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ABSTRACT

The amcunt of energy absorped when a stream of external radiation enters
a rectangular-groove cavity has been calculated for a variety of surface
conditions, cavity depths, and incident energy distributions. The surfaces
of the cavity are either diffuse reflectors or specular reflectors, and a wide
range of reflectivity values have been considered. The incoming radiation
is either diffusely distributed across the cavity opening or else, arrives in
a buhdle of parallel rays. As a function of these parameters, results are
reported in terms of an apparent absorptivity, which is the ratio of the
energy absorbed in the cavity to that which enters., The results show that
for diffuse incoming radiation, a specular cavity absorbs more effectivel.y

than does a diffuse cavity. For incoming radiation in a parallel ray tundle,

the comparison depends on the angle of inclination of the rays.

NOMENCLATURE

A surface area
B rate of radiant flux leaving unit surface area, radicsity
D;E constants of integration
e, rate of diffuse radiatiocn per unit area of opening
F angle factor
G; B constants of integration
H rate of incident energy per unit surface area
h cavity width
K].”KQ numerical constants, eq. (18)
k number of surface contacts

cavity depth

L
Li directly-illuminated depth
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P exponentis

&

overall rate of energy absorbed

q local rate of energy absorbed per unit area

S energy rate per unit area normal to ray

Ti equivalent temperature of black surface, e; = G‘I‘ih
X  dimensionless coordinate, x/iL

x dista.née from cavity cpening

= separation point for k and k- 1 surface contacts
Y dimensionless coordinate, y/L

y distance from cavity opening

o surface absorptivity

da apparent absorptivity of cavity

0 dimensionless radiosity; B/efL or B/S sin by

inclination angle, fig. 1

o5

/11,22 numerical constants, eg. (18)
g  distance, Ix - Y|
P reflectivity, 1 -

g Stefan~Boltzmann constant



INTRODUCTION

This paper is concermed with the energy absorbed when radiation from an
external source enters a rectangular-groove cavity. It is well-known that the
energy absorbed within any cavity is greater than that which would be absorbed
by a plane area stretched tightly over the opening of tiie cavity. This is called
cavity effect and may be explained in terms of the additiovnal opportunities for
energy absorption which accompany the muiti-reflections within the cavity. The
quantitative extent of the cavity effect depends on the shape of the cavity,
as well as on the reflecting properties of the surface‘and on the nature of the
incoming energy.

The aim of this investigation is to quantitatively determire the cavity
gffect for the rectangular groove. The analysis is extended over a wide range
of conditions which include surface reflectivity properties, nature of incoming
radiation, and groove aspect ratio. Consideration is given to surfaces which
may reflect either diffusely (i.e., according to Lambert's Cosine Law' or -
specularly (angle of incidence equals angle of reflection). For each sne of
these reflectivity characteristics,; consideration is given to radiation which
enters the cavity either as a diffuse stream or as a bundle of parallel rays.
For these various cases, energy absorption results are obtained and reporied as
a function of surface absorptivity, groove aspect ratio, and inclination :ngle
of the parallel ray bundle.

A schematic diagram of the rectangular-groove cavity is shown in figurs 1
along with dimensional nomenclature. The depth of the groove is measured by L,
while the width is h. The length of the cavity in the direction normal %o tha
plane of the figure is sufficiently grezt so that end effects are negligibie.
In the case of a parallel ray bundle entering the cavity, the angle ¥ ic used
to specify the inclination of the rays to the nommal.

It wili be convenient to give separate consideration to the cases where

the incoming energy is diffusely distributed or arrives in a oundle of parallel
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rays. <ihe former will be ireated first and the latter second. Separate
treatment will also be glven for diffusely-reflecting and specularly-reflecting
surfaces.
DIFFUSE INCOMING ENERGY, DIFFUSE SURFACES

The stream of diffuse incoming energy is uniformly distributed over the
opening of the cavity and may be characterized by ei per unit area of the
opening. For purposes of analysis, the condition of diffuse incoming energy is
exactly equivalent to that provided by a plane black surface of emissive power
e, and temperature Ti (ei = (_r'l‘ih) stretched tightly over the cavity opening
and radiating into the cavity.

