the physics-first narrative of
(Ref. 1). The companion TM (Ref. 1) reports two repeatable boiling regimes in this experiment:
a stochastic random regime and a periodic rhythmic regime. In this ML-focused companion, we
keep that two-regime interpretation as the top-level taxonomy, but use a finer set of annotation
labels for training and diagnostics. Specifically, Single Rhythmic, Double Rhythmic, and Rhythmic
Climax are treated as subtypes of the companion TM’s rhythmic regime; Random corresponds to
the companion TM’s random regime; Rhythmic & Random denotes mixed or transitional
behavior; and Noise denotes runs (or windows) in which the current preprocessing does not yield
confident boiling-event structure rather than a distinct physical boiling mechanism.

Accordingly, this memorandum develops an ML workflow using 441 short runs with regime
labels assigned by human annotators using video, acoustic time series, and experimental
metadata. We (i) engineer time- and frequency-domain features intended to capture event rate,
rhythmicity, and spectral structure, (ii) apply unsupervised clustering as an exploratory check on
regime separability in feature space, and (iii) train a decision-tree classifier chosen specifically for
transparency and auditability. In particular, the rhythm-detection features are designed to be
sensitive to the recovery-controlled periodicity reported in the companion TM (cycle time τ ≈ 7 s,
i.e., minimum frequency ∼ 0.15 Hz). Finally, we package the workflow into a web application for
interactive exploration and consistent classification of newly uploaded runs using the same feature
pipeline. In this way, ML is positioned as a complementary, interpretable layer that helps
translate mechanistic regime understanding into reproducible analysis tools.



2 Dataset Description

This study utilizes data (Ref. 2) from 441 boiling experiments, each lasting between 1 and 30
seconds. The experiments were conducted using a surrogate spherical vessel (water) used to
emulate localized heat leaks relevant to cryogenic tanks, instrumented with acoustic sensors under
controlled laboratory conditions.

2.1 Experimental Setup

Figure 1.—Experimental setup: surrogate spherical vessel (water) used to emulate localized heat
leaks relevant to cryogenic tanks, with externally mounted accelerometers.

Each experiment consists of a spherical tank filled with liquid and equipped with
accelerometers mounted on the tank walls, as illustrated in Figure 1. During each run, a localized
heat source induces boiling near the wall surface, and acoustic emissions are recorded via the
accelerometers. Although two sensor channels are available, the analysis presented here focuses on
a single channel due to signal redundancy. The sampling rate for each sensor is 10,000 Hz.



2.2 Data Format and Visualization

Figure 2.—Raw time-domain signal from a representative boiling experiment.

Each run is stored in a comma-separated values (CSV) file containing time-stamped
accelerometer data. The raw time-domain signal is visualized in Figure 2 as amplitude versus
time, where prominent peaks correspond to bubble nucleation and collapse events.

2.3 Physical Interpretation
Acoustic emissions in these experiments arise from rapid, localized fluid–structure loading

associated with bubble nucleation, growth, detachment, and subsequent fluid motion near the
heated wall. In the companion TM (Ref. 1), two repeatable boiling regimes were observed and
interpreted: random boiling, characterized by irregular nucleation timing and more variable
acoustic amplitudes, and rhythmic boiling, characterized by regular periodicity with
comparatively uniform acoustic pulses. A key physical interpretation in that work is that the
rhythmic regime is governed by a thermal recovery (reheating) cycle that sets a characteristic
timescale τ (reported as τ ≈ 7 s, corresponding to a minimum frequency ∼ 0.15 Hz) (Ref. 1). The
feature set used here is designed to operationalize these distinctions in a transparent way:
time-domain peak statistics capture event rate and regularity, while frequency-domain summaries
capture whether energy concentrates near a dominant periodic component.

Although reduced-gravity environments can alter buoyancy-driven convection, bubble
departure, and heat transfer pathways, the present dataset is collected in a 1-g surrogate setup
(water) and is used here to build an interpretable mapping between measured acoustic structure
and regime labels grounded in synchronized video. Any claim that microgravity will necessarily
make boiling “more violent” or “more structured” is too strong without dedicated microgravity
data; instead, the appropriate statement is that the mechanisms and regime concepts are
motivated by scenarios relevant to Cryogenic Fuel Management (CFM) and that the mapping
should be revalidated and, if needed, retrained for the target environment (Ref. 3, 4).



