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𝜂⨁ Is Difficult
Current exoplanet surveys don’t cover 
the habitable zone

Can’t observe HZ orbital periods for most G and F 
stars, and small planets are at/beyond the 
detection limit

Extrapolation is required
Extrapolating a population model, usually power 
laws

Extrapolation is dangerous
Power laws for warmer, larger planets likely do 
not predict cooler, smaller planets

Extrapolation is unstable
Adding or removing a couple planets at the 
detection limit can change 𝜂⨁ by a factor of 3 



Alternative: Theory-Based Population Models
Explore exoplanet formation/evolution models to infer the 
population of cooler, smaller planets from observations of warmer, 
larger planets

Theory-informed extrapolation, much less dependent on planets at the detection 
limit

From model to 𝜂⨁: (in insolation-radius-stellar temperature space (I,r,T))
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Which theory?
Many theories, Little consensus

But we’ll pick a set of theories to explore this idea for a proof of concept

We prototype using the models of Lee, Karalis and Thorngren (2022)
We consider six models, three with evaporative mass loss (“_evap”) and three without 
(“_prim”), with differing model parameter Coredep

Coredep is the log of the disk gas depletion when the planets accrete gas

Evolved to 3 gigayears
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Evaluating the Models
Use Bayesian predictive sampling to 
evaluate how well each scaled model 
matches the observed population

As implemented in arviz.compare()

Include the power law

Each model is assigned a weight so 
the weighted sum of models best 
matches the observations

“Bayesian model stacking”

Evaluating in the 𝜂⨁ regime, two of 
the models turn out to be competitive 
with a power law

0.31

0.26

0.32

0.04

0.03

0.02

0.01



Estimating 𝜂⨁ 
Integrate over the habitable 
zone to give 𝜂⨁ for each model

Via Weights 

Combine the model 𝜂⨁ 
distributions using the model 
weights for the final weighted 
estimate
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This Is Just a Proof of Concept Prototype!!!
Exoplanet formation and evolution theories need to be better 
constrained for long-period, small planets before this is a reliable 
method for estimating 𝜂⨁

It promises a robust method of extrapolating over the habitable zone

We will extend this approach to include model parameters in the inference for more 
precise and accurate modeling

Bayesian stacking opens up ways of estimating 𝜂⨁ that take into 
account uncertainty of which model to use: several models can be 
used and combined via their predictive weights. 

Previous estimates assumed specific models, neglecting the uncertainty of that 
assumption
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Large Spread in 𝜂⨁ From Kepler Data



Alternative: Theory-Based Population Models
Explore exoplanet formation/evolution models to infer the population 
of cooler, smaller planets from observations of warmer, larger planets

Theory-informed extrapolation, much less dependent on planets at the detection limit

From model to 𝜂⨁: (in radius-insolation space)

Model Makes Via 
KDE 

Infer 
scale

Integrate 
HZ

Complication: strong dependence on star mass, so need to jointly fit many populations  
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