Consideration is first given to the case where the walls of the cavity are
diffusely reflecting. The first step in the analysis is to write a radiant flux
balance at an area dAxo (see figure 1) located at a typical position xoo Setting
aside the comtribution of emission,* the energy leaving dAx is simply the
reflected portion of the incident energy. Denocting the eneggy leaving a surface
location per unit time and area by the radiosity B, and the incident energy per
unit time and area by H, we can write

Blx ) = (1 - o) H(x ) 1)
where o, ig the gbsorptiviiy and ,"‘ = {1-x) is the refiectivity. The energy
incident at X, arrives via two paths: (a) directly from the external source

and (b) indirectly due to energy reflected at the other surfaces of the cavity.

From the extemal source, there is incident per unit area at X,

e Fxo" 1 (2a)
where Fx -1 is an angle factor representing the fraction of the energy leaving
o

#*
Energy from an external source enters the cavity, and it is desired to know the
amount which is ultimately absorbed. With this in mind, it is only necessary
to consider the radiant interchange process for energy which originated at
the external source, and energy emitted by the surface need not be considered.
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dA which arrives at the surface i stretched across the cavity opening.
x
(o]

a typical position x (ar:a_dAx) on the surface of the cavity, there is incident

From

per unit area at x

B(x) d?xo-ax (2b)

where de _x 18 t1e fraction of the energy leaving dAx which arrives at dAx°

o (0

However, dA_ rreeives radiation from 211 surface locations within its range of
o

visibility, a.d the total contribution is obtained by integrating expression (2b).

Thus, /ith equations (2a) and (2b} for the incident energy, the radiant flux

balance (") becomes ;
Blx) = (1-0) [ei PRI dF"f"} (3)
By insosction of this equation, it may be noted that the unknown B appears under
the integral si'm as well as in other parts of the equation. Equation (3) is
t.erefore an integral equation.

Once sol:tions for the radiosity B are available, the energy absorbed in the
cavity can t: calculated. First, -he rate q at which energy is locally absorbed

(per unit ./ea) is simply found by multiplying the incident energy H by the

absorrtiv. iy, =

= ol = —— L
q e (L)
wh.re eciation (1) has been used. Next, the total rate Q at which energy is
~osorbed in the cavity as a whols may be obtained by integrating equation (L) over

the sur’ace of the cavity. For a unit length in the direction normal to figure 1,

o« (Lreh 5
Q=75 ) B dx )

where, due Lo symmetry, the integral is extended over only half the surface and
a factor of two has been included. It is convenient to report the results in
tems of an apparent absorntivity Xy defined as

x, = (total sbsorbed energy)/(total incoming energy) (6)

Noting that the energy ertering the enclosure per unit length normal to the

plane of figure 1 is e i h, the apparent absorptivity may be evaluated utilizing
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aquation (5) as N
=2 % ds Noar
Ka =72 Jo P ax
where (5 = B/ei and X =x/L. It is thus seen thaﬁ the sclution of the integral
equation (3) holds the key to the detemmination of the apparent absorptivity.
In approaching the solution of this integral equatien, it is advantageous
first to simplify its form. Noting that energy leaving dAx must either strike

(¢]
the other surfaces of the cavity or else pass osut through the opening, it follows

that
Fxcc-i + SdFLQ x =1
x G
Introducing this into the integral equation (3) and rearranging, there is obtained
] ’ ( f ’ \
B (xe) = oke; + (1-«) \ B x) deo"x (n
K

where ' .y

B =e, - B, or {.‘J =1~ (B /ei) {7a)

But, the integral equation for B' is precisely ttat which describes the emission

problem for a cavity having gray, diffuse walls which are at a :niform temperature
Ty (ei = cr'Tih)o Moreover, solutions for the emission problem ar: already avail-
aeble (reference 1), and these may be carried over Yo the absorption problem being
considered here by application of the simple relationship indicated in equation (7a)-
The emission solutions covered the range of cavity aspect ratioc L/h from
0.25 to 10 for surface absorptivity values o of 0.5, 0.75, and 0.9. Results
for the apparent absorptivity &%y corresponding to thes2 conditions have been
calculated by application of equation (5a). Utilizing these ,o(a values have been
graphically interpolated to good accuracy for c{ = 0.7. in order tc provide com-
parisons with later results of this paper. The apvpar:nt abscrptivities thus
obtained have been plotted on figure 2 as a function - f cavity aspect ratio for
parametric values of the surface absorptivity.