3 Feature Engineering

Features are extracted from both time and frequency domains to capture multiple dimensions
of the boiling signal and enable characterization of different boiling regimes.

3.1 Time Domain Features
3.1.1 Peak Detection

SciPy’s find peaks is used with adaptive thresholds. The vertical threshold is based on the
greater of the 99.5th percentile or 10% of the max value, clamped between 0.015 and 0.1. The
horizontal threshold scales inversely with peak amplitude to avoid false detections.

Figure 3.—Detected peaks using adaptive thresholding.

3.1.2 Derived Peak Features

From each run, the following are calculated:

• Number of statistically significant dominant rhythms

• Mean, median, and standard deviation of peak-to-peak intervals

• Peak magnitude statistics (max, median, std)

• Peaks per second

• Sum of peak magnitudes per second

The algorithm for detecting the number of statistically significant dominant rhythms is
detailed in Appendix A.



3.1.3 Additional Metrics

The following metrics are included:

• Percent of time above threshold

• Global signal standard deviation

3.2 Frequency Domain Features
3.2.1 Spectral Transformation

Figure 4.—FFT of filtered accelerometer signal.

A high-pass Butterworth filter is applied, followed by FFT and Welch’s method to compute
spectral features, as seen in Figure 4.

3.2.2 Extracted Features

• Dominant frequency

• Number of spectral peaks

• Weighted average frequency

• Mean and standard deviation of spectral power

• Spectral entropy



4 Unsupervised Learning

4.1 Pipeline
An unsupervised learning pipeline is implemented to analyze acoustic boiling regime data.

The pipeline consists of the following steps:

• Feature Standardization: All extracted features are standardized using StandardScaler
to ensure each feature contributes equally to the analysis.

• Dimensionality Reduction: Principal Component Analysis (PCA) is applied to the
standardized features. The first 10 principal components are retained, capturing
approximately 97% of the total variance in the dataset. This reduces noise and highlights
the most informative patterns. (See Figure 5 for the scree plot, which shows the cumulative
variance explained by varying numbers of principal components.)

• Clustering: KMeans clustering is performed in the reduced PCA space, enabling the
identification of natural groupings and patterns within the data without relying on labels.

Figure 5.—Scree plot of PCA variance.



4.2 Cluster Analysis

Figure 6.—PCA projection of clustered experiments.

Varying k revealed distinct groupings, interpreted using PCA loadings and rhythm patterns.
Figure 6 displays the data plotted in the PCA space, with k-means clustering applied with k = 4.

4.3 Cluster Validation
To assess clustering quality and interpret cluster meanings, the Szymkiewicz–Simpson overlap

is computed between each cluster and true class:

Sim(A, B) = |A ∩ B|
min(|A|, |B|)

Values close to 1 indicate a strong match between a cluster and a class, whereas values near 0
suggest little to no overlap.



Figure 7.—Cluster validation using Szymkiewicz–Simpson overlap coefficient.

Figure 7 presents the resulting overlap matrix with 7 clusters.

5 Supervised Learning

5.1 Training and Evaluation
The supervised learning stage of the pipeline leverages labeled data to train a Decision Tree

classifier for boiling regime classification. After feature extraction, categorical labels are encoded
and the data is split into training and validation folds. Cross-validation is used to provide robust
estimates of model performance.

Model training and evaluation are fully automated: the decision tree is fit on the training
data, and predictions are generated for each fold. Performance metrics, including per-class
F1-scores and a weighted F1-score, are computed to assess classification accuracy across both
dominant and minority classes. The pipeline also generates visualizations such as feature
importance plots and confusion matrices, which are saved for downstream analysis and reporting.

This approach ensures that model evaluation is consistent, transparent, and easily extensible
to new data.



5.2 Results

Table 1.—F1-scores by class from Decision Tree classifier

Class F1-score (%)

Single Rhythmic 85.2
Random 83.4
Noise 87.4
Rare Classes Low due to insufficient support
Weighted F1-score 79.1

Figure 8.—Feature importance from decision tree.

As shown in Figure 8, the most influential features identified by the decision tree include the
number of boilings, which captures the frequency of boiling events; the median and standard
deviation of peak magnitudes, which reflect the central tendency and variability of acoustic signal
intensity and the spectral bandwidth, which characterizes the distribution of energy across the
frequency domain. These features collectively provide a robust representation of both temporal
and spectral characteristics relevant to boiling regime classification.