Inspection of the figure reveals that for cavitiszs whlch are not tco deep,

the apparent absorptivity increases with increasing d:pth of cavity. However, for
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sufficiently deep cavities, the apparent absorptivity becomes independent of any
further increases in depth. The depth of cavity required to achieve the limiting
value of apparent absorptivity decreases as the surface absorptivity increases.
For instance, for ¢ = 0.9, the limiting D(a value (0.976) is essentially aciieved
at L/h = 2.5; while for X = 0.5, 2 hole depth L/h = 7 is required to essenti:lly
achieve the limiting value of *, (0.850).

These findings are made plausible by considering the nature of the diffuse
reflection process. The energy density of diffusely reflacted radiation is the
same in all directions. Therefore, some of the energy reflected at each surface
contact passes outward through the opening of the cavity, regardless of the depth
of the cavity.. It is for this reason that all of the encrgy entering the cavity
cannot be fully absorbed.

In appraising the results, it may be noted that in th¢ absence of the cavity
effect; o . would be identically equal to X . Thus, the increase of &, relative
to K is a measure of the magnitude of the cavity effect. Tvr2 results cf figure 2
indicate that the cavity effect is most pronounced for deep cavities and for
surfaces of low absorptivity. Thus, utilizing a diffuse cavity having an ispect
ratio L/h = 7, a 70% increase in the effective absorbing power can be achieved
relative to a plane surface of absorptivity 0.5. Moreover, a 60% increase can
be achieved with a cavity whose aspect ratio is only 1.81

DIFFUSE INCOMING ENERGY, SPECULAR SURFACES

Consideration is now extended to a cavity whose surfaces are specular

reflectors on which the angle of reflection equals the angle of incidence.
It will be convenient to replace the incoming diffuse radiation by s black surface
of emissive power 8y “With this, there is formed z cc.uniete enclosure composed
of the three specular walls of the cavity (designated :s 1, 2, and 2) and the
black surface {designated as lLi)s A schematic diagram of the enclosure is shown in

figure 3.
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One approach toward solving for the radiant interchange within the enciosure
would be to keep account of individual rays as they reflect and re-reflect on the
specular surfaces. Fortunately, this arduous task may be circumvented by applying
a new formulation {reference 2) which utilizes a basic property of images which
are formed in plane mirrors. Namely, that light or radiant energy reflected from
a plane mirror appears to come from an image which is located behind the mirror,
the distance between the image and the mirror being the same as the distance
between the object and the mirror.

The development of tne new calculation method is described in the reference,
and only its epplication to the absorption problem in the rectangular cavity will
be discussed here. Considering figure 3, it is easy to see vhat ithe energy abscrbed
at the cavity walls is equal to the difference between the enevrgy emitted by the
black surface and that which is absorbed by it. The energy enitted per unit
length normal to the plane of the figure is eiho Then, denoting by Hh the energy
incident per unit time and area on the black surface, it follows that the rate Q

at which energy is absorbed in the cavity as a whole is

= | = f83)

Q=h ‘fi ‘ Hh] '8a)
In terms of the apparent absorptivity  defined by equation (6), this bccomes

=31~ (H 8o

Gfa ( b/ei) (8v)

It is thus seen that the apparent absorptivity will be determined as soon ar the
incident energy Hh has been calculated.

In the process of specular reflection by the mirrors 1, 2, and 3, a series o
images of surface L are formed as indicated in figure 3. The notation maybe
explaidned as follows: hl\is the image of surface L formeu by one specular
reflection, h2 is the image formed by two specular reflections, and in general,

hn is the image formed after n specular reflections. The subscript u refers %c

upper set of images, while the lower images are without subscripts. Clearly,



7
since the upper images lie in the same plane as surface L, energy leaving these
images will not impinge directly on surface h. The radiation leaving a typical
lower image surface e per unit area is

e, Q-«)8
where (1-«) = f)is the reflectivity. Of this, an amount

e, (1-o0)" Fn (9a)

reaches surface l;, where it is absorbed. The angle factor le 0 corresponds to
diffuse radiation between surfaces i and hne From all of the imays surfaces;

there arrives at 4
(9b)

| S

— o0
7
Hq_;'ei"(l-d) F‘}'“f’ 'fZZ(/"q) F;'.._.-rg
. n=2 !
and with this, the apparent absorptivity may be evaluated from equatica (8b) as

O(Q:'.: i -_ !-_(1-0();‘;_91 -f-Zz_._E;—O()n/:;_‘rp

It only remains to furnish the angle factors Fh LR

derived by the method of crossed and uncrossed strings due to Hottel™ (refe.ence 3).

(10)

“These may be mcst easily

In this method, strings are imagined to be tightly stretched between the end
points of surfaces L and 4. The angle factor is then obtained by summing the
lengihs of the two crossed strings and subtracting away the lengths of the two

uncrossed strings, and then dividing the difference by 2h. In this way, there
i ' [ ;
=3§_ \}(nw 2)2 + (21/n)? +\I n® + (2L/n)? - 2 V(nn 12+ (21/m)?

i

is obtained

F
L-L?
(11)

Inspection of equations (10) and (11) reveals that the apparent absorptivity
O(a depends upon two parameters, the cavity aspect ratio L/h and the surface

absorptivity X . For each h/L,oc combination, the infinite series appearing
in equation (11) was summed, and <>(a thus obtained. The actual numerical

#*
This method applies %o surfaces which are very long in one direction.
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calculations were performed on a Univac 1103 digital computer. The series was 1
=5

truncated when the contribution of a given term was less than "¢ “of the sum of
the series.

Results fcr the apparent absorptivity have been plotted on figure L as a
function of cavity aspect ratio for parametric values of the surface absorptivity.

In recognitiun of the fact that specular surfaces may have higher reflectivity

s

values than diffuse surfaces, lower valuéé have been included on figure L.
From the figure, it is seen that the apparent absorptivity increases manoﬁonically
with incrrasing cavity depth, ultimately approaching the value of unity for
sufficieutly deep cavities. This is in contrast to the behavior of diffuse
surfac.s {(figure 2), for which the apparent absorptivity approaches a limiting
value: less than unity for very deep cavities. These contrasting findings may be
understood by taking cognigance of the different nature of the two reflection
proccsses. In the case of diffuse reflection, a portion of the energy reflected
at cach surface contact passes outward through the cavity opening. In the case
of specular reflection, only energy which resches the bottom of the cavity and is
ul timately

aflected from the base surface 3 (figure 3) can ever/pass outward through the
cavity opening. Thus, for sufficiently deep specular cavities; essentially all
ol the incoming radiation is absorbed. It is also easily understood that deeper
cavities are needed to achieve the total absorption condition for surfaces of
lower absorptivity-

It is interesting to compare the absorbing power of diffuse and specular
cavities for diffuse incoming radiation. Comparing corresponding curves on
figures 2 ard 4, it is seen that a specular cavity absorbs more effectively than
adoes a diffuse cavity. The advantages of the specular cavity are accentuated for

deep cavities and for low surface absorptivities. For example, for X .s 0.5, the

apparent absorptivity values for specular and diffuse surfaces at L/h =1 are
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0.762 and 0.742. At L/h =10, the corresponding values are 0.963 and 0.850.
A similar comparison shows smaller deviations for o{ = 0.9.
PARALIEL INCOMING RAYS, DIFFUSE SURFACES

When a parallel ray bundle enters the cavity under an inclination angle AT
a length Li of one cavity wall is directly illuminated as shown in the inset of
fipure 5. From the ceometry of the fipure,

L, =h/tany (12)
The remainder of the cavity walls receives radiation only be reflection. Different
quantities of energy will thus be incident on oppositely-located positions on the
parallel walls of the cavity. In cognizance of this lack of symmetry, separate
ccordinates x and y are employed to specify positions on the parallel walls, see
figure S.

Wheh the surfaces of the cavity are diffuse reflectors, the radiant inter-
change withih the cavity is described by integral equations. Because of the
assymetry noted above, several integral squations are required. A&dcitionally,
uvie solutions of these integral equations will depenc on three independent para-
meters: the aspect ratio L/h, the surface absorptivity o , and the inclination
angle x‘ of the incoming rays. A complete set of solutions to this problem involving
several simultaneous integral equations and three independent parameters is a very
formidable computational undertaking, especially since numerical means must be
utilized. Now, in the previous case of diffuse incoming energy and diffuse sur-
faces, it was found that ravities of moderate depth displayed absorption character-
istics very little different from those of a cavity of infinite depth. Taking
cognizance of this, it was decided to reduce the number of parameters in the
present problem of incoming parallel rays by focusing attention on the cavity of
infinite depth. Such a cavity is shown in the inset of figure 5. Approximate
auxiliary calculations were carried out to determine the depth of the finite

cavity for which the infinite cavity results would apply.
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The mathematical formulation of the problem follows parallel to that which
has been carried out for the case of diffuse incoming energy. The radiant flux
balance of eguation (1) continues to apply. It remains to evaluate the incident
energy Ho If the energy carried by the parillel ray bundle is denoted by S per
unit time and area normal to the ray, then
S sin g (13)
is the rate at which external energy is incident per unit area of surface in the
range 0 =x = Lia On all other regions of the cavity surface, the direct incidence
of external radiation is zero. The contribution to H of radiation reflected
from the surface of the cavity is obtained by integrating expressions having the

form of equation (2b). Thus, we can write

B * — (1ka
- Bx) = (1-«) LS siny + J Bly) d/',;-y] O< x<l, )