5.3 Comparison with Other Methods
Alternative modeling approaches, such as XGBoost and neural networks, were also explored

for boiling regime classification. However, these models consistently underperformed when
compared to the Decision Tree classifier. Across both dominant and minority classes, they yielded
lower F1-scores and failed to identify meaningful distinctions among rhythmic patterns.
Moreover, their lack of interpretability limited the ability to extract actionable insights or
visualize decision boundaries—a key requirement for this domain. In contrast, the Decision Tree
offered a reliable and transparent solution, aligning well with the interpretability demands and
data limitations of this study.

5.4 Handling Class Imbalance
Several techniques were evaluated to address the imbalance in class distribution, including

class weighting, random oversampling, and Synthetic Minority Over-sampling Technique
(SMOTE). Despite these efforts, improvements remained modest due to the severe sparsity in
certain labels. Minority classes such as Double Rhythmic and Rhythmic Climax were especially
affected, with insufficient samples to enable generalizable learning. These limitations suggest that
future progress may depend more on collecting targeted additional data or employing
domain-informed data augmentation techniques to enrich underrepresented classes.

5.5 Confusion Matrix Analysis

Figure 9.—Confusion matrix.



Figure 9 presents the confusion matrix aggregated across all five folds of cross-validation.
Most misclassifications occurred between acoustically or structurally similar boiling regimes.
Notably:

• Single Rhythmic was occasionally misclassified as Rhythmic Climax or Rhythmic & Random.

• Random sometimes overlapped with both Noise and Rhythmic Climax.

• Double Rhythmic and Rhythmic Climax classes yielded very low true positive rates,
reinforcing the issue of class sparsity.

These trends suggest that while the model is effective at detecting dominant rhythmic
structures, it struggles to separate closely related or infrequent patterns. This difficulty likely
stems from overlapping feature representations and limited training data for the minority classes.



6 Web Application for Interactive Exploration and Classification

Figure 10.—Web app landing page presenting two primary modes: model exploration and new
run classification.

To bridge the gap between model development and researcher usability, an interactive web
application was built using Dash, as seen in Figure 10. This web interface serves as both an
analytical and interpretive tool, enabling researchers at NASA to explore clustering results,
visualize decision boundaries, and classify new experimental runs with minimal technical
overhead.

The application supports two primary modes of use:



Figure 11.—Model Exploration mode.

1. Model Exploration Mode (Figure 11): The behavior of the current trained
unsupervised and supervised models can be inspected. This includes an interpretable
decision tree visualization rendered as a zoomable, pannable SVG, allowing users to trace
the logical flow of predictions and understand how specific features influence model
decisions. In parallel, clustering results can be explored in a 3D PCA-reduced space. The
number of clusters and selected PCA axes can be dynamically adjusted to reveal latent
structure in the data and identify potential regime separability.



Figure 12.—Classification mode output: predicted boiling regime and projection of the new data
point in PCA cluster space.

2. Classification Mode (Figure 12): New experimental runs can be uploaded in a CSV
format. Once uploaded, the application automatically applies the full feature engineering
pipeline, including time-domain and frequency-domain transformations. The extracted
features are passed through the trained decision tree classifier, which outputs a predicted
boiling regime, class probabilities, and a list of influential features. Simultaneously, the new
run is projected into the PCA space and overlaid on the existing cluster visualization. This



dual approach allows classification outcomes to be assessed in both a supervised context
(via the decision tree) and an unsupervised context (via clustering), offering a more holistic
understanding of the run’s regime.

Together, these capabilities transform the machine learning pipeline into a robust, real-time
decision support tool. The web application enables interactive exploration of both the
unsupervised (clustering) and supervised (decision tree) models, validation of predictions, and
interpretation of key signal characteristics driving boiling regime classification. Additionally, the
modular architecture of the codebase supports future extensions and modifications, whether to
the regimes, experimental runs, decision tree logic, or clustering pipeline. This flexibility enables
potential integrations such as onboard deployment with spacecraft sensor streams or adaptive
model retraining as new data becomes available.

7 Conclusion

A machine learning pipeline for detecting early-stage boiling in cryogenic fuel systems using
high-resolution acoustic emissions is presented. The approach leverages both time- and
frequency-domain signal processing to extract responsive boiling indicators. These features feed
into a hybrid modeling framework consisting of unsupervised clustering for regime discovery and
supervised decision tree classification for real-time interpretability and classification.