- y:O _
oo
B =( -«) LOB(W | Fx_y { L« x 0o (1kb)
B('ﬂ)‘—‘-{/"q) gooB()() C//:-y -) C < lj-.::oc (3Le)
| ‘x=0

To complete the formuiation, it is necessary to derive the =ngle faciors.
For the case where the surfaces are very long in the direction normal to the plane
of the figure, there is a particularly sinple method for finding angle factors
which is based on equation (31-58) of reference L. For instance; to find aF, _ 3
the nomal is constructed at x and the connecting line is drawn from x to y.
The angle included between the normal and the connecting line is denoted by jﬂ o
Then, applying the differential form of equation (31-58), which states that

l g 3
dFf ==. 52 (sin } d
X-y 2 Iy ( P Yy

there is obtained
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2
1 h
dF = = d {15a)
X = v - - 3 2 y EY
2 ‘_(Y" x)z + hg} /'

A similar expression is found for dFy 5! except that dy is replaced by dx. 1In

terms of dimensionless variables X = x/h, Y = y/h, the angle factors becoms

dF, = — 1/2 ¥
YOO |E-02 41

4L @F - x);/i e dx (15b)
The function [}Y- X)2 + i]mB/? has been plotted as a solid curve on figure 6,
with f' representing the distance Y-X . It is seen that this funct.on has the
general form of an exponential. The figure shows that a given surface iscation
is most affected by radiation from other surface locations which are direcuy
across from it, i.e., at small & ,

4 final dimensionless form of the integral equations (1L) is obtained by

letting

I

 =B/S siny (16}
The effect of this substitution is to replace B by fb in all terms of equations (1L},
and to replace S sinE by 1.

The numerical solution of equations (1l) as a function of two independent
parameters e still a formidable computational undertakinga- The iengthy digital
computer solutions can, however, be circumvented by applying a method first used
by Buckley (reference 5) with very good accuracy (reference 6) in connection with
the emission problem in circular holes. Later investigators have used Buckley's
method for various cases of radiant interchange in circular-cylindrical tubes,
but to the knowledge of the authors, this approach has yet to be applied to the
rectanguliar groove. Buckley recognized that the angle factor varied approxinately
as an exponential function of distance, and he proposed that the actual angle

factor be approximated either by a single exponential or by a sum of exponentials.
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Following through on this idea for the case of the rectangular groove, one and
two term exponential approximations for the angle factor have been derived znd
are plotted on figure 6. The two tem exponential provides a good representztion
for the angle factor and will be used here.

In incorporating the exponential approximation into the analysis, cognizarnce
must be taken of the fact that?’ represents a distance vetween points and is
therefore intrinsically positive. This means that for Y < X, F denctes X Y,
while for Yo> %1 ,? denotes Y- X, This point may be illustrated by evaluating

ecuation (lba) in terms of the exponential angle facter.

X 7
'ix } - X-S/ I
Xy = (1=o ) +(1 ~X) ( 3Ly [ Veal Ks e Al '.% day
i Jys0 17)
w [
ALY -X A Y-X)
+(/-o) p(y)\K Y-, ke dy
9
where K. =1.2445 2. =1,203 ‘
1 3 8
K2 = “0022[65 7\2 = 608157 .

Integral equations similar tc (17} can be written for 2quations (1lb) and (1l:2}.
Continuing with the analysis, it is convenient to represent tne unknowne

by four functions p 1° (3, 0* (33ﬁ FL' as follows

(S(X):(il(x), 0£X<L/n

- '(\5 X) = {BZ(X) 5 Li/h <X<o z9)
@(Y) = @B(Y) , 0<Y<L/h
@(Y)g(.’;hm 5 Li/h<Yg®

The next step is to reduce the governing integral equations to differential
or Y
equaticns. This is possible because the {/dependence of exponential Iunctions
N # R’ )
such as e~ A, (X- 1) and e~ AfX- 1) is unchanged by differentiation. In recoz-

nition of this, equation (17) is differentiated four times with respect to Xo



o
*(

Then, by properly combining equation (17} wih the second and fcurth derivatives,
it is found that all the terms containing integrals cancel out, leaving

it

T Ol N O LA X
"(/‘°<)f9f/%§(s, ={i-a) A Ay

where the primes denote differentiation. In a similar way, differentiation of

{20}

mmmm(Mﬁwﬂhm@mth;OﬁYaahgﬁdw

] 2 - By Iy . \ ] » ene
(3% ~( R + /‘.7.) (:‘Jz_‘; <+ A\ :'11, “(/”{}{;{k}hl N s!(l ilj(ﬁt \24)
]

x\z

I+ is seen that equations (20) and (21) are a palr of simulizneous, linear,

Jourth-order, ordinary differeriial equaticns for the funstiens 51 and @h» The
homogeneous part* of such eguations must have exponentiial solutions
pl =F er s ?ﬂ =D eFY (z2)

Introducing these into the homcgeneous\part of the differentiai sguations {20)
ani (21} yields two linezr, homogeneous, algebraic equations for E and I wiih
cocfficients which contain pzkif'}zp Ki’ and Kzo A non~urivial soluticn wo
tnese homogeneous algebraic equations iz possible only if the determinant of the
coefficients is zero. This yields a pclynomial of eight degree (the so-called
secular equation) for the exponent p, for which it is found that there are eight
real roots. These roots pair off “together as follows: * pl’ + p2, * p39 + pha
B listing of the expressions for P;s p2, pB, and pb is given in the Appendix.
ﬁeturning to the linear algebraic equations; it is additiocnally found that

Di ='Ei, fori =1, 2, 3, I

D1 z;mEi,
Therefore, with this information, the soiutions for {-3; 1 and (5 B can be written.

fOI‘i:‘:S, 69 7,8

#
right-hand sides equal zero.
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- Fh,on oPX,.g -hX X X T PyX
‘51 E0+Ele 5 © + 33 +Ehe +Ese +.46e

+ E? e PX Ea e Fex (22a)

=D +E el +E eRY +E ePY4+E 6BY-E oPY -E ey
Ph o 1 2 3 6

L 5
- E7 e-?“‘ - EB e Pr (22b)

where Eo and Do are the particular solutions.
Proceeding along the same lines indicated in the preceéding paragraph, the
integral equations for (5 5 and (5 3 can be reduced to differential equations.
Both of these differential equations have precisely the form of equation (21),
with and respectively replaced b and or b and o Solutions
n F’l P v rep y("’z (53 VP o
for this pair of simultaneous, linear, homogeneous differential equations are
=0 er’ = H epY (23)
P2 3
Substituting these into the differential equations leads to a pair of linear,

homogeneous algebraic equations which give eighth roots for p: *Ps *+pP, +Ds

1 2 3
+ ph and also that
HizGi, i=12, 3, L
Hi -*:-Gi, i=56,T17,28
With this information, the solutions for 2 and L may be written as
-p,. X -p X -p.X -p, X
1 2 3 L
=G_ e +G e +G, e +G, e 23a)
B2 =6 b 7 8 (23
-p.Y -p.Y -p.Y -p.Y
- 1 2" _ 3t 3 |
@3 = 63 e +G) e G? e G8 e (23b)
X
pX P,

The constants Gl’ 62, GS’ and G_ are multipliers of terms such as e 1 s & ¢, etce

6
These exponentials approach infinity as X and Y approach infinity. Therefore,
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to satisfy the condition that (52 and [53 are everywhere finite

= = = = LY
Gl G2 GS G6 0 (24,

To complete the solution, it only remains to deterwine the constants of
integration which appear in equations (22a), (22b), (23a), and (23b). These. may
be found by returming to the four integral equations of the problem and intro-
ducing the solutions for (51, F, o? ,3 s and {3 L as given by equations (22a), (22b),
(23a), and (23b). After the integrations are carried out, terms are grouped
according to the exponential (e.g., ehlx A X, etc.) which multiplies them. In
tais way, there are obtained 1L linear algebraic equations for the 1l unknown
constants. These equations are solvable in closed form, and the final expressions
are given in the Appendix. By inspection of these expressions, it is seen that
the solutions depend upon the surface absorptivity o and the inclination angle 3‘
of the incident rays.