To support deployment and usability in practical research settings, a custom web application
was developed to visualize model behavior, inspect boiling regime boundaries, and classify new
experimental runs. This interface bridges the gap between data science and application, making
advanced analytics accessible and actionable.

The results demonstrate that acoustic-based detection, when paired with machine learning,
offers a viable path forward for enhancing safety and situational awareness in cryogenic systems.
The modular and extensible design of the pipeline also enables ongoing adaptation, supporting
future extensions such as retraining with new data or expansion to other discovered regimes.
Ultimately, this work lays the foundation for building safer, smarter, and more autonomous
cryogenic fuel monitoring systems for future space missions.



Appendix A Detection of Dominant Rhythmic Patterns Algorithm

Purpose
This algorithm aims to detect recurring rhythmic patterns in a sequence of detected acoustic

peaks. It evaluates every possible candidate interval derived from peak differences, tests each
rhythm statistically, and consolidates similar patterns while removing weak or redundant ones.
The result is a clean list of dominant intervals that likely represent true underlying rhythmic
structure in the data.

Plain English Overview of Algorithm
0. Estimate Noise Level

Before any rhythm analysis, the algorithm estimates the natural variability in peak timing
and amplitude. This standard deviation is used to compute a margin of tolerance when
evaluating rhythmic alignment and to calibrate statistical tests later in the process.

1. Generate Rhythm Candidates
Every pair of peaks is used to define a potential rhythm interval d = xj − xi, anchored at xi.
Only differences that allow a sufficient number of repetitions (typically based on

√
n) within

the signal duration are retained.

2. Count Hits Per Candidate
For each candidate, the algorithm walks forward in time from the anchor using
tk = anchor + k · d, checking whether predicted steps align closely with real peaks, both in
the x and y direction. Each match is a “hit,” and both the number of hits and total
prediction attempts (tries) are recorded.

3. Prune Candidates via Binomial Test
The algorithm tests each candidate using a one-sided binomial hypothesis test. It asks: “Is
the observed hit rate significantly better than random chance?” Candidates that fail this
test (after adjusting for multiple comparisons) are removed.

4. Group Similar Candidates
Candidates that share a large number of overlapping hits are grouped using a similarity
metric (Szymkiewicz–Simpson coefficient). Within each group, the strongest candidate is
retained and others are marked as absorbed.

5. Final Filtering by Support
As a final step, candidates that don’t have enough total support (from both their own hits
and absorbed ones) are removed. This ensures the algorithm outputs only the most robust
rhythmic patterns.

The pseudocode for the algorithm is presented in Algorithm 1.



Algorithm 1: Detection of Dominant Rhythmic Patterns in Acoustic Peaks
Input: sorted peak times x = [x1, . . . , xn], amplitudes y = [y1, . . . , yn], total duration T
Output: filtered list of dominant rhythmic candidates

1 Step 0: Estimate Noise Level;
2 σx ← estimate std(x); // timing variability
3 σy ← estimate std(y); // amplitude variability
4 mx ← zασx,;
5 my ← zασy;
6 pnull ← min

(
1, 2mxn

T

)
;

7 Step 1: Generate Rhythm Candidates;
8 for i← 1 to n− 1 do // pairwise peak spacings
9 for j ← i + 1 to n do

10 d← xj − xi;
11 if xj +

√
n d > T + mx then

12 break
13 end
14 else
15 add candidate (d, xi) to list;
16 end
17 end
18 end
19 Step 2: Count Hits Per Candidate;
20 for each candidate (d, a) in list do
21 for k ← 0 to ⌊(T − a)/d⌋ do
22 tk ← a + kd;
23 estimate ȳk;
24 if ∃xi∈ [tk±mx] and yi∈ [ȳk±my] then
25 hit++;
26 end
27 tries++;
28 end
29 end
30 Step 3: Prune via Binomial Test;
31 for each candidate with h hits and t tries do
32 α′ ← α/R;
33 p← BinomialTest(h− 2, t− 2, pnull);
34 if h <