With the solution for the radiosity B now at hand, consideration canbe given
to the energy absorbed in the cavity. The local rate of energy absorption per
unit area is given by equation (L). Substituting the current definition of F from

equation (16), the expression for q becomes

q=i-lo<Ssin‘6J(3 (25)

The rate of energy absorption in the cévity as a whole can be obtained by integrating

equation (25) along both walls of the cavity. Then, noting that the total rate
of incoming energy is (S sin hy ) Li’ the apparent absorptivity O(a can be evaluated

from its definition (6) as

A, = Alony [fco(X)d)( + fco(v;dL(A\ (26)
a F 1aA FJ d.
o ° J

1 —X
where h/]..i has been replaced by tan 5‘ according to equation (12). The solutions

for (3 as given by equations (22a), (22b), (23a), and (23b) may then be introduced,
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and after the indicated integration is carried out, there is obtained

oty [ BB LS B

£ -Peol, -Pcol Ga. _-Pcol -?cT-
-3 (e -) —-_'E-,i(e‘ f—l)+%§e ‘L%‘e““_‘

Zd

Utilizing rquation (26a) in conjunction with the expressions for p, D, E,
and G as given in the Appendix, the apparent absorptivity has been evaluated for
inclination an;les X‘ ranging from‘lo” to 80'. and for surface absorptivities X
ranging from 0.3 t0 0.9. These results are plotted in figure 5. From the figure,
it is seen thiat the apparent absorptivity is greater as the inclination angle 3‘
decreases. Thls "inding is made plausible by noting that the external radiation
penetrates more reeply into the cavity as X‘ decreases and must therefore undergo
many diffuse re-lections before appreciable amounts can escape. Thus, for ray
bundles which :rrive at deep diffuse cavities under small angles of inclination,
there is.,a vels appreciable cavity effect. As before, the cavity effect is
accentuafed v*th decreasing surface absorptivity.

It is irteresting to Eanuire as to whether the diffuse-surfaced cavity absorbs
more effectiely if the incoming energy is in a parallel ray bundle or is diffusely
distributed. For deep cavities, this information can be obtained by comparing
the curves f figure 5 with the horizontal asyaptotes of figure 2. From this
comparison, it is found that rays which arrive at a small inclination angle 3‘ are
more fully absorbed than is diffuse incoming energy. The contrary is true for
rays which arrive under a large inclination angle. These findings may be illuminated
by notirg that a ray bundle arriving at a small inclination angle penetrates deeply
into the cavily; substantially deeper than the diffuse incoming stream. For a
ray bun.le arriving at a large inclination angle, the opposite is trus. Further
inspecsion of figures 2 and 5 reveals that when Xef-30°, the twe typew of incoming

radiation arec absorbed about equally well.
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The results of figure 5 were obtained from an analysis for the cavity of
infinite depth. However, as already indicated, these results should also apply
to finite cavities of sufficient depth. An approximate calculation was performed
to determire the depth of finite cavity to which the infinite cavity results
would aprnly to within 2%. These calculations were carried out by following groups
of incoming rays as they diffusely reflected and re-reflected within the cavity.
Account was kept of the energy absorbed at each surface contact and summation
gave the total energy absorbed. For each inclination angle and surface absorp-
tivity, the depth of cavity for which the apparent absorptivity is approximately
98% of that given on figure 5 was found by trial and error. The cavity aspect
ratios thus obtained are plotted in figure 7 as a function of inclination angle
for parametric values of surface absorptivity. From the figure, it is seen that
for cavities with surface absorptivities of 0.5 and larger, only moderate cavity
depths are needed to achieve the absorbing power of a cavity of infinite depth.
For cavitiss of lower absorptivity, deeper cavities are required, especially at

small inclination angles.

PARALLEL INCOMING RAYS, SPECULAR SURFACES
The analysis for the case of parallel rays incident on a specular cavity

may be carried through by a different and basically simpler approach than that
given for diffuse surfaces. The derivation is facilitated by reference to figure 8.
Here, there is shown a single ray entering the cavity, reflecting on the walls,

and then emerging from the opening. A mirror image of the cavity as formed in

the base surface 18 also shown at the left by the dashed lines. Suppose, for the
moment, that the base surface is removed and that the ray can move freely through

a cavity of length 2L. Then, the figure demonstrates that the reflection pattern
in the dashed (image) portion of this cavity is identical to that wnich occurs

in the actual cavity after the ray has been reflected from the base surface.
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Thus, the number of surface contacts which a ray experiences within the actual
cavity is equal to the number experienced in a cavity of length 2L open at both
ends, plus one additional to account for reflection at the base.

The ray which has been cc;nstructed in the figﬁre has a special characteristic.
Namely, that after making three contacts with the surface, it grazes the cavity
wall as it leaves through the opening. Additional study of the figure indicates
that rays which initially strike the surface in the region x <X will experience
four surface contacts within the cavity, while rays which initially strike in the
range x> X will experience three surface contacts. Thus, X divides the surface
into two zones, such that rays striking within each zone have a uniform number
of surface contacts.

The number of surface contacts k experie'nced by rays which strike in the
region 0 = X < X may be determined from the geometry of figure 8 as |

k = integral part [2(L/L1) + 2] : (27)
If the quantity in braces is precisely an integer, then k is equal to that integer
aninus one. For rays which strike the surface in the region X < x % Li’ the number
of surface contacts which are experienced within the cavity is k- 1l. Furthermore,
from the geometry of the figure, it follows that the dividing point X is given by
x/L, =2(L/L;) = (k-2) (28)
When a ray experiences k contacts with the surface, the fraction of its
energy which is thus absorbed is
A - AR f~X) + o((:'—ot)2+ e *:-om-ot)k-' (29a)
This is a geometric series whose sum is ,
1- (1-o)k (25b)
With this, we can now calculate the apparent absorptivity o(a from its definition,
equation (6). The energy absorbed in the cavity is

§ sinp {x{l- (1- 0()]+ (L =-x)[1«== (1-c) ] (30)
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where S denotes the energy per unit area nommal to the ray. The rate at which
snergy enters the cavity is Li S sin&* o Then, introducing this information

into equation (6) and taking X from equation (28), there is obtained

o = [z L. (k=2)][1 - (10«)"] . [k S1-2 -&][1 (14)““1] (31)
a 4 Ly :

It is easily verified that this expression is equally valid for I/L, = 1 as well
as for L/L:l z 1.

Consideration may now be given to the cosputation of numerical results.
From equation (27), it is seen that for 0 < L/Lié 1/2, k = constant = 2;
1/2 « L/L, <. 1, k = constant = 3; 1< L/Li_é 3/2, k = constant = ki, and so forth.
From this, it is clear that the number of surface contacts increases by one as a
length increunent 1/2 Li is added. Then, turning to squation (31), it is seen
that within a given range such as 0 < L/1, < 1/2, x increases linearly with
L/Li° The same is true in the range 1/2 < L/Lif.- i, except that the slope of o(a
versus L/Li is different (because k ie different). Therefore, a graph of ol.a
is compysed of a succession of straight line segments which change slope at
L/L =1/2, 1, 3/2, 2, « - |

Fizure 9 presents results for X, as a function of L/Li for pammetric values
of A. The previously-described changes in slope aru clearly evident. From the
abscissa, it is seen that L/h and 5‘ do not appear a; separate parameters, but
rather, combine as the single parameter (h/L) tan) . Taking cognizance of this,
it is evident from the figure that a given cavity (i.e., given L/h) absorbs energy
more effectively when the rays arrive under a large angle of inclination (i.e.,
large )o This is because such rays undergc a grrater number of specular
reflections than do rays which arrive at a small argle of inclination. This is
precisely opposite to the characteristics of diffusely-reflecting cavities,
which are more effective absorbers for rays which airrive under a small angle of

inclination (see figure 5). Additionally, for rafs‘ arriving at a given angle of

inclination (given d‘ ), figure 9 indicates that the amount of energy abso::"bed
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increases steadily as the cavity depth increases and ultimately approaches total
absorption, i.e., X a = l. For diffuse surfaces, it may be recalled that complete
absorption is not possible regardless of the depth of the cavity.
It 1s interesting to inquire whether a specular cavity absorbs more effectively
when the incoming radiation is a diffuse stream or a parallel ray bundle. From
a study of figures 2 and 9, it is found that parallel rays arriving at a large
angle of inclination are more strongly absorbed than is diffuse incoming energy.
On the other hand, rays arriving under a small angle of inclination arevlesa
strongly absorbed than is diffuse energy.
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APPENDIX
Expressions for p, D, E, and G.
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where i1, J, and m are given by the following table:
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where i, j, and m are given by the following table:
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