√
n or p ≥ α′ then

35 remove candidate;
36 end
37 end
38 Step 4: Group Similar Candidates;
39 build similarity graph (edge if Szymkiewicz–Simpson ≥ τ);
40 for each connected component do
41 keep candidate with highest centrality;
42 absorb unique hits from others;
43 end
44 Step 5: Final Filtering by Support;
45 for each remaining candidate do
46 if hits + absorbed <

√
n then

47 remove candidate;
48 end
49 end
50 return remaining candidates as dominant rhythmic intervals;



Example Walkthrough Using Peak Time Array
We demonstrate the full algorithm using the following observed peak times from an acoustic

signal:

peaks =



0.1035, 0.3391, 0.5746, 0.8100,
1.0454, 1.2791, 1.5160, 1.7496,
1.9866, 2.2220, 2.4574, 2.6930,
2.9286, 3.1641, 3.3999, 3.6359,
3.8722, 4.1088, 4.3458, 4.5828,
4.8197


The following plot shows the original acoustic signal, with peaks marked:

Figure 13.—Acoustic signal with extracted peaks.

Step 0: Estimate Noise Level

We calculate the global standard deviation of peak-to-peak spacing:

SD = 0.00091 ⇒ Margin = z · SD = 0.0015

The probability of a random hit in a margin window is estimated as:

pnull = 2 · margin · #peaks
run length = 2 · 0.0015 · 21

5 ≈ 0.0126

Step 1: Generate Rhythm Candidates

For each peak pair (i, j), we compute the difference d = xj − xi and retain it as a candidate if
it allows at least

√
n steps within the duration.

Example early candidates:



• Candidate 0: d = 0.2356, anchor = 0.1035

• Candidate 1: d = 0.4711, anchor = 0.1035

• Candidate 2: d = 0.7065, anchor = 0.1035

This process generates a total of 41 candidates.

Step 2: Count Hits Per Candidate

We count how many predicted steps align with real peaks (within the x and y margin),
starting from each candidate’s anchor and incrementing by d. The first two hits (anchor and
anchor+d) are assumed, and only later steps are evaluated.

Candidate ID d (sec) Anchor Hits Tries
0 0.2356 0.1035 20 20
1 0.4711 0.1035 10 10
2 0.7065 0.1035 6 6
3 0.9429 0.1035 5 5
4 1.1785 0.1035 3 4

Step 3: Prune Candidates via Binomial Test

Each candidate is evaluated using a one-sided binomial test under:

H0 : hit rate = pnull HA : hit rate > pnull

A Bonferroni adjustment is applied using α/R for R candidates. Clusters failing the test are
removed.



Step 4: Group Similar Candidates

Figure 14.—Candidate similarity graph.

Remaining candidates are grouped based on the Szymkiewicz–Simpson overlap of their hit
indices:

Sim(A, B) = |A ∩ B|
min(|A|, |B|)

Note that 0 ≤ Sim(A, B) ≤ 1, where a value of 0 indicates that the sets are disjoint, and a value
of 1 indicates that the smaller set is entirely contained within the larger. To identify and
consolidate redundant candidates, a similarity graph is constructed by connecting pairs of
candidates whose overlap exceeds a predefined threshold (e.g., 0.8). Each edge represents
significant shared alignment between two candidates. Within each connected component of this
graph, the candidate with the highest degree centrality is selected as the representative rhythm.
All other candidates in the component are considered redundant and are absorbed into the
dominant one, contributing their supporting peak hits.

Step 5: Final Filtering by Support

Candidates with too few total hits (direct + absorbed) are removed. In this example, only
rhythms with ≥

√
21 ≈ 5 hits are retained.



Final Result

Figure 15.—Labeled acoustic signal with candidate assignments.

The final output is the strongest rhythmic regime:

Detected Rhythm: ID = 0, µ = 0.2356 seconds, aligned with 20 out of 20 peaks

This rhythm is statistically significant, and it absorbs several weaker candidates into a unified
regime.

The figure below shows the acoustic signal with peaks labeled according to their assigned
rhythmic candidate. Each candidate is represented by a distinct color—if multiple rhythmic
candidates are present, the peaks associated with each are shown in different colors.



Example on Double Rhythmic Signal

Figure 16.—Labeled double rhythmic acoustic signal with candidate assignments.

Figure 17.—Double rhythmic similarity graph.

We also illustrate the algorithm on a run classified as double rhythmic in Figure 16. The
similarity graph is shown in Figure 17. Each of the two distinct connected components
corresponds to one of the two rhythms, as expected.

Concurrent bubble nucleation sequences were found to have significantly larger variance in
their inter-nucleation times than single rhythm sequences, suggesting that concurrent nucleations
affect one another. A detailed statistical analysis of this phenomenon will be published elsewhere.∗

∗Martinez, Khasin, in preparation.



Notes
• Peaks that align with a candidate’s predicted steps—but were not part of its original

cluster—are marked as absorbed, as seen in Figure 16.

• Absorbed peaks are visualized using a lighter shade of the candidate’s color to distinguish
them from originally clustered peaks.

• Peaks not matched to any candidate rhythm are considered unused and are displayed in
gray and likely correspond to random boiling. A higher proportion of unused peaks may
indicate random boilings.

A.1 PCA Loadings and Cluster Interpretation
Principal Component Analysis (PCA) was used to reduce the complex, multi-dimensional

feature space into a few principal axes that capture the dominant patterns in the boiling regime
data. By examining the contributions of each original feature to the principal components, we can
interpret the underlying physical and statistical characteristics that differentiate the data.

Principal Component 1 (PCA1):
The first principal component primarily reflects the overall intensity and activity of the

boiling signal. High values along this axis correspond to runs with more frequent and larger
acoustic events, as well as signals that are more complex and less uniform. In contrast, lower
values indicate quieter runs with fewer, smaller, or more uniform events, and a more regular or
“flat” signal profile.

Principal Component 2 (PCA2):
The second principal component is most influenced by the temporal structure of the boiling

events and the presence of unused or less prominent acoustic features. High values along this axis
are associated with runs where the timing between events is more variable or extended, and where
a greater proportion of potential events are not strongly expressed in the signal. This suggests a
regime with more irregular or sporadic boiling activity.

Principal Component 3 (PCA3):
The third principal component captures variation related to the complexity and distribution

of energy within the signal. High values along this axis are associated with runs where the
acoustic energy is more broadly distributed across different frequencies and where the signal
exhibits greater unpredictability or irregularity. This suggests that PCA3 distinguishes between
boiling regimes with more complex, less periodic acoustic patterns and those with simpler, more
predictable structures.



Cluster Interpretation in PCA Space:

• Cluster 0 (green): This group is distinguished by higher values along the second principal
component, indicating runs with more irregular timing between events and a greater
presence of subtle or less pronounced acoustic activity.

• Cluster 1 (blue): This cluster stands out for its higher values along the first principal
component, representing runs with more intense, frequent, and complex boiling activity.

• Cluster 2 (red): This group is characterized by lower values along the first principal
component, corresponding to runs with less intense, more uniform, and quieter boiling
signals.

This analysis shows that the main axes of variation in the data correspond to differences in
both the intensity and regularity of boiling activity, as well as the presence of subtle or sporadic
events. The clustering in PCA space thus provides a physically meaningful separation of boiling
regimes, reflecting both the strength and the temporal structure of the acoustic signals.

Appendix B Decision Tree Summary and Metrics

B.1 Trained Decision Tree

Figure 18.—Final decision tree trained on acoustic feature set.

Figure 18 shows our final trained decision tree. This model was constrained to a maximum
depth of five to improve interpretability and prevent overfitting.



Table 2.—Decision Tree Classification Report

Class Support Precision Recall F1-Score
Single Rhythmic 62 86.56 85.48 85.22
Double Rhythmic 2 0.00 0.00 0.00
Random 57 87.54 80.70 83.36
Rhythmic Climax 3 0.00 0.00 0.00
Noise 31 90.16 87.09 87.38
Rhythmic & Rand 23 68.98 60.86 58.11
Weighted Avg 178 82.80 78.65 79.11

B.2 Interpretation
The decision tree performed well for high-support classes, achieving F1-scores above 83% for

Single Rhythmic, Random, and Noise. However, the model struggled with underrepresented
classes (Double Rhythmic, Rhythmic Climax), resulting in F1-scores of zero due to insufficient
training data. These results underscore the need for class-balancing techniques and possibly more
data or ensemble methods to boost performance on rare classes.
Data availability. The acoustic, visual, and metadata files used in this study are publicly
available through NASA’s Intelligent Systems Division datasets page under the entry “Acoustic
and Visual Data for Incipient Boiling at Local Heat Leaks in a Water Tank” (Ref. 2).
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